Welcome to the
Institute of Mathematics
- Intranet -


OS Analysis-Probability: Thierry Paul (Ecole Polytechnique): Quantum Wasserstein topologies and applications

Ort: MPI für Mathematik in den Naturwissenschaften Leipzig, Inselstr. 22, E1 05 (Leibniz-Saal)

Vortrag in der Reihe: OS Analysis-Probability After having exhibited some lack of pertinence of standard Hilbert-Schmidt or trace class (or more general $L^p$-Schatten class) topologies usually used for linear PDEs, I will present a quantum notion of the Wasserstein-Monge-Kantorovich distance of order two canonically obtained through a simple dictionary between classical and quantum mathematical paradigms. This will lead to a quantum definition of optimal transport, actually shown to be ¨cheaper¨ than the classical one e.g. for the bi-partite problem and to make sense in situations where the standard classical (Brenier's) one fails to be true. As a bi-product I will show how quantization can be seen as a kind of Wasserstein geodesic path between a classical function and a quantum operator, thanks to a ¨semiquantum¨ Legendre transform. No quantum mechanics prerequisites will be necessary for following the lecture.

No Attachment

Beginn: Sept. 21, 2023, 3:15 p.m.

Ende: Sept. 21, 2023, 4:45 p.m.