Welcome to the
Institute of Mathematics
- Intranet -

Welcome to the internal web site of the Institute of Mathematics

Foto Augusteum

Veranstaltungen

Mon
8
Dec
Raum E2 10 (Leon Lichtenstein), MPI MIS  14:00‑15:30
M. Sc. Konstantin Kalinin Verteidigung: Two Studies in Fluid Mechanics: Advection-Enhanced Diffusion and Scale-Invariant Instability Bounds
Tue
9
Dec
MPI für Mathematik in den Naturwissenschaften Leipzig, Inselstr. 22, A3 01 (Sophus-Lie room)  11:00‑12:00
Geometry Seminar: Victor Le Guilloux (Université de Strasbourg): Geodesics filling a pair of pants on a random hyperbolic surface
Tue
9
Dec
MPI für Mathematik in den Naturwissenschaften Leipzig, Inselstr. 22, A3 01 (Sophus-Lie room)  13:00‑14:00
Geometry Seminar: Guenda Palmirotta (Universität Paderborn): Patterson-Sullivan distributions of hyperbolic surfaces
Tue
9
Dec
  13:00‑14:00
Tobias Bartek
Thu
11
Dec
Max-Planck-Institut für Mathematik in den Naturwissenschaften, E1 05 (Leibniz-Saal)  11:00‑12:00
Alg/Comb Seminar: Frederik Garbe, Graph Processes Modelled as Dynamical Systems on Banach Spaces
Thu
11
Dec
  13:00‑14:00
Johannes
Thu
11
Dec
MPI für Mathematik in den Naturwissenschaften Leipzig, Inselstr. 22, E2 10 (Leon-Lichtenstein)  13:30‑14:45
Oberseminar Analysis: Carl Johan Peter Johansson (École Polytechnique Fédérale de Lausanne, Switzerland): Lyapunov exponents and asymptotic mixing in the DiPerna-Lions flow
Thu
11
Dec
MPI für Mathematik in den Naturwissenschaften Leipzig, Inselstr. 22, G3 10 (Lecture hall)  15:00‑16:00
Seminar on Nonlinear Algebra: Tim Seynnaeve (Institute of Mathematics of the Polish Academy of Sciences): Decomposing tensors via chiseling
Thu
11
Dec
MPI für Mathematik in den Naturwissenschaften Leipzig, Inselstr. 22, G3 10 (Lecture hall)  16:00‑17:00
Seminar on Nonlinear Algebra: Lisa Seccia (University of Neuchâtel): Geometrically Vertex Decomposable ideals
Thu
11
Dec
MPI für Mathematik in den Naturwissenschaften Leipzig, Live Stream  17:00‑18:30
Math Machine Learning seminar MPI MIS + UCLA: Christoph Hertrich (UTN Nuremberg): Understanding Neural Network Expressivity via Polyhedral Geometry