- Institut
- Webseiten im Uni-Auftritt
- Zur Startseite
- Forschung
- Konferenzen und Workshops
- Seminare
- Lehre
- Service
- IT
- Zur Startseite
- Dokumentation
- Service und Webdienste
- Software etc.
- E-Mail am Institut (nur alte Accounts)
- E-Mail an der Universität
Termin: Detail
OS Analysis-Probability: Thierry Paul (Ecole Polytechnique): Quantum Wasserstein topologies and applications
Ort: MPI für Mathematik in den Naturwissenschaften Leipzig, Inselstr. 22, E1 05 (Leibniz-Saal)
Vortrag in der Reihe: OS Analysis-Probability After having exhibited some lack of pertinence of standard Hilbert-Schmidt or trace class (or more general $L^p$-Schatten class) topologies usually used for linear PDEs, I will present a quantum notion of the Wasserstein-Monge-Kantorovich distance of order two canonically obtained through a simple dictionary between classical and quantum mathematical paradigms. This will lead to a quantum definition of optimal transport, actually shown to be ¨cheaper¨ than the classical one e.g. for the bi-partite problem and to make sense in situations where the standard classical (Brenier's) one fails to be true. As a bi-product I will show how quantization can be seen as a kind of Wasserstein geodesic path between a classical function and a quantum operator, thanks to a ¨semiquantum¨ Legendre transform. No quantum mechanics prerequisites will be necessary for following the lecture.
No Attachment
Beginn: 21. September 2023 15:15
Ende: 21. September 2023 16:45