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Chapter 1

Spectral Theory of C∗-algebras

The general theme of this chapter is to study families of Hilbert space op-
erators and spectral theory from a more abstract, algebraic point of view.
This approach was pioneered by the school of Gelfand and by von Neumann.
Today, this theory has grown into its own subfield of mathematics (math.OA
Operator Algebras on arxiv) with rich applications both in mathematics, for
example in theory of infinite groups, ergodic theory and random matrix the-
ory, and in physics, for example in quantum statistical mechanics, algebraic
quantum field theory or quantum information theory.

The goals for this lecture are much more modest. We will develop the
basic theory of so-called commutative C∗-algebras culminating in their char-
acterization as algebras of continuous functions by Gelfand’s representation
theorem. One central applications is an algebraic recasting of the continuous
functional calculus for normal operators on Hilbert space.

1.1 Bounded operators on Hilbert space

In this section we recap some basic properties of bounded operators on
Hilbert space with a focus on the interaction between the norm and the op-
eration of taking adjoints. We will see these features reflected in properties
of C∗-algebras later.

Several results in spectral theory rely crucially on complex analysis. For
this reason, all vector spaces in are assumed to be complex.

Definition 1.1.1 (Bounded operator, operator norm). Let H,K be Hilbert
spaces. A linear map x : H → K is called bounded if there exists C > 0 such
that ∥xξ∥ ≤ C∥ξ∥ for all ξ ∈ H. The set of all bounded linear operators
from H to K is denoted by B(H;K). We write B(H) for B(H;H).
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The operator norm of x ∈ B(H;K) is defined as

∥x∥ = sup
∥ξ∥≤1

∥xξ∥.

Remark 1.1.2. The bounded linear operators between a given pair of Hilbert
spaces form a Banach space (with the operator norm).

Let us record some basic properties of the operator norm. Recall that
if x ∈ B(H), the adjoint x∗ is the unique operator in B(H) that satisfies
⟨ξ, xη⟩ = ⟨x∗ξ, η⟩ for all ξ, η ∈ H.

Lemma 1.1.3. Let H be a Hilbert space. The operator norm on B(H) has
the following properties.

(a) ∥xy∥ ≤ ∥x∥∥y∥ for all x, y ∈ B(H).

(b) ∥x∗∥ = ∥x∥ for all x ∈ B(H).

(c) ∥x∗x∥ = ∥x∥2 for all x ∈ B(H),

Proof. (a) If ∥ξ∥ ≤ 1 and yξ ̸= 0, then

∥xyξ∥ =

∥∥∥∥x yξ

∥yξ∥

∥∥∥∥ ∥yξ∥ ≤ ∥x∥∥y∥.

If yξ = 0, the inequality ∥xyξ∥ ≤ ∥x∥∥y∥ holds trivially. Taking the supre-
mum over all ξ ∈ H with ∥ξ∥ ≤ 1 yields the claimed inequality.

(b) First note that

∥x∥2 = sup
∥ξ∥≤1

∥xξ∥2 = sup
∥ξ∥≤1

⟨ξ, x∗xξ⟩ ≤ ∥x∗x∥.

By (a), we have ∥x∗x∥ ≤ ∥x∗∥∥x∥. Together with the previous inequality,
this implies ∥x∥ ≤ ∥x∗∥. The reverse inequality follows by exchanging the
roles of x and x∗.

(c) In (b) we have already seen that ∥x∥2 ≤ ∥x∗x∥. If we combine this
with (a) and apply (b) again, we obtain ∥x∥2 ≤ ∥x∗x∥ ≤ ∥x∗∥∥x∥ = ∥x∥2.
Thus ∥x∥2 = ∥x∗x∥.

Definition 1.1.4. Let H be a Hilbert space. An operator x ∈ B(H) is called

• normal if x∗x = xx∗,

• self-adjoint or symmetric if x = x∗,

• positive if there exists y ∈ B(H) such that x = y∗y,
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• a projection if x∗ = x2 = x,

• unitary if x∗x = xx∗ = 1,

• an isometry if x∗x = 1,

• a partial isometry if x∗x is a projection.

Lemma 1.1.5. If H is a Hilbert space and x ∈ B(H), then ker(x) = ran(x∗)⊥

and ranx = ker(x∗)⊥.

Proof. If ξ ∈ kerx and η ∈ H, then ⟨ξ, x∗η⟩ = 0, hence ξ ∈ ran(x∗)⊥. If
ξ ∈ ran(x∗)⊥, then

∥xξ∥2 = ⟨ξ, x∗xξ⟩ = 0,

hence ξ ∈ kerx. The second identity follows by taking the orthogonal com-
plement on both sides of the first identity.

Proposition 1.1.6. Let H be a Hilbert space. An operator x ∈ B(H) is

(a) normal if and only if ∥xξ∥ = ∥x∗ξ∥ for all ξ ∈ H,

(b) self-adjoint if and only if ⟨ξ, xξ⟩ ∈ R for all ξ ∈ H,

(c) positive if and only if ⟨ξ, xξ⟩ ≥ 0 for all ξ ∈ H,

(d) a projection if and only if x is the orthogonal projection onto ran(x),

(e) an isometry if and only if ∥xξ∥ = ∥ξ∥ for all ξ ∈ H,

(f) unitary if and only if it is a surjective isometry,

(g) a partial isometry if and only if it restricts to an isometry from ker(x)⊥

to ran(x).

Proof. We will use at several places that if x ∈ B(H) such that ⟨ξ, xξ⟩ = 0
for all ξ ∈ H, then x = 0 (exercise).

(a) If x is normal, then ∥xξ∥2 = ⟨ξ, x∗xξ⟩ = ⟨ξ, xx∗ξ⟩ = ∥x∗ξ∥2 for all
ξ ∈ H. Conversely, ⟨ξ, (x∗x − xx∗)ξ⟩ = ∥xξ∥2 − ∥x∗ξ∥2 = 0 for all ξ ∈ H,
which implies x∗x− xx∗ = 0.

(b) If x is self-adjoint, then ⟨ξ, xξ⟩ = ⟨xξ, ξ⟩ = ⟨ξ, xξ⟩ for all ξ ∈ H.
Conversely, ⟨ξ, (x− x∗)ξ⟩ = ⟨ξ, xξ⟩ − ⟨ξ, xξ⟩ = 0 for all ξ ∈ H, hence x = x∗.

(c) If x = y∗y, then ⟨ξ, xξ⟩ = ∥yξ∥2 ≥ 0 for all ξ ∈ H. Conversely,
x is self-adjoint by (b) and σ(x) ⊂ [0,∞) by the spectral theorem. Thus
x = (x1/2)2.

(d) We showed that in Mathematical Physics II.
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(e) If x is an isometry, then ∥xξ∥2 = ⟨ξ, x∗xξ⟩ = ∥ξ∥2 for all ξ ∈ H.
Conversely, ⟨ξ, (x∗x− 1)ξ⟩ = ∥xξ∥2 − ∥ξ∥2 = 0 for all ξ ∈ H, hence x∗x = 1.

(f) If x is unitary, then x is an invertible isometry with x−1 = x∗. Thus
x is surjective. Conversely, if x is a surjective isometry, then it is invertible
and thus x−1 = x∗xx−1 = x∗, which implies xx∗ = 1.

(g) Let x be a partial isometry. First note that kerx ⊂ ker(x∗x). Con-
versely, if ξ ∈ ker(x∗x), then ∥xξ∥2 = ⟨ξ, x∗ξ⟩ = 0, hence ξ ∈ ker(x). Thus
x∗x is the orthogonal projection onto ker(x∗x)⊥ = (kerx)⊥. If ξ ∈ (kerx)⊥,
then ∥xξ∥2 = ⟨ξ, x∗xξ⟩ = ∥ξ∥2. Hence x is an isometry from (kerx)⊥ onto
ranx.

Conversely, if x is an isometry from (kerx)⊥ onto ranx and p the orthog-
onal projection onto (kerx)⊥, then

⟨ξ, (x∗x)2ξ⟩ = ⟨pξ, (x∗x)2pξ⟩ = ⟨xpξ, xx∗xpξ⟩ = ⟨pξ, x∗xpξ⟩ = ⟨ξ, x∗xξ⟩

for all ξ ∈ H. Thus (x∗x)2 = x∗x.

Lemma 1.1.7 (Positive square root). Let H be Hilbert space. For every
positive operator x ∈ B(H) there exists a unique positive operator y ∈ B(H)
such that x = y2.

Proof. Existence: Let f(λ) =
√
λ for λ ≥ 0. By the spectral theorem, f(x)

is positive and f(x)2 = x.
Uniqueness: Let y ∈ B(H) be a positive operator such that x = y2. By the

spectral theorem in multiplication operator form, there exists a localizable
measure space (X,A, µ), a measurable function φ : R → R and a unitary
operator u : L2(X,µ) → H such that y = uMφu

∗ and f(y) = uMf◦φu
∗ for

every bounded Borel function f : σ(y) → C. Since y ≥ 0, we have φ ≥ 0
µ-a.e. Thus y2 = uMφ2u∗ and

x1/2 = (y2)1/2 = uM(φ2)1/2u
∗ = uMφu

∗ = y.

Proposition 1.1.8 (Polar decomposition). Let H be a Hilbert space. If x ∈
B(H), then there exists a unique pair (v, y) consisting of a partial isometry
v ∈ B(H) and a positive operator y ∈ B(H) such that x = vy and ker v =
kerx.

Proof. Existence: Let y = (x∗x)1/2. By the spectral theorem, ker((x∗x)1/2) =
ker(x∗x) and clearly ker x ⊂ ker(x∗x). On the other hand, if ξ ∈ ker(x∗x),
then ∥xξ∥2 = ⟨ξ, x∗xξ⟩ = 0, hence ξ ∈ ker(x∗x). Thus ker y = kerx.

We define
v : ran y → H, v(yξ) = xξ.
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Since
∥xξ∥2 = ⟨ξ, x∗xξ⟩ = ∥(x∗x)1/2ξ∥2 = ∥yξ∥2,

the operator v is well-defined and extends to an isometry from ran y toH. We
can extend v to a partial isometry on H by setting v = 0 on (ran y)⊥ = kerx.
With this definition, ker v = ker x and x = vy.

Uniqueness: Let (v′, y′) be a pair of bounded operators that satisfies the
conditions of the proposition. We have y2 = x∗x = (y′)2, hence y = y′ by
the uniqueness of the square root. Therefore v = v′ on ran y, which is dense
in ker(v)⊥ = ker(v′)⊥. Since both operators are continuous, we conclude
v = v′.

Remark 1.1.9. The decomposition x = vy from the previous proposition is
called the polar decomposition of x. As the proof shows, the positive operator
y is given by (x∗x)1/2. This operator is denoted by |x|. This is consistent
with functional calculus for self-adjoint operators (see the exercise).

Exercises

1. Let x ∈ B(H) such that ⟨ξ, xξ⟩ = 0 for all ξ ∈ H. Show that x = 0.

2. Let x ∈ B(H) be self-adjoint and

f : R → R, λ 7→


1 if λ > 0

0 if λ = 0

−1 if λ < 0

g : R → R, λ 7→ |λ|.

Show that x = f(x)g(x) is the polar decomposition of x. In particular,
(x∗x)1/2 = |x| in the sense of functional calculus.

1.2 Banach algebras and C∗-algebras

In the next sections, we will take a more abstract look at spectral theory.
Recall that if x ∈ B(H), the resolvent set ρ(x) is defined as

ρ(x) = {λ ∈ C | x− λ invertible with bounded inverse}.

In operator theory, one usually checks this condition by showing that x− λ
is injective (i.e. λ is not an eigenvalue of x) and that x − λ is surjective.
Boundedness of the inverse is then a consequence of the closed graph theorem.
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However, one can also approach the resolvent set more algebraically. A
number λ ∈ C belongs to the resolvent set if and only if there exists y ∈
B(H) such that (x − λ)y = y(x − λ) = 1. This formulation only uses
the basic algebraic operations in B(H) (addition, composition of operators
and multiplication with scalars) and not the fact that elements of B(H) are
linear maps on a Hilbert space. Thus spectral theory can be studied in the
more general context when only these algebraic properties are given. This
motivates the following definition.

Definition 1.2.1 (Algebra, invertible elements, spectrum). An algebra is a
complex vector space A together with a bilinear map A×A→ A, (a, b) 7→ ab,
called the multiplication. The algebra A is called unital if there exists an
element 1 ∈ A such that 1a = a1 = a for all a ∈ A.

If A is a unital algebra, An element a ∈ A is called invertible if there
exists a−1 ∈ A such that aa−1 = a−1a = 1.

The spectrum of an element a ∈ A is defined as

σA(a) = {λ ∈ C | a− λ1 not invertible}.

Remark 1.2.2. If the algebra A is unital, then the unit 1 is unique. Likewise,
if an element a of a unital algebra is invertible, the inverse a−1 is unique.

Example 1.2.3. If H is a Hilbert space, then B(H) with the usual vector
space structure and the multiplication given by operator composition is a
unital algebra. The unit is the idenity operator. An operator x ∈ B(H) is
invertible if and only if it is bijective and the spectrum σB(H)(x) coincides
with the usual spectrum of an operator on a Hilbert space.

Example 1.2.4. If X is a compact Hausdorff space, then C(X) with the usual
vector space structure and the multiplication given by pointwise multiplica-
tion of functions is a unital algebra. The unit is the constant function 1.
A function f ∈ C(X) is invertible if and only if it has non zeros and the
spectrum σC(X)(f) equals im f .

Proposition 1.2.5. If A is a unital algebra and a, b ∈ A, then σA(ab)∪{0} =
σA(ba) ∪ {0}.

Proof. If λ ∈ C \ (σA(ab) ∪ {0}), let c = λ−1(1 + b(λ− ab)−1a). We have

(λ− ba)c = (1− λ−1ba)(1 + b(λ− ab)−1a)

= 1− λ−1ba+ λ−1b(λ− ab)(λ− ab)−1a

= 1− λ−1ba+ λ−1ba

= 1.

A similar calculation shows c(λ− ba) = 1. Thus λ ∈ C \ (σA(ba) ∪ {0}).
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Remark 1.2.6. The proof of the previous lemma shows (λ− ba)−1 = λ−1(1+
b(λ− ab)−1a). It seems like we pulled this formula out of blue air. Formally,
it can be justified as follows:

(λ− ba)−1 = λ−1(1− λ−1ba)−1

= λ−1

∞∑
n=0

λ−k(ba)k

= λ−1(1 + λ−1b

∞∑
k=0

λ−k(ab)ka)

= λ−1(1 + λ−1b(1− λ−1(ab))−1a)

= λ−1(1 + b(λ− ab)−1a).

Note however that in this abstract algebraic setting, we do not even have a
notion of convergence so that these manipulations of infinite series are not
rigorous.

To be able to speak of convergence etc., that is, to actually do analysis,
we need additional structure. A rich class of algebras with a topology is
provided by the following definition.

Definition 1.2.7 (Banach algebra). A Banach algebra is an algebra A with
a norm ∥·∥ that satisfies ∥ab∥ ≤ ∥a∥∥b∥ for all a, b ∈ A and such that A is
complete in this norm.

Remark 1.2.8. The submultiplicativity ∥ab∥ ≤ ∥a∥∥b∥ guarantees that the
multiplications is a continuous bilinear map from A×A to A. Moreover, any
norm on an algebra that makes the multiplication continuous can be replaced
by an equivalent submultiplicative norm.

Definition 1.2.9 (∗-algebra, C∗-norm, C∗-algebra). A ∗-algebra is an alge-
bra together with a map A→ A, a 7→ a∗ with the following properties:

• (λa+ µb)∗ = λa∗ + µb∗ for all λ, µ ∈ C, a, b ∈ A,

• (ab)∗ = b∗a∗ for all a, b ∈ A,

• (a∗)∗ = a for all a ∈ A.

A norm ∥·∥ on a ∗-algebra A is called a C∗-norm if ∥ab∥ ≤ ∥a∥∥b∥ and
∥a∗a∥ = ∥a∥2 for all a, b ∈ A. An algebra with a complete C∗ norm is called
a C∗-algebra.
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Remark 1.2.10. Clearly, every C∗-algebra is a Banach algebra. The converse
is far from being true. Not only do we need an additional structure (the
involution a 7→ a∗) in the definition of a C∗-algebra, there are also many
examples of Banach algebras with a natural involution that do not satisfy
the C∗ identity for the norm.

Example 1.2.11. The complex-valued polynomials in one variable form a uni-
tal algebra C[X] with involution given by (

∑
k αkX

k)∗ =
∑

k αkX
k. There

are many C∗-norms on C[X], but no norm (whether a C∗-norm or not) that
makes C[X] a Banach space.

Example 1.2.12. Let G be a group. Let C[G] be the vector space with basis G,
that is, C[G] consists of all formal linear combinations

∑
g∈G αgg with finitely

many non-zero coefficients αg. One can define a multiplication on C[G] as
a bilinear extension of the multiplication of G, that is, (

∑
g αgg)(

∑
h βhh) =∑

g,h αgβhgh. The algebra C[G] is called the (complex) group algebra.
Moreover, there is an involution on C[G] defined by(∑

g

αgg

)∗

=
∑
g

αgg
−1.

With this involution, the group algebra becomes a ∗-algebra. The expression∥∥∥∥∥∑
g

αgg

∥∥∥∥∥
u

= sup

{∥∥∥∥∥∑
g

αgπ(g)

∥∥∥∥∥ : π : G→ U(H) group hom.

}

defines a C∗-norm on C[G]. Here, U(H) denotes the group of unitary oper-
ators on H. However, this norm is not complete unless G is finite.

Example 1.2.13. If H is a Hilbert space, then B(H) with the operation of
taking adjoints and the operator norm is a C∗-algebra.

Example 1.2.14. If X is a compact Hausdorff space, then C(X) with the
complex conjugation as ∗-operation and the supremum norm is a C∗-algebra.

One crucial difference between the last two examples is that while mul-
tiplication in C(X) is commutative, operator multiplication in B(H) is not
(unless dimH ≤ 1). The goal of this chapter is to show that every commuta-
tive unital C∗-algebra is of the form C(X) for some compact Hausdorff space
X.

Lemma 1.2.15. If A is a unital Banach algebra and a ∈ A with ∥1−a∥ < 1,
then a is invertible with ∥a−1∥ ≤ (1− ∥1− a∥)−1.
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Proof. Since ∥1−a∥ < 1 and A is complete, the series
∑∞

k=0(1−a)k converges
and the limit has norm bounded above by (1−∥1−a∥)−1 (see the exercises).
A telescope sum trick shows a

∑∞
k=0(1− a)k =

∑∞
k=0(1− a)ka = 1.

Proposition 1.2.16. If A is a unital Banach algebra and Inv(A) denotes
the set of invertible elements of A, then Inv(A) is open in A and a 7→ a−1 is
continuous on Inv(A).

Proof. If a ∈ Inv(A) and b ∈ A with ∥a− b∥ < ∥a−1∥−1, then ∥1− a−1b∥ ≤
∥a−1∥∥a− b∥ < 1. By the previous lemma, a−1b is invertible and

∥(a−1b)−1∥ ≤ (1− ∥a−1∥∥a− b∥)−1.

In particular, b is invertible with inverse b−1 = (a−1b)−1a−1. Therefore,
Inv(A) is open.

Moreover,

∥a−1 − b−1∥ = ∥a−1(b− a)b−1∥
≤ ∥a−1∥∥b− a∥ ∥b−1∥︸ ︷︷ ︸

∥(a−1b)−1a−1∥

≤ ∥a−1∥2∥b− a∥∥a−1b∥

≤ ∥a−1∥2∥b− a∥
1− ∥a−1∥∥b− a∥

.

Thus b−1 → a−1 as b→ a.

Proposition 1.2.17. If A is a non-zero unital Banach algebra and a ∈ A,
then σA(a) is compact, non-empty and contained in B̄∥a∥(0), and

R : C \ σA(a) → A, z 7→ (z − a)−1

is (complex) differentiable.

Proof. If λ ∈ C with |λ| > ∥a∥, then λ − a = λ(1 − λ−1a) is invertible by a
previous lemma. Thus σA(a) ⊂ B̄∥a∥(0). As the map Ψ: C → A, λ 7→ a− λ
is continuous and C \ σA(a) = Ψ−1(Inv(A)), we see that σA(a) is closed.
Therefore σA(a) is compact.

If z, w ∈ C \ σA(a), then

(a− z)−1 − (a− w)−1 = (a− z)−1((a− w)− (a− z))(a− w)−1

= (a− z)−1(z − w)(a− w)−1.
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As inversion is continuous, we conclude

lim
w→z

∥∥∥∥R(z)−R(w)− (a− z)−2(z − w)

z − w

∥∥∥∥ = 0.

Hence R is differentiable with R′(z) = (a− z)−2.
Suppose that σA(a) = ∅ and let φ ∈ A∗. If |z| > ∥a∥, then

|φ(R(z))| ≤ ∥φ∥∥R(z)∥ ≤ ∥φ∥|z|−1(1− |z|−1∥a∥)−1.

Hence φ ◦ R is a bounded complex differentiable function on C such that
lim|z|→∞|φ(R(z))| = 0. By Liouville’s theorem, φ ◦ R = 0. Since φ ∈ A∗

is arbitrary, the Hahn–Banach theorem implies R = 0, which is impossible.
Thus σA(a) must be non-empty.

Remark 1.2.18. Liouville’s theorem is one of the results that show that com-
plex differentiable functions behave very differently from real differentiable
functions. It states the following: If f : C → C is bounded and complex
differentiable, then f is constant.

Theorem 1.2.19 (Gelfand–Mazur). If A is a non-zero unital Banach algebra
in which every non-zero element is invertible, then A = C1.

Proof. If a ∈ A, then σA(a) ̸= ∅. Take z ∈ σA(a). Since every non-zero
element of A is invertible, we conclude a− z1 = 0, hence a = z1.

Example 1.2.20. There are unital algebras in which every non-zero element
is invertible and which are not isomorphic to C. For example, let C(X) =
{P/Q | P,Q ∈ C[X], Q ̸= 0}. If P ̸= 0, then P/Q is invertible with inverse
(P/Q)−1 = Q/P . In particular, there is no norm on C(X) that makes it into
a Banach algebra.

Proposition 1.2.21 (Spectral mapping theorem for polynomials). If A is a
unital Banach algebra, a ∈ A and p a complex polynomial, then σA(p(a)) =
p(σA(a)).

Proof. The case of a constant polynomial is easy, hence we assume that p
is non-constant. For λ ∈ C there exist α ̸= 0 and µ1, . . . , µn ∈ C such that
p(X)− λ = α

∏n
k=1(X − µk). Moreover, p−1(λ) = {µ1, . . . , µk}.

We have λ ∈ σA(p(a)) if and only if p(a)− λ is not invertible if and only
if a− µk is not invertible for some k ∈ {1, . . . , n} (see the exercises). This in
turn is equivalent to p−1(λ) ∩ σA(a) ̸= 0, that is, λ ∈ p(σA(a)).

Definition 1.2.22 (Spectral radius). If A is a unital algebra and a ∈ A,
then the spectral radius of a is defined as r(a) = sup{|λ| : λ ∈ σA(a)}.
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Example 1.2.23. If X is a compact Hausdorff space and f ∈ C(X), then
σC(X)(f) = im f and thus r(f) = sup{|f(x)| : x ∈ X} = ∥f∥∞.

If A is a non-zero unital Banach algebra, then by the previous results,
r(a) ≤ ∥a∥ for every a ∈ A and the supremum in the definition of r(a)
is attained. Moreover, σA(ab) ∪ {0} = σA(ba) ∪ {0} implies that r(ab) =
r(ba). Note that the definition of the spectral radius only uses the algebraic
structure of A. For Banach algebras, there is an equivalent characterization
in terms of the norms, as we will see next.

Proposition 1.2.24 (Spectral radius formula). If A is a unital Banach al-
gebra and a ∈ A, then ∥an∥1/n converges to r(a) as n→ ∞.

Proof. By the spectral mapping theorem, r(a)n = r(an) ≤ ∥an∥. Thus r(a) ≤
lim infn→∞∥an∥1/n.

To show lim supn→∞∥an∥1/n ≤ r(a), let Ω = {z ∈ C : |z| > r(a)} and fix
φ ∈ A∗. As seen previously, the function

f : Ω → C, z 7→ φ((a− z)−1)

is complex differentiable. Thus it has a Laurent series expansion

f(z) =
∞∑
k=0

αk
zk
, z ∈ Ω.

On the other hand, we know that if |z| > ∥a∥, then

f(z) = z−1φ((z−1a− 1)−1) =
∞∑
k=0

(−1)k
φ(ak)

zk+1
.

By the uniqueness of Laurent series expansions, we conclude that α0 = 0 and
αk = (−1)k−1φ(ak−1) for k ≥ 1.

Since the Laurent series expansion converges for |z| > r(a), we have

limk→∞
φ(ak)
|z|k+1 = 0 for all φ ∈ A∗ and |z| > r(a). Let Tk : A

∗ → C, φ 7→ φ(ak)
|z|k+1 .

By the Hahn–Banach theorem, ∥Tk∥ = ∥ak∥
|z|k+1 . Moreover, by the uniform

boundedness principle, there exists C > 0 such that ∥ak∥
|z|k+1 ≤ C. Thus

lim sup
k→∞

∥ak∥1/k ≤ lim sup
k→∞

C1/k|z|1+1/k = |z|.

Taking the infimum over |z| > r(a), we conclude r(a) ≥ lim supk→∞∥ak∥1/k.

12



Remark 1.2.25. The Laurent series expansion is another result from complex
analysis. One version sufficient for our purposes states that for every bounded
complex differentiable function f : C \ B̄R(0) → C there exists a unique
sequence (αk) in C such that

f(z) =
∞∑
k=0

αk
zk

for all z ∈ C \ B̄R(0), where the series on the right side converges uniformly.

Exercises

1. Show that there exists no norm that makes C[X] into a Banach space.

2. Let A be a unital ∗-algebra.

(a) Show that 1∗ = 1.

(b) Show that if a ∈ A is invertible, then a∗ is invertible and (a∗)−1 =
(a−1)∗.

3. (a) Let E be a Banach space and (xn) a sequence in E. Show that if∑∞
n=1∥xn∥ <∞, then limN→∞

∑N
k=0 xk exists.

(b) Let A be a Banach algebra and a ∈ A with ∥a∥ < 1. Show
that limN→∞

∑N
n=0 a

n exists and has norm bounded above by (1−
∥a∥)−1.

4. Let A be a unital ∗-algebra and let a1, . . . , an be commuting elements
of A. Show that a1 . . . an is invertible if and only if a1, . . . , an are all
invertible.

5. Let A be a unital C∗-algebra. Show that if a, b ∈ A commute, then
r(ab) ≤ r(a)r(b).

1.3 The Gelfand transform

Definition 1.3.1 (∗-homomorphism, character, spectrum). Let A, B be
algebras. An algebra homomorphism from A to B is a linear map φ : A→ B
such that φ(ab) = φ(a)φ(b)for all a, b ∈ A. If A and B are unital, then
φ is called unital if φ(1) = 1. If A and B are ∗-algebra, then φ : A → B
is called a ∗-homomorphism if it is an algebra homomorphism and satisfies
φ(a∗) = φ(a)∗ for all a ∈ A.

13



A non-zero algebra homomorphism from A to C is called a character. If
A is a commutative Banach algebra, the set of all characters of A is called
the spectrum of A and denoted by Γ(A).

Remark 1.3.2. If A is a unital commutative Banach algebra and φ : A → C
is a character, then φ(1)2 = φ(12) = φ(1), which implies φ(1) ∈ {0, 1}. If
φ(1) = 0, then φ(a) = φ(a)φ(1) = 0 for all a ∈ A, which contradicts the
assumption that φ is non-zero. Thus every character on a unital commutative
Banach algebra is necessarily unital.

Example 1.3.3. If X and Y are compact Hausdorff spaces and φ : X → Y is
continuous, then

φ∗ : C(Y ) → C(X), f 7→ f ◦ φ
is a unital ∗-homomorphism. In particular, for every x ∈ X we get a character
δx : C(X) → C, f 7→ f(x) from the continuous map φ : {∗} → X, ∗ 7→ x.

Example 1.3.4. Let H be a Hilbert space and x ∈ B(H) self-adjoint. Func-
tional calculus

C(σ(x)) → B(H), f 7→ f(x)

is a unital ∗-homomorphism. We will see soon that functional calculus exists
in the context of abstract C∗-algebras, not only for B(H).

Definition 1.3.5 (Ideal, maximal ideal). Let A be an algebra. A linear
subspace I of A is called a (two-sided) ideal of A, denoted by I ⊴ A, if
abc ∈ I whenever a, c ∈ A and b ∈ I. An ideal I of A is called proper ideal
if I ̸= A and maximal ideal if it is a proper ideal and for every proper ideal
J ⊴ A such that I ⊂ J one has I = J .

Example 1.3.6. IfX is a compact Hausdorff space and Y ⊂ X a closed subset,
then I = {f ∈ C(X) | f |Y = 0} is an ideal of C(X). This ideal is maximal
if and only if Y is a singleton.

Example 1.3.7. If H is a finite-dimensional Hilbert space, then the only ideals
of B(H) are the trivial ones: {0} and B(H). If H is an infinite-dimensional
separable Hilbert space, then B(H) has a unique non-trivial closed ideal,
called the ideal of compact operators. There are many non-trivial ideals of
B(H) that are not closed. We will study such objects in more detail in the
second part of this course.

Remark 1.3.8. If A is unital and I⊴A contains an invertible element a, then
1 = aa−1 ∈ I and thus b = b1 ∈ I for every b ∈ A. Hence I = A.

If A is an algebra and I ⊴ A, the quotient space A/I has not only the
structure of a vector space, but is again an algebra with the multiplication
(a + I)(b + I) = ab + I. If A is unital, then A/I is again unital with unit
1 + I

14



Lemma 1.3.9. Let A be a unital Banach algebra. If I ⊴ A is closed, then

A/I → [0,∞), a+ I 7→ inf
b∈I

∥a− b∥

is a norm that makes A/I into a Banach algebra and the quotient map

q : A→ A/I, a 7→ a+ I

is a contractive unital algebra homomorphism.

Proof. It is easy to see that the map is a norm and ∥a+ I∥ ≤ ∥a∥ for a ∈ A.
To see that the norm is submultiplicative, let a1, a2 ∈ A. We have

inf
b∈I

∥a1a2 − b∥ ≤ inf
b1,b2∈I

∥a1a2 − (a1b2 + a2b1 − b1b2)︸ ︷︷ ︸
I

∥

= inf
b1,b2∈I

∥(a1 − b1)(a2 − b2)∥

≤ inf
b1,b2∈I

∥a1 − b1∥∥a2 − b2∥

= ( inf
b1∈I

∥a1 − b1∥)( inf
b2∈I

∥a2 − b2∥).

It remains to show that A/I with this norm is complete. If (an + I) is a
sequence in A/I such that

∑∞
n=0∥an + I∥ <∞, there exist bn ∈ A such that

an − bn ∈ I and
∑∞

n=0∥bn∥ < ∞. Since A is complete, there exists b ∈ A

such that limN→∞
∑N

n=0 bn = b. Therefore,∥∥∥∥∥b+ I −
N∑
n=0

an + I

∥∥∥∥∥ =

∥∥∥∥∥b+ I −
N∑
n=0

bn + I

∥∥∥∥∥ ≤

∥∥∥∥∥b−
N∑
n=0

bn

∥∥∥∥∥→ 0.

We will use the following two lemmas from commutative algebra.

Lemma 1.3.10. Let A be a unital commutative algebra. An ideal I ⊴ A is
maximal if and only if A/I is a field.

Lemma 1.3.11. Let A be a unital commutative algebra. If φ : A → C is a
non-zero algebra homomorphism, then kerφ⊴ A and

ψ : A/ kerφ→ C, a+ kerφ 7→ φ(a)

is a bijective algebra homomorphism.

Lemma 1.3.12. If A is a unital commutative Banach algebra, then every
maximal ideal of A is closed and every character of A is contractive.

15



Proof. If I ⊴ A is a maximal ideal, then I does not contain any invertible
element. In particular, ∥a − 1∥ ≥ 1 for all a ∈ I. Thus Ī is again a proper
ideal. Maximality of I implies I = Ī.

By the previous two lemmas, if φ ∈ Γ(A), then kerφ is a maximal ideal
of A, hence closed by the first paragraph. Thus φ = ψ ◦ q with the maps ψ
and q from previous lemmas. Moreover, A/ kerφ = {λ+ kerφ | λ ∈ C} and

∥λ+ kerφ∥ = |λ| inf
a∈I

∥a− 1∥ ≥ |λ| = |ψ(λ)|.

Hence ψ is contractive. As q is also contractive, we conclude that φ is
contractive.

We want to give the spectrum Γ(A) a topology. By definition, Γ(A) is
a subset of the dual space A∗. In fact, we have seen that Γ(A) is contained
in the unit ball of A∗. Since A is a Banach space, the dual space A∗ comes
equipped with a norm. However, this topology is not suitable for our purposes
(it has too few compact sets). Instead, we use the following topology.

Definition 1.3.13 (Weak∗ topology). Let E be a Banach space. The weak∗

topology on E∗ is the coarsest topology that makes the maps φ 7→ φ(ξ)
continuous for all ξ ∈ E.

Remark 1.3.14. There is also a more explicit description of the open sets in
weak∗ topology: A subset U of the dual space E∗ is weak∗ open if for every
φ ∈ U there exist ε > 0 and ξ1, . . . , ξn ∈ E such that

{ψ ∈ E∗ : |φ(xk)− ψ(xk)| < ε for 1 ≤ k ≤ n} ⊂ U.

However, it is often more convenient to work with the abstract characteriza-
tion.

Theorem 1.3.15 (Banach–Alaoglu). If E is a Banach space, then the unit
ball of E∗ is weak∗ compact.

We will not prove this result in this course. However, there is an outline
of the proof in the case when E is separable in the exercises.

Proposition 1.3.16. If A is a unital commutative Banach algebra, the spec-
trum Γ(A) is weak∗ compact.

Proof. We have already seen that Γ(A) is contained in the unit ball of A∗. By
the Banach–Alaoglu theorem, it remains to show that Γ(A) is weak∗ closed
in A∗. We have Γ(A) = {φ ∈ A∗ | φ(1) = 1} ∩

⋂
a,b∈A{φ ∈ A∗ | φ(ab) =

φ(a)φ(b)}. By the definition of the weak∗ topology, the maps φ 7→ φ(1) and
φ 7→ φ(ab)−φ(a)φ(b) for a, b ∈ A are continuous. Thus Γ(A) is weak∗ closed
as intersection of weak∗ closed sets.
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The next result motivates the terminology spectrum for the character
space of a commutative C∗-algebra.

Lemma 1.3.17. Let A be a unital commutative Banach algebra generated by
a ∈ A, that is, a is not contained in a proper Banach closed unital subalgebra
of A. The map

Γ(A) → σA(a), φ 7→ φ(a)

is a homeomorphism.

Proof. First we have to show that φ(a) ∈ σA(a) for all φ ∈ Γ(A). Indeed, if
a− φ(a) were invertible, then

1 = φ(1) = φ((a− φ(a))(a− φ(a))−1) = (φ(a)− φ(a))φ((a− φ(a))−1) = 0,

a contradiction.
To see that the map is injective, let φ, ψ ∈ Γ(A) with φ(a) = ψ(a) and

let B = {b ∈ A | φ(b) = ψ(b)}. Since φ and ψ are continuous, B is closed
in A. Moreover, since φ and ψ are unital algebra homomorphisms, B is a
unital subalgebra of A. As a ∈ B and a generates A as Banach algebra, we
conclude B = A. Hence φ = ψ.

To see that the map is surjective, let λ ∈ σA(a) and let I be smallest
closed ideal containing a − λ. Let q : A → A/I be the quotient map and
B = q−1(C+ I). Note that a+ I = λ+ I, hence a ∈ B. Moreover, since the
quotient map is a contractive unital algebra homomorphism, B is a closed
unital subalgebra of A. As a generates A, we conclude B = A. Thus for
every b ∈ A there exists a unique φ(b) ∈ C such that b+ I = φ(b) + I. It is
not hard to see that φ ∈ Γ(A) and φ(a) = λ.

By definition of the weak∗ topology, the map φ 7→ φ(a) is continuous.
Since Γ(A) is weak∗ compact, it is a homeomorphism.

Definition 1.3.18 (Gelfand transform). Let A be a unital commutative
Banach algebra. For a ∈ A let

â : Γ(A) → C, φ 7→ φ(a).

The Gelfand transform is the map

Γ: A→ C(Γ(A)), a 7→ â.

Lemma 1.3.19. Let A be a unital commutative Banach algebra. An element
a ∈ A is contained in a maximal ideal if and only if it is not invertible.
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Proof. If a is invertible and I an ideal containing a, then 1 = a−1a ∈ I, hence
I cannot be proper and in particular not maximal.

Conversely, assume that a is not invertible and let I = {ba | b ∈ A}. Since
A is commutative, I is an ideal, and since A is unital, a ∈ I. If 1 ∈ I, there
would exists b ∈ A such that ba = 1, in contradiction to our assumption that
a is not invertible. Hence I is a proper ideal. Let I be the set of all proper
ideals containing I, ordered by inclusion. By Zorn’s lemma, I has a maximal
element J (exercise). By definition, J is a maximal ideal containing a.

Proposition 1.3.20. Let A be a unital commutative Banach algebra. The
Gelfand transform is a contractive unital algebra homomorphism and for ev-
ery a ∈ A, the Gelfand transform Γ(a) is invertible in C(Γ(A)) if and only
if a is invertible in A.

Proof. We have already seen that ∥φ∥ ≤ 1 for every φ ∈ Γ(A). Thus

∥â∥ = sup
φ∈Γ(A)

|â(φ)| = sup
φ∈Γ(A)

|φ(a)| ≤ ∥a∥.

It is easy to see that the Gelfand transform is an algebra homomorphism. If
a ∈ A is invertible, then Γ(a)Γ(a−1) = Γ(1) = 1, hence Γ(a) is invertible.
Conversely, if a ∈ A is not invertible, then a is contained in a maximal ideal
by the previous lemma. Thus A/I is a Banach algebra in which every element
is invertible, hence A/I ∼= C by the Banach–Mazur theorem. The quotient
map q : A → A/I is a character and q(a) = 0. Thus â(q) = 0, which means
that â is not invertible.

Corollary 1.3.21. If A is a unital Banach algebra, then σ(Γ(a)) = σ(a) and
∥Γ(a)∥ = r(Γ(a)) = r(a) for all a ∈ A.

Exercises

1. Recall that a topological space is called separable if it has a countable
dense subset. Every subset of a separable metric space is again sepa-
rable (this fails for general topological spaces). Let E be a separable
Banach space.

(a) Show that if {ξk | k ∈ N} is a dense subset of the unit ball of E,
then

d(φ, ψ) =
∞∑
k=0

2−k|φ(ξk)− ψ(ξk)|

is a metric on the unit ball of E∗.
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(b) Show that the metric from (a) induces the weak∗ topology on the
unit ball of E∗.

(c) Show that every sequence in the unit ball of E∗ has a subsequence
that converges with respect to d.

2. Let A be a unital commutative algebra and I⊴A a proper ideal. Show
that the set of proper ideals containing I is partially ordered by inclu-
sion and every chain has a maximal element.

3. In this exercise we construct the Stone–Čech compactification of the
natural numbers. Let ℓ∞ denote the space of all bounded complex se-
quences with the supremum norm. Clearly, ℓ∞ is a unital commutative
C∗-algebra. We denote its spectrum by βN.

(a) For n ∈ N let δn : ℓ
∞ → C, x 7→ xn. Show that {δn | n ∈ N} is

dense in βN.
(b) Show that {δn} is open in βN for every n ∈ N.
(c) Show that βN has the following universal property: For every

compact Hausdorff spaceK and every map f : N → K there exists
a unique continuous map f̃ : βN → K such that f̃(δn) = f(n) for
all n ∈ N.

4. In this exercise we revisit the Banach limits from the appendix using so-
called ultralimits. Recall from the previous exercise that βN = Γ(ℓ∞).
For x ∈ ℓ∞ and ω ∈ βN \ {δn | n ∈ N}, it is customary to write
limn→ω xn for ω(x).

(a) Show that if x is convergent, then limn→ω xn = limn→∞ xn.

(b) Show that

LIM: ℓ∞ → C, x 7→ lim
n→ω

1

n

n∑
k=1

xk

is a Banach limit.

1.4 Continuous functional calculus

Let A be a (unital) C∗-algebra. The definition of normal, self-adjoint, pos-
itive etc. elements of A is the same as the algebraic definition for bounded
operators. We write Asa for the set of self-adjoint elements and A+ for the
set of positive elements of A. If a, b ∈ Asa, we define a ≤ b if b− a ∈ A+.
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Lemma 1.4.1. Let A be a C∗-algebra. If a, b ∈ Asa with a ≤ b and c ∈ A,
then c∗ac ≤ c∗bc.

Proof. If d ∈ A such that b− a = d∗d, then c∗(b− a)c = (dc)∗(dc) ≥ 0.

Proposition 1.4.2. If A is a C∗-algebra and a ∈ A is normal, then ∥a∥ =
r(a).

Proof. If a ∈ A is self-adjoint, then ∥a∥2 = ∥a∗a∥ = ∥a2∥. By induction one
sees that ∥a∥2n = ∥a2n∥ for all n ∈ N and therefore ∥a∥ = limn→∞∥a2n∥2−n

=
r(a).

If a is normal, then r(a∗a) ≤ r(a∗)r(a) = r(a)2 as shown in an exercise
before. Thus

∥a∥2 = ∥a∗a∥ = r(a∗a) ≤ r(a)2 ≤ ∥a∥2.

Corollary 1.4.3. Every unital ∗-homomorphism between unital C∗-algebras
is contractive and every unital ∗-isomorphism is isometric.

Proof. If A, B are unital C∗-algebras and Φ: A → B is a unital ∗-homo-
morphism, then σB(Φ(a)) ⊂ σA(a) for all a ∈ A. Thus

∥Φ(a)∥2 = ∥Φ(a∗a)∥ = r(Φ(a∗a)) ≤ r(a∗a) = ∥a∥2.

If Φ is a unital ∗-isomorphism, then σB(Φ(a)) = σA(a) for all a ∈ A and the
inequality in the previous equation becomes an equality.

Corollary 1.4.4. On a given unital ∗-algebra there is at most one norm that
makes it a C∗-algebra.

Proof. The identity map is a unital ∗-isomorphism, hence isometric by the
previous corollary.

Lemma 1.4.5. Let A be a unital C∗-algebra. If a ∈ A is self-adjoint, then
σA(a) ⊂ R.

Proof. Let α, β ∈ R such that α + iβ ∈ σA(a). For t ∈ R let b = a− α + it.
We have i(β + t) ∈ σA(b) and b is normal. Thus

(β + t)2 ≤ r(b)2 = ∥b∗b∥ = ∥(a− α)2 + t2∥ ≤ ∥a− α∥2 + t2,

which implies β2 + 2tβ ≤ ∥a− α∥2. If β ̸= 0, the supremum of the left side
over t ∈ R is ∞. Therefore β = 0.

Proposition 1.4.6 (Invariance of the spectrum). Let A be a unital C∗-
algebra and B ⊂ A a unital C∗-subalgebra. If b ∈ B, then σB(b) = σA(b).
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Proof. Note that Inv(B) ⊂ Inv(A). Let b ∈ B be self-adjoint and not in-
vertible in B. By the previous lemma, b − i/n ∈ Inv(B) for n ∈ N. If
(∥(b− i/n)−1∥) were bounded, say by a constant C > 0, then we would have∥∥1− (b− i/n)−1 b

∥∥ =
∥∥(b− i/n)−1 (b− i/n− b)

∥∥ ≤ 1

n

∥∥(b− i/n)−1
∥∥→ 0,

which implies that for n large enough, (b − i/n)−1b is invertible in B and
hence so is b, in contradiction to our assumption. As inversion is continuous
on Inv(A), we see that b is not invertible in A.

For general b ∈ B we have b ∈ Inv(B) if and only if b∗b ∈ Inv(B) if and
only if b∗b ∈ Inv(A) if and only if b ∈ Inv(A). In particular, σA(b) = σB(b)
for all b ∈ B.

End
Lec-
ture
May
15

Theorem 1.4.7 (Gelfand representation theorem). If A is a unital com-
mutative C∗-algebra, then the Gelfand transform Γ: A → C(Γ(A)) is an
isometric unital ∗-isomorphism.

Proof. If a ∈ A is self-adjoint, then imΓ(a) = σ(Γ(a)) = σ(a) ⊂ R. Thus
Γ(a) is self-adjoint. In general, we can write a ∈ A as a = b + ic with
b = 1

2
(a + a∗) and c = 1

2i
(a − a∗) self-adjoint and Γ(a) = Γ(b) + iΓ(c) with

Γ(b), Γ(c) self-adjoint. Thus Γ(a∗) = Γ(a) and so Γ is a ∗-homomorphism.
As discussed before, φ(1) = 1 for all φ ∈ Γ(A), hence Γ is unital.
We have seen before that ∥Γ(a)∥ = r(Γ(a)) = r(a) for all a ∈ A. Thus

∥Γ(a)∥2 = ∥Γ(a∗a)∥ = r(a∗a) = ∥a∗a∥ = ∥a∥2

for all a ∈ A, which means that Γ is isometric.
As a consequence, the image of Γ is a closed unital ∗-subalgebra of

C(Γ(A)). By definition, the range of Γ separates the points of Γ(A). It
follows from the Stone–Weierstraß theorem that Γ is surjective.

Corollary 1.4.8. Every unital commutative C∗-algebra is ∗-isomorphic to
C(X) for some compact Hausdorff space X.

If A is a unital C∗-algebra and a ∈ A, then the unital C∗-algebra B
generated by a is commutative if and only if a is normal. In this case, we
have already seen that â is a homeomorphism from Γ(B) onto σ(a).

Definition 1.4.9 (Continuous functional calculus). Let A be a unital C∗-
algebra and a ∈ A normal. Let B denote the unital C∗-algebra generated by
a and Γ: C(Γ(B)) → B the Gelfand transform. For f ∈ C(σ(a)) we define
f(a) = Γ−1(f ◦ â) ∈ B ⊂ A. The map

C(σ(a)) → A, f 7→ f(a)

is called the continuous functional calculus.
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Theorem 1.4.10 (Continuous funtional calculus). Let A be a unital C∗-
algebra and a ∈ A normal. The functional calculus satisfies the following
properties:

(a) If f(z) =
∑n

k=0 αkz
k for z ∈ σ(a), then f(a) =

∑n
k=0 αka

k.

(b) If λ ∈ C \ σ(a) and f(z) = (z − λ)−1, then f(a) = (a− λ)−1.

(c) If f ∈ C(σ(a)), then σ(f(a)) = f(σ(a)) and ∥f(a)∥ = ∥f∥∞.

(d) If B is unital C∗-algebra and Φ: A → B is a unital ∗-homomorphism,
then Φ(f(a)) = f(Φ(a)) for all f ∈ C(σ(a))

(e) If (an) is a sequence of normal elements in A that converges to a and
Ω is a compact neighborhood of σ(a), then σ(an) ⊂ Ω eventually and
f(an) → f(a) for every f ∈ C(Ω).

Proof. (a) If f(z) = 1, then f(a) = Γ−1(1 ◦ â) = Γ−1(1) = 1, and if f(z) = z,
then f(a) = Γ−1(â) = a. For general polynomials, the claim follows from the
fact that continuous functional calculus is an algebra homomorphism.

(b) Let g(z) = z − λ. Since continuous functional calculus is a unital
algebra homomorphism, we have 1 = (fg)(a) = f(a)g(a) = g(a)f(a). By
(a), g(a) = a− λ. Thus f(a) = (a− λ)−1.

(c) follows directly from the fact that Γ is an isometric ∗-isomorphism.
(d) is clear if f is a polynomial. Arbitrary f ∈ C(σ(a)) can be approxi-

mated by polynomials in supremum norm by the Stone–Weierstraß theorem,
and then the result follows from the continuity of the Gelfand transform.

(e) Since σ(a) is compact and Ω is a neighborhood of σ(a), there exists
ε > 0 such that d(λ, σ(a)) ≥ ε for all λ ∈ C \ Ω. By (b) and (c),

∥(a− λ)−1∥ = sup
z∈σ(a)

|(z − λ)−1| = 1

d(λ, σ(a))
≤ ε−1.

Hence, if ∥b− a∥ < ε, then ∥(b− λ)− (a− λ)∥ < ε ≤ ∥(a− λ)−1∥−1, which
implies that b − λ is invertible as we have shown when we proved that the
invertible elements form an open subset. In particular, C \ Ω ⊂ ρ(an) for n
sufficiently large.

To see that f(an) → f(a), let ε > 0. By the Stone–Weierstraß theo-
rem, there exists a polynomial g ∈ C(Ω) such that ∥f − g∥∞ ≤ ε

2
. Since

multiplication in A is continuous, g(an) → g(a). Thus

∥f(an)− f(a)∥ ≤ ∥f(an)− g(an)∥+ ∥g(an)− g(a)∥+ ∥g(a)− f(a)∥
≤ 2∥f − g∥∞ + ∥g(an)− g(a)∥
≤ ε+ ∥g(an)− g(a)∥.

Since ε > 0 was arbitrary, we conclude ∥f(an)− f(a)∥ → 0.
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1.5 Applications of Functional Calculus

Definition 1.5.1 (Real, imaginary, positive, negative part). Let A be a
C∗-algebra and a ∈ A. The real and imaginary part of a are defined as
Re a = 1

2
(a + a∗) and Im a = 1

2i
(a− a∗). If a is self-adjoint, then its positive

and negative part are defined as a+ = 1
2
(a+ |a|) and a− = 1

2
(a− |a|).

Remark 1.5.2. Note that a = Re a + i Im a. In particular, every element of
a C∗-algebra is a linear combination of two self-adjoint elements. Moreover,
∥Re a∥, ∥Im a∥ ≤ 1

2
(∥a∥+ ∥a∗∥) = ∥a∥.

The positive and negative part of a self-adjoint element can equivalently
be defined in terms of functional calculus (i. e. applying the function λ 7→ λ±
to x). It follows immediately that σ(x±) ⊂ [0,∞), x+x− = x−x+ = 0 and
x = x+ − x−.

Lemma 1.5.3. If A is a unital C∗-algebra and a, b ∈ A are self-adjoint with
σ(a), σ(b) ⊂ [0,∞), then σ(a+ b) ⊂ [0,∞).

Proof. First note that σ(∥a∥ − a) ⊂ [0, ∥a∥] and similarly for b. By the
spectral radius formula, ∥∥a∥ − a∥ = r(∥a∥ − a) ≤ ∥a∥ and ∥∥b∥ − b∥ ≤ ∥b∥.
Thus

sup
λ∈σ(a+b)

(∥a∥+ ∥b∥ − λ) = r(∥a∥+ ∥b∥ − (a+ b))

≤ ∥∥a∥ − a∥+ ∥∥b∥ − b∥
≤ ∥a∥+ ∥b∥.

Hence σ(a+ b) ⊂ [0,∞).

Proposition 1.5.4. Let A be a unital C∗-algebra. A normal element a ∈ A
is

(a) self-adjoint if and only if σ(a) ⊂ R,

(b) positive if and only if σ(a) ⊂ [0,∞),

(c) unitary if and only if σ(a) ⊂ {z ∈ C : |z| = 1},

(d) a projection if and only if σ(a) ⊂ {0, 1}.

Proof. (a), (c) and (d) follow immediately from functional calculus. We only
show (a) here as a demonstration. Let f : σ(a) → C, λ 7→ λ. By functional
calculus, σ(a) = σ(f) = σ(a) and a∗ = f̄(a). Thus a = a∗ if and only if
f = f̄ if and only if σ(a) = σ(f) ⊂ R.
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(b) If σ(a) ⊂ [0,∞), then a = (a1/2)∗a1/2 by functional calculus. Assume
conversely that a = b∗b for some b ∈ A. We need to show that σ(a) ⊂ [0,∞)
or, equivalently, a− = 0.

Let c = ba− and note that c∗c = a−b
∗ba− = a−aa− = −a3−. Hence

σ(cc∗) ⊂ σ(c∗c) ∪ {0} ⊂ (−∞, 0]. We have c∗c + cc∗ = 2(Re c)2 + 2(Im c)2

and σ(2(Re c)2 + 2(Im c)2) ⊂ [0,∞) by the previous lemma. Moreover, since
σ(−cc∗) ⊂ [0,∞), we also have σ(c∗c) = σ(2(Re c)2+2(Im c)2−cc∗) ⊂ [0,∞]
by the previous lemma. Therefore σ(−a3−) = σ(c∗c) = 0. As a− is self-
adjoint, this implies ∥a−∥3 = ∥a3−∥ = r(a3−) = 0.

Corollary 1.5.5. An element v of a unital C∗-algebra is a partial isometry
if and only if v∗ is a partial isometry.

Proof. By definition, v is a partial isometry if and only if v∗v is a projection.
Since v∗v is self-adjoint, this is equivalent to σ(v∗v) ⊂ {0, 1} by the previous
proposition. As σ(vv∗) ⊂ σ(v∗v) ∪ {0}, the conclusion follows.

Corollary 1.5.6. Let A be a unital C∗-algebra. The set A+ of positive
elements of A is closed and if a, b ∈ A+ and λ, µ ≥ 0, then λa + µb ∈ A+.
Moreover, if a ∈ A is self-adjoint, then −∥a∥ ≤ a ≤ ∥a∥.

Proof. By the previous proposition, A+ = {a ∈ Asa | σ(a) ⊂ [0,∞)}. If
an ∈ A+ and an → a, then 0 = (an)− → a− by continuity of functional
calculus. Thus a− = 0, which implies a ∈ A+. Thus A+ is closed. The other
statements are easy consequences of the previous results.

Proposition 1.5.7. Every element of a unital C∗-algebra is a linear combi-
nation of four unitaries.

Proof. Every element a of a C∗-algebra is a linear combination of two self-
adjoint elements (its real and imaginary part). By rescaling, we may further
assume that these self-adjoint elements have norm at most 1. If a ∈ A is
self-adjoint with ∥a∥ ≤ 1, then u = a+ i(1− a2)1/2 is unitary:

uu∗ = u∗u = (a+ i(1− a2)1/2)(a− i(1− a2)1/2) = a2 + 1− a2 = 1.

Moreover, u+ u∗ = a.

Theorem 1.5.8 (Operator monotonicity of the square root). Let A be a
unital C∗-algebra. If a, b ∈ A are positive and a ≤ b, then a1/2 ≤ b1/2.
Moreover, if a and b are additionally invertible, then b−1 ≤ a−1.

Proof. We first assume that a, b ∈ A are positive and invertible. Recall
that c∗A+c ⊂ A+ for c ∈ A. As a ≤ b, we have b−1/2ab−1/2 ≤ 1, thus
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r(a1/2b−1a1/2) = r(b−1/2ab−1/2) ≤ 1, which implies a1/2b−1a1/2 ≤ 1. Hence
b−1 ≤ a−1.

Moreover, ∥a1/2b−1/2∥2 = ∥b−1/2ab−1/2∥2 ≤ 1, which implies

b−1/4a1/2b−1/4 ≤ r(b−1/4a1/2b−1/4)

= r(a1/4b−1/2a1/4)

= r(a1/2b−1/2)

≤ ∥a1/2b−1/2∥
≤ 1.

Therefore a1/2 ≤ b1/2.
In general, if a, b ∈ A+ with a ≤ b are not necessarily invertible and

ε > 0, we have a+ ε ≤ b+ ε and a+ ε, b+ ε are positive and invertible (since
σ(a+ε), σ(b+ε) ⊂ [ε,∞)). By the previous paragraph, (a+ε)1/2 ≤ (b+ε)1/2.
By continuity of functional calculus, (a + ε)1/2 → a1/2 and (b + ε)1/2 → b1/2

as ε→ 0.

Remark 1.5.9. If I ⊂ R is an interval, a function f : I → R is called operator
monotone if f(a) ⊂ f(b) whenever a, b are self-adjoint elements of a unital
C∗-algebra with a ≤ b. Since C is a unital C∗-algebra with self-adjoint part
R, every operator monotone function is monotone. The converse is not true:
For example, λ 7→ λ2 is not operator monotone on [0,∞). The previous
result shows that λ 7→

√
λ and λ 7→ −1/λ are operator monotone on [0,∞).

Definition 1.5.10 (Absolute value). If A is a unital C∗-algebra and a ∈ A,
then the absolute value |a| of a is defined as |a| = (a∗a)1/2.

Corollary 1.5.11. If A is a unital C∗-algebra and a, b ∈ A, then |ab| ≤
∥a∥|b|.

Proof. Since a∗a ≤ ∥a∗a∥ = ∥a∥2, we have b∗a∗ab ≤ ∥a∥2b∗b. The claim now
follows from the operator monotonicity of the square root function.

1.6 Bonus: Group C∗-algebras

Let G be a group. As we have seen at the very beginning of this course,
the formal finite linear combinations of elements of G (more rigorously, the
free complex vector space over G) form a unital ∗-algebra C[G] with the
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operations (∑
g

αgg

)(∑
h

βhh

)
=
∑
g,h

αgβhgh,(∑
g

αgg

)∗

=
∑
g

αgg
−1.

We also claimed that∥∥∥∥∥∑
g

αgg

∥∥∥∥∥
u

= sup

{∥∥∥∥∥∑
g

αgπ(g)

∥∥∥∥∥ : π : G→ U(H) group hom.

}

defines a C∗-norm on C[G], where U(H) denotes the group of unitary oper-
ators on H.

The C∗ norm property is indeed not hard to verify given that the operator
norm on B(H) is a C∗ norm. What that takes some more considerations is
the fact that the supremum on the right side is always finite and the resulting
semi-norm is positive definite.

Lemma 1.6.1. If G is a group, then ∥·∥u is a norm on C[G].

Proof. First note that if π : G→ U(H) is a group homomorphism, then

∥π(g)∥2 = ∥π(g)−1π(g)∥ = ∥π(e)∥ = ∥1∥ ≤ 1.

Thus ∥∥∥∥∥∑
g

αgπ(g)

∥∥∥∥∥ ≤
∑
g

|αg|.

In particular,
∥∥∥∑g αgg

∥∥∥
u
<∞.

To show that ∥·∥u is positive definite, define

λg : ℓ
2(G) → ℓ2(G), (λgf)(h) = f(g−1h)

for g ∈ G. Clearly, λg is a bijective isometry (with inverse λg−1), hence a
unitary. Moreover, λe = 1 and λgλh = λgh for g, h ∈ G are easy to see. Thus
λ : G→ U(ℓ2(G)) is a group homomorphism.

We have ∑
g

αgλg1e =
∑
g

αg1g.

In particular, ∥
∑

g αgλg∥ = 0 if and only if αg = 0 for all g ∈ G. Therefore
∥·∥u is positive definite.
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Definition 1.6.2 (Reduced and full group C∗-algebra). Let G be a group.
The representation λ : G → U(ℓ2(G)) from the proof of the previous lemma
is called the left regular representation of G. The closure of {

∑
g αgλg | α ∈

cc(G)} is called the reduced group C∗-algebra and denoted by C∗
r (G).

The completion of C[G] with respect to ∥·∥u is called the full group C∗-
algebra and denoted by C∗(G).

By definition, whenever π : G → U(H) is a group homomorphism, then
π can be extended to a contractive linear map from C∗(G) to B(H), still
denoted by the same letter π. It is not hard to see that this extension
is a unital ∗-homomorphism. In particular, there is a surjective unital ∗-
homomorphism λ : C∗(G) → C∗

r (G) for every group G. In general, λ is not
injective.

Definition 1.6.3 (Amenable group). A group G is called amenable if the
map λ : C∗(G) → C∗

r (G) is a injective.

Example 1.6.4. Every finite group is amenable. In this case, C∗(G) = C[G]
and λ|C[G] is injective, as we have seen before.

The name “amenable” is a word play on the word “mean” in the sense
of the following definition. Invariant means are the more common way to
define amenable groups, but this definition is equivalent to ours, as we will
see soon.

Definition 1.6.5 (Invariant mean). Let G be a group. An left-invariant
mean is a map µ : ℓ∞(G) → C such that

• µ(1) = 1,

• µ(f) ≥ 0 if f ≥ 0,

• µ(f(g−1 · )) = µ(f) for all f ∈ ℓ∞(G) and g ∈ G.

Theorem 1.6.6. For a group G, the following properties are equivalent:

(i) G is amenable.

(ii) C∗
r (G) has a character.

(iii) ℓ∞(G) has a left-invariant mean.

Proof. The proof requires some techniques we have not covered in this course.
Some of them can be found in Chaper 3. We only sketch (i) =⇒ (iii) and
(ii) =⇒ (iii) here. For a complete proof, see Brown, Ozawa. C∗-Algebras and
Finite-Dimensional Approximations, Theorem 2.6.8.
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(i) =⇒ (ii): Let π : G → S1, g 7→ 1 be the trivial representation. By the
definition of C∗(G), the map π can be extended to a unital ∗-homomorphism
φ : C∗(G) → C. If G is amenable, then λ is a ∗-isomomorphism and φ ◦
λ−1 : C∗

r (G) → C is a character.
(ii) =⇒ (iii): Let φ : C∗

r (G) → C be a character. We can extend φ to a
bounded linear functional ψ : B(ℓ2(G)) → C with ψ(1) = 1 and ψ(x) ≥ 0 for
all x ≥ 0 (see Lemma 3.1.4). Since ψ|C∗

r (G) is a ∗-homomorphism, we have

ψ(λgxλ
∗
g) = φ(λg)ψ(x)φ(λg) = ψ(x)

for all x ∈ B(ℓ2(G)) and g ∈ G (see Lemma 3.1.5).
For f ∈ ℓ∞(G) consider the multiplication operator Mf on ℓ2(G). We

have λgMfλ
∗
g =Mf(g−1 · ). Thus

µ : ℓ∞(G) → C, f 7→ ψ(Mf )

is a left-invariant mean.

Corollary 1.6.7. Every abelian group is amenable.

Proof. If G is abelian, then C∗
r (G) is commutative and thus has a character

by Gelfand theory.

Example 1.6.8. Let F2 be the free group on two generators. As a set, F2

consists of all finite words with letters a, a−1, b, b−1 such that no two adjacent
letters are inverse to each other. The identity element in this group is the
empty word and the group multiplication is given by concatenation (with
cancellation of adjacent inverse letters). For example, (ab−1ab)(b−1aa) =
ab−1aaa.

The group F2 is not amenable (exercise).

If G is an abelian group, then C∗(G), which is canonically isomorphic to
C∗
r (G) by the previous corollary, is a unital commutative C∗-algebra. By the

Gelfand representation theorem, C∗(G) = C(Γ(C∗(G))). Let us determine
the spectrum of C∗(G).

Definition 1.6.9 (Pontryagin dual). Let G be an abelian group. The Pon-
tryagin dual Ĝ of G is the set of all group homomorphisms from G to S1.

Note that Ĝ becomes itself a group when endowed with the multiplication
(χ1χ2)(g) = χ1(g)χ2(g) for χ1, χ1 ∈ Ĝ and g ∈ G.

Lemma 1.6.10. If G is an abelian group, then the map

Γ(C∗(G)) → Ĝ, φ 7→ φ|G

is bijective.
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Proof. First recall that φ ∈ Γ(C∗(G)) is a unital ∗-homomorphism. In par-
ticular, if g ∈ G, then |φ(g)|2 = φ(g−1g) = φ(e) = 1. Thus φ(G) ⊂ S1.

If χ ∈ Ĝ, then χ is a group homomorphism from G to U(C). Hence it
can be extended to a unital ∗-homomorphism from C∗(G) to C. This settles
surjectivity.

To see that the map is injective, note that if spanG is dense in C∗(G).
Hence if two bounded linear maps on C∗(G) coincide on G, they coincide on
C∗(G).

Remark 1.6.11. We already know that the spectrum of a unital C∗-algebra
is a compact Hausdorff space. The previous lemma allows us to transport
the topology on Γ(C∗(G)) to Ĝ. This makes Ĝ into what is called a compact
topological group (see the exercises).

Corollary 1.6.12. If G is an abelian group, then C∗(G) is ∗-isomorphic to
C(Ĝ).

Example 1.6.13. Let G = Z. Since G is a free group, the map Ĝ→ S1, χ 7→
χ(1) is a bijection. Moreover, if χ ∈ Ĝ and n ∈ Z, then χ(n) = χ(1)n.
Hence χ 7→ χ(n) is continuous for all n ∈ Z if and only if χ 7→ χ(1) is
continuous. Thus Ĝ → S1, χ 7→ χ(1) is a homeomorphism. It follows that
C∗(Z) ∼= C(S1).

More generally, one can show that for d ∈ N, the group C∗-algebra C∗(Zd)
is ∗-isomorphic to C(Td), where Td = (S1)d is the d-dimensional torus.

Example 1.6.14. Let n ∈ N and let Cn = {z ∈ S1 | zn = 1} the set of n-th
roots of unity. If G = Z/nZ, the map Ĝ → Cn, χ 7→ χ(1) is a bijection and
both sets carry the discrete topology. Thus C∗(Z/nZ) ∼= C(Cn) ∼= Cn.

Exercises

1. Let G be an abelian group.

(a) Endow Ĝ with the coarsest topology that makes the maps Ĝ →
S1, χ 7→ χ(g) continuous for all g ∈ G. Show that the map

Γ(C∗(G)) → Ĝ, φ 7→ φ|G
is a homeomorphism.

(b) Show that the maps

Ĝ× Ĝ→ Ĝ, (χ1, χ2) 7→ χ1χ2

Ĝ→ Ĝ, χ 7→ χ−1

are continuous. Here Ĝ×Ĝ is endowed with the product topology.
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2. Inside the free group F2, let A
+, A− be the set of words beginning

with a, a−1, respectively, and likewise define B+, B−. Further, let
C = {1, b, b2, . . . } ⊂ F2.

(a) Show that

F2 = A+ ⊔ A− ⊔ (B+ \ C) ⊔ (B− ∪ C)
= A+ ⊔ aA−

= b−1(B+ \ C) ⊔ (B− ∪ C).

(b) Show that F2 is not amenable (Hint: Use the characterization with
left-invariant means).
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Chapter 2

Schatten Classes and Compact
Operators on Hilbert Space

In this chapter we will study some two-sided ideals of the bounded operators
on a Hilbert space, known as Schatten classes and compact operators.

2.1 Trace-class operators

The Schatten classes are derived from the study of the trace of an operator. In
finite dimensions, every operator has a well-defined trace that is independent
of the chosen basis. In infinite dimensions, this is no longer true. The trace-
class operators is exactly the space of operators for which we can still define
a reasonable notion of trace.

But first, let us start with a smaller class of operators for which there are
no convergence problems whatsoever in the definition of the trace.

Definition 2.1.1 (Finite-rank operators). Let H be a Hilbert space. An
operator x ∈ B(H) is called finite rank if ranx is finite-dimensional. The
rank of x is dim ranx. The space of all finite rank operators on H is denoted
by F(H).

As ranx = ker(x∗)⊥ and ran(x∗) = ran(x∗|ker(x∗)⊥), the adjoint of a finite-
rank operator is again a finite-rank operator. Furthemore, if x has finite
rank, then ker(x)⊥ = ran(x∗) is also finite-dimensional.

Definition 2.1.2 (Bra ket notation). Let H be a Hilbert space. For ξ ∈ H
we define

|ξ⟩ : C → H, λ 7→ λξ

and ⟨ξ| = |ξ⟩∗.
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Remark 2.1.3. If η ∈ H and λ ∈ C, then

⟨ξ| ηλ = ⟨η, |ξ⟩λ⟩ = ⟨η, λξ⟩ = ⟨η, ξ⟩λ.

Thus ⟨ξ| η = ⟨ξ, η⟩.

Lemma 2.1.4. If H is a Hilbert space, then F(H) = span{|ξ⟩ ⟨η| : ξ, η ∈ H}
and F(H) is a two-sided ideal of B(H).

Proof. As ran(|ξ⟩ ⟨η|) ⊂ Cξ, we have |ξ⟩ ⟨η| ∈ F(H). Conversely, if x ∈ F(H),
let (ξj)

m
j=1 be an ONB of ran x and (ηk)

n
k=1 an ONB of ker(x∗)⊥. For arbitrary

ζ ∈ H we have

xζ =
n∑
k=1

⟨ηk, ζ⟩xηk =
m∑
j=1

n∑
k=1

⟨ηk, ζ⟩⟨ξj, xηk⟩ξj =
m∑
j=1

n∑
k=1

⟨ξj, xηk⟩ |ξj⟩ ⟨ηk| ζ.

Moreover, if ξ, η ∈ H and x, y ∈ B(H), then x |ξ⟩ ⟨η| y = |xξ⟩ ⟨y∗η| ∈ F(H).
Hence F(H) is a two-sided ideal of B(H).

Definition 2.1.5 (Trace). Let H be a Hilbert space with orthonormal basis
(ej)j∈J . The trace of x ∈ B(H)+ is defined as

tr(x) =
∑
j∈J

⟨ej, xej⟩ ∈ [0,∞].

Remark 2.1.6. Recall that if J is uncountable, the series value in the defini-
tion of the trace is defined to be

sup
F⊂J finite

∑
j∈F

⟨ej, xej⟩.

Remark 2.1.7. Clearly the trace is monotone in the sense that if x, y ∈ B(H)+
with x ≤ y, then tr(x) ≤ tr(y).

Example 2.1.8. Let p ∈ B(H) be a projection and (ej)j∈J an ONB of H for
which there exists I ⊂ J such that(ei)i∈I is an ONB of pH. We have

tr(p) =
∑
j∈J

⟨ej, pej⟩ =
∑
i∈I

∥ei∥2 = |I|.

In particular, tr(p) < ∞ if and only if dim(pH) < ∞, in which case tr(p)
equals the rank of p.

We will see later that tr(p) is independent of the choice of ONB.

Lemma 2.1.9. If H is a Hilbert space with ONB (ej)j∈J and x ∈ B(H),
then tr(x∗x) = tr(xx∗).

32



Proof. By Parseval’s identity and Fubini’s theorem for series, we have∑
j∈J

⟨ej, x∗xej⟩ =
∑
j∈J

∑
i∈J

⟨xej, ei⟩⟨ei, xej⟩

=
∑
i∈J

∑
j∈J

⟨xej, ei⟩⟨ei, xej⟩

=
∑
i∈J

⟨ei, xx∗ei⟩.

Lemma 2.1.10. Let H be a Hilbert space with ONB (ej)j∈J . If x ∈ B(H) is
positive and u ∈ B(H) is unitary, then tr(uxu∗) = tr(x). In particular, tr(x)
does not depend on the chosen ONB.

Proof. By the previous lemma,

tr(uxu∗) = tr((ux1/2)(ux1/2)∗) = tr((ux1/2)∗(ux1/2)) = tr(x).

Definition 2.1.11 (Trace-class operator, trace norm). Let H be a Hilbert
space. An operator x ∈ B(H) is called trace class if tr(|x|) < ∞. The space
of all trace-class operators on H is denoted by L1(B(H)). The trace norm
∥·∥1 on L1(B(H)) is defined by ∥x∥1 = tr(|x|).

Lemma 2.1.12. Let H be a Hilbert space. If x ∈ B(H) has polar decompo-
sition x = v|x| and ξ ∈ H, then

2|⟨ξ, xξ⟩| ≤ ⟨ξ, |x|ξ⟩+ ⟨v∗ξ, |x|v∗ξ⟩.

Proof. If λ ∈ C with |λ| = 1, then

0 ≤ ∥(|x|1/2 − λ|x|1/2v∗)ξ∥2 = ⟨ξ, |x|ξ⟩+ ⟨v∗ξ, |x|v∗ξ⟩ − 2Reλ⟨ξ, |x|v∗ξ⟩.

Note that |x|v∗ = (v|x|)∗ = x∗. If we choose λ such that λ⟨xξ, ξ⟩ = |⟨xξ, ξ⟩|,
we obtain the claimed inequality.

Lemma 2.1.13. Let H be a Hilbert space with orthonormal basis (ej)j∈J . If
x ∈ L1(B(H)), then the series ∑

j∈J

⟨ej, xej⟩

converges absolutely and
∑

j∈J |⟨ej, xej⟩| ≤ ∥x∥1.
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Proof. Let x = v|x| be the polar decomposition of x. By the previous lemma,

2
∑
j∈J

|⟨ej, xej⟩| ≤ tr(|x|) + tr(v|x|v∗).

By a lemma above, tr(v|x|v∗) = tr(|x|1/2v∗v|x|1/2). Since v∗v is a projection,

tr(|x|1/2v∗v|x|1/2) =
∑
j∈J

⟨|x|1/2ej, v∗v|x|1/2ej⟩

≤
∑
j∈J

⟨|x|1/2ej, |x|1/2ej⟩

= tr(|x|).

Definition 2.1.14 (Trace). Let H be a Hilbert space with ONB (ej)j∈J .
The trace on L1(B(H)) is defined as

tr : L1(B(H)) → C, x 7→
∑
j∈J

⟨ej, xej⟩.

Remark 2.1.15. With this definition, the previous lemma can be reformulated
as |tr(x)| ≤ tr(|x|) = ∥x∥1 for x ∈ L1(B(H)).

Proposition 2.1.16. Let H be a Hilbert space with ONB (ej)j∈J .

(a) The trace-class operators form a linear subspace of B(H) and the trace
norm ∥·∥1 is a norm on L1(B(H)).

(b) L1(B(H)) = span(L1(B(H)) ∩ B(H)+).

(c) The trace is independent of the chosen ONB.

(d) If x ∈ L1(B(H)), then x∗ ∈ L1(B(H)).

Proof. (a) Let x, y ∈ L1(B(H)) and let x+ y = w|x+ y| be the polar decom-
position of x+ y. Note that |w∗x| ≤ ∥w∥|x| ≤ |x| and similar for w∗y. Thus
tr(|w∗x|), tr(|w∗y|) <∞. The previous lemma implies that∑

j

|⟨ej, w∗xej⟩| ≤ tr(|w∗x|) ≤ tr(|x|)

and similar for w∗y. Thus∑
j∈J

⟨ej, |x+ y|ej⟩ =
∑
j∈J

(⟨ej, w∗xej⟩+ ⟨ej, w∗yej⟩) ≤ tr(|x|) + tr(|y|).
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This means that x+y ∈ L1(B(H)) and ∥x+y∥1 ≤ ∥x∥1+∥y∥1. The remaining
properties of a linear subspace and a norm are easy to show.

(b) If x, y ∈ B(H), then one can check that (exercise)

x|y| = 1

4

3∑
k=0

ik(x+ ik)|y|(x+ ik)∗.

For each k ∈ {0, . . . , 3} we have

tr((x+ ik)|y|(x+ ik)∗) = tr(|y|1/2(x+ ik)∗(x+ ik)|y|1/2) ≤ ∥x+ ik∥2 tr(|y|).

In particular, if y ∈ L1(B(H)), then (x + ik)|y|(x + ik)∗ ∈ L1(B(H)) for
all k ∈ {0, . . . , 3} and x|y| is a linear combination of positive trace-class
operators. Thus, if x is the partial isometry in the polar decomposition of y,
then x|y| = y is a linear combination of positive trace-class operators. That
settles (b).

(c) follows now from (b) and the fact that the trace of positive trace-class
operators is independent of the choice of the ONB.

(d) If x ∈ L1(B(H)), then x is a linear combination positive trace-class
operators by (b). Thus x∗ is also a linear combination of positive-trace-class
operator, hence x∗ ∈ L1(B(H)) by (a).

Theorem 2.1.17. If H is a Hilbert space, then L1(B(H)) is an ideal of
B(H)) and if x, z ∈ B(H), y ∈ L1(B(H)), then

∥x∥ ≤ ∥x∥1,
tr(xy) = tr(yx),

∥y∗∥1 = ∥y∥1,
∥xyz∥1 ≤ ∥x∥∥y∥1∥z∥.

Proof. If ξ ∈ H with ∥ξ∥ = 1, we can extend it to an ONB of H. Since the
trace is independent of the ONB, we deduce

∥xξ∥2 = ⟨ξ, x∗xξ⟩ ≤ tr(x∗x) ≤ ∥x∥∥x∥1.

Taking the supremum over all ξ ∈ H with ∥ξ∥ = 1, we obtain ∥x∥ ≤ ∥x∥1.
If u ∈ B(H) is unitary and the trace is independent of the ONB, we have

tr(yu) =
∑
j∈J

⟨ej, yuej⟩ =
∑
j∈J

⟨uej, uyuej⟩ = tr(uy).

As x is a linear combination of four unitaries, we can use the linearity of the
trace to get tr(yx) = tr(xy).
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Let y = v|y| be the polar decomposition of y and y∗ = w|y∗| the polar
decomposition of y∗. If we combine these two, we obtain |y∗| = w∗|y|v∗.
Therefore,

tr(|y∗|) = tr(w∗|y|v∗) = tr(v∗w∗|y|) ≤ tr(|v∗w∗|y||) ≤ tr(|y|).

The converse inequality follows by exchanging the roles of y and y∗.
For the last inequality, |xyz| ≤ ∥x∥|yz| implies ∥xyz∥1 ≤ ∥x∥∥yz∥1. By

the previous step, ∥yz∥1 = ∥z∗y∗∥1 and thus ∥yz∥1 ≤ ∥z∗∥∥y∗∥1 = ∥z∥∥y∥1.

Proposition 2.1.18. The space of trace-class operators L1(B(H)) with the
trace norm is a Banach space.

Proof. Let (xn) be a Cauchy sequence in L1(B(H)). Since ∥·∥ ≤ ∥·∥1, the
sequence (xn) is also Cauchy for the operator norm. Hence there exists
x ∈ B(H) such that xn → x in operator norm. Then also x∗n → x∗ in
operator norm and thus |xn| → |x| by continuity of functional calculus.

Let (ej) be an ONB of H. For every finite subset F of J we have∑
j∈F

⟨ej, |x|ej⟩ = lim
n→∞

∑
j∈F

⟨ej, |xn|ej⟩ ≤ lim inf
n→∞

∥xn∥1.

Thus tr(|x|) ≤ lim infn→∞∥xn∥1. In particular, x ∈ L1(B(H)).
It remains to show that ∥xn − x∥1 → 0. By an analogous argument,

∥xn − x∥1 ≤ lim infm→∞∥xn − xm∥1. Since (xn) is Cauchy in L1(B(H)), for
every ε > 0 there exists N ∈ N such that ∥xn − xm∥ < ε for m,n ≥ N .
Hence, if n ≥ N , then

∥xn − x∥1 ≤ lim inf
m→∞

∥xn − xm∥1 ≤ sup
m≥N

∥xn − xm∥ ≤ ε.

Theorem 2.1.19. Let H be a Hilbert space. For every x ∈ B(H) the map

ψx : L
1(B(H)) → C, y 7→ tr(xy)

is a bounded linear functional and

ψ : B(H) → L1(B(H))∗, x 7→ ψx

is an isometric isomorphism.

Proof. If y ∈ L1(B(H)), then |tr(xy)| ≤ ∥xy∥1 ≤ ∥x∥∥y∥1. Thus ψx ∈
L1(B(H))∗ and ∥ψx∥ ≤ ∥x∥. Conversely,

∥x∥ = sup
∥ξ∥,∥η∥≤1

|⟨ξ, xη⟩| = sup
∥ξ∥,∥η∥≤1

|tr(x |ξ⟩ ⟨η|)| = sup
∥ξ∥,∥η∥≤1

|ψx(|ξ⟩ ⟨η|)|.
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Moreover,

∥|ξ⟩ ⟨η|∥1 = tr((|η⟩ ⟨ξ| |ξ⟩ ⟨η|)1/2) = tr(|η⟩ ⟨η|) = 1.

Therefore, ∥x∥ ≤ ∥ψx∥.
If φ ∈ L1(B(H))∗ and ξ, η ∈ H, then

|φ(|ξ⟩ ⟨η|)| ≤ ∥φ∥∥|ξ⟩ ⟨η|∥1 ≤ ∥φ∥∥ξ∥∥η∥.

By the Riesz representation theorem, there exists x ∈ B(H) such that

φ(|ξ⟩ ⟨η|) = ⟨η, xξ⟩ = ψx(|ξ⟩ ⟨η|)

for all ξ, η ∈ H. Since the finite-rank operators are dense in L1(B(H))
(exercise) and operators of the form |ξ⟩ ⟨η| with ξ, η ∈ H span the finite-rank
operators, we conclude φ = ψx.

Exercises

1. Show that if A is a unital ∗-algebra and a, b ∈ A, then

ab =
1

4

3∑
k=0

ik(a+ ik)b(a+ ik)∗

2. Show that the finite-rank operators are dense in L1(B(H)).

2.2 Hilbert–Schmidt operators

Definition 2.2.1 (Hilbert–Schmidt operator). Let H be a Hilbert space. An
operator x ∈ B(H) is called Hilbert–Schmidt operator if tr(|x|2) < ∞. The
space of Hilbert–Schmidt operators on H is denoted by L2(B(H)).

Proposition 2.2.2. Let H be a Hilbert space.

(a) If x ∈ L2(B(H)), then x∗ ∈ L2(B(H)).

(b) L2(B(H)) is a linear subspace of B(H).

(c) If x, y ∈ L2(B(H)), then xy, yx ∈ L1(B(H)) and tr(xy) = tr(yx).

(d) If x ∈ L2(B(H)) and y ∈ B(H)), then xy, yx ∈ L2(B(H)) and tr(|xy|2),
tr(|yx|2) ≤ ∥y∥2 tr(|x|2).
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Proof. (a) If x ∈ B(H), then tr(|x|2) = tr(x∗x) = tr(xx∗) = tr(|x∗|2). Thus
x ∈ L2(B(H)) if and only if x∗ ∈ L2(B(H)).

(b) If x, y ∈ L2(B(H)), then |x+ y|2 ≤ |x+ y|2 + |x− y|2 = 2|x|2 + 2|y|2.
Thus tr(|x + y|2) ≤ 2 tr(|x|2) + 2 tr(|y|2), which implies x + y ∈ L2(B(H)).
The remaining properties of a linear subspace are easy to verify.

(c) If x, y ∈ L2(B(H)), then the polarization identity implies

xy =
1

4

3∑
k=0

i−k|x∗ + iky|2.

By (a) and (b), |x∗ + iky| ∈ L2(B(H)). Thus xy ∈ L1(B(H)) and

tr(xy) =
1

4

3∑
k=0

i−k tr(|x∗ + iky|2) = 1

4

3∑
k=0

i−k tr(|y∗ + ikx|2) = tr(yx).

(d) Since |yx|2 = x∗y∗yx ≤ ∥y∥2|x|2, we have tr(|yx|2) ≤ ∥y∥2 tr(|x|2). In
particular, yx ∈ L2(B(H)). For xy we can use that xy = (y∗x)∗ and tr(z∗z) =
tr(zz∗) for all z ∈ B(H) to arrive at the same conclusion (exercise).

Definition 2.2.3 (Hilbert–Schmidt inner product). Let H be a Hilbert
space. The Hilbert–Schmidt inner product on L2(B(H)) is defined as

⟨·, ·⟩HS : L
2(B(H))× L2(B(H)) → C, (x, y) 7→ tr(x∗y).

Just as the trace-class operators, the Hilbert–Schmidt operators form a
complete normed space.

Lemma 2.2.4. If H is a Hilbert space, then L2(B(H)) with the Hilbert–
Schmidt inner product is a Hilbert space.

Proof. The proof is analogous to the proof of completeness of L1(B(H)). But
since this is such a standard argument, let us repeat it here to internalize
it. If (xn) is a Cauchy sequence in L2(B(H)), then it is also Cauchy with
respect to the operator norm, hence there exists x ∈ B(H) such that xn → x
in operator norm.

If (ej)j∈J is an ONB of H and F ⊂ J is finite, then∑
j∈F

∥xej∥2 = lim
n→∞

∑
j∈F

∥xnej∥2 ≤ lim inf
n→∞

∥xn∥22.

Thus x ∈ L2(B(H)) and ∥x∥22 ≤ lim infn→∞∥xn∥22.
It remains to show that ∥xn − x∥2 → 0. By an analogous argument,

∥xn − x∥2 ≤ lim infm→∞∥xn − xm∥1. Since (xn) is Cauchy in L2(B(H)), for
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every ε > 0 there exists N ∈ N such that ∥xn − xm∥ < ε for m,n ≥ N .
Hence, if n ≥ N , then

∥xn − x∥2 ≤ lim inf
m→∞

∥xn − xm∥2 ≤ sup
m≥N

∥xn − xm∥ ≤ ε.

Proposition 2.2.5 (Noncommutative Hölder inequality). Let H be a Hilbert
space. If x, y ∈ L2(B(H)), then xy ∈ L1(B(H)) and

∥xy∥1 ≤ ∥x∥2∥y∥2.

Proof. Let xy = v|xy| be the polar decomposition of xy. We have |xy| =
v∗(xy) = (x∗v)∗y. As seen before, x∗v ∈ L2(B(H)) and ∥x∗v∥2 ≤ ∥x∗∥2 =
∥x∥2. By the Cauchy–Schwarz inequality,

tr(|xy|) = tr((x∗v)∗y) ≤ ∥x∗v∥2∥y∥2 ≤ ∥x∥2∥y∥2.

Every Hilbert space is isometrically isomorphic to an L2 space over some
measure space. In this setting, Hilbert–Schmidt operators have a very explicit
representation in terms of kernel operators. We will only state this for the
unit interval with the Lebesgue measure here. It is true for arbitrary σ-finite
measure spaces, but requires some more measure theoretical tools (see the
exercises). A proof can be found in Simon’s book Operator Theory (Theorem
3.8.5) or in Peterson’s notes (Theorem 2.2.3).

Proposition 2.2.6. If k ∈ L2([0, 1]2), then

Tk : L
2([0, 1]) → L2([0, 1]), (Tkf)(x) =

∫
[0,1]

k(x, y)f(y) dy

defines a Hilbert–Schmidt operator and T ∗
k = Tk∗, where k

∗(x, y) = k(y, x).
Moreover, the map

T : L2([0, 1]2) → L2(B(L2([0, 1]2))), k 7→ Tk

is an isometric isomorphism.

Exercises

1. Fill in the details of the proof of Proposition 2.2.2 (d).

2. Let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces and let F ⊂
P(X × Y ) be the σ-algebra generated by all sets of the form A × B
with A ∈ A and B ∈ B.
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(a) Show that there exists a unique measure µ × ν on F such that
(µ× ν)(A×B) = µ(A)ν(B) for all A ∈ A, B ∈ B.

(b) For f ∈ L2(X,µ) and g ∈ L2(Y, ν) let

f ⊗ g : X × Y → C, (x, y) 7→ f(x)g(y).

Show that f ⊗ g ∈ L2(X × Y, µ × ν) and that span{f ⊗ g | f ∈
L2(X,µ), g ∈ L2(Y, ν)} is dense in L2(X × Y, µ× ν).

(c) Show that if (ξi)i∈I is an ONB of L2(X,µ) and (ηj)j∈J is an ONB
of L2(Y, ν), then (ξi ⊗ ηj)(i,j)∈I×J is an ONB of L2(X × Y, µ× ν).

(d) Show that Proposition 2.2.6 remains valid if L2([0, 1]) is replaced
by L2(X,µ).

2.3 Schatten classes

Already the notation suggests that the trace-class operators and Hilbert–
Schmidt operators are (noncommutative) analogs of the Lebesgue spaces L1

and L2. More generally, the Schatten classes are noncommutative analogs
of Lp spaces for general exponents p ∈ [1,∞). We mostly state the results
without proofs here. A more detailed account can be found in most func-
tional analysis textbooks, for example Section 3.7 of Barry Simon’s book on
Operator Theory (A Comprehensive Course in Analysis, Part 4), which also
comes with some interesting historial remarks.

Definition 2.3.1 (Schatten p-class). Let H be a Hilbert space and p ∈
[1,∞). The Schatten p-class Lp(B(H)) is defined as Lp(B(H)) = {x ∈ B(H) :
tr(|x|p) < ∞}. The Schatten p norm on Lp(B(H)) is defined by ∥x∥p =
tr(|x|p)1/p for x ∈ Lp(B(H)).

Lemma 2.3.2. Let H be a Hilbert space. If 1 ≤ p ≤ q <∞, then Lp(B(H)) ⊂
Lq(B(H)).

Proof. If x ∈ Lp(B(H)), then |x|q = |x|p/2|x|q−p|x|p/2 ≤ ∥|x|q−p∥|x|p. Thus
tr(|x|q) ≤ ∥|x|q−p∥ tr(|x|p) <∞.

Proposition 2.3.3. Let H be a Hilbert space and p ∈ [1,∞). If x ∈
Lp(B(H)) is self-adjoint, then H admits an orthonormal basis (ej)j∈J con-
sisting of eigenvectors of x, and if (λj)j∈J are the associated eigenvalues,
then

∥x∥p =

(∑
j∈J

|λj|p
)1/p

.
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Proof. Let e be the spectral measure of x so that x =
∫
R λ de(λ). For every

n ∈ N we have tr(e(R\(−1/n, 1/n))) ≤ np tr(|x|p) <∞. ThusHn = ran e(R\
(−1/n, 1/n)) is finite-dimensional. Moreover, Hn ⊂ Hn+1 and xHn ⊂ Hn.

As we already know that self-adjoint operators on finite-dimensional Hil-
bert spaces have an ONB consisting of eigenvectors, we can inductively define
an orthonormal system (ei)i∈I consisting of eigenvectors of x such that Hn ⊂
span{ei | i ∈ I}.

By the definition of a projection-valued measure,
⋃∞
n=1Hn is dense in

e({0})⊥. Thus we can complete (ei)i∈I to an ONB of H by adding an ONB
of e({0})H. As e({0})H = ker x, its elements are all eigenvectors of x (to
the eigenvalue 0). Therefore, ej is an eigenvector of x for every j ∈ J .

If we let (λj)j∈J denote the corresponding eigenvalues, then

tr(|x|p)1/p =

(∑
j∈J

⟨ej, |x|pej⟩

)1/p

=

(∑
j∈J

|λj|p
)1/p

.

Remark 2.3.4. Using an ONB consisting of eigenvectors, it is easy to see that
tr(x) =

∑
j∈J λj for x ∈ L1(B(H)) self-adjoint. The same formula is valid

for arbitrary x ∈ L1(B(H)). This result is known as Lidskii’s theorem.

Remark 2.3.5. From the previous proposition, it is not hard to deduce that
Lp(B(H)) consists of those x ∈ B(H) for which H admits an ONB consisting
of eigenvectors of |x| and the corresponding family of eigenvalues (λj)j∈J
belongs to ℓp(J). Similarly, one can define subspaces of B(H) by replacing
ℓp by any function space on J . One example (for the function space c0) will
be treated in section after the next.

Corollary 2.3.6. Let H be a Hilbert space and 1 ≤ p <∞. If x ∈ Lp(B(H),
then x∗ ∈ Lp(B(H)) and ∥x∥p = ∥x∗∥p.

Proposition 2.3.7 (Noncommutative Hölder inequality). Let H be a Hilbert
space and p, q ∈ (1,∞) such that 1

p
+ 1

q
= 1. If x ∈ Lp(B(H)) and y ∈

Lq(B(H)), then xy ∈ L1(B(H)) and

tr(|xy|) ≤ ∥x∥p∥y∥q.

2.4 Interlude: Net convergence

Let X be a topological space. If the topology on X is induced by a metric,
then all topological notions can be characterized by convergence of sequences:
The closure A of A ⊂ X is given by {x ∈ X | ∃(xn) sequence in A : xn → x},
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a map f from X into a topological space Y is continuous if and only if xn → x
implies f(xn) → f(x) etc.

This is not true for general topological spaces. One reason is that count-
able families such as sequences are not able to detect all open sets if there are
too many of them. That is one reason to introduce nets indexed by possibly
uncountable sets.

Definition 2.4.1 (Directed set, net). A directed set is a pair (I,≺) consisting
of a set I and a relation ≺ on I such that

• i ≺ i for all i ∈ I,

• i ≺ j and j ≺ k implies i ≺ k for all i, j, k ∈ I,

• for all i, j ∈ I there exists k ∈ I such that i ≺ k and j ≺ k.

If X is a set, a net (xi)i∈I in X is a map from a directed set I to X.

Example 2.4.2. The natural number with their usual ordering form a directed
set. Thus every sequence is a net.

Example 2.4.3. If J is any set, then P(J) with the ordering⊂ forms a directed
set. The same is true for the set {F ∈ P(J) | F finite}. The first two
properties of a directed set are clear. For the third, it suffices to notice that
if A,B ⊂ J , then A ⊂ A ∪B and B ⊂ A ∪B.

Note that P(J) can be uncountable and ⊂ is usually not a total order:
There can be subsets A,B of J such that neither A ⊂ B nor B ⊂ A.

Definition 2.4.4 (Net convergence). Let X be a topological space and x ∈
X. A net (xi)i∈I in X converges to x, denoted by xi → x, if for every
neighborhood U of x there exists i0 ∈ I such that xi ∈ U whenever i0 ≺ i.

Example 2.4.5. Let (αj)j∈J be a family in [0,∞). The net (
∑

j∈F αj)F⊂J finite

converges to α ∈ [0,∞) if and only if supF⊂J finite

∑
j∈F αj = α.

Example 2.4.6. Let H be a Hilbert space with ONB (ej)j∈J . For every ξ ∈ H
the net (

∑
j∈F ⟨ej, ξ⟩ej)F⊂J finite converges to ξ.

Contrary to sequences, nets are sufficient to characterize closure, conti-
nuity etc. in arbitrary topological spaces.

Lemma 2.4.7. Let X be a topological space. For every A ⊂ X, the closure
of A is given by A = {x ∈ X | ∃ net (xi)i∈I in A : xi → x}.
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Proof. If x ∈ A, then U ∩A ̸= ∅ for every open neighborhood of x. Let U(x)
be the set of open neighborhoods of x, ordered by U ≺ V if V ⊂ U , and for
every U ∈ U(x) let xU ∈ U ∩A. Then (xU)U∈U(x) is a net in A that converges
to x.

Conversely, if x ∈ X \ A, then X \ A is an open neighborhood of x that
does not contain any points in A. Thus no net in A can converge to x.

Remark 2.4.8. Since a subset A of X is closed if and only if A = A, limits
of nets characterize the closed and thus also the open sets of X. In other
words, a topology is completely determined by the limits of nets.

Proposition 2.4.9. Let X and Y be topological spaces. For a map f : X →
Y , the following assertions are equivalent:

(i) f is continuous.

(ii) If (xi)i∈I is a net in X that converges to x ∈ X, then f(xi) → f(x).

(iii) f(A) ⊂ f(A) for all A ⊂ X.

Proof. (i) =⇒ (ii): Let V be an open neighborhood of f(x). Since f is
continuous, f−1(V ) is open and contains x. Hence there exists i0 ∈ I such
that xi ∈ f−1(V ) for i0 ≺ i. Thus f(xi) ∈ V for i0 ≺ i. This means that
f(xi) → f(x).

(ii) =⇒ (iii): If x ∈ A, then by the previous lemma there exists a net
(xi)i∈I in A such that xi → x. By (ii), f(xi) → f(x). Again by the previous
lemma, this implies f(x) ∈ f(A).

(iii) =⇒ (i): Let C ⊂ Y be closed. By (iii), f(f−1(C)) ⊂ C. Thus
f−1(C) ⊂ f−1(C). Hence f−1(C) is closed.

One can also characterize compact subsets in terms of net convergence in
a way that is similar to the sequence characterization in metric spaces. To
do so, we need the definition of subnets, which is a little subtle.

Definition 2.4.10 (Subnet). Let I, J be directed sets. A map β : J → I is
called order-preserving if j1 ≺ j2 implies β(j1) ≺ β(j2) and it is called cofinal
if for every i ∈ I there exists j ∈ J such that i ≺ β(j). If X is a set and
(xi)i∈I and (yj)j∈J are nets in X, then (yj)j∈J is called a subnet of (xi)i∈I if
there exists an order-preserving cofinal map β : J → I such that yj = xβ(j)
for all j ∈ J .

Remark 2.4.11. Note that we allow for a subnet to be indexed by a differ-
ent directed set. In particular, a subnet of a sequence is not necessarily a
subsequence (or a sequence at all).

43



Example 2.4.12. The sequence (1, 2, 2, 3, 3, 3, . . . ) is a subnet of (1, 2, 3, . . . )
even though it is clearly not a subsequence.

Example 2.4.13. Consider N2 with the order (m1, n1) ≺ (m2, n2) if m1 ≤ m2

and n1 ≤ n2. It is not hard to see that N2 with this order is a directed set.
The map β : N2 → N, (m,n) 7→ m+n is order-preserving and cofinal. Hence
(m+ n)(m,n)∈N2 is a subnet of (n)n∈N even though it is not a sequence.

Theorem 2.4.14. For a topological space X, the following properties are
equivalent:

(i) X is compact.

(ii) If (Ci)i∈I is a family of closed subsets of X such that
⋂
i∈F Ci ̸= ∅ for

all F ⊂ I finite, then
⋂
i∈I Ci ̸= ∅.

(iii) Every net in X has a convergent subnet.

Proof. (i) =⇒ (ii): If
⋂
i∈I Ci were empty, then (X \Ci)i∈I would be an open

cover of X. However,
⋃
i∈F X \Ci = X \

⋂
i∈F Ci ̸= X for every finite F ⊂ I.

Hence (X \ Ci)i∈I has no finite subcover, contradicting the compactness of
X.

(ii) =⇒ (iii): Let (xi)i∈I be a net in X. For i ∈ I define Ci = {xj | i ≺ j}.
If F ⊂ I is finite, then there exists j ∈ I such that i ≺ j for all i ∈ F . Hence
xj ∈

⋂
i∈F Ci. By (ii), there exists x ∈

⋂
i∈I Ci.

Let J be the set of all pair (U, i) where U is an open neighborhood of
x and i ∈ I such that xi ∈ U . We order J by defining (U1, i1) ≺ (U2, i2)
if U2 ⊂ U1 and i1 ≺ i2. It is not hard to verify that J with this order is
a directed set and the map β : J → I, (U, i) 7→ i is order-preserving and
cofinal. Hence (xi)(U,i)∈J is a subnet of (xi)i∈I .

If V is an open neighborhood of x, then there exists i0 ∈ I such that
xi0 ∈ V by definition of x. Moreover, if (V, i0) ≺ (U, i), then xi ∈ U ⊂ V .
Therefore, the net (xi)(U,i)∈J converges to x.

(iii) =⇒ (i): Suppose there exists an open cover (Ui)i∈I without finite
subcover. Let F be the set of finite subsets of I, ordered by inclusion. As
discussed before, F with this order is a directed set. For every F ∈ F there
exists xF ∈ X \

⋃
F∈F UF .

We claim that (xF )F∈F has no convergent subnet. Indeed, for every x ∈ X
there exists i ∈ I such that Ui is an open neighborhood of x. Whenever
{i} ≺ F , then xF /∈ Ui. Thus (xi)i∈I cannot have a convergent subnet.
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2.5 Compact operators

Definition 2.5.1 (Weak topology). Let H be a Hilbert space. The weak
topology on H is the coarsest topology that makes the maps

H → C, ξ 7→ ⟨η, ξ⟩

continuous for all η ∈ H.

Remark 2.5.2. We know from the Riesz representation theorem that the map
H → H∗, ξ 7→ ⟨ξ| is a norm-preserving bijection. It is then easy to see that
this map is a homeomorphism when H is endowed with the weak topology
and H∗ with the weak∗ topology. In particular, the unit ball of H is compact
in the weak topology as a consequence of the Banach–Alaoglu theorem.

Remark 2.5.3. In the light of the previous remark, we have the following
characterization of the weak topology on H: A subset U of H is weakly open
if and only if for every ξ ∈ U there exist η1, . . . , ηn ∈ H and ε > 0 such that

{ζ ∈ H : |⟨ηk, ξ − ζ⟩| < ε for 1 ≤ k ≤ n} ⊂ U.

Lemma 2.5.4. Let H be a Hilbert space. A net (ξi)i∈I converges weakly to
ξ ∈ H if and only if ⟨η, ξi⟩ → ⟨η, ξ⟩ for every η ∈ H.

Proof. If ξi → ξ weakly, then ⟨η, ξi⟩ → ⟨η, ξ⟩ for all η ∈ H since ⟨η| is weakly
continuous for every η ∈ H by definition.

For the converse implication let U be a weakly open neighborhood of ξ.
By the previous remark, we may assume that there exist η1, . . . , ηn ∈ H and
ε > 0 such that

U = {ζ ∈ H : |⟨ηk, ξ − ζ⟩| < ε for 1 ≤ k ≤ n}.

Since ⟨ηk, ξi⟩ → ⟨ηk, ξ⟩ for 1 ≤ k ≤ n by assumption, there exist i1, . . . , in ∈ I
such that |⟨ηk, ξ⟩ − ⟨ηk, ξi⟩| < ε for ik ≺ i, 1 ≤ k ≤ n. By definition of a
directed set, there exists j ∈ I such that i1, . . . , in ≺ j. Thus ξi ∈ U for
j ≺ i. Hence (ξi)i∈I converges weakly to ξ.

Lemma 2.5.5. Let H be a Hilbert space. Every x ∈ B(H) is continuous for
the weak topology.

Proof. If ξi → ξ weakly, then ⟨η, xξi⟩ = ⟨x∗η, ξi⟩ → ⟨x∗η, ξ⟩ = ⟨η, xξ⟩ for all
η ∈ H, hence xξi → xξ weakly.

Lemma 2.5.6. Let H be a Hilbert space. If K ⊂ H is a finite-dimensional
subspace, then the weak topology restricted to K coincides with the norm
topology.
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Proof. Let (ej)j∈J be an ONB of H for which there exists F ⊂ J finite such
that (ej)j∈F is an ONB of K. If (ξi)i∈I is a net in K and ξ ∈ H such that
ξi → ξ weakly, we have ⟨ej, ξ⟩ = limi⟨ej, ξi⟩ for all j ∈ J . In particular,
⟨ej, ξ⟩ = 0 for j ∈ J \F , which means that ξ ∈ K. Thus K is weakly closed.

Moreover,

∥ξi − ξ∥2 =
∑
j∈F

|⟨ej, ξi − ξ⟩|2 → 0.

Hence the identity map from K with the weak topology to K with the norm
topology is continuous. The inverse is continuous by definition of the weak
topology. Therefore, the weak topology coincides with the norm topology on
K.

Proposition 2.5.7. Let H be a Hilbert space and let (H)1 denote the closed
unit ball of H. For x ∈ B(H), the following are equivalent:

(i) x ∈ F(H)
∥·∥
.

(ii) x|(H)1 is continuous from the weak topology to the norm topology.

(iii) x(H)1 is compact in the norm topology.

(iv) x(H)1 has compact closure in the norm topology.

Proof. (i) =⇒ (ii): If x ∈ F(H), then the image of the unit ball is contained
in a finite-dimensional subspace. By the previous lemmas, x is continuous
for the weak topology and the weak topology on x(H)1 coincides with the
norm topology.

If x ∈ F(H)
∥·∥
, then x|(H)1 is a uniform limit of continuous functions (from

the weak to the norm topology), hence itself continuous (exercise).
(ii) =⇒ (iii): As remarked above, (H)1 is compact in the weak topology.

(ii) implies that x(H)1 is compact in the norm topology as image of a compact
set under a continuous map.

(iii) =⇒ (iv): This is trivial.
(iv) =⇒ (i): Let (ei)i∈I be an ONB of H. For F ⊂ I finite let PF =∑
i∈F |ei⟩ ⟨ei|. By definition of an ONB, for every η ∈ H the net (PFη)F⊂I finite

converges to η.
Suppose that (PFx)F⊂I finite does not converge to x in operator norm.

Otherwise passing to a subnet, we may assume that there exist ξF ∈ (H)1
and ε > 0 such that ∥PFxξF − xξF∥ ≥ ε for all F ⊂ I finite. Moreover, since
x(H)1 has compact closure by (iv), we may further assume that xξF → η for
some η ∈ H (otherwise we can once more pass to a subnet).
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We then obtain

ε ≤ ∥PFxξF − xξF∥
≤ ∥(1− PF )(xξF − η)∥+ ∥(1− PF )η∥
≤ ∥xξF − η∥+ ∥η − PFη∥.

The right side converges to zero, which gives a contradiction.

Definition 2.5.8 (Compact operator). Let H be a Hilbert space. An oper-
ator x ∈ B(H) that satisfies any of the four equivalent conditions from the
previous lemma is called compact. The space of all compact operators on H
is denoted by K(H).

Remark 2.5.9. It follows from (i) in the previous lemma that K(H) is a closed
ideal of B(H).

Lemma 2.5.10. Let H Hilbert space. The identity operator in H is compact
if and only if H is finite-dimensional.

Proof. If H is finite-dimensional, then F(H) = B(H), hence every operator
on H is compact. Conversely, if H is infinite-dimensional and x ∈ F(H),
then there exists ξ ∈ (ranx)⊥ with ∥ξ∥ = 1 and we have

∥x− 1∥ ≥ ∥(x− 1)ξ∥ = ∥ξ∥ = 1.

Thus 1 /∈ F(H)
∥·∥
.

Lemma 2.5.11. Let H be a Hilbert space. For any p ∈ [1,∞) the Schatten
p-class Lp(B(H)) is contained in K(H).

Proof. Let x ∈ Lp(B(H)) and let x = u|x| be its polar decomposition. Since
K(H) is a closed ideal, it suffices to show that |x| ∈ K(H). We know that
there exists an ONB (ej)j∈J of H and a family (λj)j∈J in ℓp(J) such that
⟨ξ, |x|η⟩ =

∑
j∈J λj⟨ξ, ej⟩⟨ej, η⟩ for all ξ, η ∈ H (exercise). In particular, for

every n ∈ N, the set Jn = {λj | j ∈ J, λj ≥ 1/n} is finite.
Let xn =

∑
j∈Jn λj |ej⟩ ⟨ej|. Clearly, xn ∈ F(H). Moreover,

|⟨ξ, (|x| − xn)η⟩| ≤
∑

j∈J\Jn

λj|⟨ξ, ej⟩||⟨ej, η⟩|

≤ 1

n

(∑
j∈J

|⟨ξ, ej⟩|2
)1/2(∑

j∈J

|⟨ej, η⟩|2
)1/2

=
1

n
∥ξ∥∥η∥.

Hence ∥|x| − xn∥ < 1
n
. Therefore, |x| ∈ F(H)

∥·∥
= K(H).
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Proposition 2.5.12. Let H be a Hilbert space. For every x ∈ L1(B(H)) the
map

ψx : K(H) → C, y 7→ tr(xy)

is a bounded linear functional and

ψ : L1(B(H)) → K(H)∗, x 7→ ψx

is an isometric isomorphism.

Exercises

1. Justify the characterization of the weak topology given in Remark 2.5.3.

2. LetH be a Hilbert space, p ∈ [1,∞) and x ∈ Lp(B(H)) self-adjoint. We
have already seen that H admits an ONB (ej)j∈J consisting of eigen-
functions of x and the family (λj)j∈J of the corresponding eigenvalues
belongs to ℓp(J). Show that

⟨ξ, xη⟩ =
∑
j∈J

λj⟨ξ, ej⟩⟨ej, η⟩

for all ξ, η ∈ H, where the series on the right side is to be interpreted
as net limit of the finite partial sums.

3. Let X be a topological space, E a normed space and (fi)i∈I a net of
continuous functions from X to E. Show that if f : X → E such that
supx∈X∥fi(x)− f(x)∥ → 0, then f is continuous.
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Chapter 3

Bonus: The structure of
noncommutative C∗-algebras

We have seen in the first chapter that the commutative (unital) C∗-algebras
are all of the form C(X) for some compact Hausdorff space X. The situation
is quite different for noncommutative C∗-algebras. in this chapter we will give
characterization (of a different flavor) of all unital C∗-algebras.

3.1 States and the GNS construction

Lemma 3.1.1. Let A be a unital C∗-algebra. For φ ∈ A∗, each pair of the
following properties implies the third.

(i) φ(1) = 1.

(ii) φ(A+) ⊂ [0,∞).

(iii) ∥φ∥ = 1.

Proof. (i)+(ii) =⇒ (iii): By (i), ∥φ∥ ≥ 1. If a ∈ A+, then a ≤ ∥a∥, hence
φ(a) ≤ φ(∥a∥1) = ∥a∥ by (i) and (ii). Note that the map (a, b) 7→ φ(a∗b)
is a positive sesquilinear form by (ii). By Cauchy–Schwarz, if a ∈ A, then
|φ(a)|2 ≤ φ(a∗a)φ(1) ≤ ∥a∗a∥ = ∥a∥2. Thus ∥φ∥ ≤ 1.

(ii)+(iii) =⇒ (i): By (ii), φ(1) ∈ [0,∞), and by (iii), |φ(1)| ≤ 1. As in
the previous part, we can apply Cauchy–Schwarz and positivity to see that
|φ(a)|2 ≤ φ(a∗a)φ(1) ≤ ∥a∥2φ(1)2. Hence ∥φ∥ ≤ φ(1). By (iii), φ(1) ≥ 1.

(i)+(iii) =⇒ (ii): Let a ∈ A+. We first show that φ(a) ∈ R. Let
α = Reφ(a) and β = Imφ(a). For all t ∈ R we have

α2 + (β + t)2 = |φ(a+ it)|2 ≤ ∥a+ it∥2 = ∥a∥2 + t2,
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where we used that ∥a + it∥2 = ∥Γ(a + it)∥2 = ∥Γ(a) + it∥2 = ∥Γ(a)∥2 + t2

since Γ(a) is real-valued. As a consequence,

2βt+ t2 ≤ α2 + (β + t)2 ≤ ∥a∥2 + t2,

which implies 2βt ≤ ∥a∥. This inequality can only hold for all t ∈ R if β = 0.
To show that φ(a) ≥ 0, first note that 0 ≤ a ≤ ∥a∥, which implies

0 ≤ ∥a∥ − a ≤ ∥a∥, hence ∥∥a∥ − a∥ ≤ ∥a∥. Thus

φ(a) = φ(∥a∥ − (∥a∥ − a)) = ∥a∥ − φ(∥a∥ − a) ≥ ∥a∥ − ∥∥a∥ − a∥ ≥ 0.

Definition 3.1.2 (State). Let A be a unital C∗-algebra. A state on A is
a functional that satisfies any two of the three properties from the previous
lemma. The set of all states on A is denoted by S(A) and called the state
space of A.

Remark 3.1.3. As we used in the proof of the previous lemma, if φ ∈ S(A),
then (a, b) 7→ φ(a∗b) is a positive sesquilinear form (not quite an inner prod-
uct because it can fail to be positive definite). This is crucial for the GNS
construction, which we will study next.

Lemma 3.1.4. Let A be a unital C∗-algebra and B a unital C∗-subalgebra.
Every state on B can be extended to a state on A.

Proof. If φ ∈ S(B), then it can be extended to a linear function ψ ∈ A∗ with
∥ψ∥ = ∥φ∥ = 1 by the Hahn–Banach theorem. As ψ(1) = φ(1) = 1, the
functional ψ is a state on A.

Lemma 3.1.5. Let A be a unital C∗-algebra and φ ∈ S(A). If a ∈ A
such that φ(a∗a) = φ(aa∗) = |φ(a)|2, then φ(ab) = φ(a)φ(b) and φ(ba) =
φ(b)φ(a) for all a, b ∈ A.

Proof. Let a, b ∈ A. By Cauchy–Schwarz,

|φ(ab)− φ(a)φ(b)| = |φ((a∗ − φ(a∗))∗b)|
≤ φ((a− φ(a))(a∗ − φ(a∗)))1/2φ(b∗b)1/2.

If φ(aa∗) = |φ(a)|2, then

φ((a− φ(a))(a∗ − φ(a∗))) = 2φ(aa∗)− 2φ(a)φ(a∗) = 0.

Thus φ(ab) = φ(a)φ(b). The proof of the second claim is analogous.
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Lemma 3.1.6. Let A be a unital C∗-algebra. If φ ∈ S(A), then Nφ = {a ∈
A | φ(a∗a) = 0} is a closed linear subspace of A, aNφ ⊂ Nφ for all a ∈ A
and

⟨·, ·⟩φ : A/Nφ × A/Nφ → C, (a+Nφ, b+Nφ) 7→ φ(a∗b)

is an inner product.

Proof. If a, b ∈ Nφ, then |a + b|2 ≤ |a + b|2 + |a − b|2 ≤ 2|a|2 + 2|b|2,
hence φ(|a + b|2) ≤ 2φ(|a|2) + 2φ(|b|2) = 0, which means a + b ∈ Nφ. The
other properties of a closed linear subspace are easy to show. If a ∈ A and
b ∈ Nφ, then |ab|2 ≤ ∥a∥2|b|2, hence φ(|ab|2) ≤ ∥a∥2φ(|b|2) = 0, which means
ab ∈ Nφ.

The only property of an inner product that is not quite obvious is that
⟨·, ·⟩φ is well-defined, i.e. φ(a∗1b1) = φ(a∗2b2) if a1−a2 ∈ Nφ and b1− b2 ∈ Nφ.
To see this, we use the Cauchy–Schwarz inequality:

|φ(a∗1b1)− φ(a∗2b2)| ≤ |φ((a1 − a2)
∗b1)|+ |φ(a∗2(b1 − b2))|

≤ φ(|a1 − a2|2)1/2φ(|b1|2)1/2 + φ(|a2|2)1/2φ(|b1 − b2|2)1/2

= 0.

The inner product space in the previous lemma is in general not complete.
However, one can always extend the inner product to a bigger space which
is complete an contains the original space as a dense subspace. This process
is known as completion (see the exercises).

Definition 3.1.7 (GNS Hilbert space, vacuum vector). Let A be a unital
C∗-algebra and φ ∈ S(A). The completion of A/Nφ with respect to the inner
product ⟨·, ·⟩φ is called the GNS Hilbert space of φ and denoted by Hφ. The
image of 1 +Nφ inside Hφ is denoted by Ωφ.

Lemma 3.1.8. Let A be a unital C∗-algebra and φ ∈ S(A). For every a ∈ A
there exists a unique operator πφ(a) ∈ B(Hφ) such that πφ(b+Nφ) = ab+Nφ.
Moreover, the map πφ : A→ B(Hφ) is a unital ∗-homomorphism.

Proof. If a, b ∈ A, then

⟨ab+Nφ, ab+Nφ⟩φ = φ(b∗a∗ab) ≤ ∥a∥2φ(b∗b) = ∥a∥2⟨b+Nφ, b+Nφ⟩φ.

Hence, if (bn +Nφ) is a Cauchy sequence in A/Nφ, then (abn +Nφ) is also a
Cauchy sequence. Hence we can define πφ(a)ξ = limn→∞(abn+Nφ) whenever
ξ ∈ Hφ and bn + Nφ → ξ. It is not hard to check that this definition is
independent of the chosen sequence (bn + Nφ) and πφ(a) thus defined is a
linear operator.
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Boundedness follows directly from the estimate in the previous paragraph
and uniqueness is a direct consequence of the density of A/Nφ in Hφ. The
fact that πφ is a unital ∗-homomorphism is easy to check.

Definition 3.1.9 (GNS representation). Let A be a unital C∗-algebra and
φ ∈ S(A). The ∗-homomorphism πφ defined in the previous lemma is called
the GNS representation induced by φ.

Example 3.1.10. Let X be a compact Hausdorff space and x ∈ X. Clearly,
φ : C(X) → C, f 7→ f(x) is a state on C(X). In this case, Nφ = {f ∈
C(X) | f(x) = 0} and C(X)/Nφ → C, f + Nφ 7→ f(x) is an isomorphism.
Thus Hφ

∼= C (in this case, there is no need for a completion) and πφ = φ.
Note that this representation is far from being injective.

Example 3.1.11. Let K ⊂ C be compact and φ : C(K) → C, f 7→
∫
K
f dµ,

where µ is the normalized Lebesgue measure on K. In this case Nφ = {0},
Hφ = L2(K,µ), Ωφ = 1 and πφ(f)g = fg. This representation of C(K) on
L2(K,µ) is injective.

Example 3.1.12. Let H be a Hilbert space. If ρ ∈ L1(B(H)) is positive with
tr(ρ) = 1, then φ : B(H) → C, x 7→ tr(xρ) is a state.

If ρ = |ξ⟩ ⟨ξ| for ξ ∈ H with ∥ξ∥ = 1, then Nφ = {x ∈ B(H) | ξ ∈ kerx}
and U : B(H)/Nφ → H, x + Nφ 7→ xξ is an isometry for ⟨ · , · ⟩φ. Thus
Hφ

∼= H via U (again, there is no need for a completion) and πφ(x) = U∗xU .
On the other hand, if (en)n∈N is an orthonormal basis of H and ρ =∑∞
n=1 λn |en⟩ ⟨en| with λn > 0 for all n ∈ N, then Nφ = {0} and U : B(H) →

L2(B(H)), x 7→ xρ1/2 extends to a unitary from Hφ to L2(B(H)). Moreover,
Uπφ(x)U

∗y = xy for x ∈ B(H) and y ∈ L2(B(H)).

Exercises

1. Let V be an inner product space and let C(V ) be the set of all Cauchy
sequences in V with elementwise addition and scalar multiplication.

(a) Show that N = {(xn) ∈ C(V ) : ⟨xn, xn⟩ → 0} is a linear subspace
of C(V ).

(b) Let H = C(V )/N . Show that

⟨·, ·⟩H : H ×H → C, ((xn) +N , (yn) +N ) 7→ lim
n→∞

⟨xn, yn⟩

is an inner product and H is complete in this inner product.

(c) Show that the equivalence classes of constant sequences form a
dense linear subspace of H.
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So far we have constructed a Hilbert space H and an isometric em-
bedding i : V → H, namely the map that takes an element ξ ∈ H to
(ξ) +N , such that i(V ) is dense in H.

(a) Show that if H1, H2 are Hilbert spaces and i1 : V → H1, i2 : V →
H2 are isometric embeddings with dense image, then there exists
a unique unitary u : H1 → H2 such that u ◦ i1 = i2.

In this sense, the pair (H, i) constructed in the first part is essentially
unique. It is called the completion of the inner product space V .

2. Uniqueness of the GNS representation: Let A be a C∗-algebra and
φ ∈ S(A). Show that if H is a Hilbert space, Ω ∈ H is a unit vector and
π : A → B(H) is a unital ∗-homomorphism such that {π(a)Ω | a ∈ A}
is dense in H and ⟨Ω, π(a)Ω⟩ = φ(a) for all a ∈ A, then there exists a
unitary U : Hφ → H such that UΩφ = Ω and Uπφ(a) = π(a)U for all
a ∈ A.

3.2 The Gelfand–Naimark–Segal theorem

In this section we prove the main structure theorem for noncommutative
(unital) C∗-algebras due to Gelfand, Naimark and Segal, which states that
every C∗-algebra can be faithfully represented on a Hilbert space. In this
sense, the class of abstract C∗-algebras (defined through the axioms at the
beginning of this course) is the same as the class of concrete C∗-algebras
(closed self-adjoint subalgebras of the bounded operators on a Hilbert space),
up to isomorphism. This result was one of the big achievements of early C∗-
algebra theory.

The GNS construction provides a technique to produce a Hilbert space
representation from a state on a C∗-algebra. As the examples in the previous
section show, this representation may fail to be injective. The next lemma
shows that there are always sufficiently many states on a C∗-algebra, which
is the crucial step to build a faithful representation from the full state space.

Lemma 3.2.1. Let A be a unital C∗-algebra. For every a ∈ A+ there exists
φ ∈ S(A) such that φ(a) = ∥a∥.

Proof. Let B be the unital C∗-algebra generated by a. Since a is normal, B is
commutative. Thus Γ(B) is a compact Hausdorff space and â : Γ(B) → σ(a)
is continuous. Let χ ∈ Γ(B) such that χ(a) = â(χ) = ∥â∥ = ∥a∥.

Since χ ∈ Γ(B), we have χ(1) = 1 and χ(b∗b) = |χ(b)|2 ≥ 0 for all b ∈ B.
By the previous lemma, ∥χ∥ = 1. By the Hahn–Banach theorem, there exists
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φ ∈ A∗ with ∥φ∥ = 1 that extends χ ◦ Γ. In particular, φ(1) = 1, which
implies that φ ∈ S(A), and φ(a) = ∥a∥.

Theorem 3.2.2 (Gelfand–Naimark–Segal). Every unital C∗-algebra is ∗-
isomorphic to a closed unital ∗-subalgebra of B(H) for some Hilbert space
H.

Proof. Let A be a unital C∗-algebra. For φ ∈ S(A) let consider the GNS
Hilbert space Hφ and the GNS representation πφ : A → B(H). We let H =⊕

φ∈S(A)Hφ and define π : A → B(H) by π(a)(ξφ)φ∈S(A) = (πφ(a)ξφ)φ∈S(A).
It is not hard to check that π is a unital ∗-homorphism.

To see that π is injective, let a ∈ kerπ. By the previous lemma, there
exists φ ∈ S(A) such that φ(a∗a) = ∥a∥2. Let ξψ = Ωφ if ψ = φ and ξψ = 0
otherwise. Clearly, (ξψ)ψ∈S(A) belongs to H and

∥π(a)(ξψ)ψ∈S(A)∥2 =
∑

ψ∈S(A)

∥πψ(a)ξψ∥2 = ∥πφ(a)Ωφ∥2 = φ(a∗a).

Hence, a ∈ kerπ implies ∥a∥ = 0.

Example 3.2.3 (Calkin algebra). Let H be a separable infinite-dimensional
Hilbert space. Since K(H)⊴B(H), the quotient B(H)/K(H) is a unital alge-
bra. Moreover, the ∗-operation descends to to an involution of B(H)/K(H).
The quotient norm

∥x+K(H)∥ = inf{∥y∥ : x− y ∈ K(H)}

is makes B(H)/K(H) into a C∗-algebra (but it takes some more advanced
tools to prove this).

It is not obvious that B(H)/K(H) can be faithfully represented on any
Hilbert space. In fact, B(H)/K(H) cannot be faithfully represented on a sep-
arable Hilbert space: Let (en)n∈N be an orthonormal basis of H, let (Si)i∈I
be an uncountable family of infinite subsets of N with the property that
Si ∩ Sj is finite for i ̸= j and let pi be the orthogonal projection onto

span{en | n ∈ Si}. Since pipj is the projection onto span{en | n ∈ Si ∩ Sj},
which is finite-dimensional, we have pipj + K(H) = K(H). in other words,
(pi + K(H))i∈I is an uncountable family of non-zero orthogonal projections
in (B(H)/K(H)).

However, if K is separable, then B(K) cannot contain an uncountable
family of non-zero orthogonal projections: If one takes an orthonormal basis
of the range of each projection, then their union is an uncountable orthonor-
mal set in K. But since K is separable, each orthonormal set is at most
countable.
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Definition 3.2.4 (Pure state, irreducible representation). Let A be a unital
C∗-algebra. A state φ on A is called pure if for every pair of states ψ1, ψ2 on
A and λ ∈ (0, 1) such that φ = λψ1 + (1− λ)ψ2 one has ψ1 = ψ2 = φ.

Let H be a Hilbert space and π : A → B(H) a unital ∗-homomorphism.
A subspace K of H is called invariant if π(a)K ⊂ K for all a ∈ A. The
representation π is called irreducible if the only closed invariant subspaces
are {0} and H.

Remark 3.2.5. Let C be a convex subset of a vector space. An element x ∈ C
is called an extreme point of C if whenever x = λy + (1 − λ)z for y, z ∈ C
and λ ∈ (0, 1), then x = y = z. In other words, there is no line segment in
C passing through x. Hence the pure states on a unital C∗-algebra A are
exactly the extreme points of the state space.

By the Banach–Alaoglu theorem, the state space S(A) is compact in the
weak∗ topology. Moreover, the Krein–Milman theorem (which we will also
not prove in this course) states that if C is a closed weak∗ compact subset
of the dual space of a Banach space, then the convex combinations of the
extreme points of C are dense in C. Therefore, the convex combinations of
pure states on A are dense in S(A).

Lemma 3.2.6 (Schur). Let A be a unital C∗-algebra and H a Hilbert space.
A unital ∗-homomorphism π : A → B(H) is an irreducible representation if
and only if every x ∈ B(H) that commutes with π(a) for all a ∈ A is a scalar
multiple of the identity.

Proof. Let π(A)′ = {x ∈ B(H) | xπ(a) = π(a)x for all a ∈ A}. First assume
that π(A)′ = C1. If K ⊂ H is a closed invariant subspace, let p denote
the orthogonal projection onto K. If If a ∈ A is self-adjoint, then πφ(a)p =
pπφ(a)p and thus pπφ(a) = pπφ(a)p = πφ(a)p by taking adjoints. Since A is
spanned by its self-adjoint elements, πφ(a)p = pπφ(a) for all a ∈ A, that is,
p ∈ π(A)′. As π(A)′ = C1, we must either have p = 0 (and thus K = 0) or
p = 1 (and thus K = H).

Assume conversely that π is irreducible. If x ∈ π(A)′, then

x∗π(a) = (π(a∗)x)∗ = (xπ(a∗))∗ = π(a)x∗

for all a ∈ A, hence x∗ ∈ π(A)′. As π(A)′ is clearly a linear subspace, it
follows that π(A)′ is spanned by its self-adjoint element.

Now let x ∈ π(A)′ be self-adjoint and let e denote its spectral measure
so that x =

∫
λ de(λ). If u ∈ A is unitary, it is not hard to check that

π(u)e(·)π(u∗) is again a spectral measure and
∫
f(λ) d(π(u)e(λ)π(u)∗) =

π(u)f(x)π(u)∗ for all bounded Borel functions f : R → R. In particular,
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as x ∈ π(A)′, we have x = π(u)xπ(u)∗ =
∫
λ d(π(u)e(λ)π(u)∗). by the

uniqueness of the spectral measure, we conclude π(u)e(S) = e(S)π(u) for all
Borel sets S ⊂ R.

Since A is spanned by its unitary elements, it follows that e(S) ∈ π(A)′

for all Borel sets S ⊂ R. Thus e(S)H is a closed invariant subspace for all
Borel sets S ⊂ R. As π is irreducible, e(S) = 0 or e(S) = 1 for all Borel
sets S ⊂ R. With λ = sup{µ ∈ R | e((−∞, µ]) = 0} we obtain x = λ1
(exercise)

Proposition 3.2.7. Let A be a unital C∗-algebra. A state φ on A is pure if
and only if the GNS representation πφ is irreducible.

Proof. First assume that φ is pure. Let K ⊂ Hφ be a closed invariant
subspace and let p denote the orthogonal projection onto K. As seen in the
proof of the previous lemma, p ∈ π(A)′.

Let ξ = pΩφ, η = (1− p)Ωφ. If ξ, η ̸= 0, then

φ(a) = ⟨Ωφ, πφ(a)Ωφ⟩ = ∥ξ∥2 ⟨ξ, πφ(a)ξ⟩
∥ξ∥2

+ ∥η∥2 ⟨η, πφ(a)η⟩
∥η∥2

for all a ∈ A. Since φ is a pure state,

∥πφ(a)Ωφ∥2 = φ(a∗a) =
∥πφ(a)ξ∥2

∥ξ∥2
=

∥pπφ(a)Ωφ∥2

∥pΩφ∥2
.

Since πφ(A)Ωφ is dense in Hφ, we obtain ∥pΩφ∥2∥ζ∥2 = ∥pζ∥2 for all ζ ∈ Hφ,
which can only hold if p = 0 or p = 1. But this contradicts ξ, η ̸= 0.

If say ξ = 0, then 0 = πφ(a)pΩφ = pπφ(a)Ωφ for all a ∈ A, hence p = 0
and thus K = 0. In the other case η = 0, an analogous argument shows
K = H.

For the converse implication assume that πφ is irreducible. Let ψ1, ψ2 ∈
S(A) and λ ∈ (0, 1) such that φ = λψ1 + (1− λ)ψ2. Consider the map

U : πφ(A) → Hψ1 ⊕Hψ2 , πφ(a)Ωφ 7→ (
√
λπψ1(a)Ωψ1 ,

√
1− λπψ2(a)Ωψ2).

It is not too hard to see that U is well-defined and extends to an isometry
on Hφ such that Uπφ(a) = (πψ1(a)⊕ πψ2(a))U for all a ∈ A (exercise).

Let p denote the orthogonal projection from Hψ1⊕Hψ2 onto Hψ1 . Clearly,
p(πψ1(a)⊕ πψ2(a)) = (πψ1(a)⊕ πψ2(a))p for all a ∈ A.

Thus U∗pU ∈ πφ(A)
′. Since πφ is assumed to be irreducible, there exists

µ ≥ 0 such that U∗pU = µ1 by the previous lemma. Moreover,

µφ(a) = ⟨Ωφ, U
∗pUπφ(a)Ωφ⟩ = λ⟨Ωψ1 , πψ1(a)Ωψ1⟩ = λψ1(a)

for all a ∈ A. For a = 1 we obtain µ = λ and therefore φ = ψ1.
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Corollary 3.2.8. Let A be a unital commutative C∗-algebra and H a Hilbert
space.

(a) A representation π : A→ B(H) is irreducible if and only if dimH = 1.

(b) A state on A is pure if and only if it is a character.

Proof. (a) If dimH = 1, the only subspaces are {0} and H. Conversely,
if π is irreducible, then π(A) ⊂ π(A)′ = C1 since A is commutative. But
every operator on H commutes with multiples of the idenity, hence B(H) =
π(A)′ = C1, which is only the case of dimH = 1.

(b) If φ is a character, then φ((a − φ(a))∗(a − φ(a))) = 0, hence aΩφ =
φ(a)Ωφ. Thus Hφ = CΩφ is 1-dimensional. By (a), πφ is irreducible, which
implies that φ is pure by the previous proposition.

If φ is a pure state, then Hφ = CΩφ by (a) and the previous proposition,
hence πφ(a)Ωφ = φ(a)Ωφ for all a ∈ A. Since πφ is multiplicative, φ is a
character.

Exercises

1. Let (Hj)j∈J be a family of Hilbert spaces and let⊕
j∈J

Hj = {(ξj)j∈J | ξj ∈ Hj, (∥ξj∥)j∈J ∈ ℓ2(J)}.

Show that

⟨·, ·⟩ :
⊕
j∈J

Hj ×
⊕
j∈J

Hj → C, ((ξj), (ηj)) 7→
∑
j∈J

⟨ξj, ηj⟩

defines an inner product that makes
⊕

j∈J Hj into a Hilbert space.

2. Let H be a Hilbert space and x ∈ B(H) self-adjoint. Show that if
1S(x) = 0 or 1S(x) = 1 for every Borel set S ⊂ R, then

sup{µ ∈ R | 1(−∞,µ](x) = 0} = inf{µ ∈ R | 1(µ,∞)(x) = 1},

and if we denote this common value by λ, then x = λ1.

3. Show that every finite-dimensional unital C∗-algebra is ∗-isomorphic to
Mn1(C)⊕ · · · ⊕Mnk

(C) for some k ∈ N and n1, . . . , nk ∈ N.
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Appendix A

The Hahn–Banach theorem

The Hahn–Banach theorem is one of the most important results in functional
analysis. If provides one with “sufficiently many” bounded linear functionals
on a Banach space in order to distinguish its elements. This is an almost
universally useful fact.

In contrast to the rest of this course, we consider both real and complex
vector spaces in this section. We denote by K a base field that is either C or
R.

To start with, recall the following result from set theory.

Lemma A.0.1 (Zorn). If P is a non-empty partially ordered set such that
every chain in P has an upper bound, then P has a maximal element.

Remark A.0.2. The terminology used in Zorn’s lemma is defined as follows.
A relation ≺ on a set P is called a partial order if it is

• transitive, that is, x ≺ y and y ≺ z implies x ≺ z for all x, y, z ∈ P ,

• reflexive, that is, x ≺ x for all x ∈ P ,

• anti-symmetric, that is, x ≺ y and y ≺ x implies x = y for all x, y ∈ P .

A subset C of P is called a chain if for every pair (x, y) ∈ P2 the relation
x ≺ y or y ≺ x holds. An upper bound for C is an element z ∈ P such that
x ≺ z for all x ∈ C. An element z ∈ P is a maximal element of P if for every
x ∈ P such that z ≺ x it holds that x = z.

We do not prove this result here. In fact, in the usual set-theoretic foun-
dations of mathematics, Zorn’s lemma is equivalent to the axiom of choice,
so we may as well consider it as one of our axioms for the purpose of this
course.
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Definition A.0.3 (Sublinear functional, semi-norm). Let E be a vector
space over K. A sublinear functional on E is a map p : E → R that satisfies

• p(λξ) = λp(ξ) for λ ≥ 0, ξ ∈ E,

• p(ξ + η) ≤ p(ξ) + p(η) for ξ, η ∈ E.

A semi-norm on E is a map p : E → [0,∞) that satisfies

• p(λξ) = |λ|p(ξ) for λ ∈ K, ξ ∈ E,

• p(ξ + η) ≤ p(ξ) + p(η) for ξ, η ∈ E.

Theorem A.0.4 (Hahn–Banach, sublinear functional version). Let E be
a real vector space, F a linear subspace of E and p : E → R a sublinear
functional. If f : F → R is a linear functional such that f(ξ) ≤ p(ξ) for
all ξ ∈ F , then there exists a linear extension f̃ of f to E that satisfies
f̃(ξ) ≤ p(ξ) for all ξ ∈ E.

Proof. Let P the set of all pairs (G, g) consisting of a linear subspace G of
E that contains F and a linear functional g : G → R that extends f and
satisfies f(ξ) ≤ p(ξ) for all ξ ∈ G. Since (F, f) ∈ P , the set P is non-empty.
We define a partial order on P by setting (G1, g1) ≺ (G2, g2) if G1 ⊂ G2 and
g2|G1 = g1.

If C ⊂ P is a chain, let Ĝ =
⋃
G:(G,g)∈C G and define ĝ : Ĝ → R by

ĝ(ξ) = g(ξ) if x ∈ G and (G, g) ∈ C. The chain property of C ensures that Ĝ
is a subspace and ĝ is well-defined. Moreover, (Ĝ, ĝ) ∈ P and (G, g) ≺ (Ĝ, ĝ)
for every (G, g) ∈ C follow directly from the construction. Thus C has an
upper bound.

By Zorn’s lemma, P has a maximal element (F̃ , f̃). To finish the proof,
we need to show that F̃ = E. Suppose that this is not the case. Let ζ ∈ E\F̃
and. We want to define h : span(F̃ ∪{ζ}) → R such that (span(F̃ ∪{ζ}), h) ∈
P and (F̃ , f̃) ≺ (span(F̃ ∪ {ζ}), h).

Since p is sublinear, we have

f̃(ξ) + f̃(η) ≤ p(ξ + η) ≤ p(ξ + ζ) + p(η − ζ)

for all ξ, η ∈ F̃ , hence

m = sup
η∈F̃

(f̃(η)− p(η − ζ)) ≤ inf
ξ∈F̃

(p(ξ + ζ)− f̃(ξ)) =M.

Let α ∈ [m,M ] and define

h : span{F̃ ∪ {ζ}) → R, h(ξ + λζ) = f̃(ξ) + λα

59



for ξ ∈ F̃ and λ ∈ R. Since F̃ and ζ are linearly independent, h is well-
defined, and it is obviously an extension of f̃ . It remains to show that h is
dominated by p.

If λ > 0, then since α ≤M , we have

h(ξ + λζ) = f̃(ξ) + λα

≤ f̃(ξ) + λ inf
η∈F̃

(p(η + ζ)− f̃(η))

≤ f̃(ξ) + λ

(
p

(
ξ

λ
+ ζ

)
− f̃

(
ξ

λ

))
= p(ξ + λζ).

If λ < 0, we reach the same conclusion using α ≥ m instead.

Corollary A.0.5 (Hahn–Banach, semi-norm version). Let E be a vector
space over K, F a linear subspace of E and p : E → [0,∞) a semi-norm. If
f : F → K is a linear functional such that |f(ξ)| ≤ p(ξ) for all ξ ∈ F , then
there exists a linear extension f̃ of f to E that satisfies |f̃(ξ)| ≤ p(ξ) for all
ξ ∈ E.

Proof. Case K = R: Every seminorm is a sublinear functional. By the
sublinear functional version of the Hahn–Banach theorem, the functional f
can be extended to a linear functional f̃ on E such that f̃(ξ) ≤ p(ξ) for
all ξ ∈ E. At the same time, −f̃(ξ) = f̃(−ξ) ≤ p(−ξ) = p(ξ). Thus
|f̃(ξ)| ≤ p(ξ).

Case K = C: Let g = Re f . This functional is real-linear, hence it can
be extended to a real-linear functional g̃ on E such that |g̃(ξ)| ≤ p(ξ) for all
ξ ∈ E by the first part. Let f̃(ξ) = g̃(ξ) − ig̃(iξ) for ξ ∈ E. If ξ ∈ F , then
−ig(iξ) = −iRe(ig(ξ)) = i Im ξ, hence f̃(ξ) = f(ξ) for ξ ∈ F .

By definition, f̃ is real-linear. However,

f̃(iξ) = g̃(iξ) + ig̃(ξ) = if̃(ξ).

Together with real linearity, this implies that f̃ is in fact complex-linear. To
show that f̃ is dominated by p, let ξ ∈ E and z ∈ C with |z| = 1 such that
|f̃(ξ)| = zf̃(ξ). We have

|f̃(ξ)| = zf̃(ξ) = Re f̃(zξ) = g̃(zξ) ≤ p(zξ) = p(ξ).

Corollary A.0.6 (Hahn-Banach, bounded functional version). Let E be a
normed space and F a linear subspace of E. If f : F → K is a bounded
linear functional, then there exists a bounded linear extension f̃ of f to E
with ∥f̃∥ = ∥f∥.
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Proof. Apply the previous result with the seminorm p(ξ) = ∥f∥∥ξ∥.

Corollary A.0.7. Let E be a non-zero normed space. For every ξ ∈ E there
exists f ∈ E∗ with ∥f∥ = 1 such that f(ξ) = ∥ξ∥.

Proof. Let F = span{ξ} and define g : F → K, g(λξ) = λ∥ξ∥. Clearly,
∥g∥ = 1 and g(ξ) = ∥ξ∥. By the previous corollary, g can be extended to a
linear functional on E with the same norm.

Exercises

1. In this exercise we construct so-called Banach limits.

(a) Let ℓ∞ denote the space of bounded sequences in K. Show that

p : ℓ∞ → K, x 7→ lim sup
n→∞

1

n

n∑
k=1

xk

is a sublinear functional on ℓ∞.

(b) Show that there exists a bounded linear functional LIM: ℓ∞ → K
with the following properties:

• If xn ≥ 0 for all n ∈ N, then LIM(x) ≥ 0.

• If S denotes the shift operator on ℓ∞, i.e., (Sx)n = xn+1, then
LIM(Sx) = LIM(x) for all x ∈ ℓ∞.

• If x is a convergent sequence, then LIM(x) = limn→∞ xn.

Any such functional is called a Banach limit.
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Appendix B

The Stone–Weierstraß theorem

Let X be a set and F a family of functions on X. We say that F separates
the points of X if whenever x, y ∈ X with x ̸= y there exists f ∈ F with
f(x) ̸= f(y).

Theorem B.0.1 (Stone–Weierstraß). Let X be a compact Hausdorff space.
If A ⊂ C(X) is a unital ∗-subalgebra that separates the points of X, then A
is dense in C(X) (with respect to the supremum norm).

Proof. We first note that continuity of the operations implies that A is again
a unital ∗-subalgebra of C(X).

Step 1: If f ∈ A and f ≥ 0, then
√
f ∈ A.

By rescaling, we can assume that 0 ≤ f ≤ 1. Let g = 1−f . The binomial
series convergence uniformly on the unit disk, hence

√
f(x) =

√
1− g(x) = lim

n→∞

n∑
k=0

(
1
2

k

)
(−1)kg(x)k

uniformly in x ∈ X. Therefore,
√
f ∈ A.

Step 2: If f, g ∈ A are real-valued, then min{f, g}, max{f, g} ∈ A.
This follows immediately from the following identities:

min{f, g} =
f + g +

√
(f − g)2

2
, max{f, g} =

f + g +
√
(f − g)2

2
.

Step 3: If f ∈ C(X) is real-valued and ε > 0, then there exists g ∈ A
such that ∥f − g∥∞ < ε.

For x, y ∈ X with x ̸= y choose h ∈ A such that h(x) ̸= h(y), which
exists since A separates the points of X. Otherwise replacing h by Reh or
Imh, we can assume that h is real-valued.
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Let

fx,y : X → R, z 7→ f(y) + (f(x)− f(y))
h(z)− h(y)

h(x)− h(y)
,

which belongs to A since it is a linear combination of h and constant func-
tions.

Further let
Ux,y = {z ∈ X | fx,y(z) < f(z) + ε/2}.

Since f and fx,y are continuous, the sets Ux,y, x, y ∈ X, are open. Moreover,
since fx,y(y) = f(y), we have y ∈ Ux,y. Therefore, (Ux,y)y∈X is an open cover
of X for every x ∈ X.

As X is compact, there exists n ∈ N and y1, . . . , yn ∈ X such that
X =

⋃n
k=1 Ux,yk . Let fx = min1≤k≤n fx,yk , which belongs to Ā by the Step 2.

Furthermore, let

Vx = {z ∈ X | hx(z) > f(z)− ε/2}.

Since fx,y(x) = f(x) for all y ∈ X, we also have fx(x) = f(x) and thus x ∈ Vx.
Using once again compactness of X, we get m ∈ N and x1, . . . , xm ∈ X such
that X =

⋃m
j=1 Vxj . Let g̃ = max1≤j≤m fxj , which belongs to A by Step 2.

By construction, f − ε/2 < g̃ < f + ε/2, hence ∥f − g̃∥∞ < ε/2. Take
g ∈ A with ∥g − g̃∥∞ < ε/2. By the triangle inequality, ∥f − g∥∞ < ε.

Step 4: A is dense in C(X).
For arbitrary f ∈ C(X) and ε > 0, we find g, h ∈ A such that ∥Re f −

g∥∞ < ε/2 and ∥Im f − h∥∞ < ε/2. By the triangle inequality, ∥f − (g +
ih)∥∞ < ε/2.

The great generality of the Stone–Weierstraß theorem makes it applicable
in a variety of situations.

Corollary B.0.2 (Weierstraß). Polynomial functions are dense in C([0, 1]).

Proof. Clearly, polynomial functions on a subset of R form a unital ∗-algebra.
Moreover, linear functions already separate points.

Corollary B.0.3. Let S1 = {z ∈ C : |z| = 1}. Functions of the form

S1 → C, z 7→
N∑

k=−N

akz
k

with N ∈ N and ak ∈ C are dense in C(S1).
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