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Chapter 1

Local and Global Analysis

1.1 Fundamentals

1.1.1 Linear Theory

Definition 1.1.1. Let V' be a vector space over K. A finite family (e;);c; in
V' is called a finite basis of V' if for every v € V' there exists a unique family

(A);er in K such that
v = Z e,

iel
The vector space V' is called finite-dimensional if it has a finite basis, other-
wise it is called infinite-dimensional. By convention, the empty family is a
finite basis of the trivial vector space {0}.

Remark 1.1.2. e We use K to denote a field that is either R or C.

o If (\;)ics is a finite family in K and (v;);er is a finite family in V', then
> ier ANivi is called a linear combination of v;, i € I. The family (v;)ies
is called linearly independent if whenever (\;);c; is a finite family in K

such that

Z )\iUZ' = 0,

el
then X' =0 for all 7 € I.
An equivalent definition of a finite basis is a linearly indepenent finite
family (e;);e; such that every vector in V' is a linear combination of e;,
1€ 1.

o If (e;)icr and (f;)jes are finite bases of V, then I and J have the same
cardinality (number of elements). This number is called the dimension

of V and denoted by dim V.



Example 1.1.3. The vector space K" has the canonical or standard basis
(e;)™, where e; = (0,...,0,1,0,...,0) with 1 in the i-th position.

Ezample 1.1.4. The vector space K[X] of polynomials over K has no finite
basis. Indeed, any finite family (p;);c; contains a polynomial of maximal
degree d. Then every linear combination of p;, ¢ € I, also has degree at most
d. This mean that every polynomial with degree strictly larger than d is not
a linear combination of p;, 2 € I.

Definition 1.1.5. If V' and K are vector spaces over K, a map ¢: V — W
is called linear if

(Mo 4+ A0) = A1) 4+ Aop(vs)

for all X', A2 € K and vy, v5 € V.
If V and W are finite-dimensional, we write £(V, W) for the set of all
linear maps from V' to W.

Example 1.1.6. Rotations of the plane are linear maps. In contrast, trans-
lations are not linear (except for the trivial case, which is translation by

0).

Definition 1.1.7. If (v;)iL, is a basis of V, (w;)7L, is a basis of W and

p € L(V,W), then the transformation matriz of ¢ with respect to the bases
(v;) and (w;) is the matrix A = (A7;) € K™*" whose entries satisfy

p(vi) =Y Alw;.
j=1

IfV =W and v; = w; for 1 <i < m, we simply call A the transformation
matrix of ¢ with respect to the basis (v;);.

Remark 1.1.8. The transformation matrix (A’;) depends not only on the
linear map ¢, but also on the bases (v;) and (w;) (and in particular on the
order of the basis elements).

Ezxample 1.1.9. The transformation matrix of rotation by /2 (90°) with

respect to the standard basis of R? is given by ((1) _01)

m

Lemma 1.1.10. Let V' and W be vector spaces over K with bases (v;)7L,,
(wi)p—y- If ¢ € L(V.W), write A, for the transformation matriz of ¢ with
respect to the bases (vj), (wy).

(a) The map L(V,W) = K™™ ¢+ A, is a bijection.
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(b) If o, € LIV,W) and X\, u € K, then

A)\go—&-,u,?,/) = )\Ago + LLAw.

Let U be a vector space over K with basis (u;)i_,. If ¢ € L(U,V) (resp.
p € LU W)), we write A, for the transformation matriz of ¢ with respect
to the bases (u;), (v;) (resp. (u;), (wg)).

(c) If p € LU, V), 1 € LIV,W), then
Aoy = AyA,.

Remark 1.1.11. For K", we have a canonical basis (the standard basis). Thus
linear maps from K” to K™ can canonically be identified with m x n matrices.

Lemma 1.1.12 (Change of basis). Let V' and W be vector spaces over K,
let (vi)iZy, (0;)7hy be bases of V' and let (wy)i—y, (Wi)i=1 be bases of W. The
basis change matrices C' € K™*™ and D € K™*" are the matrices with entries
C7; and (DY) determined by

m
Vi = E 7,05,
j=1

n
Wy = E Dliﬁ)l.
=1

The matrices C' and D are invertible. Moreover, if ¢ € L(V,W), A (resp.
B) denotes the transformation matriz of @ with respect to the bases (v;), (wg)
(resp. (v;), (W;)), then

B=DAC™.

Definition 1.1.13. Let GL(n,K) = {C € K™ | C invertible}. For C' €
GL(n,K), the map
K™ — K™ A CAC™!

is called conjugation. To matrices A, B € K™*™ are called similar if there
exists C' € GL(n, K) such that B = CAC™.

Some operations on linear maps are easiest to define on the transformation
matrices. To ensure that this does not depend on the choice of basis, the
operation needs to be invariant under conjugation.

Ezample 1.1.14 (Trace). For A = (AJ;) € K", the trace is defined as
tr(A) = > | A%. The trace satisfies tr(CAC™!) = tr(C'CA) = tr(A) for
all A e K»" C € GL(n,K).



Ezample 1.1.15 (Determinant). For A = (A%;) € K™, the determinant
is defined as det(A) = > g sgn(o) [T, A°?;. The determinant satisfies
det(CAC™!) = det(C) det(A) det(C) ™! = det(A).

Definition 1.1.16 (Dual space). If V' is a finite-dimensional vector space
over K, the dual space V* of V is the vector space L(V,K).

If (v;)™, is a basis of V| then the dual basis (v')", is characterized by

vi(vj) = (Sij, 1<i,7<n.

Remark 1.1.17. If V. = K", then V* can canonically be identified with 1 x n
matrices or row vectors.
Lemma 1.1.18. If V is a vector space over K with basis (v;)!_,, then the
dual basis (v')"_, is a basis of V*.
Lemma 1.1.19 (Basis change for dual bases). If V is a vector space over

K with bases (v;)i=, and (0;)7_, and C' is the basis change matriz, then the

basis change matriz for the dual bases (v*) and (¢7) is (CT)~1.

Remark 1.1.20. We write V** for (V*)*. There is a natural map

X: V=V x()(e) = o).

If (v;)™, is a basis of V with dual basis (v*)"_,, then the dual basis of (v?)?_,
is given by (x(v;))" . In particular, x is a bijection. We will use the map x
to identify V** with V.

Definition 1.1.21 (Multilinear maps). If V4, ..., V, and W are vector spaces
over K, a map
p:Vix-o-xV, =W

is called a multinear map (of order r) if for every j € {1,...,r} and all
v; € Vi, i # j, the map

‘/} - M/,U = Sp(vla N B RPN/ RS PR 7’U1“)
is linear. If W =K, we also call ¢ a multilinear form (of order r).

Remark 1.1.22. The direct product V; x --- x V. is again a vector space.
Except for trivial cases, a linear map ¢: V; x---xV, — W is not multilinear.

Ezample 1.1.23 (Determinant). If we view elements of K" as row vectors (or
column vectors), the map

(K")" = K, (v1,...,0,) — det((vy ... vy))

is multilinear.



Ezample 1.1.24 (Inner product). If K = R, an inner product on V is a
multilinear form of order 2 (or bilinear form).
Example 1.1.25. If 1 € V¥, ..., ¢, € V*, then the map

1R @ Vi X x V= K| (vl,...,UT)HHgaj(vj)

=1
is multilinear.

Definition 1.1.26. We write V*®---®@V* for the space of multilinear forms
on Vi x---xV.

Lemma 1.1.27. If Vi,...,V, are finite-dimensional vector spaces over K,
then V¥ @---@ V¥ is a vector space of dimension dim V; -...-dimV, over K.

Proof. We only consider the case r = 2 for ease of notation. Let (v;)!, be a
basis of V; and (w;)’_, a basis of V5. We claim that (v' ® w’);; is a basis of
Ve vy

If o: V; x V5 — K is bilinear, then

i (Z Nu D “jwj> =D Nl wy)
i=1 j=1

i=1 j=1
=D D AW DY Y elvg,w)dtid
i=1 j—l k=1 =1
IZZ” DI)PECRTII I
=1 k=1 I=1

- ZZ (vg, wy) (v @ w') (Z )\ivi,Zujwj> )
k=1 1=1 i=1 =1

Hence every element of V;* @ V5 is a linear combination of (v ® w’); ;. More-
over, if \;; € K such that

m

Zzn:/\ij’l)i ®1Uj = 0,

i=1 j=1
then
- (Z > A’ ® wj> (v, wi) = A
i=1 j=1

for every k € {1,...,m}, L € {1,...,n}. Hence (v' ® w’),; is linearly inde-
pendent. n



Remark 1.1.28. Using the canonical identification V** = V for finite-dimensional
vector spaces, we can also make sense of V1 ® - @V, as V" @ --- @ V¥,
which is the space of multilinear forms of order r on V* x --- x V*.

Definition 1.1.29 (Tensors). If V' is a finite-dimensional vector space over
K, an r-contravariant and s-covariant tensor or (r,s)-tensor is an element
of

Ve - oV'elVe---eV.

r times s times

In other words, an (7, s)-tensor is a multilinear form on V" x (V*)*.
Ezample 1.1.30. If ¢ € L(V, V), then
VXV =K, (v, f) = f(p(©))

is multilinear, i.e., a (1,1)-tensor. Conversely, every (1,1)-tensor is of this
form. This gives a canonical identification of the space of (1, 1)-tensor with

LV, V).

Definition 1.1.31 (Alternating forms). Let V' be a vector space over K. A
multilinear form w: V" — K is called alternating if

W15y ) = —W(V1y e« o, Vi1 Uky Uity -+, Uk—15 Uy Ukt 1y - - - 5 Uy)

for all vy,...,v. €V, jke{l,... r}
The set of all alternating r-forms on V' is denoted by A"V*. Furthermore,
we set A°V* =K.

Remark 1.1.32. In terms of the sign of a permutation, the defining property
of an alternating form can be expressed as

W1, ..o, 0) = 88N 0 W(Vo(1)s - - -5 Vo(r))
for all v1,...,v, €V, 0 € S,.
Example 1.1.33. If we view elements of K" as row vectors, the map
(K")" = K, (v1,...,v,) — det((vy ... v,))
is an alternating multilinear form.

Definition 1.1.34 (Wedge product). Let V' be a be a vector space over K.
The anti-symmetrization operator on (V*)®" is defined by

* T ' * 1
Py (VH® = AV w (Ul,...,vr) — ] Z sgnaw(va(l),...,vg(r))> .

’ O'EST
For a € A"V* and 8 € A*V*, the wedge product o A ( is defined as

(r+s)!
Igl

alf = Py(a® B).



Lemma 1.1.35. Let V be a vector space over K.

(a) The wedge product is associative: If a« € A"V*, B € A*V* and v €

AYV*, then
(@AB)Ay=aA(BA).
(b) If vy,...,v. €V and ¢1,...,0, € V*, then
(1 A A ) (o1, 00) = det((‘ﬂj(”k))g,kﬂ)‘
(c) If a € N"V*, 5 € A*V*, then
aNp=(-1)"BAa.

(d) If V has finite dimension n, then A"V* is a vector space of dimension
(':) In particular, A"V* = {0} forr > n.

Remark 1.1.36. One consequence of the previous result is that if dim V' = n,
then A" 7"V* 2 A"V and A°V* 2 K, AlV* = V™,
Example 1.1.37. If V = K3, then dim A°V* = dim A3V* = 1, dim A'V* =
dim A2V* = 3. More explicitly, isomorphisms of A'V* and A%2V* with R? are
given by

0: R = A'V* (0102, 0%) = vle! +v%e? +v’e?

P R — APVF (vh 02 0%) = vte? Ae? 4 v%e? A +oel Al
Hence, whenever v,w € R3, then there exists a unique vector v x w € R3

such that (v x w) = ¢(v) A p(w). This is the classical cross product of
vectors.

Definition 1.1.38 (Orientation). Let V' be a finite-dimensional vector space
over R. Two bases (v;)j_, and (w;)}_, are said to have the same orientation
if there exists A > 0 such that wi; A---Aw, = Avi A---Av,. Having the same
orientation defines an equivalence relation with two equivalence classes on
the set of all finite bases of V. An equivalence class is called an orientation
of V.

Remark 1.1.39. In this definition, the order of the basis vectors matters. If

we swap e; and e; for i # j, the orientation of the basis changes.

Remark 1.1.40. If V' is a vector space over K and (v;)?; and (w;), are bases

of V, then v1 A---Av, and wy A- - - Aw, are non-zero elements of A”V*. Since

dim A"V* = 1, there exists A € K\ {0} such that wy A---Aw, = Ay A---Av,.
This explains why it is only sensible to define an orientation for bases of

real vector spaces: R\ {0} has two connected components, the positive and

negative numbers, while C \ {0} is connected.

Ezample 1.1.41. The orientation of R" containing the standard basis (e;)?,

is called the standard orientation of R".



1.1.2 Topology

Definition 1.1.42 (Metric space). A metricon aset X isamapd: X x X —
[0, 00) with the following three properties:

(a) Non-degeneracy: For all z,y € X, d(z,y) = 0 if and only if x = y.

(b) Symmetry: d(z,y) = d(y,z) for all x,y € X.

(c¢) Triangle inequality: d(x,y) < d(z,z) + d(z,y) for all x,y, z € X.
A set with a metric is called a metric space.

Ezample 1.1.43 (Euclidean metric). The Euclidean metric on K" is defined
by

n 1/2
=1

Ezample 1.1.44 (Discrete metric). For any set X the discrete metric is defined
by

1 ifz#y,
d(x,y):{o oy x,y € X.

Definition 1.1.45 (Topology). A topology on a set X is a subset T of P(X)
with the following three properties:

(a) 0, X eT.
(b HU,V €T, thenUNV €T.
(c) If I is an arbitrary index set and U; € T, 4 € I, then | J,., U; € T

The elements of T are called open subsets of X. A set with a topology is
called a topological space.

Every metric gives rise to a topology in the following way.

Proposition 1.1.46. Let (X,d) be a metric space. For x € X and r > 0 let
B.(x)={y € X | d(x,y) <r}. The set

To={UCX |VeeU3r>0:B.(r) CU}

s a topology on X.
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Proof. Clearly 0, X € T5. If U,V € Ty, let x € UNV. By definition, there
exists 7,8 > 0 such that B,.(x) C U, Bs(z) C V. Let t = min{r, s}. Since
Bi(z) C B,(z) and B(z) C Bs(z), we have By(x) C UNV. Hence UNV € T,.

Now let I be an arbitrary index set and U; € Ty fori e I. If x € Uiel Ui,
then there exists j € I such that x € U;. By definition, there exists r > 0
such that B, (x) C U; C |J;c; Ui Thus U,¢; Us € Ta. O

Remark 1.1.47. Note that we did not even use the triangle inequality in the
proof. However, without is, the topology defined in the previous proposition
can be quite pathological.

Definition 1.1.48 (Open ball, neighborhood). Let (X, d) be a metric space.
If x € X and r > 0, then B,(z) = {y € X | d(x,y) < r} is called the open
r-ball around x. More generally, if A C X, the set U,(A) = {y € X | Ja €
A: d(a,y) < r} is called the open r-neighborhood of A.

Lemma 1.1.49. If (X,d) is a metric space, A C X and r > 0, then U,.(A)
18 open.

Proof. If x € U,(A), then there exists a € A such that d(z,a) < r. Let
s=r—d(z,a). If y € X with d(x,y) < s, then

d(y,a) <d(y,z)+d(z,a) <r—d(z,a)+d(z,a) <.
Hence y € U,(A). It follows that By(z) C U,.(A). Hence U,(A) is open. [J

Definition 1.1.50 (Continuous map, homeomorphism). Let X and Y be
topological spaces. A map f: X — Y is called continuous if for every open
subset V of Y the preimage f~'(V) = {z € X | f(z) € V} is open.

A map f: X — Y is called a homeomorphism if it is bijective and both
f and f~! are continuous. In this case, X and Y are called homeomorphic.

Remark 1.1.51. If (X, Tx) and (Y, Ty) are topological spaces and f: X — Y
is a homeomorphism, then Tx = {f~1(0) | O € Ty}. In the other words,
the sets X and Y and the respective topologies only differ by “renaming”.
In this sense, heomeomorphic spaces have the same topological properties.

Lemma 1.1.52. Let X and Y be topological spaces. A map f: X — Y 1is
continuous if and only if for every x € X and open neighborhood V' of f(z)
there exists an open neighborhood U of x such that f(U) C V.

Lemma 1.1.53. Let (X,d) and (Y, p) be metric spaces. A map f: X —Y
is continuous if and only if for every x € X and every sequence (x,) in X
such that d(x,,,x) — 0 one has p(f(x,), f(x)) — 0.

11



Definition 1.1.54 (Closed subsets). A subset F' of a topological space X is
called closed if X \ F' is open.

Remark 1.1.55. There can be subsets that are neither open nor closed and
subsets that are both open and closed. For example, consider R with the
topology induced by the Euclidean metric. Then [0, 1) is neither open nor
closed and R itself is both open and closed.

Lemma 1.1.56. If X s a topological space, the closed subsets of X have the
following properties:

(a) O and X are closed.
(b) If F,G C X are closed, then F'UG is closed.

(c) If I is an arbitrary indez set and F; C X is closed for everyi € I, then
Nicr Fi is closed.

Definition 1.1.57 (Neighborhoods, convergence of sequences). Let X be a
topological space and x € X. A subset V of X is called a neighborhood of x
if there exists an open subset U of X such that {x} CU CV

Let (x,) be a sequence in X and =z € X. We say that (x,) converges to
x and write x,, — x if for every open subset U of X that contains z there
exists Ny € N such that z, € U for every n > Nj.

Remark 1.1.58. A sequence can converge to several points. For example,
if T = {0,X}, then every sequence converges to every point in X. This
happens because there are not enough open sets to separate the points. To
avoid such pathologies, we will focus on topological spaces that satisfy a
certain separation axiom.

Definition 1.1.59 (Hausdorff space). A topological space X is called Haus-
dorff if for every pair of distinct points x,y € X there exist open neighbor-
hoods U of x and V of y such that U NV = 0.

Lemma 1.1.60. If X is a Hausdorff topological space, (x,) is a sequence in
X and z,y € X such that v, — x and x,, — y, then r =y.

Proof. Suppose for a contradiction that x # y. Let U be an open neighbor-
hood of # and V' an open neighborhood of y such that U NV = (. Since
x, — x, there exists Ny € N such that x,, € U for n > Ny, and since z,, — v,
there exists My € N such that z,, € V for n > M,. Hence z, € UNV for
n > max{ Ny, My}, a contradiction. O

12



Lemma 1.1.61. If (X,d) is a metric space, then the topology induced by d
15 Hausdorff.

Proof. If x,y € X are distinct points and r = d(x,y), then B, (x) and
B, 2(y) are open subsets of X that contain = and y, respectively. If there
were z € B, jo(x) N B,/2(y), we would have

r=d(x,y) <d(z,z) +d(z,y) <r/2+r/2=r,
a contradiction. Thus B, »(x) N B,/2(y) = 0. O

Lemma 1.1.62. If (X,d) is a metric space, then a sequence (x,) in X
converges to x € X with respect to the topology induced by d if and only if
d(xp,x) — 0.

Proof. 1f x,, — z and € > 0, then there exists Ny € N such that z, € B.(x)
for every n > Ny since B.(x) is an neighborhood of x. Thus d(z,,z) < € for
n > Ny. As ¢ > 0 was arbitrary, we conclude d(z,,z) — 0.

Assume conversely that d(z,,z) — 0 and let U be an open neighborhood
of x. By definition of the topology induced by d, there exists € > 0 such that
B.(x) C U. Since d(z,,z) — 0, there exists Ny € N such that d(z,,z) < ¢
for n > Ny. In other words, x,, € B.(z) C U for n > Ny. Thus z,, - z. O

Lemma 1.1.63. Let (X,d) be a metric space. A subset F' of X is closed if
and only if for every sequence (x,) in F that converges to some z € X one
has x € F'.

Proof. First assume that F' is closed and (x,) is a sequence in F' that con-
verges to x € X. By definition, X \ F is open. Suppose for a contradiction
that z € X \ F. As X\ F is open, there exists Ny € N such that x, € X \ F
for every n > Ny, a contradiction.

Now assume conversely that for every sequence (x,,) in F' that converges
tox € X we have x € . We need to show that X'\ F'is open. Let z € X'\ F.
If Byjn(z) N F # 0 for every n € N, we can find a sequence (z,) such that
Ty € Bl/n(x) for every n € N. But then x, — z, which implies z € F' by
assumption, a contradiction. Thus By, (z) C X \ F for some n € N. Hence
X \ F is open by the definition of the topology induced by a metric. O

Definition 1.1.64 (Compact space). A topological space K is called compact
if it is Hausdorff and for every index set I and every family (U;);c;U; of open
subsets of K such that K C J,., there exists a finite subset J of I such that
K C Uje ;U;.

el
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Remark 1.1.65. A family (U;);c; of open subsets of K such that K C J,; U
is called an open covering. If J C I, then the family (U;);jes is called a
subcovering. With this terminology, a topological space is compact if it is
Hausdorff and every open covering has a finite subcovering.

Definition 1.1.66 (Subspace topology, compact subset). If (X, 7)) is a topo-
logical space and A C X, the subspace topology on A is defined as

Ta={UNA|UEeT}

A subset K of X is called compact if it is a compact topological space in the
subspace topology.

Proposition 1.1.67. Let X be a Hausdorff topological space and K C X a
compact subset.

(a) K is a closed subset of X.

(b) If X is a metric space with the topology induced by the metric, then K
15 also bounded.

Proof. (a) We have to prove that X \ K is open. Let z € X \ K. By the
Hausdorft property, for every y € K there exist open subsets U,, V, of X
such that x € Uy, y € V, and U, NV, = 0. Then V,, N K is an open subset of
K for the subspace topology and K C UyeK V,NK.

Since K is compact, there exist n € N and yy,...,y, € K such that K C
Ujoy Vi N K. Let W, = n?:l U,,, which is an open subset of X containing
. Moreover, W, N K C (\;_, Uy, NU;_, V,; = 0. Thus W, C X \ K.

As z € X \ K was arbitrary, we conclude X \ K = J,cx\x Wz Hence
X \ K is open as union of open sets.

(b) The family (Bi(y) N K)yex is an open covering of K. Since K is
compact, there exists n € N and yi,...,y, € K such that K C J;_; Bi(y;)-
Hence, if z € K is arbitrary, then there exists j € {1,...,n} such that
z € By(y;) and thus

d(z,y1) < d(z,y;) +d(yj,y) <1+ nax d(yk, v1) =: R.

Therefore K C Bgr(y1), which implies that K is bounded. ]

Lemma 1.1.68. If K is a compact topological space and C C K 1is closed,
then C' is compact.

Theorem 1.1.69. A metric space X is compact if and only if every sequence
in X has a convergent subsequence.
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Lemma 1.1.70. If K is a compact topological space and (C,,) is a sequence
of non-empty closed subsets of K such that Cpyy C Cp, then (\,—, Cy is a
non-empty closed subset of K.

Proof. Suppose for a contradiction that ()2, C,, = 0. Then (K \ C,)nen
is an open covering of K. Since K is compact, there exist m € N and
J1y -+ Jm € N such that

K C U K \ Ojk = K\ ﬂ Cjk =K \ Cmax{j1,~~~:jm}‘
k=1

k=1

But this implies Craxfjr,..jn1 = 0, a contradiction. Hence ("~ C,, # 0.
Moreover, the subset if closed as intersection of closed subsets. O

Definition 1.1.71. Let X be a topological space and A C X. The closure
A of A is defined as a
A= (N ¢

CDA
C' closed

Remark 1.1.72. As intersection of closed sets, the closure of A is closed and

thus the smallest closed set containing A. In particular, the set A itself is
closed if and only if A = A.

Lemma 1.1.73. If X is a metric space and A C X, then
A={x € X |3 sequence (z,) in A: x, — x}.

Proof of Theorem 1.1.69. First assume that K is compact and (z,) is a se-
quence in K. Let C, = {x; |k >n}. By definition, C, is closed and
Cni1 C Cy. By Lemma 1.1.70, the intersection () —, C), is non-empty.

Let z € (., C,. We construct a subsequence (z;,) of (z,) inductively.
Let j; = 1. Now assume that we are given ji, ..., j, with d(z, z;,) < <. Since
x € Cj, 1= {ax | k> jo+ 1}, we can find k > j, +1 with d(z, z,) < =5 by
Lemma 1.1.73. Set j,11 = k. By construction, d(z,z;,) < +, hence x;, — .

The converse direction is harder and will not be discussed in this course.
O]

Proposition 1.1.74. Let (X, d) be a metric space such that the closed balls
B.(z) ={y € X | d(z,y) < r} are compact for every x € X, r > 0. Then
every bounded closed subset of X is compact.

Proof. 1f A C X is bounded, then there exists z € X and r > 0 such that
A C B,(z). If A is furthermore closed, then it is compact as a closed subset
of a compact space by Lemma 1.1.68. O]
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Remark 1.1.75. The property that closed balls are compact is satisfied for
K™ with the Euclidean metric or more generally for any finite-dimensional
normed space. Note however that in general, a bounded closed subset of a
metric space need not be compact.

Proposition 1.1.76. If K is a compact topological space, Y is a topological
space and f: K —Y 1is continuous, then f(K) is compact.

Proof. Let (V;)ier be an open covering of f(K). Then (f~1(V;))ies is an
open covering of K. Since K is compact, there exists a finite subcovering
(f~4(V}))jes. Thus (V});es is a finite open covering of f(K). O

Corollary 1.1.77. If K is a compact topological space and f: X — R is a
continuous map, then f attains its mazimum and minimum.

Proof. The image f(K) is a bounded and closed subset of R by the previous
result and thus has a minimum and maximum. O

Remark 1.1.78. Unless stated otherwise, the topology on K" is always taken
to be the standard topology, i.e., the topology induced by the Euclidean
metric.

1.1.3 Differentiability

Definition 1.1.79 (Norm). Let V be a vector space over K. A function
I]l: V' — [0, 00) is called a norm if it satisfies the following three properties:

(a) Non-degeneracy: ||v|| = 0 if and only if v = 0.

(b) Positive homogeneity: [|Av|| = |A|||v]| for all A € K, v € V.

(c) Triangle inequality: |[v+ w| < ||v] + ||w] for all v,w € V.
A vector space with a norm is called a normed space.

Ezample 1.1.80. For p € [1,00), the p-norm on K" is defined by

1/p
[[lp: K" = [0,00), [z, = (ZW”) :

For p = 0o we set [|2||co = maxi<j<p|z;jl.
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Definition 1.1.81 (Bounded linear maps). If (V. ||-||yv) and (W, |-|lw) are
normed spaces, a linear map L: V — W is called bounded if there exists
C > 0 such that

[ Lv[[w < Cllollv

for all v € V. The set of all bounded linear maps from V to W is denoted
by L(V,W). The operator norm on L£(V, W) is defined by

[-llop = £V, W) = [0,00), [l@llop = supll(@)flw : [lv]ly < 1}

Remark 1.1.82. If V is finite-dimensional, then every linear map from V'
to W is bounded. Hence this notation is consistent with the notation we
introduced for finite-dimensional vector spaces.

Remark 1.1.83. If (V,||-]]) is a normed space, then the metric induced by ||-|
is defined as d(v,w) = |jv — w||. Then ||-|| also induces a topology on V,
namely the topology induced by d as discussed in the previous section. Thus
it makes sense to speak of complete normed spaces, open subsets etc.

Definition 1.1.84. Let V' be a vector space over K. Two norm |[|-||1, ||||2
on V are said to be equivalent if there exists C' > 0 such that

C Yl < flvlla < Cllvlly
for all v e V.

Proposition 1.1.85. Let V' be a vector space over K. The norms ||-||1, ||]2
on V are equivalent if and only if they induce the same topology.

Theorem 1.1.86. Any two norms on a finite-dimensional vector space are
equivalent.

Definition 1.1.87 (Derivative). Let V', W be normed spaces and U C V' an
open subset. A function f: U — W is called differentiable at p € U if there
exists a continuous linear map L € L£(V, W) such that

)~ f) -~ L[|

= 0.
h—0 | Al

If f is differentiable at p, the linear map L in the definition is unique and is
called the derivative of f at p and denoted by D f(p).

If f is differentiable at each point p € U, we say that f is differentiable.
In this case, the map

Df:U— LV.W), p— Df(p)

is called the derivative of f.
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Remark 1.1.88. e An equivalent way to describe the differentiability of f
at p is to say that the remainder term

R(h) = f(p+h) — f(p) — L[]

[EOl|
IRl

satisfies limy,_,q
o(||h]]) as h — 0.

= 0. This property is also expressed as R(h) =

e The affine map  — f(p)+D f(p)(x—p) is the best affine approximation
of f at p. In this sense, the derivative is the “linearization” of f at p.

Example 1.1.89. If L € L(V, W), then L is differentiable and DL(p) = L for
all p € V. Indeed,

IL(p +h) = L(p) = L(A)]]

= 0.
7]

Lemma 1.1.90. Let V', W be normed spaces, U C V an open subset and
peU. If f: U — W 1is differentiable at p, then f is continuous at p.

Proof. With the remainder term from the previous remark we have
1f(p+h) = FI < [Ir ()| + 1L < [lr(R)

Since r(h) = o(||h||), we have ||r(h)|| — 0 as h — 0. Therefore, || f(p + h) —
f®) = 0as [[Al]] = 0. O

|+ [ Lol 2]

Proposition 1.1.91. Let Vi, Vo, W be normed spaces, Uy C Vi, Uy C
Va open subsets and f: Uy — Uy, g: Uy — W continuous maps. If f is
differentiable at p and g is differentiable at f(p), then g o f is differentiable
at p and

D(go f)(p) = Dg(f(p)) o Df(p).

Proof. We already have a candidate for the map L in the definition of differ-
entiability, namely L = Dg(f(p)) o Df(p). Let

T) — —D T —
f(x) f(zﬁ)x_pﬁ“(p)[ p]’ 4 p,

9(y) — g(f(p)) — Dg(f(p))ly — f(p)]
ly — f(p)]

and set r(p) = 0, s(f(p)) = 0. Since f and g are differentiable at p and f(p),
respectively, the functions r and s are continuous in p and f(p), respectively.

r(r) =

s(y) = ,y # f(p),
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Define t: Uy — W by t(p) = 0 and

Ha) = Dg(f () lr(@)] + (£ (@) HDf(p)ﬁ ()

for x # p. Then t is continuous in p and we have

g(f(x)) = g(f(p)) + Dg(f(p))[Df(p)[x — pl] + Dg(f(p))r(z)||z — p|
+ s(f(@)IDf(p)[x — p] + r(z)|lz — pll
=g(f(p)) + Llz — p] + t(z)||z — pl|.

As t is continuous in p, we conclude that g o f is differentiable at p with
derivative D(go f)(p) = L. O

Definition 1.1.92. Let Vi,...,V, and W be normed spaces. A multilinear
map : Vi X -+ x V., — W is called bounded if there exists C' > 0 such that

le(or, s on)llw < Clloillv, - [lor]ly;.-

We write L7(Vi,...,V,; W) for the space of all bounded multilinear maps
from Vi x -+« x V. to W. If Vj = =V, we simply write L"(V; V).
On L"(V4,...,V,; W) one defines a norm by

el = sup{lle(or, s o) llw = lvrllvis - lloelly, < 15

Remark 1.1.93 (Contraction of multilinear maps). If ¢ € L™ (V, W) and
v eV, then gh, -] € L7(V; W) and [[h, - ][] < [lll[|A]]-

Definition 1.1.94 (Derivatives of higher order). Let V, W be normed
spaces, U C V an open subset, p € U and r € N. We say that f is r+1 times
differentiable at p if there exists ¢ > 0 such that f is r times differentiable
on B.(p) and there exists L € £ (V; W) such that

. [D"f(p+h)—D"f(p) — Lih,-]|

o i

=0.

In this case, the map L € £ (V; W) is unique and denoted by D" f(p). If
fis r+1 times differentiable at every point p € U, we say that f is r+1 times
differentiable on U and call the map D" f: U — L™ (V; W) the (r + 1)-th
derivative of f on U.

Remark 1.1.95. e This is a recursive definition: To define what it means
for f to be r + 1 times differentiable on U, we need to know what
it means for f to be r times differentiable on U and that the r-th
derivative of f at p is an element of £7(V; W). This is fine since after r
steps we arrive at the notion of differentiability we have defined before.
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e A function f is r+1 times differentiable at p if it is r-times differentiable
on an open ball around p and the r-th derivative itself is differentiable.
Essentially, D" f-is the derivative of the D" f in this case, up to an
identification of £(V,L"(V;W)) and L™V W).

e Recall that if V' is finite-dimensional and W = K, we denoted £"(V; K)
by V*® .- @ V* (r factors). Hence the r-th derivative at p is a (r,0)-
tensor.

Erample 1.1.96. Let f: R" — R, z > 22 = 37 (2/)*. Let p € R™. If
Df(p) exists, it is an element of L(R",R) = (R")*. We identify elements of

(R™)* with row vectors.
We have

fo+h) = f)=@+n)T p+h) —p'p= 2p"h +  0'h

linear in higher order in h

This suggests D f(p) = 2p™. In fact,

|f(p+h)—f(p) —2p"h| _|h"h|

_ ||h||_2)—>0
[P 171l

< Hh’HQ Oa

which confirms our guess.
Now on to the second derivative. If D?f(p) exists, it is an element of
L2(R™;R), i.e., a bilinear map from R™ x R™ to R. We have

Df(p+h)[k] = Df(p)[k] = 2(p + h)"k — 2p"k = 21" k.
This suggests D?f(p)[h, k] = 2h™k. In fact,

|Df(p + W)k — D (p)[k] — 207k||
Tl

0,

which confirms our guess again. Since D?f(p) does not depend on p, the
higher derivatives are constant.

Definition 1.1.97 (Continuously differentiable functions). Let V, W be
normed spaces and U C V' an open subset. We say that a function f: U —
W is r times continuously differentiable if it is r times differentiable and
D f: U — L"(V;W) is continuous. We write C"(U; W) for the space of all
r times continuously differentiable functions from U to W.

A function f: U — W is called smooth if it is r times differentiable for all
r € N. The set of all smooth functions from U to W is denoted by C*(U; W).
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Remark 1.1.98. The derivatives of lower order are automatically continuous
so that we need to require continuity only for the derivative of highest order.

Remark 1.1.99. Let U C R™ be open and f: U — R™. There exist functions
ft . f™: U — R such that f(z) = (f'(),..., f™(z)) for all z € U. The

function f is smooth if and only if f!, ..., f™ are smooth.

FExample 1.1.100. Polynomials of n variables are smooth. These are maps of
the form f: K" - K, x Zaera'Sk a,r® with a, € K are smooth. Here

we use multi-index notation: If « = («y,...,a,) € N? then 2 = a7* ... 22"

Definition 1.1.101 (Directional derivative). Let V', W be normed spaces,
U C V an open subset, f: U — W a function and h € V. If the limit

@J@)Z?gf@+ﬁ?_f@)

exists, it is called the directional derivative of f at p in the direction h.
In the special case when V' = R" and h is the standard basis vector e;,
we write %(p) for O, f(p) and call it a partial derivative.

Proposition 1.1.102. Let V', W be normed spaces, U C V' an open subset,
f:U — W and p € U. If f is differentiable at p, then the directional
derivative Oy, f (p) exists for all h € V' and satisfies

Onf(p) = Df(p)[h]-
Proof. We have

Hﬂp+ﬁw—f@) _ | +th) — f(p) — Df(p)[thll

[£h]

17]]-

L1 |

Since f is differentiable at p, this expression converges to 0 as t — 0. O

The converse of this proposition is not true. There exist functions with
directional derivatives in all directions at a point that are still not differen-
tiable at that point. The situation is different if one additionally assumes
continuity of the directional derivatives in the following sense.

Proposition 1.1.103. Let U C R™ be open. A function f: U — R" is
continuously differentiable if and only if the partial derivatives Op f, Opm f
exist and are continuous. In this case, the matriz of the derivative D f(p) with
respect to the canonical bases is given by (25 (p));x, where f = (f', ..., f™).

Oxk

21



Remark 1.1.104. The matrix (%(p)) = j, k is called the Jacobian or Jacobi
matriz of f at p.

It is customary (for reasons that should become clear later) to write %
for the standard basis vector e; and da’ for the dual basis vector /. With this
notation, one can write the derivative of a differentiable function f: U — R
as

This expression is called the total differential of f. One often writes df
instead of D f if the codomain is R.

1.1.4 Implicit and inverse function theorem

Definition 1.1.105 (Cauchy sequence). Let (X,d) be a metric space. A
sequence (z,,) in X is called Cauchy sequence if for every € > 0 there exists
Ny € N such that d(z,, x,) < € for m,n > Nj.

Proposition 1.1.106. FEvery convergent sequence in a metric space is a
Cauchy sequence.

Proof. Let (x,) be a convergent sequence in the metric space (X, d) with limit
x and let € > 0. Since z,, — z, there exists Ny € N such that d(z,,z) < e/2
for all n > Ny. Hence if m,n > Ny, we have

AT, Tn) < d(Tpm, x) + d(x,2,) < g + g =e. O

The converse is not true. As a simple example take the sequence (1/n),en.

This sequence converges to {0} (with respect to the Euclidean metric on R).

But if we take R\ {0} with the Euclidean metric, then (1/n) is still a Cauchy

sequence, but it does not have a limit in R\ {0}. This suggests that the lack

of convergence of Cauchy sequences is related to some points “missing” in
the space. This motivates the following definition.

Definition 1.1.107 (Complete metric space). A metric space is called com-
plete if every Cauchy sequence converges.

Proposition 1.1.108. Fvery compact metric space is complete.

Proof. Let (X, d) be a compact metric space and (z,) a Cauchy sequence in
X. Since X is compact, there exists x € X and a subsequence (x,, ) of (z,)
such that x, — x. Let ¢ > 0. Since (z,,) is a Cauchy sequence, there exists
Ny € N such that d(z,,, z,) < €/2 for m,n > Ny. Moreover, since x,, — ,
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there exists Ky € N such that d(z,,,z) < /2. If n > Ny and k > K,
ny > Ny, we have
d(zp, z) < d(zp, Ty, ) + d(zy,,z) <e. O

Proposition 1.1.109. FEvery closed subset of a complete metric space is
complete.

Proof. Let (X,d) be a complete metric space and C' a closed subset of X. If
(x,) is a Cauchy sequence in C, then since (X,d) is complete, there exists
x € X such that x,, — x. Since C is closed, we have x € C. n

Definition 1.1.110. Let (X, d;) and (X3, d2) be metric spaces and L > 0.
A map f: Xy — X, is called Lipschitz (continuous) with constant L if
for all z,y € X.

Proposition 1.1.111. Every Lipschitz continuous map between metric spaces
18 continuous.

Proof. Let (X,d), (Y, p) be metric spaces and f: X — Y a Lipschitz contin-
uous map with Lipschitz constant L. If x € X and (z,) is a sequence in X
such that x, — x, then

d(f(x), f(zn)) < Ld(z,2,) — 0. 0O

Proposition 1.1.112. Fvery continuous linear map between normed spaces
1s Lipschitz continuous.

Theorem 1.1.113 (Banach fixed-point theorem). Let (X, d) be a non-empty
complete metric space and L < 1. If F': X — X is a Lipschitz continuous

map with Lipschitz constant L, then there exists a unique point x, € X such
that F(x,) = x..

Proof. Choose zy € X and define recursively a sequence (x,,) by 1 = F(xo),
Tpt1 = F(z,). We have

d(Tny1,Tn) < Ld(2p, 2po1) < - < Ld(21, 20).
Thus

d($n+k7 xn)




Since L™ — 0 as n — 0o, the sequence (z,,) is a Cauchy sequence. As (X, d)
is assumed to be complete, there exists x, € X such that x, — x,. Since I
is continuous, it follows that

z, = lim z, = lim F(z,_1) = F(z.).
n—o0 n—o0

This settles the existence of a fixed point. For uniqueness, let y, € X such
that F'(y.) = y.. Since f is L-Lipschitz, we have

d(xs,ys) = d(F (), Fys)) < Ld(4,Ys).
Since L < 1, it follows that =, = y,. ]

Definition 1.1.114 (Banach space). A complete normed space is called
Banach space.

Remark 1.1.115. Here completeness refers to the metric induced by the norm.

Theorem 1.1.116 (Mean value theorem). Let X, Y be Banach spaces, a,b €
X and U an open subset of X that contains {ta + (1 —t)b | t € [0,1]}. If
f: U =Y is differentiable, then

1f(a) = fO)lly < sup |[Df(ta+ (1 =1)b)[oplla = bllx.

te(0,1]

Corollary 1.1.117. Let X, Y be Banach spaces and U a convex open subset
of X. If f: U =Y is differentiable and sup,cy||Df(p)|| < oo, then f is
L-Lipschitz with L = sup,cy; || D f(p)||-

Theorem 1.1.118 (Inverse function theorem). Let X, Y be Banach spaces,
W CY open, f: W — Y continuously differentiable and xo € W. If the
derivative D f(xo): X =Y of f at xq is bijective with D f(xo)~' € L(Y, X),
then there exist an open neighborhood U of xy and an open neighborhood V
of f(xo) such that f restricts to a bijective map from U to V' and the inverse
f|51: V' — U s continuously differentiable.

Remark 1.1.119. In general, if X, Y are Banach spaces and A € L(X,Y) is
bijective, then A~ € L(Y, X). However, if Y is infinite-dimensional, this is
a deep theorem that will be covered later in this course.

Proof of Theorem 1.1.118. We can assume without loss of generality that
ro = 0 and f(zg) = 0. Otherwise replacing f by Df(0)"!f, we can also
assume X =Y and Df(0) = id.
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Let 7 > 0 such that the closed ball B,(0) is contained in W. For y € X
let

gy: B (0) = X, gy(x) =z — f(z)+v.
Note that z, € B,(0) is a fixed point of g, if and only if f(z) = y.
We want to show that for 7 sufficiently small, g,(B,(0)) C B,(0) and g,
is L-Lipschitz with L < 1 in order to apply the Banach fixed-point theorem.
Since Df is continuous at 0, we can assume without loss of generality
that |[id — Df(z)|lop < 1/2 for z € B,(0). By the mean-value theorem, if
lz|| < r and ||y|| < r/2, then

gy (@) < [lyll + sup [lid — D f(2")|lopl|]| < 7.
2/ €B,(0)

Thus g, maps B,(0) into itself. Moreover, if 2y, 25 € B,(0), then

. 1
gy (1) — gy(z2)[| < sup |lid — Df(2")||opllw1 — 22l < 5.
2

2/ €B,(0)

Hence g, is a 1/2-Lipschitz map from B,(0) to itself for every y € B, 5(0).
By the Banach fixed-point theorem, for every y € B,/5(0) there exists a
unique x € B,(0) with f(z) = y. Thus, if we let V = B,/5(0) and U =
~Y(V)n B,(0), the map f: U — V is bijective.

It remains to show that f |51 is continuously differentiable. The bound
lid=Df(z)|lop < 1/2 for z € U implies that D f(x) is bijective and D f(z)~* €
L(Y, X). We will prove that later in the course (Neumann series).

Let us first prove that f ](}1 is continuous. For 1, x5 € U we have

|1 = 2o < || f(21) — f(z2) ]| + s )||id — Df(a)[|opllz1 — 2]
z'e€By (0

1
< | f(z1) = flz2)| + §||l’1 — 7]

Hence |2y — 22| < 2||f(x1) — f(x2)]|. Thus f|;;' is 2-Lipschitz.
To show that f|;;' is differentiable, let y,y' € V and = = f|;'(y), 2’ =
flg' (@), We have

1f' () — f'(y) = Df(x) "'y — ]|l

ly — /I
< DA () ol 2L —’é’]_—m{H(x) — JE@ 1S ﬁ; - §\| W)l
< D5 @) lop DS (@)l — 2] = f(z) = f(a)]
R E] |
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If ¥ — y, then 2’ — x by the continuity of f|;'. Thus f|;' is differentiable
with Df|;'(f(z)) = Df(z)~!. Continuity of Df|;' follows from the conti-
nuity of the inverse map, which will also be shown later in the course. O]

Remark 1.1.120. In the situation of the inverse function theorem, if f is r
times continuously differentiable, then the local inverse f|;;' is also 7 times
continuously differentiable. In particular, if f is smooth and D f(z) is bijec-
tive for all x € W, then f is a local diffeomorphism.

Remark 1.1.121. If X = R™ and Y = R", then Df(zo): R™ — R™ can only
be bijective if m = n, and this is the case if and only if det D f(zq) # 0.

Remark 1.1.122. If one only assumes that f is differentiable (not necessarily
continuously differentiable) and D f(x) is bijective for all x in a neighborhood
of g, then the conclusion of the inverse function theorem still holds (except
that the inverse is only differentiable, not necessarily continuously differen-
tiable). This little known result relies on the Brouwer fixed-point theorem
instead of the Banach fixed-point theorem.

A close relative of the inverse function theorem is the implicit function
theorem. To state it, we need the following bit of notation. Let X, Y be
Banach spaces. There are several ways to turn the cartesian product X x Y
into a Banach space, for example by defining

1/2
I, ) llxxy = (l2l5 + lylly)

In this way, if K™ and K™ are endowed with the Euclidean norm, then K™ x
K™ carries the Euclidean norm, too. This norm on the product has the
property that the projection mappings

x: X XY = X, (z,y) = z,
Ty: X XY =Y, (z,y) —»y

are continuous.

Let Z be another Banach space and U C X x Y and open subset. If
f: U — Z is a (continuously) differentiable function, then for every x, €
7% (U) and yo € 7, (U) the functions

fCyo): W;(I(U) — Z,x— f(x, )
flxo,-): my ' (U) = Z, y — f(x0,y)

are (continuously) differentiable. We will denote their derivatives by Dy f( -, yo)
and Ds f (o, - ), respectively.
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Theorem 1.1.123 (Implicit function theorem). Let X, Y, Z be Banach
spaces, W C X XY open and F: W — Z continuously differentiable. If
(xo,y0) € W such that DaF(xg,yo) is bijective with bounded inverse, then
there exist neighborhoods U of (xg,y0) and V' of o and a unique function
f: V=Y such that

{(zo,90) €U | F(z,y) = F(wo,90)} = {(=, f(z)) |z € V}.

Moreover, the function f is continuously differentiable and

Df(z) = —(D:F(z, f(x)) "' DiF (=, f(x)).
forallz e V.

Remark 1.1.124. If g: A — B is a function, the preimage g~'(b) is called a
level set of g. The set {(a,g(a)) | a € A} is called the graph of g. Thus
the implicit function theorem states that if Dy F'(xg, o) is bijective, then the
level set of F'is locally the graph of a function.

Remark 1.1.125. If X = R, Y = R™ and Z = R", the invertibility of
Dy f(x0,y0) implies m = n and is equivalent to det Dy f(xg, yo) # 0, as in the
case of the inverse function theorem.

In a typical application of the implicit function theorem, one chooses the
decomposition of the domain into a cartesian product based on the function
at hand in the following sense: Let U C R™ be open and F: U — R"
continuously differentiable. If ¢y € im F' such that DF(py) is surjective
(tk DF(py) = n) for every py € F~'(qp), one calls gy a regular value of
F.

Let X =ker DF(pg) and Y = {y € R" | z-y =0 for all z € X}. Then
XNY ={0}, X +Y =R"™ and the norm on the product described above is
exactly the norm of R™. Since DF(py) is surjective, DF(pg)|y is bijective.
Hence one can apply the implicit function theorem.

1.2 Vector Fields and Flows

1.2.1 Vector Fields

From now on we focus on finite-dimensional real vector spaces, which we take
to be R™ for some n € N without loss of generality. It is convenient to work
with functions that have derivatives of arbitrary order.

Definition 1.2.1. Let X, Y be normed spaces and let U C X, V C Y be
open. A map f: U — V is called a diffeomorphism if it is smooth, bijective
and has a smooth inverse.
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Remark 1.2.2. More generally, one can define diffeomorphisms of class C" as
r times continuously differentiable bijective maps with inverse in C". In this
sense, the diffeomorphisms from the previous definition are diffeomorphisms
of class C*°. As we will work exclusively in the category of smooth manifolds
and smooth maps later, we drop the suffix “of class C"°” and simply say
diffeomorphism.

Definition 1.2.3. Let U be an open subset of R” and p € U. A linear map
X,: C®(U) — R is called derivation at p if it satisfies the Leibniz rule (or
product rule)

Xp(f9) = [(p)Xp(9) + Xp(f)g(p)
for all f,g € C=(U).

Ezxample 1.2.4. The partial derivative %!p is a derivation.

Lemma 1.2.5 (Hadamard). Let U C R™ be open and p € U. If f €
C>*(U), then there exists an open subset V of U containing p and there
exist g, ..., gn € C(V) such that

OEDIOIC

for allz € V and g;(p) = §;§ (p).

Proof. Let r > 0 so that B,.(p) C U. For z € B,(p) let
h:[0,1] = R, h(t) = f(tx + (1 — t)p).
By the chain rule, h is differentiable on [0, 1] and

of

n'(t) = . 9

——(tz + (1 — t)p)(x; — p;).

Thus

f

IIM L?‘

S (tr+ (1= t)p) d.
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Lof
0 31‘

It is not hard to see that g; is smooth. Moreover,

+Z —pj)g;(x

holds by definition. The last property follows by directly by plugging in p in
the definition of g;. O]

gi: B.(p) = R, gj(z) = | ==(te+ (1 —t)p)dt

Definition 1.2.6 (Support of a function). Let X be a topological space and
f: X — K amap. The support supp f of f is the set {x € X | f(x) # 0}.

Lemma 1.2.7 (Bump functions). If C C U C V C R"™ with C closed and U,
V' open in R™, then there exists f € C(V) such that 0 < f <1, f(x) =
if v € C and supp f C U.

Proposition 1.2.8 (Locality of derivations). Let U C V C R" be open
subsets and p € U. If f € C=(V) is constant on U and X,: C*(V) — R is
a deriwation at p, then X,(f) = 0.

Proof. First assume that f is constant on all of U. Since f% = f(p)f, we
have

f(p)Xp(f) = Xp(fQ) = Qf(p)Xp(f)-

If f(p) # 0, this implies X,(f) =0. If f(p) =0, then f =0 and X,(f) =0
follows from linearity.

Now let us prove the general case. By the first part, we may assume that
f =0o0n U. By the previous lemma, there exists g € C(V') with g(p) = 1
and supp g C U. In particular, fg = 0. By the product rule,

= Xp(fg) = f(p)Xp(g) + Xp(f)g(p) = Xp(f)- L

Theorem 1.2.9. Let U C R™ be open and p € U. Then set of derivations

at p forms an n-dimensional vector space with basis 37 b By

Proof. Let X, be a derivation at p. There is 7 > 0 and smooth functions
g1, gn € C®(B,(p),R™) such that

+Z —p;)gi(z
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for € B.(p). Let ¢ € C*(U) with ¢|p, ) = 1 and supp ¢ C B, /2(p) and
define

Y(z)gi(x) if x € B,(p),
0 otherwise.

gi: U =R, f(x):{

As g; vanishes on the complement of B, /5(p) and is smooth on B,(p), it is
smooth on all of U.
Let

fiU =R, f(z)=f(p)+ Z(%‘ — p;j)gi (7).

By definition, f’Br/zx(P) = f]33/4(p) and g;(p) = g;(p) = %(p). The previous

lemma implies X,(f) = X,(f).
Let 7/: U — R,  +— 27. By the Leibniz rule,

%00) = 3 Xl = 1)) = 30 X(e)is(0) = 3 %) 5L ()

j=1

It follows that X, = 377 | X, (7/ )52 ,- Linear independence of the deriva-
tions % e ain is not hard to see. O
p = Ip

Remark 1.2.10. A rephrasing of the previous result is that the derivations at
p are in one-to-one correspondence with n-tuples (v!,...,v") € R" via

n
(V' ..., 0") Z/U‘jasz).
j=1

Note that the right side is nothing but the directional derivative 0,, for
v = (v',...,v"). Hence the derivations at p are exactly the directional
derivatives at p.

Definition 1.2.11 (Vector field). Let U C R™ be an open subset. A vector
field on U is a linear operator X : C°(U) — C>°(U) that satisfies the Leibniz
rule (or product rule)

X(fg) = JX(9) + X(f)g
for all f,g € C*°(U). The space of vector fields on U is denoted by X (U).

Lemma 1.2.12 (Locality of vector fields). If U, V are open subsets of R™
with U C V and X € X(V), then X(f)lv = X(g9)|v for all f,g € C=(V)
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Theorem 1.2.13. Let U C R"™ be open. The map
C®(UR") = X(U), (f',. f = Y o
j=1

1S a linear bijection.

Lemma 1.2.14 (Lie bracket). Let U C R™ be open and X,Y € X(U). The
map

(X, Y]: CF(U) = C=(U), f = X{Y(f)) - Y (X))
is a vector field, called the Lie bracket of X and Y.
Proof. We only need to verify the Leibniz rule. For f, g € C*°(U) we have

(X, Y](fg9) = X(Y(f9)) = Y(X(f9))
ZX(fY( )+ Y (f)g) =Y (fX(9) — X(fg

X(HY (g )+fX( (9)) + XY (F)g +Y(f)X(9)
Y(H)X(g) — fY(X(9) = Y(X(f))g — X(£)Y (9)
( (Y(9)) = Y(X(9)) + (XY (f)) = Y(X(f)g
Zf[va]( )+ X YI()g- O
Lemma 1.2.15. Let U C R"™ be open. The Lie bracket [-,-]: X(U) X

X(U) = X(U) is bilinear and satisfies the Jacobi identity
(X, Y 2+ [V, [2, X]] + [Z,[X, Y]] = 0
forall XY, Z € X(U).

Definition 1.2.16 (Push-forward). Let U, V be open subsets of R” and
®: U — V a smooth bijective map with smooth inverse. If X € X(U), then
the push-forward of X under ® is defined as

PX:O®(V) = C®V), frs X(fod)od

Lemma 1.2.17. Let U, V be open subsets of R™ and ®: U — V' a smooth bi-
jective map with smooth inverse. If XY € X(U), then ®,[X,Y] = [®.X, D.Y].

1.2.2 Flows

Definition 1.2.18 (Integral curve). Let U C R™ be open and X € X (U).
A continuously differentiable map ~: I — U defined on an open interval [ is
called an integral curve or flow curve of X if

Y(t) = Xy
forallt e l.
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Remark 1.2.19. Recall that every vector field X on U can be written as

X=3; fi5% with fi,..., f, € C>(U). Hence the equation #(t) = X (v(t))

can be rewritten as

(1) = [ (1), .. 2" (1))

with y(t) = >0, 2l (t) 5.

Theorem 1.2.20 (Picard-Lindeldf). Let I = (a,b) C R, U C R™ open
and X: I x U — R" continuous in the first variable and Lipschitz continu-
ous in the second variable. For each (to,x¢) € I x U there ezists a unique
mazimal interval (t~(to, zo),t" (to, xg)) containig ty and a unique curve vy €
CH(t=,t%),U) that satisfies

’V(ﬂ = X(ta 7(t>>7 te (ti(t07 xo)u t+(t07 mO))?
v(to) = zo.

Remark 1.2.21. The Picard-Lindelof theorem deals with general non-autonomous
equations, i.e., equations for which the right side depends explicitly on ¢.
The flow equation defining integral curves of a vector field in contrast is au-
tonomous. In this case, one can always assume ty = 0 by shifting the time
parameter. In this case, we simply write ¢*(zg) for t£(0, o).

Definition 1.2.22 (Local Flow). Let U C R™ be open and X € X (U). Let
V= U,er(t (), t7(2)) x {z} CRx U. A map

Ox:V = U, (t,7) — D (x)
is called a local flow for X if
o Y =idy,
o t— ®L () is an integral curve of X for every x € U.

In this case, the vector field X is called the infinitesimal generator of ®x.
If t~(z) = —o0, tT(x) = oo for every x € U, then ®x is called a global

flow.

Remark 1.2.23. By the Picard-Lindelof theorem, the local flow of a vector
field exists and is unique.
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Proposition 1.2.24. Let U C R" be open and X € X(U). The local flow
b has the following properties.

(a) The map ®x:V — U is smooth.

(b) For every (to,xo) € V there exists an open neighborhood Uy, of xy such
that ®%2: U,, — ®2(U,,) is a diffeomorphism.

(c) If s,t € R and x € U such that both sides are well-defined, then
PY (P (2) = PY(2).

Remark 1.2.25. Let us consider the case U = R", V = R x R". In particular,
the flow is a global flow. In this case, ®% : R" — R" is a diffeomorphism for
all t € R and the semigroup property

5 (P (7)) = 2 (x)

holds for all s,t € R, x € R".
Let Diffeo(R™) denote the set of all diffeomorphisms from R™ to itself.
The global flow ®x induces a group homomorphism

dy: R — Diffeo(R™), t — .

In a suitable sense, this map is also smooth.

Remark 1.2.26. The flow equation implies that the push-forward of X under
its flow satisfies (9% ), X = X, at least if ®x is a global flow.

Definition 1.2.27. Let U C R" be open and X,Y € X (U). The Lie deriva-
tive of Y along X is defined as

t
LxY = lim @)Y =V
t—0 t

Remark 1.2.28. Technically, this definition is not quite correct: For every
given t € R, the set of x € U such that t € (t~(x),t"(z)) may be a proper
subset of U, and the set on which ®% acts as a diffeomorphism may be even
smaller. This difficulty can be overcome by defining (LxY),, for a point p € U
with Y restricted to a neighborhood of p on which ®% exists and acts as a
diffeomorphism. Then one has to check that this definition is independent
of the choice of this neighborhood. We will not concern ourselves with these
technical difficulties here.

Proposition 1.2.29. If U C R" is open and X, Y € X(U), then LxY =
[(X,Y].
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Proposition 1.2.30. Let U C R™ be open and X,Y € X(U). The local
flows ®x, ®y commute for small times, that is, for every x € U there exists
e > 0 such that

Oy (Py(2) = 2y (DX (2)), s, € (—e.2)
if and only if [X,Y] = 0.

The vector fields %, e a% commute in the sense of the previous propo-
sition as a consequence of Schwarz’s theorem. In fact, up to a change of
coordinates, all full rank systems of commuting vector fields are locally of

this form.

Theorem 1.2.31. Let U C R™ be open. If Xy,...,X,, € X(U) and p € U
satisfy

(a) [X;, X;] =0 foralli,je{l,...,n},
(b) (X1)p...,(X,), are linearly independent,

then there exists an open neighborhood U, of p and a diffeomorphism ¢: U, —

V' onto an open subset of V' such that . X; = Biyj for 5 €{1,...,n}. Here

9 0
8y17"'78yn

Proof. Recall that there are functions f*; € C°°(U) such that X; = >, f*, 2.
Let

denotes the basis vector fields on V.

F:U = R™, F(z) = (f*;(2)} 5
By assumption, det F'(p) # 0. Since F is smooth, there exists an open neigh-
borhood W, of p such that det F'(x) # 0 for x € U,, that is, (X1)s,. .., (Xn)z

are linearly independent for z € W,.
For € > 0 sufficiently small we define

U: (—g,8)" = U, (t1,...,tn) — ((I%é1 0---0 CIDt)?n)(p)

By the previous proposition, the order of the vector fields X;,..., X, does
not matter in this definition. Hence we can compute

0 0 4. , ,
glp(tlﬂ cc 7tn) = §¢)}Z(¢§l © ®fj]_711 © Q)fj(itl ©---0 (bt)?n)(p)

Thus DV = FoW. In particular, DU (ty,...,t,) is invertible for (¢,...,t,) in
a neighborhood of 0. By the inverse function theorem, there exist neighbor-
hoods V' of 0 and U, of p such that ¥(V') = U, and ¥|y is a diffeomorphism
onto its image. Let ¢ = (¥]y)~!, which is a diffeomorphism from U, to V'
by definition. It follows from the previous computation that ¢, X; = a%-' O
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1.2.3 Tensor fields

Let V' be a (finite-dimensional) vector space over K. We write 7,.,(V) for
the set of all (r, s)-tensors.

Definition 1.2.32 (Tensor field). Let U C R™ be open. An (r,s)-tensor
field on U is a smooth map from U to T, ;(R™).

Remark 1.2.33. To speak of a smooth map with values in 7, s(R™), we need a
norm on it. Fortunately, T, ;(R"™) is finite-dimensional and thus all norms are
equivalent. Hence it does not matter which one we choose for the definition
of smoothness.

Remark 1.2.34. Note that Ty 1(V) is canonically isomorphic to V. Thus the
space of (0, 1)-tensor fields on U is canonically isomorphic to C*(U,R"),
which in turn is canonically isomorphic to X' (U).

Remark 1.2.35. Let Q'(U) denote the set of all (1,0)-tensor fields on U. We
have a pairing between C*(U,R™) and Q' (U) given by

(): C=(U,R") x QYU) = C=(U), (X,w) = (p = wp(X5)).
For every w € Q'(U) the map (- |w) is C*°(U)-linear, that is, it satisfies
(fX|w) = f(X]w)

for all f € C>(U), X € C>°(U,R"). Conversely, for any C*°(U)-linear map
T: C>®(U,R") — C*°(U) there exists w € QY(U) such that T(X) = (X|w)
for all X € C>(U,R").

Therefore Q' (U) can be identified with the set of all C*(U)-linear maps
from X (U) to C>=(U).

More generally, there is a canonical identification between (r, s)-tensor
fields on U and C°°(U)-multilinear maps from X (U)" x QY(U)* — C=(U).

Definition 1.2.36 (Connection). Let U C R"™ be open. A connection on U
is a bilinear map

V: X(U)x X(U) = CU), (X,Y)— VxY
with the following two properties:
(a) VixY = fVxY forall f € C*(U), X,Y € X(U).
(b) Vx(fY) = fVxY + X(f)Y forall f e C*(U), X,Y € X(U).
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The torsion Ty of V is defined as
Ty: X(U)x X(U) = X(U), (X,Y)— VxY —VyX — [X,|Y]
and the curvature Ry is defined as
Ry: X(U)> = X(U), (X,Y.Z) — VxVyZ —VyVxZ — VixyZ.

Remark 1.2.37. A C>°(U)-multilinear map 7': X(U)" — X (U) can be iden-
tified with a C°°(U)-multilinear map 7': X(U)" x QY (U) — C=(U) via

T(Xy,..., X, w) = (T(X1,...,X,)|w).

In this sense, the torsion of a connection can be viewed as a (2, 1)-tensor and
the curvature can be viewed as a (3, 1)-tensor.

1.3 Global Analysis — Manifolds Part I

1.3.1 Topological and smooth manifolds

Definition 1.3.1 (Basis of a topology). Let (X, T) be a topological space.
A subset B of T is called a basis of the topology T if for every U € T and
every x € U there exists B € B with x € B and B C U. The space (X,T)
is called second-countable if it has a countable basis.

Remark 1.3.2. A rewording of this definition is that B is a basis if every open
set is a union of elements of B.

Proposition 1.3.3.  (a) If (X,T) is a second-countable topological space
and 'Y C X, then the subspace topology on'Y is second-countable.

(b) A metric space (X,d) is second-countable if and only if there exists a
countable subset D of X with D = X.

Ezample 1.3.4. The set Q" C R™ has closure R™ and is countable. By (b),
the space R™ (with the Euclidean topology) is second-countable, and by (a),
the same is true for every subset of R™.

Definition 1.3.5 (Topological manifold). A topological space M is called a
topological manifold of dimension n if it satisfies the following three proper-
ties:

(a) M is a Hausdorff space.
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(b) M is locally Euclidean, that is, for every € M there exists an open
subset U, of M containing x that is homeomorphic to an open subset
of R™.

(¢) The topology on M is second-countable.
Remark 1.3.6. If M is a subset of R" (with the subspace topology), we only

need to check property (b) as (a) and (c) are automatically satisfied.

Ezample 1.3.7. The sphere S™ = {(zo, ..., z,) € R*™" | 37 2% = 1} C R™!
with the subspace topology is a topological manifold of dimension n. For
simplicity, let consider n = 1. The stereographic projection

2x
I—y

pn: SIN{(0,1)} = R, (z,y) =

is a continuous bijective map with continuous inverse

4s s —14
-1, 1
oyt R—= S \{(0,1)}, s = <4+—82,m)7

hence a homeomorphism.
Likewise, the stereographic projection

2

o5t SN0~} S R, (a9) = 1o

is a homeomorphism. Thus every point (z,y) in S has an open neighborhood
(namely S\ {(0, 1)} if (z,9) # (0,1) and 8"\ {(0,~1)} i (z,9) = (0,1))

that is homeomorphic to R.

Ezample 1.3.8. The intersection of two lines, for example M = R x {0} U
{0} xR is not a topological manifold: The open subset (0, 00) x {0} of M is
homeomorphic to (0, 00) C R, hence M could only be a topological manifold
of dimension 1. However, the open subset U = (—1,1) x {0} U{0} x (—1,1)
is not homeomorphic to any subset of R. To see this, one needs a concept not
covered in this course, namely connectedness. The subset U is connected,
but if you remove {(0,0)}, what remains has four connected components.
Connected subsets of R however are intervals, and if you remove a point
from an interval, you end up with a space with at most two connected com-
ponents. Since homeomorphisms preserve connected components, U cannot
be homeomorphic to a subset of R”.

Definition 1.3.9 (Chart, atlas). Let M be a topological manifold of dimen-
sion n. A chart is a pair (U, ) consisting of an open subset U of M and a
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homeomorphism ¢ from U onto an open subset of R". An atlas is a family
((Us, 3))ier of charts such that M C |J,; Ui
If i,j € I with U; N U; # 0, the transition map ¢;; is defined by

i1 pi(Ui N U;) = 0;(Ui N Uj), i = @j0 077

Definition 1.3.10 (Smooth atlas, smooth structure). Let M be a topological
manifold of dimension n. An atlas ((U;, ¢;))ier is called a smooth atlas if the
transition map ¢;; is smooth for all 4,5 € I such that U; N U; # 0.

Two smooth atlases A and B are called equivalent if AU B is again a
smooth atlas. An equivalence class of smooth atlases is called a smooth
structure on M and a topological manifold with a smooth structure is called
a smooth manifold.

Example 1.3.11. Every open subset U of R" is a topological manifold of
dimension n. It admits a smooth atlas containing only the singly chart (U, id).
The induced smooth structure is called the standard smooth structure on U.
Unless otherwise stated, we always consider the standard smooth structure
on open subsets of R".

Ezxample 1.3.12. Every homeomorphism ¢: R — R gives rise to a chart
(R, ). If f or f~! is not smooth, then the atlas with the single chart (R, ¢)
is not equivalent to the atlas with the single chart (R, id).

Example 1.3.13. The n-sphere S™ = {x € R"*! : ||z||, = 1} is a topological
manifold of dimension n. As in Example 1.3.7 let us consider the case n = 1.
For the atlas given by (S'\{(0,1)}, pn) and (S*\{(0, —1)}, ¢s) the transition
map given by

ons: R\ {0} = R\ {0}, ons = ps ooy
evaluates to
(o:1(s)) 4s s> —4 4
5)) = - 2 ") ==
PsiPN PS\1rs2dt 52

for s € R\ {0}. Hence ¢yg is a smooth map.

S

Definition 1.3.14 (Smooth map). Let M, N be topological manifolds and
(Ui, ¢))ier, ((Vj,4;)),es atlases of M and N, respectively. A map f: M —
N is called smooth if for alli € I, j € J with U; N f~1(V;) # 0 the map

V; o fow univy: wiUiN f7H(V;) = v(V;)

is smooth. The set of all smooth maps from M to N is denoted by C>°(M, N).
We simply write C>°(M) for C*°(M,R).

The map f is called a diffeomorphism if it is bijective and both f and
f~! are smooth.
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Remark 1.3.15. This definition of smooth map depends on the chosen atlases.
However, if we replace ((U;, ¢))ier and ((V;,v;));jes by equivalent atlases, we
end up with the same smooth maps. In particular, there is a well-defined
notion of smooth maps between smooth manifolds.

Remark 1.3.16. If U C R™ and V' C R"™ with the standard smooth structures,
then a map f: U — V is smooth in the sense of this definition if and only
if it is smooth in the sense of the previous definition as map between open
subsets of normed spaces.

1.3.2 Submanifolds of R"

Definition 1.3.17 (Smooth submanifold of R"). A subset M of R™ is called
a smooth n-dimensional submanifold of R™ if there exists a family (V;, ¥;)er,
with V; C R" open and ¥;: V; — R™ a smooth map for all ¢ € I, that satisfies
the following properties:

(a) W, is injective and W,;(V;) C M for all i € I.
(b) tk DV,(x) =nforalliel, z €V,

(¢c) For every i € I, xp € V; there exist open neighborhoods V;, of z,
Uy, (z) of Wi(xo) such that

qji|VIO : on — U\Pi(:vo) NnM
is a homeomorphism.
(d) M = Uie] \IJZ(V;)

Remark 1.3.18. The maps V¥, are called parametrizations of M. Note that
they go in the opposite direction (from R™ into the manifold) from charts.

Remark 1.3.19. Every smooth n-dimensional submanifold of R™ is a smooth
n-dimensional manifold with smooth atlas (Uy, ) N M, \I’i|\_/jo)z‘e I.z0ev;- The
converse is also true in the following sense: Every smooth mn-dimensional
manifold can be smoothly embedded into R?". This is known as Whitney’s
embedding theorem. Note however, that this embedding is by no means
canonical.

Proposition 1.3.20. Let F': R™ — R™™" be a smooth map. If c € R™™™" is
a reqular value of F, then F~'(c) is a smooth n-dimensional submanifold of
R™.
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Ezample 1.3.21. Let F': R"" - R, z Z;‘:ll(:cj)Q Clearly, F is smooth.

We have DF(x) = 7 227da’. By the rank-nulllity theorem, any non-zero
linear functional on R™™! is surjective. Hence 1 is a regular value of F. It
follows that

S"=F1'1)={zcR"™ | ()2 + -+ (") =1}

is smooth n-dimensional submanifold of R**+1,

Ezample 1.3.22. Let R{ T denote the symmetric n X n matrices. Observe

that RZX" is a real vector space of dimension $n(n + 1). Let

F:R™™ 5 R Ay ATA

sym ’

Again, it is not hard to see that F' is smooth and DF(A)[H] = ATH + H" A.
If ATA=1and B € R¥", then

sym ?
DF(A)[AB/2] = %ATAB + BTATA = B.

Thus DF(A) is surjective whenever ATA = 1,,, which means that 1, is a
regular value of F.
It follows that

O,(R) = F7}(1,) ={Ac R | ATA=1,}

is a smooth submanifold of R™" of dimension in(n —1).

1.3.3 Tangent spaces

Definition 1.3.23 (Tangent vector). Let M be a smooth manifold and p €
M. A tangent vector at p is a linear map X,: C>°(M) — R that satisfies the
Leibniz rule (or product rule)

X,(fg) = Xp(fa(p) + f(p) X, (f)
for all f,g € C>°(M). The set of all tangent vectors at p is denoted by T,,M.

Remark 1.3.24. If M is an open subset of R" (with the standard smooth
structure), then a tangent vector at p is exactly what we called a derivation
at p in a prior section.

Lemma 1.3.25. Let M be a smooth manifold andp € M. If f € C®°(M) is
constant on an open set containing p and X, € T,M, then X,(f) = 0.
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As a consequence of the previous lemma, whenever U is an open neigh-
borhood of p € M and X, € T,M, then X, restricts to a derivation on
C*>(U) at p and this restriction is consistent in the following sense: If V' is
another open neighborhood of p € M and f € C°°(M), then X,|cew)(f|v) =
Xplosw)(f1v)-

For open subsets of R™, we have seen that tangent vectors at a point
are the same as directional derivatives at that point. The same is true for
smooth manifolds, but we need a more sophisticated concept of directional
derivative as there are no longer “straight lines”.

Proposition 1.3.26. Let M be a smooth manifold and p € M. For every
X, € T,M there exists € > 0 and a smooth map v: (—¢,e) — M such that
7(0) = p and
d
() = 2 om)(0)
for all f € C*(M).

Proof. Let (U, ) be a chart (from a smooth atlas in the smooth structure of
M) with p € U and let ¢ = ¢(p). Consider the map

X, C®(p(U) = R, fr> X,(f o).

It is easy to see that Xq is a derivation at ¢. Hence there exist v € R" such
that X, = 0,/,. For € > 0 sufficiently small let

vi(—e,8) = M, t— ¢ g+ tv).

Then v(0) = p and

L(Fon) = L(fora+m)0) = X (fow) = X,(). O
Remark 1.3.27. Unlike in the case of open subsets of R™, the correspondence
in the previous proposition is not one-to-one. A trivial observation is that
if we restrict a smooth curve v to a smaller interval, we still get the same
tangent vector. But beyond that, there can be “genuinely different” curves
that result in the same tangent vector, for example 71,72 (—1,1) — R with
y1(t) = t? and 7»(t) = —t*. The reason is that we do not have a canonical
choice of a curve in a given direction like the straight lines in Euclidean space.

FExample 1.3.28. Let M be a smooth n-dimensional submanifold of R™. Every
smooth map 7: (—&,&) — M can be viewed as a map with values in R™.
As such, the derivative at zero is a linear map from R to R™, which can be
identified with a vector in R™.
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If U is an open neighborhood of M and f: U — R is smooth, then the
tangent vector from the previous proposition satisfies

d

Xp(f) = 2 (fo7)(0) = Df(p)[(0)] = D50 f ()-

Hence every element of 7),M is a directional derivative in a direction “tan-
gent” to M. This explains the notion of tangent space in this abstract setting.

Definition 1.3.29 (Differential). Let M, N be smooth manifolds, p € M
and ¢ € C®(M,N). For X, € T,M the pushforward ¢.X, € T,uN is
defined by

0 Xp: C°(N) = R, g — X,(g o).

The differential of ¢ at p is the map
Do(p): T,M — T, N, X, = ¢. X,
If N =R, we also write dp(p) for Dp(p).

Example 1.3.30. Let U C R™, V C R"™ be open and ¢: U — V be smooth.
For p € U the spaces T,U and T,V are the directional derivatives in p and

©(p), respectively.
If h € R™, then

©Ohlp: C(V) = R, g = Oh(g09)|p = Opem)in9lew)

where we used Dy(p) to denote the derivative of ¢ at p defined before.

Hence if we make the identification R™ = T, »U, h— 0|, and likewise for
TV, then the differential Dy(p) is the same as the derivative of ¢ at p.

Definition 1.3.31 (Tangent bundle). Let M be a smooth n-dimensional
manifold. The tangent bundle T M of M is defined as

T™ = | J{p} x T,M.

peEM

The canonical projection w: TM — M is defined by 7(p, X,) = p for all
peM, X, eT,M.

Proposition 1.3.32. Let M be a smooth n-dimensional manifold with atlas
(Ui, ¢:))ier- Forie I let

it (Us) = @i(U) x R™, (p,v) = (i(p), Dei(p)[v])-
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The set
Trau = {W CTM | (W N7 Y U;)) open in R™ x R™ for all i € I}

is a second countable Hausdorff topology on TM that makes T M into an
n-dimensional topological manifold.

Moreover, ((m=(U;), ¢i))ier is a smooth atlas on TM and equivalent at-
lases on M gives rise to equivalent atlases on T M.

Remark 1.3.33. e Intuitively, the tangent bundle is the collection of tan-
gent spaces, assembled in a way that the tangent space varies smoothly
with the base point. This proposition makes this intuition rigorous.

e As a consequence of the previous proposition, the tangent bundle of
a smooth n-dimensional manifold carries a canonical structure of a
smooth 2n-dimensional manifold.

e The tangent bundle carries additional structure: For every p € M,
the set 7~ *(p) = T,M is an n-dimensional vector space, and whenever
(p,U) is a chart of M, then Dy;(p) is a bijective linear map from 7T, M
onto R™. This can be summarized as saying that T'M is a smooth vector
bundle of rank n over M.

e The space of smooth sections in the vector bundle T'M is defined as
L(TM)={se C®M, TM) | mos=idy}.
This space of smooth sections can be canonically identified with X' (M).

Definition 1.3.34 (Cotangent bundle). Let M be a smooth n-dimensional
manifold. If p € M, we write T M for (T,M)*. The cotangent bundle T*M
of M is defined as

T*M = | J{p} x T; M.

peEM

The canonical projection w: T*M — M is defined as 7(p,w,) = p for all
peEM,w,cT,M.

Remark 1.3.35. The cotangent bundle can be turned into a smooth 2n-
dimensional manifold and a smooth vector bundle of rank n over M in much
the same way as T'M, one just has to adapt the definition of ¢; to be

@i: N (U;) = @i(U) x R, (p,w) — (@i(p),w o Dg;i(p) ™).
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Definition 1.3.36 (Differential 1-form). Let M be a smooth n-dimensional
manifold. The set of sections I'(T*M) is denoted by Q'(M). An element
w e QY (M) is called a differential 1-form.

Remark 1.3.37. We have seen that 7T,R™ can be canonically identified with
R™. Thus, if f € C*°(M) and p € M, then df(p) can be viewed as a linear
map from 7, M to R, or, in other words, an element of 7M. One can check
that

df: M — T"M, p — (p,df (p))

is smooth. In other words, df € T(T*M) = Q'(M).

Remark 1.3.38. Let M be a smooth n-dimensional manifold and (¢, U) a
chart. We write (z',...,2") for the coordinate maps of ¢, that is, ¢(p) =
(z'(p),...,2"(p)) for p € U. The maps z',..., 2" are smooth maps from U
to R, hence dz'(p),...,dz"(p) € Ty M. This is consistent with our notation
of the dual basis used earlier. In fact, since ¢ is a diffeomorphism onto its
image, dz'(p),...,dz"(p) form a basis of TxM for every p € U.

1.4 Global Analysis — Manifolds Part 11

1.4.1 Differential forms

Definition 1.4.1 (Exterior power of the cotangent bundle). Let M be an
n-dimensional smooth manifold. For r € N we define r-th exterior power of
the cotangent bundle as

ANT*M = U {p} x A"T; M.

peEM

Moreover, we let ATy M = @;_, A"T;M and

AT*M = | J{p} x AT; M.

peEM

Remark 1.4.2. Just like the cotangent bundle, the r-th exterior power of the
cotangent bundle has a natural structure of a smooth manifold such that
the projection map m: A"T*M — M, (p,a,) — p is smooth and the fibers
7n~1(p) are real vector spaces, in this case of dimension (T;) In other words,
A"T*M is a smooth vector bundle (of rank (")) over M. The same is true
for AT*M (with rank 27).

Remark 1.4.3. Recall that we defined ATy M = R. Thus Q°(M) = C>*(M).
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Definition 1.4.4 (Differential form). Let M be a smooth n-dimensional
manifold and » € N. The set of smooth sections I'(A"T* M) is denoted by
Q" (M). An element of Q"(M) is called a differential r-form on M. The set
of smooth sections ['(AT*M) is denoted by Q(M). An element of Q(M) is
called differential form on M.

Remark 1.4.5. Note that not every differential is a differential r-form for some
r. For example, if f € C®°(M) and w € Q'(M), then f + w is a differential
form, but not a differential r-form for any r unless w =0 or f = 0.

Example 1.4.6. Let U C R™ be open. With the notation from the previous
section,

Q’"(U):{ Y g dd A AdD g, jTeCOO(U)}.

1<ji<-<gr<n

Remark 1.4.7. The wedge product on alternating forms can be extended to
a wedge product on differential forms by defining (o A 5), = a, A B, for
a€Q(M), BeQ(M), pe M. Likewise, we can define the product of a
smooth function and a differential form by (fa), = f(p)a(p).

Definition 1.4.8 (Pull-back). Let M, N be smooth manifolds and ¢ €
C*(M, N). The pull-back operation ¢* is defined as

" U(N) = Q' (M), (¢"w)p(vi, - -+, vr) = Weg) (De(p)[v1], - - -, Do (p)[vr])
forpe M, vy,...,v, € T,M.

Lemma 1.4.9. Pull-back is compatible with wedge products: If M, N are
smooth manifolds, ¢ € C°(M,N) and a € Q"(N), 5 € Q°(N), then

e (aNB) = aNeS.
Proof. If p € M, then

p anp), = (O‘sa(p) A 5@(17)) © D@(p)®(r+s)
(r+ s)! ot
= i Prlowm) ® Bagy) 0 Dip(p) "+
(r+s)! or -
= Prallage) 0 De(p)™) @ (Beg) © De(p)™))

= (¢ a)p A (9" B)p- O

As discussed before, the differential df of a smooth function is a differen-
tial 1-form. One can extend this notion of differential to produce a differential
(r + 1)-form from a differential r-form in the following way.
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Proposition 1.4.10 (Exterior derivative). Let M be a smooth n-dimensional
manifold. There exists a unique linear map d: QM) — Q(M) such that

d(Q"(M)) Cc QY (M) for allr € {0,...,n},

df = Df for all f € Q°(M),

d(fa) = fda +df AN« for all f € Q°(M), a € Q" (M), r €{0,...,n}.
o &> =0.

The map d is called the exterior derivative.
It has the following properties:

o [fpe C®(M,N), then do p* = ¢*od.
o Ifac Q' (M), BeQ(M), thend(aApB)=daAB+(—1)"aAdS.

Remark 1.4.11. e As the differential, the exterior derivative is local: If
a, € Q' (M) coincide on an open subset U of M, then da and df
coincide on U.

e The graded Leibniz rule together with locality give a recipe to compute
the exterior derivative in local coordinates: If (¢, U) is a chart, then

( > figeda?t A -/\dxj’")

1< <]7‘

—Z Z af]l er:r; Adz?t Ao N dadT

= 1]1< <]7‘
on U.
Definition 1.4.12 (Contraction). Let M be a smooth n-dimensional man-

ifold, « € Q""(M) and X € X(M). The contraction of X into « is the
r-form iy« defined by

(ixa)p = ap(Xp, +)
for p e M.
Ezxample 1.4.13. If f € C*°(M) and X € X (M), then ix(df) = df(X) =
X(f)-

Definition 1.4.14 (Lie derivative). Let M be a smooth n-dimensional man-
ifold, X € X(M) with local flow ®x and o € Q"(M). The Lie derivative of
a along X is defined as

(I)t *
Lya = lim M.
t—0 t
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Remark 1.4.15. As in the case of vector fields, some care has to be taken in
this definition as ®% is usually not a global diffeomorphism. Note that in
contrast to the Lie derivative of vector fields, we take the pull-back instead
of the pushforward along the flow.

As the Lie derivative of a vector field along a vector field, there is a simpler

algebraic formula for the Lie derivative of a differential form.

Proposition 1.4.16 (Cartan’s homotopy formula). Let M be a smooth n-
dimensional manifold. If X € X(M) and o € Q" (M), then

Lya =d(ixa)+ix(do).

1.4.2 The de Rham complex and vector calculus

Let M be an n-dimensional smooth manifold. The exterior derivative can be
diagrammatically written as

{0} > QM) S Q' (M) S ... S Qr (M) — {0},

where the composition of any two adjacent arrows is zero. This diagram is
abbreviated as (2*(M),d) and called the de Rham complez. It is a funda-
mental example of a cochain complex.

Definition 1.4.17 (Closed and exact forms, de Rham cohomology). Let M
be an n-dimensional smooth manifold. A differential form o € Q(M) is called
closed if daw = 0 and ezact if there exists 5 € Q(M) such that a = dp.

The r-th de Rham cohomology group H}z (M) is defined as

Hig(M) = (kerdN Q"(M))/(rand N Q"(M)).
Remark 1.4.18. Since d? = 0, every exact differential form is closed and thus

rand N Q" (M) C kerd N Q" (M).

Example 1.4.19. If U C R" is convex, then Hx(U) = {0} for every r €
{0,...,n}.
Example 1.4.20. Every differential 1-form on S* is closed since Q%(S*) = {0}.

However, not every 1-form is exact: Recall that we can identify T;,S* with
{weR?*|ve S v -w=0}. Let

A:((l) —01).

wy: TSt > R, w— Av - w.

and
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One can show that w € Q!(S!) and there exists no function f € C*(S?!)
such that df = w. This is easy to see once one has Stokes’s theorem at hand:
If w=df, then fsl w = 0, which is not the case.

Note that this is a global statement: For every chart (¢, U) there exists
a function f € C*°(U) such that w|y = df|y, but such a function cannot be
extended to a smooth function on S! that still obeys this identity.

Definition 1.4.21 (Tensor field). For r, s € N we define
(T"M)*" @ (TM)* = | J{p} x (T;M)*" ® (T,M)**
peEM

and
T (T*M)®’" ® (TJ\/[)®S — M, (p,T,) — p.

There is a canonical structure of a smooth manifold on (T*M)®" @ (T M)®*
such that 7 is smooth and (T*M)®" @ (T'M)®* becomes a smooth vector
bundle over M. A smooth section T' € T'((T*M)®" @ (T'M)®®) is called an
(r, s)-tensor field on M.

Ezample 1.4.22. e A (0,1) tensor field is a vector field and a (1,0) tensor
field is a differential 1-form. Every differential r-form is a (r,0) tensor
field, but not vice versa — tensor fields do not have to be alternating.

Definition 1.4.23. Let M be a smooth manifold. A Riemannian metric on
M is a (2,0) tensor field such that g, is an inner product on 7,M for every
p € M. A Riemannian manifold is a pair (M,g) consisting of a smooth
manifold M and a Riemannian metric g on M.

Example 1.4.24. Let M be a smooth n-dimensional submanifold of R™. Re-
call that one can identify 7,,M with the subspace

{7(0) [ v € C%((=¢,¢),R™), 7(0) = p,im~y C M}
of R™. A Riemannian metric on M is defined by
gp: T,M x T,M — R, (v,w) — (v,w),
where (-, -) is any inner product on R™.

Definition 1.4.25 (Musical isomorphisms). Let (M, g) be a Riemannian
metric. For p € M, the musical isomorphism * is defined as

T, M = Ty M, v 0’ = gy(v, ).
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Moreover, ! is the inverse of ”.
These isomorphisms are extended to maps between X' (M) and Q' (M) by

(Xb)p = (Xp>b’ (wﬂ>p = (W]a)jj
for X e X(M), we QY(M), pe M.

Remark 1.4.26. If v* = 0,then g,(v,v) = 0, hence v = 0. Thus " is injective,

and since T, M and T}y M have the same dimension, also surjective. Therefore

> is really an isomorphism and the inverse ? is well-defined.

Remark 1.4.27. Let (p,U) be a chart with ¢ = (z!,...,2") and p € U. If g
is a Riemannian metric and g, (3% |, 526 |p) = gx(p ), then

(i M) Zgjk YN dzF|,

Jj=1 7,k=1

(; :“jdxj|p> Z 9" (p) P 5 E axk

3,k=1

Here (¢7%(p))x denotes the inverse matrix of (g;x(p));x. This is what is known
as “lowering and raising the indices” in physics.

Definition 1.4.28 (Gradient). Let (M, g) be a Riemannian manifold. The
gradient of f € C>(M) is defined as V,f = (df)*.

Remark 1.4.29. With the notation from Remark 1.4.27, the gradient of f &
C*>(M) is given by

(Vof)y = Zgj’“(p)%ﬁg)%

jik
Definition 1.4.30 (Volume form). Let M be a smooth n-dimensional man-

ifold. A wvolume form on M is a differential n-form vol € Q"(M) such that
vol, # 0 for all p € M.

Remark 1.4.31. Not every smooth manifold admits a volume form. Those
that do are called orientable.

Lemma 1.4.32. Let M be a smooth n-dimensional manifold. Ifvol € Q™(M)
s a volume form, then the maps

C*(M) — Q" (M), f — fvol
X(M) — Q" Y M), X s ixvol

are isomorphisms.
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Definition 1.4.33 (Divergence). Let M be a smooth n-dimensional manifold
with volume form vol € Q"(M). The divergence operator is defined by

div: X(M) — C*°(M), (div X)vol = d(ixvol)

Moreover, if n = 3 and ¢ is a Riemannian metric on M, then the curl operator

is defined by
curly: X(M) — X (M), icu, x Vol = d(X").

Remark 1.4.34. The previous lemma shows that div and curl, are well-
defined. Note that we only need a volume form to defined div, while we
need a Riemannian metric to define curly, and the latter only makes sense in
dimension 3.

Let (M, g) be a 3-dimensional Riemannian manifold. The definitions of
Vg, curl, and div can be summarized by the following commutative diagram:

{0} —— QOM) —4— QY(M) — Q2(M) —%— Q3(M) —— {0}

a '] ol | ool

{0} —— Co(M) —2 x(M) =225 x(M) —5 (M) —— {0}
In particular, d* = 0 implies curl, oV, = 0 and divocurl, = 0.

Example 1.4.35. Let U C R"™ be open and let g be the Riemannian metric
on U described in Example 1.4.24. Note that with this choice of Riemannian

metric, we have
P\ 9.5 = Gjk
oxJ »
for all j,k € {1,...,n}.

The musical isomorphisms are given by

0

"ok
p&c

bl TPU%T;U, E )\J@
J=1

n
=Y Ndall,
p j=1

b, U — T,U, Zujdxj|p > Zuj%
j=1 P

j=1
Thus

" of 0
Vol =2 50 0
J:
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Moreover, if we take the volume form da! A --- A dz™, we obtain
d' j—, == —_.
v (Zf 81‘3) — Oz

J=1 7j=1

Finally, if n = 3, then
5.5

curl, (; f]%) = (0of® = 03201 + (Osf" — 01 f*) 02 + (01 f* — Do f )05,
where we used the shortened notation 0; = %.

1.4.3 Integration of differential forms

Recall that two bases (v;)1<j<, and (w;)1<j<n of a real vector space V' have
the same orientation if there exists A > 0 such that v' A -+ A 0™ = Aw! A
-~ Aw™. This defines an equivalence relation on the set of (ordered) bases
of V' with two equivalence classes. An orientation of V' is a choice of an
equivalence class.

Definition 1.4.36. A linear map ¢: R" — R"™ is called orientation-preserving
if it is invertible and (p(e;))1<;j<n has the same orientation as (€;)1<j<n.

Let U,V C R" be open. A diffeomorphism ¢: U — V is called orientation-
preserving if Dy(p) is orientation-preserving for every p € U.

Lemma 1.4.37. A linear map p: R" — R" is orientation-preserving if and
only if det p > 0.

Definition 1.4.38 (Orientable manifold). Let M be a smooth manifold. A
smooth atlas ((y;, U;))ier is called an orientation of M if for all ¢, j € I such
that U; N U; # () the transition maps

pij: piUiNUj) = (Ui NT;), gij = 097"

are orientation-preserving diffeomorphisms. A smooth manifold with a choice
of an orientation is called oriented manifold. A chart (¢, V) in an oriented
manifold is called positively oriented if the union of ((¢;, U;))ier and (1, V)
is again an orientation.

If M admits an orientation, it is called orientable.

Remark 1.4.39. In the light of the previous lemma, an atlas is an orientation
if and only if the differential of the transition maps has positive determinant
at every point.
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As remarked before, orientable manifolds are exactly those that admit a
volume form. We can prove one of these two implications now.

Lemma 1.4.40. If a smooth manifolds admits a volume form, then it is
orientable.

Proof. Let M be a smooth n-dimensional manifold and vol € Q"(M) a
volume form. For any chart (¢,U) the pull-back (¢~1)*vol is of the form
gdz* A -+ A dx™ for some g € C(p(U)). Since vol vanishes nowhere, the
function ¢ vanishes nowhere. Moreover, we can change the sign of g by
switching two coordinates. Thus for every point p € M there exists a chart
(¢p, Up) such that (p~!)*vol = gdz' A -+ Adz™ with g > 0. It is not hard to
check that ((¢,, Up))per is an orientation of M. O

We want to define the integral of differential forms. To avoid running
into integrability issues, we will restrict ourselves to differential forms with
compact support.

Definition 1.4.41 (Support of a differential form). Let M be a smooth
manifold. If w € Q(M), the support of w is defined as

suppw = {p € M | w, # 0}.

The set of all compactly supported differential forms (resp. different r-forms)
is denoted by Q.(M) (resp. Q7(M)). We also write C>°(M) for QO(M).

Definition 1.4.42 (Integral of top-level differential forms). Let U C R™ be
open. We define the integral of compactly supported n-forms on U by

/:QZ(U)—HR, fdxl/\--~/\dx"»—>/fd(xl,...,x”),
U U

where the integral on the right side is the usual Riemann (or Lebesgue)
integral of functions on U.

Remark 1.4.43. Every differential form w € Q"(U) is of the form fdz'A---A
dz" with f € C*°(U). Moreover, the support of fdz' A --- A dz" is easily
seen to be the same as the support of f. Thus the integral of compactly
supported n-forms on U is well-defined.

Remark 1.4.44. For the definition of the integral of n-forms, it is important
that we express w as fdz'A- - -Adz™ and not fdx?Adz'A---Adx™, for example.
This means that the integral takes the orientation of U into account.
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Lemma 1.4.45. Let U,V C R" be open. If o: U — V is an orientation-
preserving diffeomorphism and w € Q(V'), then

/w:/go*w.
v U

Proof. We write (z!, ..., ") for the coordinates of U and (y*, ..., y") for the
coordinates of V. Say w = gdy' A -+ A dy™ with g € C>=(V). We need to
compute the pull-back p*w. Since dim A"T U = 1, we know that

(¢"w)p = f(p)da’ A+ Ada”],
for some f € C*°(U). By definition of the pullback,

(" W)plBat, - ., Oan] = g(2(p))dy' (Dp(p)yr) A - A dy™ (Dp(p) D)
9(o(p)) det((dy’ (Dp(p)duk))jn)-

The matrix (dy? (Dp(p)d,+));x) is the representation matrix of Dy(p) in the
standard basis. Thus f(p) = g((p)) det Dp(p) and hence

(¢*w)p = det Do(p)g(p(p))da' A--- A da".

Therefore
/ w = / gd(yl, - ,yN) = / det Dgp(p)g(gp(p)) d(xl, o 7xn) _ / oW
14 \% U ;
by the transformation formula. -

In general, a manifold cannot be covered by a single chart. For most
operations we have defined so far, this was no problem: These operations
were local so that we could restrict our attention to the domain of chart.
This is not true for the integral, which takes all values of a function (or later
a differential form) into account. To deal with this issue, we need some more
technical tools.

Definition 1.4.46 (Locally finite covering). Let X be a topological space.
A family (U;);er of open subsets of X is called locally finite if every point
p € X has a neighborhood V}, such that the set {i € I | U;NV, # 0} is finite.

A family (V}),es of open subsets of X is called a reﬁnement of (Uy)ier if
for every j € J there exists ¢ € I such that V; C U;.

Proposition 1.4.47. Let M be a topological manifold. Every family (U;)ier
of open subsets of M such that M = J;c; Ui admits a locally finite refinement
(V;)jeq such that M =

]EJ
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Remark 1.4.48. Topological spaces with the property that every open cover
has a locally finite refinement are called paracompact. Hence the previous
proposition says that every topological manifold is paracompact.

Definition 1.4.49 (Partition of unity). Let M be a smooth manifold and
(Ui)ier be a locally finite open cover of M. A family (¢;);e; in C®°(M) is
called a partition of unity subordinate to the cover (U;);cy if

e suppy; C U; for all 7 € I,
e Y(p)>0foralliel, pe M,

® > .o ¥ilp)=1forallpec M.

Remark 1.4.50. Note that for every p € M there are only finitely many
indices ¢ € I such that ¥;(p) # 0. Hence there is no problem defining the
sum in the third bullet point.

Theorem 1.4.51. Let M be a smooth manifold. FEvery locally finite open
cover of M admits a subordinate partition of unity.

Theorem 1.4.52 (Integral of differential n-forms). Let M be a smooth ori-
ented n-dimensional manifold. There exists a unique linear map

/M: QM) —R

fu#= L

for every positively oriented chart (p,U) and every w € Q(U).

such that

Proof. Let ((¢i,U;))icr be a smooth atlas of positively oriented charts. To
show uniqueness, let f e f oy e linear maps that satisfy the conditions from
the theorem. If w € Q(M), then there exists a finite subset J C I such
that suppw C U]EJ U,. Let (1;);es be a partition of unity subordinate to
(Uj)jes. We have

/MWZ/MJZE;%WZ;Aj(Uj)(¢}1)*(¢jw)ije;/]\;%w:/ﬂ;w

This settles uniqueness.
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The existence part of the statement takes a bit more work. Essentially,
one has to show that the expression

[e=2 ] e

is independent of the atlas and the partition of unity. We will not go into
details here. 0

Remark 1.4.53. The proof contains a recipe for computing the integral: Let
w € Q(M). Choose a positively oriented atlas ((¢;, U;))icr. Since suppw is
compact, there exists a finite subset J of I such that suppw C Uje ;Uj. Let
(¢;)ies be a partition of unity subordinate to (U;);es. Then

=X =2 [ e

where the integrals on the right side are determined by our previous defini-
tion.

1.4.4 Manifolds with boundary and Stokes’s theorem

For the formulation of Stokes’ theorem, we need objects that are not quite
manifolds in our sense, like the closed unit disk or more generally the closed
unit ball in R™. Unlike topological manifolds, that are locally homeomorphic
to open subsets of R", topological manifolds are locally homeomorphic to a
closed half space in R™.

Definition 1.4.54 (Manifold with boundary). Let H* = {(x!,...,2") €
R™ | z, > 0}. A topological space M is called an n-dimensional topological
manifold with boundary if it satisfies the following three properties:

(a) M is a Hausdorff space.

(b) For every x € M there exists an open neighborhood U, of x that is
homeomorphic to an open subset of H".

(¢) The topology on M is second-countable.

Remark 1.4.55. Note that the only difference to the definition of a topological
boundary is in bullet point (b), where R™ is replaced by H".

Lemma 1.4.56. Every topological manifold is a topological manifold with
boundary.

95



Proof. Tt suffices to show that every open subset U of R" is homeomorphic
to an open subset of H". For that purpose consider the map

o: R" = H", (..., 2") — (', ..., 2" exp(z™)).

This map is continuous and has image H} = {(z',...,2") € R" | 2™ > 0}.
The inverse of ® on H} is given by

e HE 5 R (22" = (22" log ™),

which is also continuous. In particular, ¢ restricts to a homeomorphism from

U to p(U). O

Definition 1.4.57 (Interior, boundary). Let M be an n-dimensional topo-
logical manifold with boundary. The interior int M of M is the set of all
points x € M that have a neighborhood that is homeomorphic to an open
subset of R™. The complement M \ int M is called the boundary of M and
denoted by OM.

Remark 1.4.58. There are also topological notions of interior and boundary
of a set. These are relative notion, ie., if A C X a, B CY and p: A —
B is a homeomorphism, then ¢ does not necessarily map the interior (or
boundary) of A onto the interior (or boundary) of B. Consequently, the
topological notions of interior and boundary are not the same as the interior
and boundary of a manifold with boundary.

Ezample 1.4.59. The interior and boundary of H" are H’} and R™ x {0}. If
we view H" as subspace of R", then the manifold interior and boundary of
H" coincide with the topological interior and boundary.

Ezample 1.4.60. The closed unit ball By(0) C R™ is an n-dimensional man-
ifold with boundary. The interior of B;(0) is the open unit ball B;(0) and
the boundary is the unit sphere S™1.

Lemma 1.4.61. The boundary of an n-dimensional topological manifold with
boundary is an (n — 1)-dimensional topological manifold (or empty) and the
interior is an n-dimensional topological manifold.

Proof. The Hausdorff property and second countable of M are inherited
from M. To show that OM is locally Euclidean, let x € OM. By definition,
there exists an open neighborhood U of x in M, an open subset V' of H" and
a homeomorphism ¢: U — V. By definition of the boundary and interior,
we have p(UNAIM) =V N (R x {0}). Since R""! x {0} is homeomorphic
to R"!, the open neighborhood U N OM of x in M is homeomorphic to an
open subset of R"~!. The proof that int M is an n-dimensional topological
manifold is similar. ]
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To define a smooth manifold with boundary, we proceed exactly as before
for manifolds with boundary. To do so, we need a notion of smoothness for
maps defined on open subsets of H", which are not necessarily open in R".

Definition 1.4.62 (Smooth map). Let A C R™. A map f: A — R" is called
smooth if there exists an open neighborhood U of A in R™ and a smooth map
g: U — R™ such that g|4 = f.

If A C R™ is open, we can just take U = A and g = f and recover the
previous definition of smooth maps.

Definition 1.4.63 (Smooth manifold with boundary). Let M be an n-
dimensional topological manifold with boundary. A chart is a pair (¢, U)
consisting of an open subset U of M and a homeomorphism ¢ from U onto
an open subset of H". A smooth atlas is a family ((¢;, U;))ier of charts such
that M = (J,.; U; and the transition maps

vii pi(UsNU;) = ;U NU;), @i = 5 o g

are smooth for all 4,5 € I with U; N U; # 0.

Two smooth atlases A and B are called equivalent if AU B is again a
smooth atlas. An equivalence class of smooth atlases is called a smooth
structure on M and a topological manifold with boundary equipped with a
smooth structure is called a smooth manifold with boundary.

If M, N are smooth manifolds with boundary and ((U;, ;))ier, (V;,%5))jes
are smooth atlases, then a map ¢: M — N is called smooth if ;0 p o ¢;!
is smooth for all ¢ € I, j € J with U; N 1(V;) # 0. As before, we write
C>®(M,N) for the set of all smooth maps from M to N and C*°(M) for
C>®(M,R).

Lemma 1.4.64. If M is a topological manifold with boundary and ((¢;, U;))ier
is a smooth atlas, then ((i|v,non, UiNOM));er is a smooth atlas for OM such
that the inclusion map i: OM — M is smooth. Similarly, ((v;
int M));er is a smooth atlas for int M.

Usnint M5 Ui 0

The definition of the tangent space of a smooth manifold with boundary
is exactly the same as before.

Definition 1.4.65 (Tangent vector, tangent space). Let M be a smooth
manifold with boundary and p € M. A tangent vector at p is a linear map
X,: C®(M) — R that satisfies the Leibniz rule

Xp(fg) = f(p)Xp(9) + Xp(f)g(p)

for all f,g € C°°(M). The set of all tangent vectors at p is denoted by T, M
and called the tangent space of M at p.
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Remark 1.4.66. One can also characterize tangent vectors in terms of curves.
However, for points on the boundary, it does not suffice to consider curves
defined on open intervals around 0, one has to allow for curves defined on
half-open intervals containing 0.

Definition 1.4.67 (Inward and outward pointing vectors). Let M be a
smooth n-dimensional manifold with boundary and p € OM. A tangent
vector X, € T,M is called tangential to OM if there exists a smooth curve
v: (—g,e) = OM for some € > 0 such that v(0) = p and

d

Xp(f) = E

F(v(®)

t=0

for all f € C>(M).

A tangent vector X, € T,M is called outward pointing (resp. inward
pointing) if it is not tangent to OM and there exists a smooth curve y: (—¢,0] —
M (resp. v: [0,e) — M) for some € > 0 such that v(0) = p and

d

X(f) = 5| F6(0)

t=0

for all f € C>(M).

Lemma 1.4.68. Let M be a smooth n-dimensional manifold with boundary
and p € OM. A tangent vector X, € T,M belongs to the image of Di(p) if
and only if it is tangential to OM. Moreover, T,M \ im Di(p) is the disjoint
union of the inward and the outward pointing tangent vectors at p.

Differential forms and the exterior derivative on smooth manifolds with
boundary can be defined just as before for manifolds without boundary. To
define integration of differential forms and state Stokes’s theorem, we also
need a notion of orientation of smooth manifolds with boundary.

Definition 1.4.69 (Orientation, orientable manifold). Let M be a smooth
manifold with boundary. A smooth atlas ((¢;, U;))ie; is called an orientation
if ((ilu,nintar, Ui Nint M));er is an orientation for int M. If M admits an
orientation, then it is called orientable.

Lemma 1.4.70. Let M be a smooth oriented dimensional manifold with
boundary of even (resp. odd) dimension. There exists a unique orientation
on the boundary OM such that for every positively oriented chart (¢,U) of
M with UNOM # 0 the chart (|unon, UNIM) is positively oriented (resp.
negatively oriented).
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Remark 1.4.71. The geometric interpretation of this orientation on OM is
the following: At any point p € M, if one takes a positively oriented basis
of T,0M and adds an outward pointing vector as last basis element, one gets
a positively oriented basis of T, M. Additionally, this orientation convention
makes Stokes’s theorem true.

The orientation from the previous lemma is called the induced orienta-
tion on OM. The integral of a compactly supported differential n-form on a
smooth oriented n-dimensional manifold with boundary can be defined anal-
ogously to the case of manifolds without boundary using positively oriented
atlases and partitions of unity.

Theorem 1.4.72 (Stokes). Let M be a smooth oriented n-dimensional man-
ifold with boundary and endow OM with the induced orientation. If w €
Q=Y (M), then i*w € QP"Y(OM) and

/ i*w:/ dw.
oM M

Proof. We first prove the result for M = H" with standard orientation.
An (n — 1)-form on H" is of the form

w = Az A ANdd A A da”
>

with fi,..., f, € C®°(H"). It has compact support if and only if fi,..., f,
have compact support.
We have

n f]
dw = -1 “det Ao A da”
o= Sy :
i*w = fulomndx' Ao Ada™

By the definition of the integral of differential forms,

/ dw—Z/ / / )= 13de Vo de da,
/ w = (—1)"/ / fulat, .. 2" 0)dat ... da™ !
OH" —00 —00

If j € {1,...,n— 1} and supp f; C [-R, R x [0, R], then we have for
J <n—1that

/ af]d J_fn|:cj:R_f7L|Ij:—R:0
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and

T
oxm™ = falen=r — fulen=0 = — falen=o
by the fundamental theorem of calculus.

Therefore

/ dw:/ / (—1)nfn(a:1,...,:c"I,O)dxl...d:cnlz/ iw.
n —o0 —o0 OH™

Now let M be an arbitrary smooth oriented n-dimensional manifold with
boundary and w € Qp~'(M). Let ((¢i,Ui))icr be a positively oriented atlas
of M. Since suppw is compact, there exists J C [ finite such that suppw C
U,es Uj- Let () es be a partition of unity subordinate to (U;);e;. We have

[ o= [ dwe)

jedJ
-3 j(U‘)«o;l)*d(ij)
= Z/ o5 1) d(1hw)
=3 [ attery )
-3 | ety )
-3 J i )

1.5 Hamiltonian formalism and symplectic ge-
ometry

1.5.1 Symplectic manifolds

The fundamental model of a symplectic manifold is the cotangent bundle
of a smooth manifold, which occurs as phase space for many mechanical
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models. Let ) be a smooth manifold with cotangent bundle T*(Q), which is
itself again a smooth manifold. Recall that there is a canonical projection
map 7m: T*Q — Q. The pull-back 7* maps Q'(Q) to Q'(T*Q). Moreover,
any a € 2Y(Q) is a smooth map from @Q to T*Q, hence the pull-back o*
maps QH(T*Q) to Q1(Q).

Proposition 1.5.1. There ezists a unique 1-form X € QYT*Q) such that
for every a € Q1(Q) we have a*\ = «. It satisfies

A (§) = p(D7(q,p)[E])
forallqge Q, peT,Q, £ € TiunT™Q.
Proof. For every q € Q, p € T,(), the map
Aaw): TigpT*Q — R, & = p(D7(q, p)[§])

is linear. In other words, A, p) € T(’; p)T*Q. Since all the maps involved in

the definition of A are smooth, it is not hard to see that the map

T°Q — TY(T"Q), (¢,p) = ((¢,P), Mgwp))

is smooth. Thus A € QY(T*Q).
If a € QY(Q) and v € T,Q, then

(@ A)q[v]

Aa(q) [Da(q)[v]]
ag[D7(a(q)[Da(q)[v]]]
ag[D(m o a)(q)[v]]
o

qU]7

where we used that m o & = id. Thus a*\ = «a. This proves the existence
part of the statement.

For uniqueness, let p € QY(T*Q) such that a*u = « for all o € QY(Q).
Hence 0 = a*(A — ) for all o € QY(Q). For every & € T,,7*Qker Dn(q,p)
we find a neighborhood U of ¢ and o € QY(T*U) such that a(q) = p and
p(Dm(q,p)§]) = 0. Thus A = p on T,y T*Q \ D7(q,p). By continuity, we
conclude A = p. O

Definition 1.5.2 (Liouville 1-form). The 1-form A from the previous propo-
sition is called Liouville 1-form.
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Remark 1.5.3. If (U, ¢) is a coordinate chart of Q and ¢ = (x!,... 2"), then
one can define coordinates (¢*,...,¢", p1,-..,pn) of T*U by

)

In these coordinates, the Liouville 1-form A can be expressed as
A=) pidg.
j=1

Definition 1.5.4 (Canonical Symplectic form, symplectic manifold). Let @
be a smooth manifold and A € T*Q the Liouville 1-form. The canonical
symplectic form on T*Q is wriow = dX € Q2(T*Q).

¢:T*U = R, (¢,p) = 2/(q)
0

pi: T°U =R, (¢,p) =p (@

Remark 1.5.5. Since d? = 0, the canonical symplectic form satisfies dwrjouy =
0.

Remark 1.5.6. In local coordinates as above, the canonical symplectic form
can be expressed as

WeLiouv = Z dp] A dqj
j=1

Definition 1.5.7 (Symplectic form, symplectic manifold). Let M be a smooth
manifold. A symplectic form on M is a 2-form w € Q?(M) with the following
two properties:

(a) Non-degeneracy: The map
T.M — T:M, v— w(v,-)
is a linear isomorphism for every z € M.
(b) Integrability: dw = 0.

A pair (M,w) consisting of a smooth manifold M and a symplectic form w
on M is called a symplectic manifold.

Remark 1.5.8. A symplectic form on M can only exist if M has even dimen-
sion. The non-degeneracy condition (a) is equivalent to requiring that w”"
is a nowhere vanishing 2n-form if the dimension of M is 2n.

Ezample 1.5.9. The canonical symplectic form wiiony € Q*(T*Q) is indeed a
symplectic form on 7*Q). Thus (T*Q), Wriouy) is a symplectic manifold.
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Ezxample 1.5.10. If M is a smooth orientable 2-dimensional manifold and
w € Q%(M) is a volume form, then w is a symplectic form.

Example 1.5.11. The sphere S?" does not admit any symplectic form for
n > 2. Indeed, any closed 2-form w on S?" is exact, i.e. w = da for some
a € QY(S?). If w"" were a volume form, then

07&/ w/\”:/ da A" Y)y =0
M M

by Stokes’s theorem, a contradiction.

Theorem 1.5.12 (Darboux). If (M, w) is a 2n-dimensional symplectic man-
ifold and x € M, then there exists a chart (p,U) with x € U and ¢ =

(', ..., q", p1, ... ,pn) such that w|y = > i dpi A dg’ .

Definition 1.5.13 (Canonical coordinates). Let (M,w) be a symplectic
manifold. If (p,U) is a chart with ¢ = (¢*,...,¢",p1,...,pn such that
wly = Z?Zl dp; A\ dg?, then (¢*,...,q" p1,...,pn) are called canonical co-
ordinates.

1.5.2 Hamiltonian systems

Lemma 1.5.14. Let (M,w) be a symplectic manifold. If H € C*°(M), then
there exists a unique vector field Xy € X (M) such that

z'XHw + dH = 0.

Proof. By the non-degeneracy condition, for every x € M there exists a
unique v, € T, M such that

W(vg, ) = —(dH),.

A vector field X € X(M) satisfies ixw + dH = 0 if and only if X, = v, for
every x € M. O

Definition 1.5.15 (Hamiltonian vector field). Let (M,w) be a symplectic
manifold and H € C*°(M). The triple (M, w, H) is called a Hamiltonian sys-
tem. The vector field Xy from the previous lemma is called the Hamiltonian
vector field associated with the Hamiltonian H.

Ezample 1.5.16. Let M = T*R with coordinates (q,p), w = dp A dgq and
H(q,p) = %(q2 +p?). This is a mathematical model of the harmonic oscillator.
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The associated Hamiltonian vector field is Xy = pa% — qa%. Indeed,

. 0 0
ixyw(Y) =dpAdg ( Pog qap)

|dp (pg —ag;) dp(Y)
dq (p3; —azy) da(Y)
_|-q dp(Y)’
p dq(Y)
= —qdq(Y") — pdp(Y')
— _dH(Y).

Proposition 1.5.17. Let (M,w, H) be a Hamiltonian system. In canonical
coordinates (q', ..., q", p1,...,pn) on U, the Hamiltonian vector field satisfies

OH 0 OH 0
XH|U - Z 3pj @qj 8_q18_]9]

Proof. It Y € X(U), then

OH 0 0OH 0 = OH 0 0H 0
(Z p; dg)  Oq) Dp;’ ) 2., (4" N ) <0pj Ogy  9¢’ Ip;’ )

jk=1
. oH
_ 2 ] Zdn: (Y
Z d )= 5, s ¥)
:—dH( ).

From the uniqueness statement in the previous lemma we deduce

OH 0 0H 0
Z

X
Hlo = 8pj 8(]3 3q3 0p]

]

Corollary 1.5.18 (Hamilton equations). Let (M,w, H) be a Hamiltonian
system. In canonical coordinates, (q(t),p(t)) is an integral curve of Xy if
and only if

forallj€{1,...,n}.
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Proposition 1.5.19 (Energy conservation). If (M,w, H) is a Hamiltonian
system, H o~y is constant for any integral curve v of Xpg.

Proof. By definition of X and integral curves, we have

%(H 0y) =dH(y) = dH(Xy) = —iXHW(XH) = —w(Xy,Xg)=0. O

Proposition 1.5.20 (Liouville). Let (M,w, H) be a Hamiltonian system.
The flow ® of Xy satisfies Pjw = w.

Proof. We have

d

0w =@} Ly,w
— O} (dix,w + ix,ydw)
= :(d(—dH) + 0)
= 0.

The first identity uses the fact that ® is the flow of X, the second is Cartan’s
magic formula and the third used the integrability of w and the definition of
the Hamiltonian vector field. Since ®jw = w, we conclude ®jw = w for all
t. O

Remark 1.5.21. With the definition of the Lie derivative of differential forms,
the previous result can be rewritten as Lx,w = 0. Moreover, an easy conse-
quence is that ®Fw"" = w"". Since w is a symplectic form, w"" is a volume
form on M. In this sense, the flow of a Hamiltonian vector field is volume-
preserving.

Definition 1.5.22 (Poisson bracket). Let (M, w) be a symplectic manifold.
For f,g € C*>(M), the Poisson bracket {f,g}. is defined as

{f, 9} = —w(Xy, Xy).

Lemma 1.5.23. Let (M,w) be a symplectic manifold and f,g € C°(M). In
symplectic coordinates we have

" Of 0 of o

Proposition 1.5.24. Let (M,w, H) be a Hamiltonian system and ® the flow
of Xy. If f € C(M), then

d

E(fo(IDt):{f,_f-_f}woq%.
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Definition 1.5.25 (Constant of motion). Let (M,w, H) be a Hamiltonian
system. A function f € C*°(M) is called a constant of motion or first integral
it {f,H}, =0.
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Chapter 2

Lie Groups

2.1 Basic definitions and Lie algebras

Definition 2.1.1 (Lie group). A Lie group is a group G with the structure
of a smooth manifold such that the multiplication G x G — G, (g, h) — gh
and the inversion G — G, g — g~! are smooth.

Ezample 2.1.2. The general linear group GL,,(R) = {A € R™" | det(A) # 0}
is an open subset of R™*™ =~ R" gince det is a continuous map. As such,
GL,(R) carries a natural smooth structure. Moreover, matrix multiplication
and inversion are polynomials in the entries of the matrices and thus smooth
maps. Hence GL,(R) is a Lie group.
Ezample 2.1.3. The special linear group SL,(R) = {A € R"*" | det(A) = 1}
is a smooth manifold of dimension n? — 1 by the implicit function theorem.
Ezample 2.1.4. The orthogonal group O, (R) = {A € R™" | ATA =1} is a
smooth manifold of dimension n(n —1)/2.
Ezample 2.1.5. The unitary group U,(C) = {4 € C" | AHA = 1} is a
smooth manifold of dimension n?. Note that this dimension refers to the
dimension over R, not C.

If G is a Lie group, the inversion map i: G — G, g — ¢! and the left
multiplication map L,G — G, h — gh for g € G are diffeomorphisms.

Definition 2.1.6 (Left-invariant vector field). Let G be a Lie group. A
vector field X € X(G) is called left-invariant if (L), X = X for all g € G.
The space of all left-invariant vector fields on G is denoted by g.

Lemma 2.1.7. Let G be a Lie group. If X,Y € g, then [X,Y] € g.
Lemma 2.1.8. Let G be a Lie group. The evaluation map g — T.G, X >

X, 18 a linear isomorphism.
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Proof. For v € T,G and g € G let x(v), = DLy(e)[v]. We have

((Ln)ex(v))g = DLu(Ly, ()X (0)n-1]
= DLu(L;, ' (9)) D Ly-1g(e)[v]
= D(LpLp-1g)(e)[v]
= X(U)g-

Thus x is an inverse of X — X.. O

Definition 2.1.9 (Lie algebra of a Lie group). Let G be a Lie group. The
space of left-invariant vector fields g is called the Lie algebra of the Lie group

G.
Remark 2.1.10. By the previous result, the Lie algebra of a Lie group can be
canonically identified with the tangent space at the unit element.

Another important property of left-invariant vector fields on a Lie group

is that they are globally integrable.

Proposition 2.1.11. Let G be a Lie group. For every X € g and g € G
there exists a unique smooth curve v: R — G such that

{‘V(t) =Xy, tER
70) =g

Proof. Suppose there exists ¢ € GG such that the maximal existence interval
(t7(g),t"(g)) is not R, say t7(g) < oco. For ty > 0 let h = y(tg)g~" and

Y1 (t7(9) +to0,t7(9), +to) = G, H(t) = Lny(t — to).
By definition, ¥(ty) = v(t9) and

d
Z5(t) = DL
dtv() n(y

By the uniqueness of integral curves, we conclude 4 = v on (t~(g)+to,t"(g)).
Thus one can extend 7 to an integral curve on (¢~ (g),t*(g) + to) in contra-
diction to the maximality of (t7(g),t"(g)). Therefore (t~(g),t"(g9)) =R. O
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As a consequence, every X € g admits a global flow ®x: Rx G — G and
for every t € R, the map ®% is a group isomorphism.

Definition 2.1.12 (Exponential map). Let G be a Lie group. The exponen-
tial map exp on G is defined by

exp: g — G, X > O

Ezxample 2.1.13. Let G = GL,(R). Since GL,,(R) is open in R™*", the tangent
space at 1,, is canonically isomorphic to R™*". Under this identification, the
exponential map is given by

— kA
exp: R"" — GL,(R), A — exp(A4) = 1

k=0
The series on the right side converges absolutely in each entry.

FExample 2.1.14. If G C R™ " is a Lie subgroup, then g can be identified with
a Lie subalgebra of R™*™ and the exponential map is again given by

exp(A) = Z T
k=0 )

Proposition 2.1.15. Let G be a Lie group. There exists an open subset U
of T.G with 0 € U and an open subset V of G with e € V' such that exp |y is
a diffeomorphism onto V.

Theorem 2.1.16 (Campbell-Baker-Hausdorff formula). Let G be a Lie
group.

(a) If X, Y € g with [X,Y] =0, then
exp(X +Y) = exp(X) exp(Y).
In particular, exp(X)exp(Y) = exp(Y) exp(X).

(b) There exists an open subset U of g with 0 € U such that if X, Y € U,
then there exists Z € g such that exp(X +Y) = exp(Z). There is an
explicit series expansion for Z starting with

Z = X4V 45XV (X, [X V]|~ S [V, [X, V] -

2 12 12 _ﬂ[y, (X, [X, Y]]+ ..

where all the higher order terms are iterated commutators of X and Y .
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Definition 2.1.17 (Lie algebra). A (finite-dimensional real) Lie algebra is a
finite-dimensional vector space g over R with an alternating form [-,-]: g x
g — g that satisfies the Jacob: identity

[X7 D/a Z]] + [Y7 [Z7XH + [Zv [X7 Y” =0
forall X)Y,Z € g.

Remark 2.1.18. If M is a smooth manifold, then X' (M) with the Lie bracket
of vector fields satisfies all the properties of a Lie algebra except that it is
rarely a finite-dimensional vector space.

Example 2.1.19. If G is a Lie group, then the space g of left-invariant vector
fields on G with the Lie bracket is a Lie algebra, justifying the name “Lie
algebra of G”.

Definition 2.1.20 (Lie algebra homomorphism). Let g, f be Lie algebras. A
Lie algebra homomorphism is a linear map ¢ : g — b that satisfies ¥ ([X,Y]) =
[W(X),y¥(Y)] for all X|Y € g.

Example 2.1.21. Let G, H be Lie groups with Lie algebras g, hand ¢: G — H
a smooth group homomorphism. The pushforward map ¢,: g — b is a Lie
algebra homomorphism.

Theorem 2.1.22 (Lie’s second theorem). Let G, H be Lie groups with Lie
algebras g, b and let ¢: g — b be a Lie algebra homomorphism. If G is
simply connected, then there exists a unique smooth group homomorphism
¢: G — H such that ¥ = p,.

Remark 2.1.23. A topological space X is called path-connected if for every
z,y € X there exists a continuous map v: [0, 1] — X such that y(0) = z and
(1) = y. The space X is called simply connected if it is path connected and
for every x € X and v: S — X continuous with v(1,0) = x there exists a
continuous H: S* x [0,1] — X such that

e H(-,0) =+, H(p,1) =z for all p € S,
e H((1,0),t) =a for all t € [0, 1].

Intuitively this means that a space is path-connected if any two points can
be joint by a continuous path and simply connected if additionally any loop
can be continuously be deformed to a point.
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2.2 The examples SO3(R) and SUy(C)

2.2.1 The special orthogonal group SO3(R)

Recall that SO, (R) = {4 € RV | ATA =1, det(A) = 1}.

Lemma 2.2.1. A matriz A € R™*" satisfies AYA = 1,, if and only if
[Az|[2 = [|[]

for all x € R".
Moreover, A € GL,(R) satisfies det(A) > 0 if and only if (Avy,. .., Av,)

has the same orientation as (vy,...,v,) for every basis (v;), of R™.

In other words, SO, (R) contains exactly those matrices that present
orientation-preserving isometries. The description is particularly easy in di-
mensions 2 and 3: The orientation-preserving isometries of R? are the rota-
tions around the origin and the orientation-preserving isometries of R? are
the rotations around an axis through the origin.

Hence for every O € SO3(R) there exists a unit vector v € R® and « €
[0, 7] such that O represents the rotation around the axis Rv (oriented in
direction of v) with angle . Note that a rotation around v by an angle
a € (m,2m) can be represented by a rotation by the angle 2 — o around —wv.

The pairs (v,«) and (v/,a’) represent the same rotation if and only if
o =aand v =vora =a=mand v = —v. This gives an identification of
SO3(R) with B;(0)/ ~ with w ~ w' if w = w’ or |w| = 7, W' = —w, where
the rotation around v with angle « is mapped to [(v, «)]. Tt takes some work
to see that this identification in fact gives rise to a homeomorphism from
SO3(R) and RP3. With the right choice of smooth structure on the real
projective space, even more is true:

Proposition 2.2.2. The Lie group SO3(R) is diffeomorphic to PR3.

Now let us have short look at the Lie algebra of SO3(R). Since SO3(R) is
embedded in R**3, we can compute the tangent space T} SO3(R) as subspace
of R¥3. If v: (—¢,g) — R3*3 is a smooth curve such that () € SO3(R) for
all t € (—¢,¢) and v(0) = I3, then

0= 5| 60T =507 +50)

Hence T SO3(R) C {A € R¥3 | AT = —A}. On the other hand, if A € R3*3
such that AT = — A, let (1) = exp(tA). By assumption, AT commutes with
A, hence

() y(t) = exp(tAT) exp(tA) = exp(t(AT 4+ A)) = 15.
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Moreover,
det y(t) = exp(tr(A)) = exp (% tr(A) + %tr(AT)) = exp(0) = 13.

Thus ~(t) € SO3(R) for all ¢ € R.
We conclude that 73 SO3(R) = {A € R¥3 | AT = —A}. In fact, an
analogous result holds in arbitrary dimensions:

Proposition 2.2.3. T} SO, (R) = {4 e R | AT = —A}.

Definition 2.2.4 (Special orthogonal Lie algebra). The Lie algebra so(n) =
{A € R | AT = — A} is called the (special) orthogonal Lie algebra. Tt is
the same as the Lie algebra of O,(R).

2.2.2 The special unitary group SU;(C)

Now let us turn to the special unitary group SU, (C), which is defined as
SU,(C) = {U € C»" | UMU =1, det U = 1}. An n x n matrix is unitary
if and only if its row (or equivalently columns) are orthonormal with respect
to the Euclidean inner product. Thus

SU,(C) = {(_CLE 2) ca,b€C, |a*+|b]* = 1}.

The following result is then not hard to see.
Lemma 2.2.5. The map

SU,(C) — S°, (_ab Z) — (Rea,Ima,Reb,Imb)

1s a homeomorphism

With this homeomorphism, S? also inherits a group structure from SU,(C).
To describe it, it is most convenient to work with quaternions. Formally, H
is the skew field {t 4+ zi + yj + zk | t,z,y, 2 € R}, where the elements i, j, k
satisfy the relations i2 =j? =k* = —1 and ij = k, jk =i, ki = j.

Quaternions can be represented as complex 2 x 2 matrices as follows: Let

(01 (0 —i (1 0
=1 0)27\i 0) "o —1)-

These are the Pauli matrices. The map

H — C*?, t 4 zi + yj + 2k = tly — ixoy — iyos — 1203
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is an algebra homomorphism (a map that respects addition and multiplica-
tion).

We can view S? as unit group of the quaternions, and the multiplication
on S? is the one induced by quaternion multiplication.

If g € H\ {0}, then the conjugation map g - g~' leaves {zi + yj + zk |
r,y,z € R} invariant. If we identify {zi + yj + zk | z,9,2 € R} with R?,
we obtain a linear map T,: R* — R?. If § € [0,27), u € S* C R? and
g = cos 0 + sin 0(u'i + u?j + u’k), we can explicitly compute

Tyo = ulvu + cos 20(u X v) X u + sin 20u x v.

In particular, T, € SO3(R) if ¢ is a unit quaternion. The map T': g — T,
can be viewed as a surjective 2-to-1 map from SU,y(C) to SO3(R), a so-
called double covering. On the level of Lie algebras, the map DT'(1) is an
isomorphism.
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Chapter 3

Measure and Integration
Theory

3.1 Measures

Definition 3.1.1 (o-algebra). Let X be a set. A o-algebra on X is a subset
A of P(X) with the following three properties:

(a) X € A.
(b) If Ae A, then X \ A € A
(c) If A, € A, n €N, then |, 4, € A.

An element of A is called an (.A-)measurable set. A pair(X,.A) consisting of
a set X and a o-algebra A on X is called a measurable space.

Ezample 3.1.2. For every set X, {0, X} and P(X) are o-algebras.

Ezample 3.1.3. If X is an infinite set, then A = {A C X | A countable or X'\
A countable} is a o-algebra.

Lemma 3.1.4. If X is a set and (A;)icr is a family of o-algebras, then
Nicr Ai is a o-algebra.

Definition 3.1.5 (Generated o-algebra). If A C P(X), then the o-algebra
generated o(A) by A is defined as

A= (1 B

BD.Ao-algebra

If (X, T) is a topological space, the o-algebra generated by 7T is called Borel
o-algebra and denoted by B(X).
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Remark 3.1.6. Unless stated otherwise, we always endow K" with the Borel
o-algebra induced by the Euclidean topology. Note that there is no explicit
description of the elements of the Borel g-algebra in this case. It is in fact
much harder to find maps that are not Borel measurable than sets that are.

Definition 3.1.7 (Trace o-algebra). Let (X, .A) be a measurable space. If
S € A, then
As={ANS|Aec A} C P(S)

is a o-algebra on S, called the trace o-algebra. If not stated otherwise, subsets
of a measurable space are always endowed with the trace o-algebra.

Definition 3.1.8 (Measurable map). Let (X, .A), (Y, B) be measurable spaces.
Amap f: X — Y is called (A-B-)measurable if f~'(B) € A for every B € B.

Lemma 3.1.9. (a) The composition of measurable maps is measurable.

(b) Let f: X — Y be a map, A a o-algebra on X and C C P(Y). If
B=c(C) and f1(C) € A for all C € C, then f is A-B-measurable.

(c¢) Every continuous map between topological spaces is Borel measurable.

Lemma 3.1.10. Let (X, .A) be a measurable space and A C X. The charac-
teristic function 1 4 is measurable if and only if A is measurable.

Definition 3.1.11 (Measure). Let (X, .A) be a measurable space. A measure
on (X, A) is a map p: X — [0, 00] with the following two properties:

o u(0)=0.
o If A,, neN,and A, N A,, =0 for m # n, then

’ (G An> =S aA).

A measure space is a triple (X, A, 1) consisting of a measurable space (X, .A)
and a measure p on (X, A). A measure pon (X, A) is called finite if u(X) <

oo and o-finite if there exists a sequence (A,) in A such that p(A,) < oo for
alln € Nand X =J 7, A4,.

FExample 3.1.12. If X is a countable set, then
w: P(X) —1[0,00], A #A

is a measure, called the counting measure. Here # A denotes the cardinality
(number of elements) of A. The counting measure on a countable space is
always o-finite and it is finite if and only if X is finite.
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Ezample 3.1.13. If (X, A) is a measurable space and = € X, then

1 ifzeA

9.0 A—10,1], A— }
oo otherwise

is a finite measure, called the Dirac measure.

Lemma 3.1.14. If (X, A, u) is a measure space and (Ap)nen is an increasing

sequence in A, then
u (U An) = lim p(A,).

neN

Proof. Let B, = A, \ UZ: Aj. The sets B,, n € N, are pairwise disjoint

and we have
(09)-(ue
neN neN

= lim u(A,). O

n—o0

Definition 3.1.15 (Borel measure). Let X be a topological space. A Borel
measure on X is a measure u on (X, B(X)) such that

e 1(K) < oo for every compact K C X,
o 1(A) =sup{u(K) | K C A compact} for every A € B(X).

Theorem 3.1.16 (Existence and uniqueness of Haar measure). Let G be
a Lie group. There exists a non-zero Borel measure p on G such that
wu(gA) = u(A) for all A € B(G), g € G. Moreover, the measure y is uniquely
determined up to multiplication by a positive constant.

Definition 3.1.17 (Haar measure). Let G be a Lie group. A non-zero Borel
measure 4 on G such that p(gA) = p(A) for all A € B(G), g € G is called a
left Haar measure on G. If G is abelian, one simply calls © a Haar measure.
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Remark 3.1.18. There is a dual notion of a right Haar measure where the
right translates Ag are considered instead of the left translates gA. In gen-
eral, a right Haar measure need not be a left Haar measure, and vice versa.
Lie groups for which a left Haar measure is also a right Haar measure are
called unimodular. In addition to the obvious example of abelian Lie groups,
compact Lie groups form another class of unimodular groups.

Corollary 3.1.19 (Existence and uniqueness of Lebesgue measure). There
exists a unique translation-invariant Borel measure on R™ such that [0,1]"
has measure 1.

Definition 3.1.20 (Lebesgue measure). The unique translation-invariant
Borel measure £" on R™ such that £"([0,1]") = 1 is called the Lebesgue
measure.

Remark 3.1.21. There are various approaches to show the existence and
uniqueness of the Lebesgue measure, all of which are at least somewhat
technically involved. The difficulty is to define £"(A) not only for "nice”
sets A, but all Borel sets.

Lemma 3.1.22. The Lebesque measure is o-finite.

Proof. By translation invariance, every cube a+ [0, 1]” has Lebesgue measure

1. Thus
A= |J E+0,1"

kezn |k|<n

has finite Lebesgue measure. Since R" = (J'~ | A,,, the Lebesgue measure is
o-finite. O

Definition 3.1.23 (Null set). Let (X, A, 1) be a measure space. A subset
N of X is called a null set of there exists A € A with u(A) = 0 such that
N C A. A property is said to hold p-almost everywhere, abbreviated as
p-a.e., if it holds on the complement of a null set.

Remark 3.1.24. Informally, a null set is a set of measure zero. Note however
that a null set need not be measurable so that its measure is not defined.
However, one can always extend a measure to a bigger o-algebra, the com-
pletion, which contains all the null sets.

Definition 3.1.25 (Semi-finite, localizable measure). Let (X,.A) be a mea-
surable space. A measure p on (X, .A) is called semi-finite if for every A € A
with p(A) > 0 there exists B C A with 0 < u(B) < oo.

The measure p is called localizable if it is semi-finite and for every family
(A;)ier in A there exists S € A such that
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o 1(A;\S)=0foralliel,
e if S’ € A such that u(A; \ ') =0 for all i € I, then u(S\ S") = 0.
Such a set S is called an envelope of (A;)ier.

Remark 3.1.26. If I is countable, then J,.; A; is an envelope of (A4;)ier. If I
is uncountable however, then (J,.; A; € A is not guaranteed. Localizability
of u provides us with a way to take "unions of uncountable families up to
measure zero” .

Example 3.1.27. If X is a non-empty set and

0 fA=0

. )
oo otherwise

p: P(X) — {0,00}, A {

then p is a measure that is not semi-finite.

Example 3.1.28. Every Borel measure is semi-finite.
Lemma 3.1.29. Every o-finite measure is localizable.

Proof. Let (A,) be a sequence in A such that u(A,) < coand X = J;2, A,.
We can assume without loss of generality that A, C A, for n € N. If
A e A with pu(A) > 0, then

PANAp) = p(An) = p(An \ A) < p(An) < 00

Moreover,
HANA) = WA A\ A)) = D2 AN (A0 \ A) = (A)

In particular, u(AN A,,) > 0 for n sufficiently large. Thus p is semi-finite.
To show that p is localizable, let (B;);c;r be a family in A. For n € N
let ¢, = sup{p(U,c; Bj N An) | J C I countable}. For k € N we can choose
Jn C I finite such that M(Uje,m B;iNA,) >c,— k' and Jey1n DO Jin
Then J, = J,ey Ji is countable and S, = (J B; N A, € A satisfies

J€JIn

Cn > p(Sy) = /}an}oﬂ U B,NA, | > liznsup(cn — kY =c¢c,,
jEJk,n o

hence yu(S,) = ¢,. Let S =,y Sn € A

78



To show that S is an envelope of (B;)cs, we first show that S, is an
envelope of (B; N A,)ic;. Note that

p(Sn) + p((Bi N Ap) \ Sn) = (S U (Bi N Ap)) < e = p1(Sn)

Thus pu((B;NA,)\S,) = 0. Moreover, if S/, € A such that u((B;NA,)\S),) =
0 for all 7+ € I, then

S\ Sh) = 1 (U(BmAn>\s;> <> ul(B;NA)\S) = 0.

Jj€JIn J€Jn

Therefore S, is an envelope of (B; N A, );c;. To see that S is an envelope of
(B;)icr, one uses the monotonicity of the measure. The details are left as an
exercise. ]

Ezample 3.1.30. Let J be a set. The counting measure on (J, P(J)) is local-
izable. It is o-finite if and only if J is countable. To see that the counting
measure is localizable, it suffices to notice that arbitrary unions of subsets
of J belong to the g-algebra P(J). An envelope of (A;);cs is therefore sim-
ply given by |J;c; Ai. To see the statement about o-finiteness, notice that
sets with finite counting measure are exactly the finite subsets, and J is a
countable union of finite subsets if and only if it is countable.

3.2 Integration

Definition 3.2.1 (Extended real line). We endow [0, co] with the o-algebra
B([0,00]) = {A C [0,00] | AN[0,00) € B([0,00))}. Further, we extend
addition and multiplication to [0, co] by defining a + co = 0o 4+ a = oo for all
a€l0,00landa-co=o0-a=ifa#0and 0-co=00-0=0.

Definition 3.2.2 (Lebesgue integral). Let (X, .4, 1) be a measure space and
f: X — [0, 00] measurable. The Lebesgue integral of f is defined as

/de,u: sup{Zozj,u(Aj) | aj €]0,00], A; € A, Zaj]lA]. < f}.
j=1

=1

Ezample 3.2.3. Let p be the counting measure on (N, P(N)). If f: N —

[0, 00], then
/N Fdu=3" 1)
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Note that since f is nonnegative, the sum on the right side does not depend
on the order of summation.

More generally, if p is the counting measure on (J,P(J)) for an arbitrary
set J and f: J — [0, 00], then

/deuz sup Y ()

FcJ ﬁmtejEF

That is a way to make sense of the sum »_._; f(j) for uncountable sets J.

Proposition 3.2.4. Let (X, A, ) be a measure space. The Lebesgue integral
has the following properties:

e Ifa,, €0,00] and A, € A for n € N, then
/ Zan]lAn dp = Z ant(Ay).
X n=1 n=1

o If f,g: X = [0,00] are measurable and f < g, then [, fdu < [, gdpu.

o If f,g: X — [0,00] and o, f € [0, 00|, then

/X(Othrgu)du:a/deuﬂLB/ngu-

Proposition 3.2.5. Let (X, A, i) be a localizable measure space. If (f;)ier is
a family of measurable maps from X to [0, 00], then there exists a measurable
function f: X — [0, 00] with the following two properties:

o i < f u-ae. foreveryiec l.

e [fg: X — [0,00] is measurable and f; < g p-a.e. for every i € I, then
f<g p-ae.

Moreover, f is uniquely determined up to equality j-a.e.

Definition 3.2.6 (Envelope). If (X, A, i) is a measure space and (f;);es is a
family of measurable functions from X to [0, 0o], then a measurable function
f: X — [0,00] that satisfies the properties from the previous proposition is
called an envelope of (f;)icr.

Ezxample 3.2.7. Let J be a set and p the counting measure on (J,P(J)).
The envelope f of a family (f;)ic; of functions from J to [0, 0o] is uniquely
determined and given by f(j) = sup,c; fi(4)-
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Ezample 3.2.8. Let (X, A, 1) be an arbitrary measure space. If (f,)nen is a
sequence of measurable functions from X to [0, 00|, then an envelope f of

(fn)nen is given by f(z) = sup,,cy fo(x) for x € X.

Ezample 3.2.9. For z € R let f, = 1y on (R, B(R),£'). A measurable
function f: R — [0, 00| is an envelope of (f,).er if and only if f =0 L'-a.e.
In particular, the pointwise supremum, which is the constant function 1, is
not an envelope of (f;)zer: Clearly, f, < f for all n € N. Moreover, if
g: X — [0,00] is measurable and f, < g p-ae. for all n € N, let A, =
{z € X | fulz) > g(x)}. By assumption, pu(A4,) = 0 and f(x) < g(z) for
all # € X \ U, e An- By o-additivity of u, we have pu(|J,cy An) = 0. Hence
f<g pae.

Definition 3.2.10 (Directed set, Net). A directed set is a pair (I, <) con-
sisting of a set [ and a relation < on [ such that

o i <iforalliel,

e i < jand j < k implies ¢ < k for all 4, j,k € I,

e for all 4,5 € I there exists k € I such that ¢ < k and j < k.

A net (z;);er in X is a map from a directed set I to X. In particular, if X
is a set of functions, then a net (f;);cs is called increasing if i < j implies

Ji < [
Example 3.2.11. The natural numbers with their natural order form a di-
rected set. Thus every sequence is a net.

Ezample 3.2.12. If J is any set, then P(J) with the preorder A < Bif A C B
is directed set. The same holds if one replaces P(.J) by the set of finite subsets
of J.

Theorem 3.2.13 (Monotone Convergence Theorem for Nets). Let (X, A, u)
be a localizable measure space. If (fi)icr is an increasing net of measurable
function from X to [0,00] and f is an envelope of (fi)icr, then

/ fduzsup/ fidp.
X i€l JX

Theorem 3.2.14 (Monotone Convergence Theorem for Sequences). Let (X, A, u)
be a measure space. If (fn)nen 1S an increasing sequence of measurable func-
tions from X to [0,00] and f is the pointwise limit lim,_, fn, then

/ fdp = lim fndp.
X n—oo X
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Proof. By a previous example, the envelope of (f,,)nen exists and coincides
with f p-a.e. However, to apply the previous theorem, we need a localizable
measure space.

There are two cases: If [, f, du = oo for some n € N, then

/deuZ/andMZOO

by monotonicity of the integral. In this case, there is nothing left to show.
Let us assume that fX fndu < oo for all n € N and let Ag,, = {x € X |
folz)>27%} A= Ur.nen Ak We have

N(Ak,n):/ La,, duS/Qkfndu<oo'
X X

Thus A is a countable union of sets with finite measure. As f,[x\a = 0
for all n € N, we can restrict the integrals in the monotonce convergence
theorem to A with the trace o-algebra. As we have just seen, this measure
space is o-finite. Hence we can apply the monotonce convergence theorem
for nets. O

Lemma 3.2.15 (Fatou). If (X, A, u) be a measure space. If (f,) is a se-
quence of measurable functions from X to [0,00], then the pointwise limit
inferior liminf,, .. f, is measurable and

n—oo n—

/ liminf f, dp < lim inf/ fndp.
X © Jx

Proof. Let
Gn: X = [0,00], gn(z) = inf fi(x).

k>n

By definition, (g,) is an increasing sequence of measurable functions from X
to [0, o] such that g, < f, and lim,_, g,(z) = liminf, , f,(x) for all €
X. By the monotone convergence theorem for sequences and monotonicity
of the integral, we have

/liminffnd,u:/ lim g, dy = lim / gndp < liminf/ fondp. O

Remark 3.2.16. With an appropriate definition of the limit inferior of nets,
there is also a version of Fatou’s lemma, for nets on localizable measure spaces.

So far, we have only integrated non-negative functions (that possibly
take the value co). To define the integral of general real- or complex-valued
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functions, one needs to make sure that no ”competing divergences” of the
form oco—oc arise. This can be done for example by decomposing the function
into positive functions and requiring that these functions have finite integrals.
This is the content of the next definition.

Definition 3.2.17 (Integrable function). Let (X, A, 1) be a measure space.
A function f: X — R is called integrable if it is measurable and the integrals

/Xf+du, /deu

are both finite. In this case we define

ij=Aﬁw—Aﬁw.

Likewise, a function f: X — Cis called integrable if Re f, Im f are integrable,
and in this case we define

/deu:/XRefd,ujLi/XImfdu.

Lemma 3.2.18. Let (X, A, u) be a measure space. The integral has the
following properties

o If f,g: X — K are are integrable and f < g, then infyx fdu < fngu.
o If f,g: X = K are integrable and o, 5 € K, then af + Bg is integrable

and
[t vsan=a [ faues [ gin

Theorem 3.2.19 (Dominated Convergence Theorem). Let (X, A, u) be a
measure space. If (f,) is a sequence of measurable functions from X to K
for which the pointwise limit lim,,_, f, exists and there exists an integrable
function g: X — [0,00) such that |f,| < g p-a.e. for every n € N, then
lim,, o frn s integrable and

/ lim f,dp = lim / frndpu.
X n—oo n—oo X
Proof. We only prove the case K = R here. The case K = C can be deduced
by considering real and imaginary parts of the involved functions.

Write f for lim,, .., f,. Upon changing g on a null set, we may assume
that | f,(z)| < g(z) for all x € X. By monotonicity of the integral,

/X(fn)idHS/XIfn|du§/ngu<oo.
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Thus f, is integrable. Similarly, |f| = lim,_oo|fn| < ¢ implies that f is
integrable.
Let h,, = g— f,, which is non-negative by assumption. By Fatou’s lemma,

/(g—f)du:/liminfhnd,u
X x N

< liminf/ hy, dp
b'e

n—oo

:/gd,u—limsup/fnd,u.
X n—oo X

fdu > lim sup/ frndpu.
X X

n—oo

Hence

If we apply Fatou’s lemma to g + f,, instead, we obtain

/ fdu < liminf/ fndp.
X n—00 X

These two inequalities combined yield the claim. O]

3.3 Lebesgue spaces

Definition 3.3.1 (Lebesgue space). Let (X,.A, ) be a measure space and
p € [1,00). We write LP(X, p) for the set of all functions from X to K for
which |f]? is integrable. We define an equivalence relation on £P(X, u) by
f~gif f =g p-a.e. The Lebesque space LP(X, i) is the set of all equivalence
classes of the equivalence relation ~ on LP(X, p).

Moreover, we write £(X, ) for the set of all measurable functions f
from X to K for which there exists C' > 0 such that |f| < C p-a.e. The set
of all p-a.e. equivalence classes in £%°(X, ) is denoted by L®(X, ).

Definition 3.3.2 (L” semi-norm). Let (X,.A, ) be a measure space and
p € [1,00]. The L£P semi-norm on £P(X, i) is defined by

1/p
£l = </X|f|pdu> .

| flloo = inf{C > 0:|f] < C p-ae.}.

if p < oo and by

if p = 0.
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Proposition 3.3.3 (Holder inequality). Let (X, A, 1) be a measure space
and p,q € [1,00] such that }D —i—% =1. If f e LP(X,pu) and g € LYX, ),
then fg € LY(X, u) and

1fglly < [If1lpllgllq-

Proof. Let a,b > 0. Since log is concave, we have

1 1 T X
log(ab) = —loga? 4+ —log b? < log (a_ + _> ‘
p q Poq

Thus ab < % + %. It follows that

1 1
/Ifg|du§—/Iflpdu+—/lg|qdu-
X b Jx qJx

If we replace f by Af and g by g/ for A > 0, we obtain

AP 1
Ifgllr < ?Ilfllﬁ + Wllgllg-

If we optimize the right side over A > 0, we obtain the desired inequality. [

Proposition 3.3.4 (Minkowski inequality). Let (X, .A, i) be a measure space
and p € [L,00]. If f,g € LP(X, ), then f+g € LP(X,p) and ||f + gll, <
1 1lo =+ lgllp-

Let V' be a normed space. In the following we write V* for £(V, K), which
is the set of all bounded linear maps from V to K. This is strictly smaller
than the set of all not necessarily bounds linear maps from V to K if V is
infinite-dimensional.

Proposition 3.3.5. Let (X, A, i) be a measure space and p € [1,c0].
(a) The space LP(X, 1) is a vector space.
(b) | fll, =0 if and only if f =0 p-a.e.

(¢) The map
[ -llps LP(X, 1) = [0,00), f = [|[fllp

defines a norm on LP(X,u). Here [f], denotes the p-a.e. equivalence

class of f.
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(d) If p,q € (1,00) with % + é =1, then the map

D) > L) f o (9 [ faan)
X
15 an sometric isomorphism. The same is true for p = oo, ¢ = 1 if

and only (X, A, p) is localizable.

Remark 3.3.6. One can also define LP spaces for p € (0,1) in the same way.

However, the functional
1/p
Fo ([ 1rean)
X

fails to be a norm for p < 1.
Example 3.3.7. If I is a set and p the counting measure on P(I), then
LP(I, ) = €P(1), the set of all families (a;)ier with >,/ |a;[? < oo.

Proposition 3.3.8. If VW are normed spaces and W is complete, then
L(V, W) is complete in the operator norm. In particular, V* is complete.

Proof. Let (T,,) be a Cauchy sequence in L(V, W). For every v € V', we have
T —Thv|| < || Th — Tonllopl|v]]l- Since W is complete, there exists T'(v) such
that T,,v — T'(v) in W. It is not hard to see that the assignment v — T'(v)
is linear. Moreover, if m € N such that ||T,, — T,,,|| < 1 for n > m, then

1T ()]l = lim [[Tyo]] <Timinf[[T,0 = Tl + [[Tnoll < (14 [Tallop)[[0]]-

Thus T is bounded.

To finish the proof, we have to show that T,, — T in operator norm. Let
e > 0 and N € N such that |7, — T,,|| < € for myn > N. If v € V and
n > N, then

|Tv — Tl = lim ||T,v — Tpv|| < Uminf||T5, — T, l|op v < ellvl-

Therefore ||T,, — T||op < €. O

Corollary 3.3.9. Let (X, A, u) be a measure space. For p € (1,00), the
Lebesgue space LP(X, ) is a Banach space.

Remark 3.3.10. The same is true for p = 1 and p = oo, but one cannot
appeal to duality (for p = 1) or only in the case of localizable measure spaces
(for p = 00).
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3.4 Integration with respect to the Lebesgue
measure and Fubini’s theorem

The definition of the Lebesgue integral suggests possible numerical approaches
to the integral. However, it is not obvious how to compute the Lebesgue in-
tegral symbolically even for nice functions. One advantage of the Riemann
integral is that we can compute it for continuously differentiable functions
f by finding a primitive function, that is, a function F' such that F' = f.
Luckily enough, both integral coincide for this class (and a broader class) of
functions.

Theorem 3.4.1. Let a,b € R with a < b. A f: [a,0] — K is Riemann
integrable if and only if its bounded and continuous at L'-a.e. point. In this
case,

b
/ fz)dx = fdct.
a [a,b]

Remark 3.4.2. The result is no longer true if one considers improper Riemann
integrals. For example, the function

sin x

(0,00) = R, z —
x

has an improper Riemann integral, but is not Lebesgue integrable.

The Lebesgue integral in higher dimensions can be reduced to iterated
one-dimensional integrals by Tonelli’s and Fubini’s theorem. Both have sim-
ilar statements, just under different conditions to avoid problems with diver-
gences of the form co — oo.

Theorem 3.4.3 (Tonelli). If f: R™ x R" — [0,00] is a Borel-measurable
function, then f(z,-) is Borel-measurable for L™-a.e. x € R™, f(-,y) is
Borel-measurable for L™-a.e. y € R" and

[ rien= [ ([ rwoacw) aee
2/( - f(z,y) dﬁm(:c)) dL™(y).

Theorem 3.4.4 (Fubini). If f: R™ x R" — K is an L™ "-integrable func-
tion, then f(x,-) is L"-integrable for L™-a.e. x € R™, f(-,y) is L™-integrable
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Jor L™-a.e. y € R" and

/IRmen fdcmtm = /m ( - f(z,y) d/;”(y)) dL™ (x)
= / ( - f(z,y) dﬁm(m)) dL™(y).

Remark 3.4.5. While we only state these results for the Lebesgue measure,
they are valid more generally. To formulate them, one needs the notion of
product measure of o-finite measures, which we did not introduce in this
course.
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Chapter 4

Operators and Spectral Theory

4.1 Hilbert spaces

Definition 4.1.1 (Inner product). Let V' be a vector space over K. An inner
product on V isamap (-,-): V xV — K with the following three properties:

(a) Linearity in the second argument:

(& An + pC) = ME&m) + w(, )
forall &,n,( € Vand \,p e K

(b) Conjugate symmetry:

(n,€) = (&m)
forall ,ne V.

(c) Positive definiteness:

(€,6) >0
for all ¢ € V'\ {0}.

A vector space with an inner product is called an inner product space.

Remark 4.1.2. e The are two different conventions for inner products.
Some authors assume linearity in the first argument, some authors
linearity in the second argument. Note that this only makes a difference

if K = C (see below).

e - denotes the complex conjugate of an element. In the case K =R, (b)
reduces to ordinary symmetry (n,&) = (£, n).
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e If K = C, property (b) implies (£,&) € R for all ¢ € V. Thus the
inequality in (c) makes sense.

e Properties (a) and (b) together imply that an inner product is conjugate
linear in the first argument:

(A& + un, ¢) = ME, ) + 1, ¢).

Ezxample 4.1.3. The Euclidean inner product on K™:
<£77]> = Zgj’r/m 5777 € K"
j=1

Example 4.1.4. Let (X, A, u) be a measure space. The L*inner product on
L*(X, 1) is defined as

(L lgl) = /X Todu, f.g€ L2(X, A).

One can check that this definition is indeed independent of the chosen rep-
resentatives f, g.

In the special case when X = {1,...,n}, A =P(X) and p is the counting
measures, one obtains the Euclidean inner product from the previous exam-
ple. In this case, one does not have to quotient out almost-everywhere equal
functions because the measure has no-nontrivial null sets.

Proposition 4.1.5 (Cauchy—-Schwarz inequality). If V is an inner product
space, then

(€. m)| < (6,62 (n,n)/?
forallé,neV.

Proof. First note that

0<E—n&—n) =)+ mm—(&n—0E).

-2 Re<§:77>

Thus Re(&,n) < 3(£,€) + 3(n,m).
Let A € K with |[A| = 1 such that A(§,n) = [(¢,n)|. If we apply the

previous inequality to £ and An, we obtain

€. m)] = Re(€. M) < 3(6.6) + 5 (. M)
~——

A1 (n,m)
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Hence |(¢, >| <3
Let € K\ {0
obtain

5(6,6) + 5(n,m).
}-

If we apply the previous inequality to &/ and un, we

[§sm| = [{&/ 1, pm)| < o ‘2<€ &)+ 5 m,m).

We can assume &,n # 0, since otherwise the left side is zero by linearity in

(¥
(nm)1/%?

the second argument. If we apply the previous inequality with u =
we obtain

(&, m)| < 56 ) + @ammwﬂ<&wwmm O

N | —

Lemma 4.1.6. If V is a vector space over K and (-,-) is an inner product
on 'V, then
I-1l: V= [0,00), £ = (6,6

1S @ norm.

Proof. The only property of a norm that is not obvious from the properties of
an inner product is the triangle inequality. To prove it, we use the Cauchy—
Schwarz inequality: If £&,n € V, then

lg+nll* = €17 +2Re(€, m+lnll* < NP +20&llnl+nl* = (lgl+nlh*. O

Remark 4.1.7. The norm from the previous lemma is called the norm induced
by the inner product. The norm in turn gives rise to a metric (and the metric
to a topology). As such, metric properties like completeness make sense for
inner product spaces.

Proposition 4.1.8. Let V' be an inner product space and £,m € V.

(a) Polarization identity: If V is a real inner product space, then

1
(& m = Z U+l = ll€ =),

and if V' is a complex inner product space, then

3
(€ = 3 527 H e+ il

k=0

(b) Parallelogram identity: |€ — > + ||€ + nl|* = 2||€]|* + 2||n]|*.
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Remark 4.1.9. Both identities from the previous proposition follow from a
direct computation. They are very useful: The polarization identity shows
that an inner product is uniquely determined by its induced norm and the
parallelogram identity characterizes inner product spaces among all normed
spaces — a norm is induced by an inner product if and only if it satisfies the
parallelogram identity.

Definition 4.1.10 (Hilbert space). A Hilbert space is an inner product space
which is complete.

Ezample 4.1.11. The Euclidean space K™ with the Euclidean inner product
is a Hilbert space.

Example 4.1.12. The Lebesgue space L?(X, ) with the L? inner product is
a Hilbert space.

Example 4.1.13. Let c. denote the space of all functions from N to K that
have finite support, i.e., {n € N | f(n) # 0} is finite for every f € c.. An
inner product on c. can be defined by

(fo9) =2 fn)g(n).

Note that only finitely many summands are non-zero, so there is no conver-
gence problem. This inner product is not complete.

Definition 4.1.14 (Orthonormal family). Let H be a Hilbert space. A fam-
ily (& )ier is called orthogonal if (§;,&;) = 0 for ¢ # j. It is called orthonormal
if it is orthogonal and ||&;|| = 1 for every i € I.

Proposition 4.1.15 (Bessel’s inequality). If H is a Hilbert space and (&;)icr
is an orthonormal family, then

Y& mP < Inl?

jeJ
for every n € H and every finite subset J of I.

Definition 4.1.16 (Orthonormal basis). Let H be a Hilbert space. An
orthonormal basis is an orthonormal family (e;);c; in H that satisfies

sup D [{egn)l* = [Inl®
eJ

JCI finite j

for all n € H. A Hilbert space is called separable if it admits a countable
orthonormal basis.
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Remark 4.1.17. Every Hilbert space admits an orthonormal basis, but it may
have a large cardinality. For most applications in mathematics and quantum
mechanics, it suffices to study separable Hilbert spaces.

Definition 4.1.18 (Unitary operator). Let H, K be Hilbert spaces. A linear
operator U: H — K is called an isometry if [|[UE|| = ||€|| for all £ € H. A
surjective isometry is called unitary.

Lemma 4.1.19. Let H, K be Hilbert spaces. If U: H — K is an isometry,
then (U, Un) = (&, n) for all,n € H.

Proof. The map
(v Hx H—=K, (§n)— (U, Un)

is an inner product on H. Since U is an isometry, we have (¢, &) = (U, U¢)
for all £ € H. By the polarization identity, (-, )y = (-, -). O

Theorem 4.1.20. If H is a Hilbert space, then there exists a set J and a
unitary operator U: H — (?(J). If H is separable, then J can be chosen
countable.

Proof. Let (e;);es be an orthonormal basis of H. For { € H let

Ug: J =K, (U8)() = (e;,€).

By the definition of an orthonormal basis, U € £2(J) and ||U¢|| = ||€]|. Thus
U is an isometry from H to £*(.J).

In particular, U preserves Cauchy sequences. Thus U(H) is complete and
thus closed in ¢2(J). To show that U is surjective, it suffices therefore to show

that U(H) = ¢*(J). For f € (?(J) and F C J finite let {p = 3, f(f)e; €

H. Then
If =UEr)llz =Y _IF I
i¢F
Recall that the counting measure on (J,P(J)) is localizable. By the mono-
tone convergence theorem for nets, we have

I£13="sup > |f()I*

FCJ finite jeF

In particular, for every € > 0 there exists F' C J finite such that
DG = A=Y _IF D <e
J¢r JeF

Therefore f € U(H). O
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Corollary 4.1.21. If H is a separable infinite-dimensional Hilbert space and
(en)nen is an orthonormal basis, then

Jim D e Eer = ¢
h=1

for every £ € H.

Theorem 4.1.22 (Riesz representation theorem). Let H be a Hilbert space.
For every ¢ € L(H,K) there exists a unique n € H such that ¢(§) = (n, &)
for all & € H. Moreover, ||n|| = ||¢]|op-

Vice versa, for everyn € H the map ¢,: H — K, £ — (n,€) is a bounded
linear map.

Proof. Since H is isometrically isomorphic to ¢2(.J) for some set J, this can
easily be deduced from the Riesz representation theorem for L? spaces. [J

Definition 4.1.23 (Orthogonal complement). Let V' be an inner product
space. Two elements &, n are called orthogonal, denoted by & L n, if (£,n) =
0. For a subset S of V, the orthogonal complement S* is defined as S+ =
{£eV |&Lnforalne S}

Lemma 4.1.24. Let V' be an inner product space.

(a) The orthogonal complement of any subset of V' is a closed subspace of

V.

(b) If V is a Hilbert space, then K C V is a closed linear subspace if and
only if K*+ =K.

(c¢) The inner product space V is a Hilbert space if and only if K+ = K
for every closed subspace K of V.

Proposition 4.1.25. Let H be a Hilbert space and K C H a closed linear
subspace. For every & € H there exists a unique decomposition & = 1+ ¢
withn € K and ( € K+.

Proof. We only give the proof in the case when K is separable here. The proof
in the general case is similar, one just has to deal properly with uncountable
orthonormal bases. Let (e;);e; be an orthonormal basis of K with J finite
or J=N. For § € H let n=3_,_;(e;,&)e; if J finite and

n

n=lim Yy (e e

J=1
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if J = N. To see that the limit exists, let m > n. We have

D (e 6)e

j=n+1

n 2

Z<€j7 €>ej - Z(eja €>€j

J=1

Since 77 [(e;, €)[* < [I€]]* by Bessel’s inequality, the right side of the
previous displayed formula goes to zero as n — oo. This implies that

j=1

Let ( =& — 177L If J is finite, then

(Coen) = (€ —men) = (& en) = > (& e5)ej ) =0,

jed

(Z" (ej, §>ej> is a Cauchy sequence. As H is complete, it converges.

that is, ¢ L ex. The same is true if J = N using a limiting argument.Since
(ej)jes is an orthonormal basis of K, every element of K is in the closed
linear span of {¢; | j € J}. Thus ¢ € K*+. The equality £ = n+ ¢ holds by
definition. This settles the existence part of the statement.

For uniqueness, let 7,7’ € K and (,(’ € K+ such that n + ¢ = n + (.
Thenn—n'=¢ —Cand (n—7',’ — () =0. Thus n =n" and ¢’ = (. O

Definition 4.1.26 (Orthogonal projection). Let H be a Hilbert space and
K C H aclosed linear subspace. The map Pk from H to H that maps ¢ € H
to the unique element n € K such that £ —n € K= is called the (orthogonal)
projection onto K.

Lemma 4.1.27. Let H be a Hilbert space.
(a) If K C H is a closed linear subspace, then Py is a bounded linear map.

(b) For P € L(H) there exists a closed linear subspace K C H such that
P = Pk if and only if P> = P and (P&, n) = (£, Pn) for all ¢,m € H.

Proof.  (a) To show linearity of Py, let &,& € H and «ag, as € K. We have

(€1 + a2s) — (1 Pg (&) + a2Pr(§2)) = a1(§1 — Pr(61)) + aa(§e — Pr(&2))

e K+
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Thus PK(Q1£1 =+ Oégfg) = OZIPK(&I) + CMQPK(£2).

To show boundedness, let £ € K. Since £ — P& L &, we have
€11 = | Pgl® + 1€ = Préll* > [ Px&1*.

Thus Pk is bounded (with || Pg|lop < 1).

(b) First assume that P = Px for some closed linear subspace K of H.
Clearly, P2 = P. Let £,n € H. Since £ — Pg&,n — Pgn L K, we have

(P&, m) = (Px&,n — Pgn + Pxn) = (P&, Pxn) = (&, Pkn).

Now assume conversely that P € L£(H) with P2 = P and (P, n) =
(€, Pn). Let K = (ker P)*. If £ € H and 7 € ker P, then

(P&,n) = (&, Pn) = 0.

Thus P¢ € K. Furthermore, P(§ — P¢) = P¢ — P?¢ = 0. Hence
£ — P¢ cker P= K+, Hence P = Pg. ]

4.2 Uniform boundedness, open mapping and
closed graph theorem

In this section we will prove three of the cornerstone results of functional

analysis — the uniform boundedness principle, the open mapping theorem

and the closed graph theorem. These three results are intimately related.

They are usually presented as consequences of Baire’s theorem, which is

quite useful on its own. However, in this course, we will take a short cut that

avoids Baire’s theorem altogether. All we need is the following lemma with
a three-line proof.

Lemma 4.2.1. Let X,Y be normed spaces and T': X — 'Y a bounded linear
operator. For all x € X and r > 0 we have

sup (| Tyl = [|7°[}r.

ly—zl|<r

Proof. For £ € X we have
1
1Tl < ST (@ = Ol + 1Tz + ) = max{[|T'(z + &I, [ T(x — EII}-
Taking the supremum over all ¢ € B,(0) yields the claim. O
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Theorem 4.2.2 (Uniform boundedness principle). Let X be a Banach space,
Y a normed space, and (T});c; a family of bounded linear operators from X
to'Y such that sup,.;||T;z|| < oo for all x € X. Then sup;c;||T;|| < oc.

Proof. Suppose that sup,,||7;|| = oo. Let (i,) be a sequence in I such
that ||7;,| > 4" Set xy = 0 and choose inductively z, € X such that
| — @p1|| < 37" and ||T;, 2, > % - 37" T;,|| (this is possible due to the
previous lemma).

Then (z,,) is a Cauchy sequence, hence it converges to some x € X (that’s
where the completeness of X is needed). Furthermore,

m o
1
|2 = zall = Um [z — 2] < lim Y flog =z < D 378 < 537"
m—00 m—00 Pt Pt

Thus,

2 1 1 /4\"
Tzl > | Tl — 1T (x — 20)|| = =37 T — 237 Tl > = (=)
il > 5] = Tl = )l 2 5 37Tl - 337150 2 5 ()
contradicting the assumption sup,¢;||7;z| < oo. O

Definition 4.2.3 (Open map). A map between topological spaces is called
open if the images of open sets are open.

Theorem 4.2.4 (Open mapping theorem). Let X,Y be Banach spaces. If
the bounded linear operator T': X — Y 1is surjective, then it is open.

Proof. Let U C X be open. Since translations are homeomorphisms, we
may assume that 0 € U. Then there is a ball B with center 0 such that
B C U. Since dilations are homeomorphisms, we additionally assume that
B = B,(0). It suffices to show that T'(B) contains a neighborhood of 0.

In the first step we show that 7'(B) contains a neighborhood of 0. For
each n € N define the norm ||-||,, on Y by

lylln = inf{||u|| + n|v||: v € X,v €Y, Tu+v = y}.

Let Z be the set of all finitely supported sequences in Y with pointwise
addition and scalar multiplication and the norm

Iz Z = [0,00), [|fllz = supllf (1) |-
ForneNlet S,: Y — Z, y — yd,. Note that ||S,y|lz = ||yl|n-

Taking v = 0, v = y in the definition of ||-||,, we get ||y||. < n|ly]|, hence S,
is bounded for all n € N. Taking u € T~!(y), v = 0, we obtain ||y, < |Ju]|,
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thus (S,y), is bounded for all y € Y. By the uniform boundedness theorem
there is a constant C' > 0 such that ||S,|| < C for all n € N.

Now let 6 = 1/C. If y € Bs(0), then ||y, < Clly|]| < 1. Thus for every
n € N there exist u, € X, v, € Y such that Tu,+v, = y and ||u,||+n|v.|| <
1. In particular u,, € B1(0) and v, € By, (0), hence T'(B) > T'u, — y. Thus
y € T(B).

In the second step we show that T'(B) contains Bj/»(0). If ||y|| < d/2, then
by the first step and scaling there exists x; € By /2(0) such that ||y — T[] <
§/4.

This way we get recursively a sequence (z,,) in X with ||z,| < 27" and

Y- Z Ty,
k=1

Hence y = ZZOZI Txp,. On the other hand, the norm estimate for z, and
completeness of X imply that (D", z)), converges to some z € Bjy(0).
Thus y =Tz € T(B). O

< 52~ (nt1),

Corollary 4.2.5 (Bounded inverse). Let X,Y be Banach spaces. If T €
L(X,Y) is bijective, then its inverse is bounded.

Corollary 4.2.6. Let X be a vector space and ||-||1, ||-||2 complete norms. If
there exists a constant C' > 0 such that |||y < C||-||2, then ||-||1 and ||-||2 are
equivalent.

Definition 4.2.7 (Closed operator). Let X, Y be normed spaces and let
T: X — Y be a linear operator. The graph norm ||-||r is defined as

[l X =10, 00), [[z]lz = [l=f| + [ T].
The operator T is called closed if (X, ||-||7) is complete.

Proposition 4.2.8. Let X be a normed space and Y a Banach space. A
linear operator T: X — 'Y is closed if and only if whenever (x,,) is a Cauchy
sequence in X and (Tz,) is a Cauchy sequence in Y, then (x,) converges
and T(lim, o T,) = limy, o0 T,

Example 4.2.9. Let Q be a domain. The operator A: H?(Q2) — L*(Q) is
closed.

Theorem 4.2.10 (Closed graph theorem). Let X be a normed space, Y a
Banach space and T: X — Y be linear. Of the following three properties,
every pair of two implies the third.
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(i) T is closed.
(i) X is complete.
(15i) T is continuous.

Proof. The only nontrivial implication is (i)4(ii) = (iii). By definition, 7'
is continuous w.r.t. the graph norm on X. Moreover, ||-||x < ||||r. Since X
is complete with respect to both ||-|[x and |[|-||7, the norms are equivalent.
Thus 7' is continuous with respect to ||| x- O

4.3 Spectrum

From now on, we assume that K = C, i.e., all Hilbert spaces are complex
Hilbert spaces.

Definition 4.3.1. Let H, K be Hilbert spaces. A (possibly unbounded)
operator from H to K is a linear map 1" defined on a linear subspace of H
with values in K. If H = K, we also say that T is an operator in H. The
domain of T is denoted by dom(7"). The operator T is called densely defined
if dom(T) is dense in H.

Remark 4.3.2. The domain of an operator is a crucial part of information.
It often happens in that two operators act in the same way, but on different
domains.

Definition 4.3.3 (Spectrum). Let H be a Hilbert space and T a densely
defined operator in H. For z € C, the operator T' — z is defined by dom(7T —
z) =dom(T) and (T — z)§ = T¢ — 2€. The resolvent set p(T') is defined as

p(T) ={z € C| T — z bijective with bounded inverse}.

For z € p(T), the resolvent of T at z is the (bounded) operator (T'— z)~'.
The spectrum o(T') of T is the complement of p(7T).

Example 4.3.4. If H = C", then T'— z is bijective if and only if it is injective if
and only if it surjective. Thus z € ¢(7T') if and only if there exists £ # 0 such
that T¢ = z€. In other words, the spectrum of T is the set of eigenvalues of
T.

In infinite dimensions, one can have spectral values that are not eigenval-
ues:
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Example 4.3.5. Let
T: L2(0,1])) - LX([0,1)), (Tf)(x) = f(2).

For every z € [0,1], the operator T — z is not surjective: If T'f — zf = 1,
then (x — z)f(z) = 1 for a.e. x € [0,1], which implies f(z) = (z — 2)7! a.e.
However, x — (z — 2)~! is not square integrable.

The operator T' — z is injective for every z € C: It T'f — zf = 0, then
xf(z) = zf(z) for a.e. x € [0,1], which implies f = 0 a.e. Thus 7" has no
eigenvalues.

Ezample 4.3.6. Let (X, A, 1) be a semi-finite measure space and ¢: X — C
measurable. The operator M, of multiplication with ¢ on L?(X, i) is defined
by

dom(M,) = {f € L*(X,p) | pf € L*(X, p)},
Mq:f =pf.

Let us first show that M, is densely defined. Let A, = {x € X : |p(x)] <
n}. Clearly 14, — 1 pointwise. By the dominated convergence theorem,
|f — fla,ll2 — O for every f € L*(X, u). Moreover,

/ ofLa [2dy < n2/ 2 dp < oo,
X X

Thus f1a, € dom(M,). Therefore M, is densely defined. The operator
M, is also closed, but that requires some measure theory tools we have not
covered in this course.

We claim that

o(M,) ={\ € C| u(e " (B-(\))) > 0 for all ¢ > 0}.

First, if there exists € > 0 such that p(o ' (B:(A))) =0, let Ry = M,_x-1.
Note that the function (¢ — A)~! is finite p-a.e., and functions that coincide
p-a.e. define the same multiplication operator.

Ifz ¢ o= 1(B.(0)), then |p(z)—A| > e. As u(p~1(B.(0)) = 0, we conclude
that |¢ — A| > € p-a.e. and hence

[urte-npanze? [ I5an

X X

Thus dom(R,) = L*(X, 1) and Ry is bounded. The identities Ry(M,—\)f =
[ for f € dom(M,) and (M, — \)R\f = f for f € L*(X,u) are clear.
Therefore A € p(M,,).
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For the converse inclusion, let A € C with u(p~'(B.(A\))) > 0 for all
e > 0. Since (X, A, u) is assumed to be semi-finite, there exists for every
e > 0aset A. € A such that A. C ¢ '(B.(\)) and 0 < pu(A.) < oo. Let
fo =14 /u(A)"2. We have ||f.||2 = 1 and

|<M<,0 - )‘)fs| < 6|f€|.

Hence ||(M,— ) f<||2 < e, which implies that M, — A cannot have a bounded
inverse. Therefore A € o(M,,).

Lemma 4.3.7. Let H be a Hilbert space and T a densely defined operator in
H. If T is not closed, then p(T) = 0.

Proposition 4.3.8. Let H be a Hilbert space. For densely defined operator
T in H the resolvent set p(T) is an open subset of C and the map

p(T) = C, 2+ (£,(T — 2)"'n)
is differentiable for all £,n € H.

Remark 4.3.9. Since we are dealing with a function on a complex domain,
differentiability is much stronger than for functions with real domain. For
example, if U C C is open and f: U — C is differentiable, then for every
w € U and every r > 0 such that B,(w) C U there exists a sequence (ay)
in C such that )" " a,(z — w)" converges absolutely on B,(w) to f(z). In
particular, such a function is necessarily smooth.

Proof. Let zg € p(T). If z € C with |z — 2| < [[(T — 20) 7|7}, let

n

Su=Y (2= 20)"(T — 2)~*+Y.

k=0

We want to show that (5,,) is a Cauchy sequence. If m > n, then

m

1Sm = Sull < Y |2 = 20/ *I(T = 20)~H*+
k=n+1
_ - _ k
<IUT=20)"" D (12 = 2oll(T = 20)7M1)"

k=n+1

Since |z — zo| < (T — zo)7||7%, the series Y 7o, (|2 — 2ol (T — Zo)_l||)k
converges. In particular, for every ¢ > 0 there exists N € N such that
Yoy (|2 = 2| I(T - zo)_lﬂ)k < e. Thus (S,) is a Cauchy sequences.
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As L(H) is complete, there exists S € L(H) such that S,, — S. We claim
that S is an inverse of 7' — z. Indeed, if £ € H, then 5,,§ € dom(7") and

(T = 2)Sn = Z(z — 20)"(T = 2)(T — z)~**V¢
k=0

= (2= 20)M(T = 20+ 20 — 2)(T — 2)" "¢
k=0
= Z <(z — 20)M(T — 2)7F — (2 — 20)"™(T — zo)(kﬂ))f
k=0
_ g . (Z _ Zo)n-l-l (T . ZO)—(n—&-l)g.
Since S,¢ — S¢ and T is closed, we conclude S¢ € dom(T') and

(T — 2)S€ = lim (€ — (2 — 20)"THT — )" "TVe) = €.

n—oo

A similar argument shows that S(T — z)§ = ¢ for every £ € dom(T"). Thus
z€p(T) and (T — z)~' = S. Furthermore, if £, € H, then

o0

<£7 (T - Z)_17I> = nh—>nolo<€’ Snn> - Z<£7 (T - ZO)_(k+1)7]><Z - ZO)ka
k=0
which depends smoothly on z. O

Remark 4.3.10. Here is a brief summary of the proof: For R € L(H) with

|R|| < 1, the series
>R
k=0

converges in operator norm. This is called the Neumann series (named after
Carl Neumann, not John von Neumann). By a telescoping trick one can
show that

(1—R)§:Rk:§:3’f(1—3) = 1.

Thus 1 — R is invertible with inverse > .- R¥. What we used in the proof
is that one can write 7' — z as

T—2+2—2=(1—(2—2)T —2)")NT — 2).

If |z — 20| < (T — 2)7!||7", one can then apply the Neumann series to
R = (z—2)(T — z)~! to find an inverse of T — 2.
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4.4 Symmetric and self-adjoint operators

Definition 4.4.1 (Adjoint of an operator). Let H, K be Hilbert spaces and
T a densely defined operator from H to K. The adjoint T of T is the
(possibly unbounded) operator from K to H defined by

dom(T") ={¢ € K [ 3n € HV( € dom(T): (§,TC) = (1, ()},
T =n.
An operator T in H is called self-adjoint if T* =T.

Remark 4.4.2. The density of dom(7") in H guarantees that the element 7 in
the definition of the adjoint is uniquely determined, if it exists.

Lemma 4.4.3. The adjoint of a densely defined operator between Hilbert
spaces is closed.

Proof. Let T be a densely defined operator from H to K, (&,) a sequence in
dom(7™) such that &, — ¢ in K and T*¢, — n in H. To prove that T* is
close, we have to show that £ € dom(7™) and T*¢ = 7.

Let ¢ € dom(7'). By definition of the adjoint,

(€,T¢) = Jim (6, TC) = lim (T°6,.C) = (1.0).
Hence ¢ € dom(T™*) and T* = n. O

Proposition 4.4.4. Let H, K be Hilbert spaces. A densely defined opera-
tor T from H to K has an everywhere defined adjoint if and only if T is
continuous.

Proof. First let T' be a densely defined continuous operator from H to K. If
¢ € K, then
H—=C, (—{£T1¢)

is a bounded linear functional. By the Riesz representation theorem, there
exists n € H such that (¢,7C) = (n,() for all ( € H. Thus dom(7™) = H.

Assume conversely that 7" has an everywhere defined adjoint. Since the
adjoint is closed by the previous lemma, it is also bounded by the closed
graph theorem. We claim that T¢ = T**¢ for all £ € dom(T). In fact, T** is
everywhere defined and bounded and

(&, T™n) = (T¢,n)

for all € € dom(7"), n € dom(7™), hence £ € dom(7T**) and T**¢ = T¢. Since
T™* is continuous, so is T O
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Definition 4.4.5 (Extension of operators, symmetric operator). Let H, K
be Hilbert spaces and S, T' (possibly unbounded) operators from H to K.
The operator T is called an extension of S, written as S C T, if dom(S) C
dom(T") and T¢ = S¢ for £ € dom(S).

A densely defined operator T in H is called symmetric if T C T™.
Remark 4.4.6. Clearly, every self-adjoint operator is symmetric. The converse
is not true, as we shall see in the examples.

Example 4.4.7. A bounded everywhere defined operator is symmetric if and
only if it self-adjoint since an everywhere defined operator has no non-trivial
extensions. In this case, it suffices to check

(T'¢,m) = (&, Tn)
for all £,m € H.

Ezample 4.4.8. Let (X, A, 1) be a semi-finite measure space and ¢: X — R
measurable. If

Dc{feL*(X,n)|efel*(X n)}

is a dense subspace, then M,|p is symmetric. However, it is self-adjoint if
and only if D = dom(M,,), the maximal domain:
The symmetry is not hard to see: If f,g € D, then

(My|pf,9) = / efgdp = / fleg) di = (f, My|pg).
b's X
In fact, the same computation shows that if f € D and g € dom(M,,), then

(My|pf,g) = (f, Myg).

Therefore dom(M,,) C dom(M,|}p) and M, f = M|, f for f € dom(M,|},),
which can be summarized as M, C M,|},. Thus a necessary condition for
self-adjointness is D = dom(M,,).

Let us show that it is also sufficient. Let f € dom(M}) and A, = {z
Xt @) < n}y go = La,0f . As |pgal < n?|f|, we have g, € dom(M,
Therefore

lgal = ' [ ues du‘ (Mg P = s MEFY] < lgllal] M2

S
).

It follows that [|g,|[2 < || M f]|2. By the monotone convergence theorem,

l9al3 = /X of P du.

We conclude that ¢f € L*(X, u), which implies f € dom(M,). As we have
already shown that M, C M7, we arrive at M} = M.

104



Remark 4.4.9. The previous example my suggest that symmetric operators
differ from self-adjoint operators only in that one has not chosen the maxi-
mal domain. It is true that self-adjoint operators do not have a non-trivial
symmetric extension. However, there are symmetric operators with several
self-adjoint extensions and symmetric operators with no self-adjoint exten-
sion, as the next examples show.

FEzxample 4.4.10. The operator
T: C2((0,m)) = L*((0,7)), [+ [

is a symmetric operator in L*((0, 7)), as integration by parts shows. However,
it is not self-adjoint and has several self-adjoint extensions
Two of them are given as follows: Let a, = [ cos®(kz)dx for k €

No and b, = [ sin®(kw)dx for k € N. Note that (alzl/Q cos(k-))ken, and

(b,;l/2 sin(k-))ren are orthonormal bases of L?((0,)).
The Laplacian with Dirichlet boundary conditions on L*((0,7)) is defined
by

dom(AP)) = {f€L2 ((0,m)) Zk4 S sin(k) | < }

AP f— Zk? (f,sin(k-)) sin(k-).

The Laplacian with Neumann boundary conditions on L?((0,7)) is defined
by

dom(AW)) = {feL2 ((0,7)) Zk‘*ak (f,cos(k-))]* < }

ZkQak (f,cos(k-)) cos(k-).

We will see later that both A®) and AW) are self-adjoint. Moreover, if
F =N b (f, sin(k ) sin(k ), then

2

= d
Zb Yf sin(k-))— sin(kx)

—1 da*
Z U f sin(k - ) sin(ka)
= A( )f(l')



An analogous result holds for A®W) and finite linear combinations of co-
sine functions. With a bit more work, one can show that C?((0,7)) C
dom(A™P)) Ndom(AM) and f” = AP f = AN f for f e C?((0,)).

Ezample 4.4.11. The operator
T: C:((0,00)) = L*((0,00)), f = if’

is a densely defined symmetric operator in L?((0,00)) without self-adjoint
extensions.

Lemma 4.4.12. Let H be a Hilbert space. If T is a symmetric operator in
H, then ker(T — \) = {0} for A € C\ R.

Proof. 1If £ € ker(T — \), then

ME,€) = (€, T€) = (T, &) = M&,€).-
If A # A, we conclude & = 0. O

In other words, symmetric operators have only real eigenvalues. Note
however, that an operator on an infinite-dimensional Hilbert space can have
spectral values that are not eigenvalues. This is in fact always the case for
symmetric operators that are not self-adjoint, as the next result shows. This
is one of the reasons why one requires the observables in quantum mechanics
to be self-adjoint and not only symmetric.

Proposition 4.4.13. Let H be a Hilbert space and T a densely defined sym-
metric operator in H. The spectrum of T is either C, {\ € C | Im A > 0},
{A € C| ImA < 0} or a subset of R, and T is self-adjoint if and only if
o(T) C R.

Corollary 4.4.14. Let H be a Hilbert space. A densely defined closed sym-
metric operator T in H is self-adjoint if and only if ran(T + i) = H.

Corollary 4.4.15. Let H be a Hilbert space. If'T" is a densely defined sym-
metric operator in H such that p(T) NR # 0, then T is self-adjoint.

4.5 The spectral theorem

The spectral theorem links self-adjoint operators (observables in quantum
mechanics) to measurements. It takes a particularly simple form in finite
dimensions.
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Proposition 4.5.1 (Spectral theorem in finite dimensions). Let H be finite-
dimensional Hilbert space and T: H — H a symmetric operator. For \ €
o(T) let Py be the orthogonal projection on ker(T — X). Then

T = Z AP,

Aea(T)

Proof. Let A € o(T). For £ € ker(T — \) we have T¢ = X. Moreover, if
n € ker(T — \)*, then

(T, &) = (0, TE) = Mn, &) =0,

hence T € ker(T — A\)*+. Thus (T — A\Py)(ker(T — \)*) C ker(T — M)+

Hence we can apply the previous step to (T — APy)|xer(r—x)+. If we iterate
this procedure, we end up with the claimed identity (thls iteration terminates
because we are in finite dimensions). ]

In infinite dimensions, not all spectral values are eigenvalues and in gen-
eral, one cannot expect a self-adjoint operator to be a linear combination of
projections. To deal with cases as in Example 4.3.5 where the spectrum is
continuous and ker(7'— \) = {0} for all A € C, we need the following concept
that generalizes families of orthogonal projections.

Definition 4.5.2 (Projection-valued measure). Let (X,.A) be a measurable
space and H a Hilbert space. A map E: A — L(H) is called projection-
valued measure (PVM) if

e F(A) is a projection for all A € A,
e () =0, BE(X) =1,
o A—[0,00), A ({, E(A)E) is a measure for all £ € H.

Remark 4.5.3. By definition of a projection-valued measure, the map pe: A —
(&, E(A)E) is a measure. We write [, g(w) d(§, E(w)E) for [, g dpe.

Ezxample 4.5.4. Let X = {1,...,n} and A = P(X). If P,..., P, € L(H)
are projections such that P, +---+ P, = 1, then

E: A— L(H Zpkz

keA

is a projection-valued measure.
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Ezample 4.5.5. If H = L*(R), then the map
E: A—>£(H), A*—)M]IA
is a projection-valued measure on (X, A).
The following properties of projection-valued measures come in handy.

Lemma 4.5.6. Let (X,.A) be a measurable space, H a Hilbert space and E
a projection-valued measure on (X, A) with values in L(H).

(a) If A,B € A, then E(A)E(B) = E(ANB). In particular, if AN B =0,
then E(A)E(B) = 0.

(b) If (Ay,) is an increasing sequence in A and & € H, then E(A,)§ —

EUnen An)€-

Lemma 4.5.7. Let H be a Hilbert space and T an operator in H. If (£, TE) =
0 for all £ € dom(T), then T, =0 for all &€ € dom(T).

Proposition 4.5.8. Let H be a Hilbert space, (2, A) a measurable space and
E: A — L(H) a projection-valued measure. For every measurable function
f:Q — C there exists a unique operator T in H with domain

dom(T) = {s et [Pl Ewe < oo}
that satisfies
(€.T¢) = /Q F(w) i, Bw)e)

for all € € dom(T).
The operator T s densely defined and it s bounded if f is bounded

Proof. For £ € H let ue denote the measure A — (£, E(A){). The domain
of T' can be rephrased as

dom(T) = {¢ € H | f € L*(, pe) }.

First note that since |f(w)] < 1+ |f(w)|? for all w € 2, we have

J 1@l dnete) < ) + [ 1) dne

Hence the integral [, f(w) due(w) is well-defined whenever f € L*(, y1¢). By
the previous lemma, 7" is uniquely determined by (£, 7€) for £ € dom(T).
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To see that dom(T') is dense, let A, = {w € Q : |f(w)| < n}. By a
previous lemma, F(A,)§ — £ for all £ € H. Moreover, figa,)e(£2\ An) = 0.
Thus

/ F@) dptpae(w) = / L, (@) F@)]? dptane()
Q Q

< 2| B(AE|?

< 00,

which implies E(A,)¢ € dom(T'). Therefore dom(7") is dense.
To show existence of T', let

3
Qs: dom(7T) x dom(T) — C, (§,n) — Zz_k/ f dpigyiny.
k=0 Q
Note that by the polarization identity, Q(&,&) = [, f dpe.

If f= Z?:l a;1 4, with disjoint measurable sets A;, then the polarization
identity implies

Qr(&m)l = DD i oy + i, B(A;) (€ + ikn))‘

j=1 k=0

= Y aite B

n /2 /5, 1/2
< (Z<f, E(Aj)£>) (Zwm, E(Aj)m)

J=1 J=1

1/2
< el ( / |f|2dun> |

For arbitrary measurable f: @ — R, the inequality [Q (&, 7)| < IEI1f [l 22
can be proven by approximation.

It follows from the Riesz representation theorem that for every n &
dom(7") there exists a unique Tn € H such that (£,7n) = Qf(&,n) for
all £ € dom(T'), and || Tn|| < || f|l 22~ In particular, (£, 7€) = [, f due as
observed above.

If f is bounded, then

/Q'f (@) dpe(w) < [ FIZNIEN2 < o0

for all £ € H. Thus dom(T) = H and ||T¢[ < [[fllzzue < Il ll€]l-
Therefore T is bounded. 0
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Definition 4.5.9 (Integral with respect to a PVM). Let H be a Hilbert
space, (2, A) a measurable space, E: A — L(H) a projection-valued measure
and f: ) — C a measurable function. The unique self-adjoint operator T'

from the previous result is called the integral of f with respect to E and
denoted by [ fdE.

Proposition 4.5.10. Let H be a Hilbert space, (2, A) a measurable space,
E: A— L(H) a projection-valued measure and f,g: @ — C measurable.

(a) If (f) is an increasing sequence of mnon-negative bounded measurable
functions on Q0 and f: Q2 — R is a bounded measurable function such
that f(w) = lim, e fn(w) for allw € Q, then

(o ey (o0

(b) If f,g are bounded and o, B € C, then

forallé,ne H.

/Q(af+6g)dE:a/Qde+ﬁ/diE

= () ([ o)

(c) ([, fdE)" = [, [dE. In particular, [, f dE is self-adjoint if f is real-

valued.
(d) [, [dE is closed.

Proof. (a) By the polarization identity, it suffices to consider the case £ = 7.
In this case, the statement is a direct consequence of the definition of the
integral together with the monotone convergence theorem.

(b) Linearity is an easy consequence of the linearity of the integral of
scalar-valued functions. Multiplicativity is a bit trickier. First note that if
A€ A, then

/Q La(w) d(&, Ew)&) = (&, E(A)E)

for all £ € H, hence fQ 14 dFE = E(A) by uniqueness. Therefore, if A, B € A,
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then

LanpdE

/]lA]leE

\

EAHB

( ]lAdE) ([ 1sa2).

By linearity, we obtain [, fgdE = ([, f dE)(, g dE) whenever f and g are
linear combinations of indicator functions of measurable sets. With the help
of (a), one can then extend this identity to arbitrary bounded measurable
functions. We leave the details as an exercise.

(c) Let Ty = [, fdE. By the polarization identity, if £, 7 € dom(7}),
then

(& Tyn) = Zl (€ +i*n, Ty(€ +i*n))
= Z;ik/gfdugﬂkn(w)
I, [
= Z;Zk/gfdﬂgﬂ'kn(w)

4
= i Z *(E+iFn, TH(E + i*n))

:—Zz (T7(& + i*n), & +i*n)

= (Tffﬂ?%

Thus Ty C T}. In particular, T} = T if f is bounded.
To prove T; C T, let A, = {w € Q: [f(w)| < n}. First note that

fEe(B) = (E(An)E E(B)E(A,)S) = (€, E(B N Ap)§) = pe(B N Ay)
for all B € A. Approximation by simple functions then shows that

/Q P daoane = /A I due < n2e]

and

<E(An)f7TfE(An)f> = /Qfd,uE(An)g = /A fdu(§) = <§7Tf]lAn€>

111



for all £ € H. In particular, E(A,)H C dom(7Ty) and TyE(A,)¢ = Ty,
for all £ € H.
If £ € dom(7}) and n € H, then the result in the bounded case implies

(Try, &) = (& TrE(An)n) = (E(A)TFEn).

Hence Ty, £ =FE (A,)T +&. By the monotone convergence theorem,
[fI?due = lim [ |f*dp = lim || Ty, €° = lim [|B(A,)TFE|* < [ T7E)*
Q n—oo An n—oo n—oo

Therefore, £ € dom(77).
(d) Since Ty = T7, the operator T} is closed. O

Remark 4.5.11. Similar to the case of measures, if E is a projection-valued
measure, one can define an equivalence relation ~g on the space of all mea-
surable functions from €2 to R by setting f ~g g if there exists N € A with
E(N) = 0 such that {w € Q| f(w) = g(w)} C N. Let L>®(f, E) be the set
of all equivalence classes of bounded measurable functions from 2 to C.
The space L*>(£2, E) has the structure of a von Neumann algebra, and the
previous result says that the integral with respect to F is a (normal unital)
s-homomorphism between the von Neumann algebras L>(€2, E') and L(H).

An important application concerns operators that admit an orthonormal
basis consisting of eigenvectors:

Example 4.5.12. Let H be a separable Hilbert space with orthonormal basis
(&n)nen and (A,)nen @ sequence in R. The map

E:BR) = LH), A > (&, )6

n: Ap,€A
is a spectral measure and the operator given by

dom(T) = {f €H: Z)\i|<§mf>|2}

n=1

TE =) Ml )6
n=1

is self-adjoint.
In particular, the Laplacian with Dirichlet and Neumann boundary con-
ditions in L2((0,)) are self-adjoint.

112



Theorem 4.5.13 (Spectral theorem). Let H be a Hilbert space. For ev-
ery self-adjoint operator T in H the there exists a unique projection-valued
measure E on (R, B(R)) with values in L(H) such that

T = /RAdE()\).

Theorem 4.5.14 (Spectral theorem in multiplication operator form). Let
H be a Hilbert space. For every self-adjoint operator T in H there exists a
localizable measure space (X, A, p), a measurable function ¢: X — R and a
unitary operator U: H — L*(X, p) such that

T = U*M,U.

Definition 4.5.15 (Spectral measure, functional calculus). Let H be a
Hilbert space. If T is a self-adjoint operator in H, then the unique PVM
E on (R, B(R)) with values in £(H) such that

T /R/\dE(A)

is called the spectral measure of E.
If f: R — C is a measurable function, we define

f(T) = / (N dE(N).

We will not give a full proof of either version of the spectral theorem
here. However, let us at least see how the spectral measure of intervals can
be described. To do so, we need to properly define powers of a (possibly
unbounded) operator.

Definition 4.5.16 (Powers of an operator). Let H be a Hilbert space and T’
an operator in H. The powers 7™, n € N, are inductively defined by 7' = T
and

dom(T™) = {¢€ € dom(T™) | T"¢ € dom(T)},
T = T(T™€).
Lemma 4.5.17. Let H be a Hilbert space and T a self-adjoint operator in

H with spectral measure E. For a,b € R with a < b, the spectral projection
E([a,b]) is the orthogonal projection onto

(a—b)"
on

~ 1

{5 & Medom() : |7~ La+5)el < el for attn € N} .
n=1

In particular, E({a}) is the orthogonal projection onto ker(T — a).
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Remark 4.5.18. If R > 0, then the previous lemma implies that E([—R, R])
is the orthogonal projection onto

{g € () dom(T™) : |[T"¢|| < R™||¢]| for all n € N} :

n=1

which can be interpreted as the maximal closed subspace on which T acts
like a bounded operator with norm less or equal to R.

Example 4.5.19. Let T be a self-adjoint operator in H that admits an or-
thonormal basis (;);es of eigenfunctions with associated eigenvalues \;, i € I.
Since (& ). »,=» is an orthonormal basis of ker(7"— \), we have

E({(ANE= D) (6.96
it A=A
forall £ € H. As 37\ orr_nyzq0y E({A}) = 1, we conclude
E({) € R: ker(T — \) = {0}}) = 0.

This completely determines the spectral measure £ and we have

dom(T) = {¢ € H: )  N[(&,6)[* < oo},
el
Te =S MG Ok

i€l

Ezample 4.5.20. Let (X, A, 1) be a semi-finite measure space and ¢: X — R
measurable. Recall that the multiplication operator M, is defined by

dom(M,) = {f € L*(X,p) | of € L*(X, )},
Mgof = Qof'

As we have seen before, this operator is self-adjoint.
If f =0 p-a.e. on the complement of o ~!([a,b]), then

)

1o sy span<“ g

If on the other hand u({x € X | f(z) # 0} \ v !([a,b])) > 0, then there
exists € > 0 such that

/ 2> 0.
X\p 1 (fa—eb+e))
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Then
/x'w_%(aﬂ))nf'?d“z/ I(¢—%(a+b))"f|2du

X\p~1([a—e,b+e])

a — b 2n
> ( + 5) / I dp
2 X\~ (fa—e,be])

This shows that [|(M, — 3(a+b))"f[l2 < (252)"[| |2 cannot hold. Therefore
E(]a, b)) is the projection onto
{feL*X,n)]| f=0pae. outside o~ ([a,b])}

This shows that E(A) = My ., for every closed interval A in R. In fact,
the same is true for arbitrary Borel sets, but one needs more measure theory
to show this.

As the name and the previous two examples suggest, the spectral theorem
is also related to the spectrum.

Proposition 4.5.21. Let H be a Hilbert space and T a self-adjoint operator
in H with spectral measure E. The spectrum of T satisfies

o(T)={NeR|E(AN=e,A+¢)) #0 for all e > 0}.
In particular, E(p(T)) = 0.

Going further, the spectral theorem allows for a finer distinction between
parts of the spectrum.

Proposition 4.5.22. Let H be a Hilbert space and T a self-adjoint operator
in H with spectral measure E. The sets

H,.={¢€ H|E(A)¢ =0 for all A € B(R) s.t. L(A) = 0},
Hy,={{€ H |3\ €R, ap > 0VA € B[R): [E(A)E|* =) andy, (A)}
k=1

are closed orthogonal subspaces of H. Moreover, T(Hy NdomT) C H, and
o(T|gundomr) C o(T) for e € {ac, pp}.
Definition 4.5.23 (Absolutely continuous, singularly continuous and pure

point spectrum). Let H be a Hilbert space and T a self-adjoint operator in
H. The subsets

UaC<T) - O-(T|HacﬂdomT)
opp(T) = U(T|prmdomT)
=0

0se(T) = 0 (T) \ (0ae(T) U 0pp(T))

are called the absolutely continuous spectrum, pure point spectrum and sin-
gular continuous spectrum of T.
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Remark 4.5.24. If p is a finite measure on (R, B(R)), then the function
Fu R = [0,00), t — u((~00, 1]

is called its distribution function. The measure p is called a pure point
measure if F), is constant except for (countably many) jumps and continuous
otherwise.

A continuous measure p is called absolutely continuous if there exists
f € LY(R) such that

EF(t) = /(_ ) fdct

for all t € R.

A continuous measure p is called singular continuous if it is continuous
and there exists N € B(R) such that £!(N) =0 and u(R\ N) = 0.

The Lebesgue decomposition theorem states that every finite measure on
(R, B(R)) can be uniquely decomposed as pt = fipp + flac + fse With pip, a pure
point measure etc.

4.6 Stone’s theorem

Proposition 4.6.1. Let H be a Hilbert space, T a self-adjoint operator in
H and let U, = "1 fort € R.

(a) UU, = UUf =1 for all t € R,

(b) Up =1,

(¢c) UUy = Ugyy for all s,t € R,

(d) R — H, t — U is continuous for all £ € H.

Proof. (a), (b) and (c) follow immediately from the algebraic properties of
functional calculus. To show (d), let E be the spectral measure of 7" and let
(t,) be a sequence in R such that ¢, — ¢. By the definition of functional
calculus,

U6 =Vl = (6, (€7 =T (7 —e)e) = [ et = dle, BONE)

The last integral converges to zero by the dominated convergence theorem.
O
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Definition 4.6.2 (Strongly continuous unitary group). Let H be a Hilbert
space. A strongly continuous unitary group on H is a family (U;)ier of
bounded operators on H such that

(a) UyU, = U U =1 for all t € R,
(b) UO - 17
(c) UU, = Usyy for all s, t € R,

(d) R— H, t+ U is continuous for all £ € H.

The previous proposition shows that if 7" is a self-adjoint operator, then
(e1),cr is a strongly continuous unitary group. Stone’s theorem asserts that
the converse is also true.

Theorem 4.6.3 (Stone). Let H be a Hilbert space. If (Uyp)ier is a strongly
continuous unitary group, then

d
t=0

s a dense subspace of H and the operator
T:D — H, {— —in
is a self-adjoint operator in H. Moreover, U, = €T for all t € R.

Proof. Clearly, D is a subspace. For £ € H and 0 > 0 let

1 1)
féH_>(C;77'_>g/‘<Ut§>77>dt
0

Since

1 §
sl < 5 [ 10 )l de < el

for all n» € H, by the Riesz representation theorem there exists a unique
& € H such that fs = (&, ). Moreover,

1 0
() — (€l < 5 [ 10&— & nlae < sup U — €]l
0 t€[0,6]

In particular, for n = £ — &5, we obtain

165 — &Il < sup [[U€ — €]l — 0,6 — 0.
te€[0,6]
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We want to show that & € D. Formally,

d 1 [°d
vi=5 | %
- 5 ), dt

Y 1/6dU§d5—1(55 £)
ts ° 0 dS ® 5 o '
Let us make thls rigorous:

J

dt

t=0

1)
¥<Ut€5 —&5,m) = %@67 U_in—mn)

1 )
- ; / <U5§, U—tn - T]> ds
0

t

1 t+6 1 d

- _\/t <US£7 77> ds — Z/() <U8€777> ds
1 t+6 1 t

—y /(; <Us£7 77> dS - z /0 <US€7 77) dS

t
= (Us&,m) — (&, m)-

Therefore £ € D and T = —%(U(;f —§). It follows that D is dense in H.

Next we show that T is self-adjoint. An element n € H belongs to
dom(7™) if and only if there exists ( € H such that for all £ € dom(T") we
have

(€.C) = (T m) = ilim L (U& — &,n) = il {6, Uon — ),

which holds if and only if € dom(7"), and in this case T*n = ¢ = 1.
We next show that Uy(D) C D and TU,, = U, T¢ for £ € D. In fact, if
¢e D and ( € H, then

LU — U£,C) = T{UE — €,U-C) "3 (T, U_C) = (UTE,O).

Thus U,¢ € D and TU¢ = U,TE.
It remains to show that U, = e for all t € R. To do so, we will show
that for all ¢ € D, the function

w: R =R, t Ul — ¢

is constant.
First note that by the spectral theorem,

1 . ) . 1 . . .
<£’ E<ez(t+h)T§ . ethé:) . ieltTT£>’ < /R E<€'L(t+h))\ . ezt)\) . i)\elt)\ dﬂ£<)\)
1 thA . ?
= : E(e — 1) — A due(N).
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Since (e —1) — iX as b — 0 uniformly in X (exercise), the integral on

the right side converges to 0 as h — 0. By the polarization identity,
1 ) ) )
lim 3 (n, €M7 — ) = (. i TE)
h—0 h
for all &,n e D.
Combined with the result for U;, this implies that

1
lim =(w(t + h) —w(t),n) = (iTw(t),n).
h—0 h
Therefore,

1 -
pllw(t+h) —wt)]” =

Hence w is constant. As w(0) = 0, we conclude that U,§ = €7 for all t € R
and ¢ € D. Finally, since D is dense in H and U, and ! are bounded, the
equality extends to all £ € H by continuity. O

Remark 4.6.4. In the last step of the proof we tacitly used that if (§,) and
(n,,) are sequences in H such that &, — & and (n,,() — (n,() for all ( € H,
then (&,,m,) — (£,n). The proof of this fact is left as an exercise.

Remark 4.6.5. If (n,,) is a sequence in H such that (n,,() — (n,() for all
¢ € H, then one says that (n,) converges weakly to n. In general, weak
convergence does not imply convergence in the norm of H. For example,
if (e,) is an orthonormal basis of H, then e, converges weakly to zero, but
llen]| = 1 for all n € N, so e, cannot converge to zero in norm. In the situation
of the proof of Stone’s theorem however it is true that +(Upé — &) — iT¢
holds in norm for all £ € D.

Remark 4.6.6. Informally, Stone’s theorem states that for any self-adjoint
operator T', the solution operator U; that maps £ € H to the solution &(t) of
the initial-value problem

{% (t) =iTE()
£0) =¢

In the case when 7' is the Hamiltonian of a physical system, this initial-value
problem describes the time evolution of the state of the system with initial
state & (time-dependent Schrodinger equation).
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Note however that the strongly continuous unitary group U; gives a
mathematically well-defined time evolution for all initial states whereas the
Schrodinger equation only makes sense if £(¢) € dom(7"), which is guaranteed
for £ € dom(7T'), but not for general initial states.

This is an instance of the general phenomenon for ordinary and partail
differential equations that it is often easier to rigorously define a general
notion of solution of the equation even when the equation itself is not well-
defined in this generality.
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