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Chapter 1

Local and Global Analysis

1.1 Fundamentals

1.1.1 Linear Theory

Definition 1.1.1. Let V be a vector space over K. A finite family (ei)i∈I in
V is called a finite basis of V if for every v ∈ V there exists a unique family
(λi)i∈I in K such that

v =
∑
i∈I

λiei.

The vector space V is called finite-dimensional if it has a finite basis, other-
wise it is called infinite-dimensional. By convention, the empty family is a
finite basis of the trivial vector space {0}.
Remark 1.1.2. • We use K to denote a field that is either R or C.

• If (λi)i∈I is a finite family in K and (vi)i∈I is a finite family in V , then∑
i∈I λivi is called a linear combination of vi, i ∈ I. The family (vi)i∈I

is called linearly independent if whenever (λi)i∈I is a finite family in K
such that ∑

i∈I

λivi = 0,

then λi = 0 for all i ∈ I.

An equivalent definition of a finite basis is a linearly indepenent finite
family (ei)i∈I such that every vector in V is a linear combination of ei,
i ∈ I.

• If (ei)i∈I and (fj)j∈J are finite bases of V , then I and J have the same
cardinality (number of elements). This number is called the dimension
of V and denoted by dimV .
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Example 1.1.3. The vector space Kn has the canonical or standard basis
(ei)

n
i=1, where ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the i-th position.

Example 1.1.4. The vector space K[X] of polynomials over K has no finite
basis. Indeed, any finite family (pi)i∈I contains a polynomial of maximal
degree d. Then every linear combination of pi, i ∈ I, also has degree at most
d. This mean that every polynomial with degree strictly larger than d is not
a linear combination of pi, i ∈ I.

Definition 1.1.5. If V and K are vector spaces over K, a map ϕ : V → W
is called linear if

ϕ(λ1v1 + λ2v2) = λ1ϕ(v1) + λ2ϕ(v2)

for all λ1, λ2 ∈ K and v1, v2 ∈ V .
If V and W are finite-dimensional, we write L(V,W ) for the set of all

linear maps from V to W .

Example 1.1.6. Rotations of the plane are linear maps. In contrast, trans-
lations are not linear (except for the trivial case, which is translation by
0).

Definition 1.1.7. If (vi)
n
i=1 is a basis of V , (wj)

m
j=1 is a basis of W and

ϕ ∈ L(V,W ), then the transformation matrix of ϕ with respect to the bases
(vi) and (wj) is the matrix A = (Aj i) ∈ Km×n whose entries satisfy

ϕ(vi) =
m∑
j=1

Aj iwj.

If V = W and vi = wi for 1 ≤ i ≤ m, we simply call A the transformation
matrix of ϕ with respect to the basis (vi)

m
i=1.

Remark 1.1.8. The transformation matrix (Aj i) depends not only on the
linear map ϕ, but also on the bases (vi) and (wj) (and in particular on the
order of the basis elements).

Example 1.1.9. The transformation matrix of rotation by π/2 (90◦) with

respect to the standard basis of R2 is given by

(
0 −1
1 0

)
.

Lemma 1.1.10. Let V and W be vector spaces over K with bases (vj)
m
j=1,

(wk)
n
k=1. If ϕ ∈ L(V,W ), write Aϕ for the transformation matrix of ϕ with

respect to the bases (vj), (wk).

(a) The map L(V,W )→ Kn×m, ϕ 7→ Aϕ is a bijection.
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(b) If ϕ, ψ ∈ L(V,W ) and λ, µ ∈ K, then

Aλϕ+µψ = λAϕ + µAψ.

Let U be a vector space over K with basis (ui)
l
i=1. If ϕ ∈ L(U, V ) (resp.

ϕ ∈ L(U,W )), we write Aϕ for the transformation matrix of ϕ with respect
to the bases (ui), (vj) (resp. (ui), (wk)).

(c) If ϕ ∈ L(U, V ), ψ ∈ L(V,W ), then

Aψ◦ϕ = AψAϕ.

Remark 1.1.11. For Kn, we have a canonical basis (the standard basis). Thus
linear maps from Kn to Km can canonically be identified with m×n matrices.

Lemma 1.1.12 (Change of basis). Let V and W be vector spaces over K,
let (vi)

m
i=1, (ṽj)

m
j=1 be bases of V and let (wk)

n
k=1, (w̃l)l=1 be bases of W . The

basis change matrices C ∈ Km×m and D ∈ Kn×n are the matrices with entries
Cj

i and (Dl
k) determined by

vi =
m∑
j=1

Cj
iṽj,

wk =
n∑
l=1

Dl
iw̃l.

The matrices C and D are invertible. Moreover, if ϕ ∈ L(V,W ), A (resp.
B) denotes the transformation matrix of ϕ with respect to the bases (vi), (wk)
(resp. (ṽj), (w̃l)), then

B = DAC−1.

Definition 1.1.13. Let GL(n,K) = {C ∈ Kn×n | C invertible}. For C ∈
GL(n,K), the map

Kn×n → Kn×n, A 7→ CAC−1

is called conjugation. To matrices A,B ∈ Kn×n are called similar if there
exists C ∈ GL(n,K) such that B = CAC−1.

Some operations on linear maps are easiest to define on the transformation
matrices. To ensure that this does not depend on the choice of basis, the
operation needs to be invariant under conjugation.

Example 1.1.14 (Trace). For A = (Aj i) ∈ Kn×n, the trace is defined as
tr(A) =

∑n
i=1 A

i
i. The trace satisfies tr(CAC−1) = tr(C−1CA) = tr(A) for

all A ∈ Kn×n, C ∈ GL(n,K).

5



Example 1.1.15 (Determinant). For A = (Aj i) ∈ Kn×n, the determinant
is defined as det(A) =

∑
σ∈Sn sgn(σ)

∏n
i=1 A

σ(i)
i. The determinant satisfies

det(CAC−1) = det(C) det(A) det(C)−1 = det(A).

Definition 1.1.16 (Dual space). If V is a finite-dimensional vector space
over K, the dual space V ∗ of V is the vector space L(V,K).

If (vi)
n
i=1 is a basis of V , then the dual basis (vi)ni=1 is characterized by

vi(vj) = δij, 1 ≤ i, j ≤ n.

Remark 1.1.17. If V = Kn, then V ∗ can canonically be identified with 1× n
matrices or row vectors.

Lemma 1.1.18. If V is a vector space over K with basis (vi)
n
i=1, then the

dual basis (vi)ni=1 is a basis of V ∗.

Lemma 1.1.19 (Basis change for dual bases). If V is a vector space over
K with bases (vi)

n
i=1 and (ṽj)

n
j=1 and C is the basis change matrix, then the

basis change matrix for the dual bases (vi) and (ṽj) is (CT)−1.

Remark 1.1.20. We write V ∗∗ for (V ∗)∗. There is a natural map

χ : V → V ∗∗, χ(v)(ϕ) = ϕ(v).

If (vi)
n
i=1 is a basis of V with dual basis (vi)ni=1, then the dual basis of (vi)ni=1

is given by (χ(vi))
n
i=1. In particular, χ is a bijection. We will use the map χ

to identify V ∗∗ with V .

Definition 1.1.21 (Multilinear maps). If V1, . . . , Vr and W are vector spaces
over K, a map

ϕ : V1 × · · · × Vr → W

is called a multinear map (of order r) if for every j ∈ {1, . . . , r} and all
vi ∈ Vi, i 6= j, the map

Vj → W, v 7→ ϕ(v1, . . . , vj−1, v, vj+1, . . . , vr)

is linear. If W = K, we also call ϕ a multilinear form (of order r).

Remark 1.1.22. The direct product V1 × · · · × Vr is again a vector space.
Except for trivial cases, a linear map ϕ : V1×· · ·×Vr → W is not multilinear.

Example 1.1.23 (Determinant). If we view elements of Kn as row vectors (or
column vectors), the map

(Kn)n → K, (v1, . . . , vn) 7→ det((v1 . . . vn))

is multilinear.
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Example 1.1.24 (Inner product). If K = R, an inner product on V is a
multilinear form of order 2 (or bilinear form).

Example 1.1.25. If ϕ1 ∈ V ∗1 , . . . , ϕr ∈ V ∗r , then the map

ϕ1 ⊗ · · · ⊗ ϕr : V1 × · · · × Vr → K, (v1, . . . , vr) 7→
r∏
j=1

ϕj(vj)

is multilinear.

Definition 1.1.26. We write V ∗1 ⊗· · ·⊗V ∗r for the space of multilinear forms
on V1 × · · · × Vr.

Lemma 1.1.27. If V1, . . . , Vr are finite-dimensional vector spaces over K,
then V ∗1 ⊗· · ·⊗V ∗r is a vector space of dimension dimV1 · . . . ·dimVr over K.

Proof. We only consider the case r = 2 for ease of notation. Let (vi)
m
i=1 be a

basis of V1 and (wj)
n
j=1 a basis of V2. We claim that (vi ⊗ wj)i,j is a basis of

V ∗1 ⊗ V ∗2 .
If ϕ : V1 × V2 → K is bilinear, then

ϕ

(
m∑
i=1

λivi,
n∑
j=1

µjwj

)
=

m∑
i=1

n∑
j=1

λiµjϕ(vi, wj)

=
m∑
i=1

n∑
j=1

λiµj
m∑
k=1

n∑
l=1

ϕ(vk, wl)δ
k
iδ
l
j

=
m∑
i=1

n∑
j=1

λiµj
m∑
k=1

n∑
l=1

ϕ(vk, wl)v
k(vi)w

l(wi)

=
m∑
k=1

n∑
l=1

ϕ(vk, wl)(v
k ⊗ wl)

(
n∑
i=1

λivi,
m∑
j=1

µjwj

)
.

Hence every element of V ∗1 ⊗V ∗2 is a linear combination of (vi⊗wj)i,j. More-
over, if λij ∈ K such that

m∑
i=1

n∑
j=1

λijv
i ⊗ wj = 0,

then

0 =

(
m∑
i=1

n∑
j=1

λijv
i ⊗ wj

)
(vk, wl) = λkl

for every k ∈ {1, . . . ,m}, l ∈ {1, . . . , n}. Hence (vi ⊗ wj)i,j is linearly inde-
pendent.
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Remark 1.1.28. Using the canonical identification V ∗∗ ∼= V for finite-dimensional
vector spaces, we can also make sense of V1 ⊗ · · · ⊗ Vr as V ∗∗1 ⊗ · · · ⊗ V ∗∗r ,
which is the space of multilinear forms of order r on V ∗1 × · · · × V ∗r .

Definition 1.1.29 (Tensors). If V is a finite-dimensional vector space over
K, an r-contravariant and s-covariant tensor or (r, s)-tensor is an element
of

V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
r times

⊗V ⊗ · · · ⊗ V︸ ︷︷ ︸
s times

.

In other words, an (r, s)-tensor is a multilinear form on V r × (V ∗)s.

Example 1.1.30. If ϕ ∈ L(V, V ), then

V × V ∗ → K, (v, f) 7→ f(ϕ(v))

is multilinear, i.e., a (1, 1)-tensor. Conversely, every (1, 1)-tensor is of this
form. This gives a canonical identification of the space of (1, 1)-tensor with
L(V, V ).

Definition 1.1.31 (Alternating forms). Let V be a vector space over K. A
multilinear form ω : V r → K is called alternating if

ω(v1, . . . , vr) = −ω(v1, . . . , vj−1, vk, vj+1, . . . , vk−1, vj, vk+1, . . . , vr)

for all v1, . . . , vr ∈ V , j, k ∈ {1, . . . , r}.
The set of all alternating r-forms on V is denoted by ΛrV ∗. Furthermore,

we set Λ0V ∗ = K.

Remark 1.1.32. In terms of the sign of a permutation, the defining property
of an alternating form can be expressed as

ω(v1, . . . , vr) = sgn σ ω(vσ(1), . . . , vσ(r))

for all v1, . . . , vr ∈ V , σ ∈ Sr.
Example 1.1.33. If we view elements of Kn as row vectors, the map

(Kn)n → K, (v1, . . . , vn) 7→ det(
(
v1 . . . vn

)
)

is an alternating multilinear form.

Definition 1.1.34 (Wedge product). Let V be a be a vector space over K.
The anti-symmetrization operator on (V ∗)⊗r is defined by

P∧ : (V ∗)⊗r → ΛrV ∗, ω 7→

(
v1, . . . , vr) 7→

1

r!

∑
σ∈Sr

sgnσ ω(vσ(1), . . . , vσ(r))

)
.

For α ∈ ΛrV ∗ and β ∈ ΛsV ∗, the wedge product α ∧ β is defined as

α ∧ β =
(r + s)!

r!s!
P∧(α⊗ β).
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Lemma 1.1.35. Let V be a vector space over K.

(a) The wedge product is associative: If α ∈ ΛrV ∗, β ∈ ΛsV ∗ and γ ∈
ΛtV ∗, then

(α ∧ β) ∧ γ = α ∧ (β ∧ γ).

(b) If v1, . . . , vr ∈ V and ϕ1, . . . , ϕr ∈ V ∗, then

(ϕ1 ∧ · · · ∧ ϕr)(v1, . . . , vr) = det((ϕj(vk))
r
j,k=1).

(c) If α ∈ ΛrV ∗, β ∈ ΛsV ∗, then

α ∧ β = (−1)rsβ ∧ α.

(d) If V has finite dimension n, then ΛrV ∗ is a vector space of dimension(
n
r

)
. In particular, ΛrV ∗ = {0} for r > n.

Remark 1.1.36. One consequence of the previous result is that if dimV = n,
then Λn−rV ∗ ∼= ΛrV and Λ0V ∗ ∼= K, Λ1V ∗ ∼= V ∗.

Example 1.1.37. If V = K3, then dim Λ0V ∗ = dim Λ3V ∗ = 1, dim Λ1V ∗ =
dim Λ2V ∗ = 3. More explicitly, isomorphisms of Λ1V ∗ and Λ2V ∗ with R3 are
given by

ϕ : R3 → Λ1V ∗, (v1, v2, v3) 7→ v1e1 + v2e2 + v3e3

ψ : R3 → Λ2V ∗, (v1, v2, v3) 7→ v1e2 ∧ e3 + v2e3 ∧ e1 + v3e1 ∧ e2

Hence, whenever v, w ∈ R3, then there exists a unique vector v × w ∈ R3

such that ψ(v × w) = ϕ(v) ∧ ϕ(w). This is the classical cross product of
vectors.

Definition 1.1.38 (Orientation). Let V be a finite-dimensional vector space
over R. Two bases (vj)

n
j=1 and (wj)

n
j=1 are said to have the same orientation

if there exists λ > 0 such that w1∧· · ·∧wn = λv1∧· · ·∧vn. Having the same
orientation defines an equivalence relation with two equivalence classes on
the set of all finite bases of V . An equivalence class is called an orientation
of V .

Remark 1.1.39. In this definition, the order of the basis vectors matters. If
we swap ei and ej for i 6= j, the orientation of the basis changes.

Remark 1.1.40. If V is a vector space over K and (vi)
n
i=1 and (wi)

n
i=1 are bases

of V , then v1∧· · ·∧vn and w1∧· · ·∧wn are non-zero elements of ΛnV ∗. Since
dim ΛnV ∗ = 1, there exists λ ∈ K\{0} such that w1∧· · ·∧wn = λv1∧· · ·∧vn.

This explains why it is only sensible to define an orientation for bases of
real vector spaces: R \ {0} has two connected components, the positive and
negative numbers, while C \ {0} is connected.

Example 1.1.41. The orientation of Rn containing the standard basis (ei)
n
i=1

is called the standard orientation of Rn.
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1.1.2 Topology

Definition 1.1.42 (Metric space). A metric on a set X is a map d : X×X →
[0,∞) with the following three properties:

(a) Non-degeneracy: For all x, y ∈ X, d(x, y) = 0 if and only if x = y.

(b) Symmetry: d(x, y) = d(y, x) for all x, y ∈ X.

(c) Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

A set with a metric is called a metric space.

Example 1.1.43 (Euclidean metric). The Euclidean metric on Kn is defined
by

d(x, y) =

(
n∑
i=1

|xi − yi|2
)1/2

, x, y ∈ Kn.

Example 1.1.44 (Discrete metric). For any set X the discrete metric is defined
by

d(x, y) =

{
1 if x 6= y,

0 if x = y,
x, y ∈ X.

Definition 1.1.45 (Topology). A topology on a set X is a subset T of P(X)
with the following three properties:

(a) ∅, X ∈ T .

(b) If U, V ∈ T , then U ∩ V ∈ T .

(c) If I is an arbitrary index set and Ui ∈ T , i ∈ I, then
⋃
i∈I Ui ∈ T .

The elements of T are called open subsets of X. A set with a topology is
called a topological space.

Every metric gives rise to a topology in the following way.

Proposition 1.1.46. Let (X, d) be a metric space. For x ∈ X and r > 0 let
Br(x) = {y ∈ X | d(x, y) < r}. The set

Td = {U ⊂ X | ∀x ∈ U ∃r > 0: Br(x) ⊂ U}

is a topology on X.
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Proof. Clearly ∅, X ∈ Td. If U, V ∈ Td, let x ∈ U ∩ V . By definition, there
exists r, s > 0 such that Br(x) ⊂ U , Bs(x) ⊂ V . Let t = min{r, s}. Since
Bt(x) ⊂ Br(x) and Bt(x) ⊂ Bs(x), we have Bt(x) ⊂ U∩V . Hence U∩V ∈ Td.

Now let I be an arbitrary index set and Ui ∈ Td for i ∈ I. If x ∈
⋃
i∈I Ui,

then there exists j ∈ I such that x ∈ Uj. By definition, there exists r > 0
such that Br(x) ⊂ Uj ⊂

⋃
i∈I Ui Thus

⋃
i∈I Ui ∈ Td.

Remark 1.1.47. Note that we did not even use the triangle inequality in the
proof. However, without is, the topology defined in the previous proposition
can be quite pathological.

Definition 1.1.48 (Open ball, neighborhood). Let (X, d) be a metric space.
If x ∈ X and r > 0, then Br(x) = {y ∈ X | d(x, y) < r} is called the open
r-ball around x. More generally, if A ⊂ X, the set Ur(A) = {y ∈ X | ∃a ∈
A : d(a, y) < r} is called the open r-neighborhood of A.

Lemma 1.1.49. If (X, d) is a metric space, A ⊂ X and r > 0, then Ur(A)
is open.

Proof. If x ∈ Ur(A), then there exists a ∈ A such that d(x, a) < r. Let
s = r − d(x, a). If y ∈ X with d(x, y) < s, then

d(y, a) ≤ d(y, x) + d(x, a) < r − d(x, a) + d(x, a) < r.

Hence y ∈ Ur(A). It follows that Bs(x) ⊂ Ur(A). Hence Ur(A) is open.

Definition 1.1.50 (Continuous map, homeomorphism). Let X and Y be
topological spaces. A map f : X → Y is called continuous if for every open
subset V of Y the preimage f−1(V ) = {x ∈ X | f(x) ∈ V } is open.

A map f : X → Y is called a homeomorphism if it is bijective and both
f and f−1 are continuous. In this case, X and Y are called homeomorphic.

Remark 1.1.51. If (X, TX) and (Y, TY ) are topological spaces and f : X → Y
is a homeomorphism, then TX = {f−1(O) | O ∈ TY }. In the other words,
the sets X and Y and the respective topologies only differ by “renaming”.
In this sense, heomeomorphic spaces have the same topological properties.

Lemma 1.1.52. Let X and Y be topological spaces. A map f : X → Y is
continuous if and only if for every x ∈ X and open neighborhood V of f(x)
there exists an open neighborhood U of x such that f(U) ⊂ V .

Lemma 1.1.53. Let (X, d) and (Y, ρ) be metric spaces. A map f : X → Y
is continuous if and only if for every x ∈ X and every sequence (xn) in X
such that d(xn, x)→ 0 one has ρ(f(xn), f(x))→ 0.
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Definition 1.1.54 (Closed subsets). A subset F of a topological space X is
called closed if X \ F is open.

Remark 1.1.55. There can be subsets that are neither open nor closed and
subsets that are both open and closed. For example, consider R with the
topology induced by the Euclidean metric. Then [0, 1) is neither open nor
closed and R itself is both open and closed.

Lemma 1.1.56. If X is a topological space, the closed subsets of X have the
following properties:

(a) ∅ and X are closed.

(b) If F,G ⊂ X are closed, then F ∪G is closed.

(c) If I is an arbitrary index set and Fi ⊂ X is closed for every i ∈ I, then⋂
i∈I Fi is closed.

Definition 1.1.57 (Neighborhoods, convergence of sequences). Let X be a
topological space and x ∈ X. A subset V of X is called a neighborhood of x
if there exists an open subset U of X such that {x} ⊂ U ⊂ V

Let (xn) be a sequence in X and x ∈ X. We say that (xn) converges to
x and write xn → x if for every open subset U of X that contains x there
exists N0 ∈ N such that xn ∈ U for every n ≥ N0.

Remark 1.1.58. A sequence can converge to several points. For example,
if T = {∅, X}, then every sequence converges to every point in X. This
happens because there are not enough open sets to separate the points. To
avoid such pathologies, we will focus on topological spaces that satisfy a
certain separation axiom.

Definition 1.1.59 (Hausdorff space). A topological space X is called Haus-
dorff if for every pair of distinct points x, y ∈ X there exist open neighbor-
hoods U of x and V of y such that U ∩ V = ∅.

Lemma 1.1.60. If X is a Hausdorff topological space, (xn) is a sequence in
X and x, y ∈ X such that xn → x and xn → y, then x = y.

Proof. Suppose for a contradiction that x 6= y. Let U be an open neighbor-
hood of x and V an open neighborhood of y such that U ∩ V = ∅. Since
xn → x, there exists N0 ∈ N such that xn ∈ U for n ≥ N0, and since xn → y,
there exists M0 ∈ N such that xn ∈ V for n ≥ M0. Hence xn ∈ U ∩ V for
n ≥ max{N0,M0}, a contradiction.
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Lemma 1.1.61. If (X, d) is a metric space, then the topology induced by d
is Hausdorff.

Proof. If x, y ∈ X are distinct points and r = d(x, y), then Br/2(x) and
Br/2(y) are open subsets of X that contain x and y, respectively. If there
were z ∈ Br/2(x) ∩Br/2(y), we would have

r = d(x, y) ≤ d(x, z) + d(z, y) < r/2 + r/2 = r,

a contradiction. Thus Br/2(x) ∩Br/2(y) = ∅.

Lemma 1.1.62. If (X, d) is a metric space, then a sequence (xn) in X
converges to x ∈ X with respect to the topology induced by d if and only if
d(xn, x)→ 0.

Proof. If xn → x and ε > 0, then there exists N0 ∈ N such that xn ∈ Bε(x)
for every n ≥ N0 since Bε(x) is an neighborhood of x. Thus d(xn, x) < ε for
n ≥ N0. As ε > 0 was arbitrary, we conclude d(xn, x)→ 0.

Assume conversely that d(xn, x)→ 0 and let U be an open neighborhood
of x. By definition of the topology induced by d, there exists ε > 0 such that
Bε(x) ⊂ U . Since d(xn, x) → 0, there exists N0 ∈ N such that d(xn, x) < ε
for n ≥ N0. In other words, xn ∈ Bε(x) ⊂ U for n ≥ N0. Thus xn → x.

Lemma 1.1.63. Let (X, d) be a metric space. A subset F of X is closed if
and only if for every sequence (xn) in F that converges to some x ∈ X one
has x ∈ F .

Proof. First assume that F is closed and (xn) is a sequence in F that con-
verges to x ∈ X. By definition, X \ F is open. Suppose for a contradiction
that x ∈ X \F . As X \F is open, there exists N0 ∈ N such that xn ∈ X \F
for every n ≥ N0, a contradiction.

Now assume conversely that for every sequence (xn) in F that converges
to x ∈ X we have x ∈ F . We need to show that X \F is open. Let x ∈ X \F .
If B1/n(x) ∩ F 6= ∅ for every n ∈ N, we can find a sequence (xn) such that
xn ∈ B1/n(x) for every n ∈ N. But then xn → x, which implies x ∈ F by
assumption, a contradiction. Thus B1/n(x) ⊂ X \ F for some n ∈ N. Hence
X \ F is open by the definition of the topology induced by a metric.

Definition 1.1.64 (Compact space). A topological spaceK is called compact
if it is Hausdorff and for every index set I and every family (Ui)i∈IUi of open
subsets of K such that K ⊂

⋃
i∈I there exists a finite subset J of I such that

K ⊂
⋃
j∈J Uj.
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Remark 1.1.65. A family (Ui)i∈I of open subsets of K such that K ⊂
⋃
i∈I Ui

is called an open covering. If J ⊂ I, then the family (Uj)j∈J is called a
subcovering. With this terminology, a topological space is compact if it is
Hausdorff and every open covering has a finite subcovering.

Definition 1.1.66 (Subspace topology, compact subset). If (X, T ) is a topo-
logical space and A ⊂ X, the subspace topology on A is defined as

TA = {U ∩ A | U ∈ T }.

A subset K of X is called compact if it is a compact topological space in the
subspace topology.

Proposition 1.1.67. Let X be a Hausdorff topological space and K ⊂ X a
compact subset.

(a) K is a closed subset of X.

(b) If X is a metric space with the topology induced by the metric, then K
is also bounded.

Proof. (a) We have to prove that X \ K is open. Let x ∈ X \ K. By the
Hausdorff property, for every y ∈ K there exist open subsets Uy, Vy of X
such that x ∈ Uy, y ∈ Vy and Uy ∩ Vy = ∅. Then Vy ∩K is an open subset of
K for the subspace topology and K ⊂

⋃
y∈K Vy ∩K.

Since K is compact, there exist n ∈ N and y1, . . . , yn ∈ K such that K ⊂⋃n
j=1 Vyi ∩K. Let Wx =

⋂n
j=1 Uyj , which is an open subset of X containing

x. Moreover, Wx ∩K ⊂
⋂n
j=1 Uyj ∩

⋃n
j=1 Vyj = ∅. Thus Wx ⊂ X \K.

As x ∈ X \ K was arbitrary, we conclude X \ K =
⋃
x∈X\KWx. Hence

X \K is open as union of open sets.
(b) The family (B1(y) ∩ K)y∈K is an open covering of K. Since K is

compact, there exists n ∈ N and y1, . . . , yn ∈ K such that K ⊂
⋃n
j=1 B1(yj).

Hence, if z ∈ K is arbitrary, then there exists j ∈ {1, . . . , n} such that
z ∈ B1(yj) and thus

d(z, y1) ≤ d(z, yj) + d(yj, y1) < 1 + max
1≤k≤n

d(yk, y1) =: R.

Therefore K ⊂ BR(y1), which implies that K is bounded.

Lemma 1.1.68. If K is a compact topological space and C ⊂ K is closed,
then C is compact.

Theorem 1.1.69. A metric space X is compact if and only if every sequence
in X has a convergent subsequence.
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Lemma 1.1.70. If K is a compact topological space and (Cn) is a sequence
of non-empty closed subsets of K such that Cn+1 ⊂ Cn, then

⋂∞
n=1Cn is a

non-empty closed subset of K.

Proof. Suppose for a contradiction that
⋂∞
n=1Cn = ∅. Then (K \ Cn)n∈N

is an open covering of K. Since K is compact, there exist m ∈ N and
j1, . . . , jm ∈ N such that

K ⊂
m⋃
k=1

K \ Cjk = K \
m⋂
k=1

Cjk = K \ Cmax{j1,...,jm}.

But this implies Cmax{j1,...,jm} = ∅, a contradiction. Hence
⋂∞
n=1Cn 6= ∅.

Moreover, the subset if closed as intersection of closed subsets.

Definition 1.1.71. Let X be a topological space and A ⊂ X. The closure
A of A is defined as

A =
⋂
C⊃A

C closed

C.

Remark 1.1.72. As intersection of closed sets, the closure of A is closed and
thus the smallest closed set containing A. In particular, the set A itself is
closed if and only if A = A.

Lemma 1.1.73. If X is a metric space and A ⊂ X, then

A = {x ∈ X | ∃ sequence (xn) in A : xn → x}.

Proof of Theorem 1.1.69. First assume that K is compact and (xn) is a se-
quence in K. Let Cn = {xk | k ≥ n}. By definition, Cn is closed and
Cn+1 ⊂ Cn. By Lemma 1.1.70, the intersection

⋂∞
n=1Cn is non-empty.

Let x ∈
⋂∞
n=1Cn. We construct a subsequence (xjn) of (xn) inductively.

Let j1 = 1. Now assume that we are given j1, . . . , jn with d(x, xjn) < 1
n
. Since

x ∈ Cjn+1 = {xk | k ≥ jn + 1}, we can find k ≥ jn+1 with d(x, xk) <
1

n+1
by

Lemma 1.1.73. Set jn+1 = k. By construction, d(x, xjn) < 1
n
, hence xjn → x.

The converse direction is harder and will not be discussed in this course.

Proposition 1.1.74. Let (X, d) be a metric space such that the closed balls
B̄r(x) = {y ∈ X | d(x, y) ≤ r} are compact for every x ∈ X, r > 0. Then
every bounded closed subset of X is compact.

Proof. If A ⊂ X is bounded, then there exists x ∈ X and r > 0 such that
A ⊂ B̄r(x). If A is furthermore closed, then it is compact as a closed subset
of a compact space by Lemma 1.1.68.
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Remark 1.1.75. The property that closed balls are compact is satisfied for
Kn with the Euclidean metric or more generally for any finite-dimensional
normed space. Note however that in general, a bounded closed subset of a
metric space need not be compact.

Proposition 1.1.76. If K is a compact topological space, Y is a topological
space and f : K → Y is continuous, then f(K) is compact.

Proof. Let (Vi)i∈I be an open covering of f(K). Then (f−1(Vi))i∈I is an
open covering of K. Since K is compact, there exists a finite subcovering
(f−1(Vj))j∈J . Thus (Vj)j∈J is a finite open covering of f(K).

Corollary 1.1.77. If K is a compact topological space and f : X → R is a
continuous map, then f attains its maximum and minimum.

Proof. The image f(K) is a bounded and closed subset of R by the previous
result and thus has a minimum and maximum.

Remark 1.1.78. Unless stated otherwise, the topology on Kn is always taken
to be the standard topology, i.e., the topology induced by the Euclidean
metric.

1.1.3 Differentiability

Definition 1.1.79 (Norm). Let V be a vector space over K. A function
‖·‖ : V → [0,∞) is called a norm if it satisfies the following three properties:

(a) Non-degeneracy: ‖v‖ = 0 if and only if v = 0.

(b) Positive homogeneity: ‖λv‖ = |λ|‖v‖ for all λ ∈ K, v ∈ V .

(c) Triangle inequality: ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V .

A vector space with a norm is called a normed space.

Example 1.1.80. For p ∈ [1,∞), the p-norm on Kn is defined by

‖·‖p : Kn → [0,∞), ‖x‖p =

(
n∑
j=1

|xj|p
)1/p

.

For p =∞ we set ‖x‖∞ = max1≤j≤n|xj|.
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Definition 1.1.81 (Bounded linear maps). If (V, ‖·‖V ) and (W, ‖·‖W ) are
normed spaces, a linear map L : V → W is called bounded if there exists
C > 0 such that

‖Lv‖W ≤ C‖v‖V
for all v ∈ V . The set of all bounded linear maps from V to W is denoted
by L(V,W ). The operator norm on L(V,W ) is defined by

‖·‖op : L(V,W )→ [0,∞), ‖ϕ‖op = sup‖ϕ(v)‖W : ‖v‖V ≤ 1}.

Remark 1.1.82. If V is finite-dimensional, then every linear map from V
to W is bounded. Hence this notation is consistent with the notation we
introduced for finite-dimensional vector spaces.

Remark 1.1.83. If (V, ‖·‖) is a normed space, then the metric induced by ‖·‖
is defined as d(v, w) = ‖v − w‖. Then ‖·‖ also induces a topology on V ,
namely the topology induced by d as discussed in the previous section. Thus
it makes sense to speak of complete normed spaces, open subsets etc.

Definition 1.1.84. Let V be a vector space over K. Two norm ‖·‖1, ‖·‖2

on V are said to be equivalent if there exists C > 0 such that

C−1‖v‖1 ≤ ‖v‖2 ≤ C‖v‖1

for all v ∈ V .

Proposition 1.1.85. Let V be a vector space over K. The norms ‖·‖1, ‖·‖2

on V are equivalent if and only if they induce the same topology.

Theorem 1.1.86. Any two norms on a finite-dimensional vector space are
equivalent.

Definition 1.1.87 (Derivative). Let V , W be normed spaces and U ⊂ V an
open subset. A function f : U → W is called differentiable at p ∈ U if there
exists a continuous linear map L ∈ L(V,W ) such that

lim
h→0

‖f(p+ h)− f(p)− L[h]‖
‖h‖

= 0.

If f is differentiable at p, the linear map L in the definition is unique and is
called the derivative of f at p and denoted by Df(p).

If f is differentiable at each point p ∈ U , we say that f is differentiable.
In this case, the map

Df : U → L(V,W ), p 7→ Df(p)

is called the derivative of f .
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Remark 1.1.88. • An equivalent way to describe the differentiability of f
at p is to say that the remainder term

R(h) = f(p+ h)− f(p)− L[h]

satisfies limh→0
‖R(h)‖
‖h‖ = 0. This property is also expressed as R(h) =

o(‖h‖) as h→ 0.

• The affine map x 7→ f(p)+Df(p)(x−p) is the best affine approximation
of f at p. In this sense, the derivative is the “linearization” of f at p.

Example 1.1.89. If L ∈ L(V,W ), then L is differentiable and DL(p) = L for
all p ∈ V . Indeed,

‖L(p+ h)− L(p)− L(h)‖
‖h‖

= 0.

Lemma 1.1.90. Let V , W be normed spaces, U ⊂ V an open subset and
p ∈ U . If f : U → W is differentiable at p, then f is continuous at p.

Proof. With the remainder term from the previous remark we have

‖f(p+ h)− f(p)‖ ≤ ‖r(h)‖+ ‖L(h)‖ ≤ ‖r(h)‖+ ‖L‖op‖h‖.

Since r(h) = o(‖h‖), we have ‖r(h)‖ → 0 as h→ 0. Therefore, ‖f(p + h)−
f(p)‖ → 0 as ‖h‖ → 0.

Proposition 1.1.91. Let V1, V2, W be normed spaces, U1 ⊂ V1, U2 ⊂
V2 open subsets and f : U1 → U2, g : U2 → W continuous maps. If f is
differentiable at p and g is differentiable at f(p), then g ◦ f is differentiable
at p and

D(g ◦ f)(p) = Dg(f(p)) ◦Df(p).

Proof. We already have a candidate for the map L in the definition of differ-
entiability, namely L = Dg(f(p)) ◦Df(p). Let

r(x) =
f(x)− f(p)−Df(p)[x− p]

‖x− p‖
, x 6= p,

s(y) =
g(y)− g(f(p))−Dg(f(p))[y − f(p)]

‖y − f(p)‖
, y 6= f(p),

and set r(p) = 0, s(f(p)) = 0. Since f and g are differentiable at p and f(p),
respectively, the functions r and s are continuous in p and f(p), respectively.
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Define t : U1 → W by t(p) = 0 and

t(x) = Dg(f(p))[r(x)] + s(f(x))

∥∥∥∥Df(p)
x− p
‖x− p‖

+ r(x)

∥∥∥∥
for x 6= p. Then t is continuous in p and we have

g(f(x)) = g(f(p)) +Dg(f(p))[Df(p)[x− p]] +Dg(f(p))r(x)‖x− p‖
+ s(f(x))‖Df(p)[x− p] + r(x)‖x− p‖‖

= g(f(p)) + L[x− p] + t(x)‖x− p‖.

As t is continuous in p, we conclude that g ◦ f is differentiable at p with
derivative D(g ◦ f)(p) = L.

Definition 1.1.92. Let V1, . . . , Vr and W be normed spaces. A multilinear
map ϕ : V1 × · · · × Vr → W is called bounded if there exists C > 0 such that

‖ϕ(v1, . . . , vr)‖W ≤ C‖v1‖V1 . . . ‖vr‖Vr .

We write Lr(V1, . . . , Vr;W ) for the space of all bounded multilinear maps
from V1 × · · · × Vr to W . If V1 = · · · = Vr, we simply write Lr(V ;W ).

On Lr(V1, . . . , Vr;W ) one defines a norm by

‖ϕ‖ = sup{‖ϕ(v1, . . . , vr)‖W : ‖v1‖V1 , . . . , ‖vr‖Vr ≤ 1}.

Remark 1.1.93 (Contraction of multilinear maps). If ϕ ∈ Lr+1(V,W ) and
v ∈ V , then ϕ[h, · ] ∈ Lr(V ;W ) and ‖ϕ[h, · ]‖ ≤ ‖ϕ‖‖h‖.

Definition 1.1.94 (Derivatives of higher order). Let V , W be normed
spaces, U ⊂ V an open subset, p ∈ U and r ∈ N. We say that f is r+1 times
differentiable at p if there exists ε > 0 such that f is r times differentiable
on Bε(p) and there exists L ∈ Lr+1(V ;W ) such that

lim
h→0

‖Drf(p+ h)−Drf(p)− L[h, · ]‖
‖h‖

= 0.

In this case, the map L ∈ Lr+1(V ;W ) is unique and denoted by Dr+1f(p). If
f is r+1 times differentiable at every point p ∈ U , we say that f is r+1 times
differentiable on U and call the map Dr+1f : U → Lr+1(V ;W ) the (r+ 1)-th
derivative of f on U .

Remark 1.1.95. • This is a recursive definition: To define what it means
for f to be r + 1 times differentiable on U , we need to know what
it means for f to be r times differentiable on U and that the r-th
derivative of f at p is an element of Lr(V ;W ). This is fine since after r
steps we arrive at the notion of differentiability we have defined before.

19



• A function f is r+1 times differentiable at p if it is r-times differentiable
on an open ball around p and the r-th derivative itself is differentiable.
Essentially, Dr+1f -is the derivative of the Drf in this case, up to an
identification of L(V,Lr(V ;W )) and Lr+1(V ;W ).

• Recall that if V is finite-dimensional and W = K, we denoted Lr(V ;K)
by V ∗ ⊗ · · · ⊗ V ∗ (r factors). Hence the r-th derivative at p is a (r, 0)-
tensor.

Example 1.1.96. Let f : Rn → R, x 7→ xTx =
∑n

j=1(xj)2. Let p ∈ Rn. If
Df(p) exists, it is an element of L(Rn,R) = (Rn)∗. We identify elements of
(Rn)∗ with row vectors.

We have

f(p+ h)− f(p) = (p+ h)T(p+ h)− pTp = 2pTh︸ ︷︷ ︸
linear in h

+ hTh︸︷︷︸
higher order in h

.

This suggests Df(p) = 2pT. In fact,

|f(p+ h)− f(p)− 2pTh|
‖h‖2

=
|hTh|
‖h‖2

≤ ‖h‖2
‖h‖2→0→ 0,

which confirms our guess.
Now on to the second derivative. If D2f(p) exists, it is an element of

L2(Rn;R), i.e., a bilinear map from Rn × Rn to R. We have

Df(p+ h)[k]−Df(p)[k] = 2(p+ h)Tk − 2pTk = 2hTk.

This suggests D2f(p)[h, k] = 2hTk. In fact,

‖Df(p+ h)[k]−Df(p)[k]− 2hTk‖
‖h‖2

= 0,

which confirms our guess again. Since D2f(p) does not depend on p, the
higher derivatives are constant.

Definition 1.1.97 (Continuously differentiable functions). Let V , W be
normed spaces and U ⊂ V an open subset. We say that a function f : U →
W is r times continuously differentiable if it is r times differentiable and
Drf : U → Lr(V ;W ) is continuous. We write Cr(U ;W ) for the space of all
r times continuously differentiable functions from U to W .

A function f : U → W is called smooth if it is r times differentiable for all
r ∈ N. The set of all smooth functions from U to W is denoted by C∞(U ;W ).
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Remark 1.1.98. The derivatives of lower order are automatically continuous
so that we need to require continuity only for the derivative of highest order.

Remark 1.1.99. Let U ⊂ Rn be open and f : U → Rm. There exist functions
f 1, . . . , fm : U → R such that f(x) = (f 1(x), . . . , fm(x)) for all x ∈ U . The
function f is smooth if and only if f 1, . . . , fn are smooth.

Example 1.1.100. Polynomials of n variables are smooth. These are maps of
the form f : Kn → K, x 7→

∑
α∈Nn, |α|≤k aαx

α with aα ∈ K are smooth. Here

we use multi-index notation: If α = (α1, . . . , αn) ∈ Nn, then xα = xα1
1 . . . xαnn .

Definition 1.1.101 (Directional derivative). Let V , W be normed spaces,
U ⊂ V an open subset, f : U → W a function and h ∈ V . If the limit

∂hf(p) = lim
t→0

f(p+ th)− f(p)

t

exists, it is called the directional derivative of f at p in the direction h.
In the special case when V = Rn and h is the standard basis vector ej,

we write ∂f
∂xj

(p) for ∂ejf(p) and call it a partial derivative.

Proposition 1.1.102. Let V , W be normed spaces, U ⊂ V an open subset,
f : U → W and p ∈ U . If f is differentiable at p, then the directional
derivative ∂hf(p) exists for all h ∈ V and satisfies

∂hf(p) = Df(p)[h].

Proof. We have∥∥∥∥f(p+ th)− f(p)

t
−Df(p)[h]

∥∥∥∥ =
‖f(p+ th)− f(p)−Df(p)[th]‖

‖th‖
‖h‖.

Since f is differentiable at p, this expression converges to 0 as t→ 0.

The converse of this proposition is not true. There exist functions with
directional derivatives in all directions at a point that are still not differen-
tiable at that point. The situation is different if one additionally assumes
continuity of the directional derivatives in the following sense.

Proposition 1.1.103. Let U ⊂ Rm be open. A function f : U → Rn is
continuously differentiable if and only if the partial derivatives ∂x1f , ∂xmf
exist and are continuous. In this case, the matrix of the derivative Df(p) with

respect to the canonical bases is given by ( ∂f
j

∂xk
(p))j,k, where f = (f 1, . . . , fn).
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Remark 1.1.104. The matrix ( ∂f
j

∂xk
(p)) = j, k is called the Jacobian or Jacobi

matrix of f at p.
It is customary (for reasons that should become clear later) to write ∂

∂xj

for the standard basis vector ej and dxj for the dual basis vector ej. With this
notation, one can write the derivative of a differentiable function f : U → R
as

Df =
m∑
j=1

∂f

∂xj
dxj.

This expression is called the total differential of f . One often writes df
instead of Df if the codomain is R.

1.1.4 Implicit and inverse function theorem

Definition 1.1.105 (Cauchy sequence). Let (X, d) be a metric space. A
sequence (xn) in X is called Cauchy sequence if for every ε > 0 there exists
N0 ∈ N such that d(xm, xn) < ε for m,n ≥ N0.

Proposition 1.1.106. Every convergent sequence in a metric space is a
Cauchy sequence.

Proof. Let (xn) be a convergent sequence in the metric space (X, d) with limit
x and let ε > 0. Since xn → x, there exists N0 ∈ N such that d(xn, x) < ε/2
for all n ≥ N0. Hence if m,n ≥ N0, we have

d(xm, xn) ≤ d(xm, x) + d(x, xn) <
ε

2
+
ε

2
= ε.

The converse is not true. As a simple example take the sequence (1/n)n∈N.
This sequence converges to {0} (with respect to the Euclidean metric on R).
But if we take R\{0} with the Euclidean metric, then (1/n) is still a Cauchy
sequence, but it does not have a limit in R \ {0}. This suggests that the lack
of convergence of Cauchy sequences is related to some points “missing” in
the space. This motivates the following definition.

Definition 1.1.107 (Complete metric space). A metric space is called com-
plete if every Cauchy sequence converges.

Proposition 1.1.108. Every compact metric space is complete.

Proof. Let (X, d) be a compact metric space and (xn) a Cauchy sequence in
X. Since X is compact, there exists x ∈ X and a subsequence (xnk) of (xn)
such that xn → x. Let ε > 0. Since (xn) is a Cauchy sequence, there exists
N0 ∈ N such that d(xm, xn) < ε/2 for m,n ≥ N0. Moreover, since xnk → x,
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there exists K0 ∈ N such that d(xnk , x) < ε/2. If n ≥ N0 and k ≥ K0,
nk ≥ N0, we have

d(xn, x) ≤ d(xn, xnk) + d(xnk , x) < ε.

Proposition 1.1.109. Every closed subset of a complete metric space is
complete.

Proof. Let (X, d) be a complete metric space and C a closed subset of X. If
(xn) is a Cauchy sequence in C, then since (X, d) is complete, there exists
x ∈ X such that xn → x. Since C is closed, we have x ∈ C.

Definition 1.1.110. Let (X1, d1) and (X2, d2) be metric spaces and L > 0.
A map f : X1 → X2 is called Lipschitz (continuous) with constant L if

d2(f(x), f(y)) ≤ Ld(x, y)

for all x, y ∈ X.

Proposition 1.1.111. Every Lipschitz continuous map between metric spaces
is continuous.

Proof. Let (X, d), (Y, ρ) be metric spaces and f : X → Y a Lipschitz contin-
uous map with Lipschitz constant L. If x ∈ X and (xn) is a sequence in X
such that xn → x, then

d(f(x), f(xn)) ≤ Ld(x, xn)→ 0.

Proposition 1.1.112. Every continuous linear map between normed spaces
is Lipschitz continuous.

Theorem 1.1.113 (Banach fixed-point theorem). Let (X, d) be a non-empty
complete metric space and L < 1. If F : X → X is a Lipschitz continuous
map with Lipschitz constant L, then there exists a unique point x∗ ∈ X such
that F (x∗) = x∗.

Proof. Choose x0 ∈ X and define recursively a sequence (xn) by x1 = F (x0),
xn+1 = F (xn). We have

d(xn+1, xn) ≤ Ld(xn, xn−1) ≤ · · · ≤ Lnd(x1, x0).

Thus

d(xn+k, xn) ≤ d(xn+k, xn+k−1) + · · ·+ d(xn+1, xn)

≤ (Ln+k−1 + · · ·+ Ln)d(x1, x0)

≤ Ln
1− Lk

1− L
d(x1, x0)

≤ Ln

1− L
d(x1, x0).
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Since Ln → 0 as n→∞, the sequence (xn) is a Cauchy sequence. As (X, d)
is assumed to be complete, there exists x∗ ∈ X such that xn → x∗. Since F
is continuous, it follows that

x∗ = lim
n→∞

xn = lim
n→∞

F (xn−1) = F (x∗).

This settles the existence of a fixed point. For uniqueness, let y∗ ∈ X such
that F (y∗) = y∗. Since f is L-Lipschitz, we have

d(x∗, y∗) = d(F (x∗), F (y∗)) ≤ Ld(x∗, y∗).

Since L < 1, it follows that x∗ = y∗.

Definition 1.1.114 (Banach space). A complete normed space is called
Banach space.

Remark 1.1.115. Here completeness refers to the metric induced by the norm.

Theorem 1.1.116 (Mean value theorem). Let X, Y be Banach spaces, a, b ∈
X and U an open subset of X that contains {ta + (1 − t)b | t ∈ [0, 1]}. If
f : U → Y is differentiable, then

‖f(a)− f(b)‖Y ≤ sup
t∈[0,1]

‖Df(ta+ (1− t)b)‖op‖a− b‖X .

Corollary 1.1.117. Let X, Y be Banach spaces and U a convex open subset
of X. If f : U → Y is differentiable and supp∈U‖Df(p)‖ < ∞, then f is
L-Lipschitz with L = supp∈U‖Df(p)‖.

Theorem 1.1.118 (Inverse function theorem). Let X, Y be Banach spaces,
W ⊂ Y open, f : W → Y continuously differentiable and x0 ∈ W . If the
derivative Df(x0) : X → Y of f at x0 is bijective with Df(x0)−1 ∈ L(Y,X),
then there exist an open neighborhood U of x0 and an open neighborhood V
of f(x0) such that f restricts to a bijective map from U to V and the inverse
f |−1
U : V → U is continuously differentiable.

Remark 1.1.119. In general, if X, Y are Banach spaces and A ∈ L(X, Y ) is
bijective, then A−1 ∈ L(Y,X). However, if Y is infinite-dimensional, this is
a deep theorem that will be covered later in this course.

Proof of Theorem 1.1.118. We can assume without loss of generality that
x0 = 0 and f(x0) = 0. Otherwise replacing f by Df(0)−1f , we can also
assume X = Y and Df(0) = id.
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Let r > 0 such that the closed ball B̄r(0) is contained in W . For y ∈ X
let

gy : B̄r(0)→ X, gy(x) = x− f(x) + y.

Note that x∗ ∈ B̄r(0) is a fixed point of gy if and only if f(x) = y.
We want to show that for r sufficiently small, gy(B̄r(0)) ⊂ B̄r(0) and gy

is L-Lipschitz with L < 1 in order to apply the Banach fixed-point theorem.
Since Df is continuous at 0, we can assume without loss of generality

that ‖id − Df(x)‖op ≤ 1/2 for x ∈ B̄r(0). By the mean-value theorem, if
‖x‖ ≤ r and ‖y‖ ≤ r/2, then

‖gy(x)‖ ≤ ‖y‖+ sup
x′∈B̄r(0)

‖id−Df(x′)‖op‖x‖ ≤ r.

Thus gy maps B̄r(0) into itself. Moreover, if x1, x2 ∈ B̄r(0), then

‖gy(x1)− gy(x2)‖ ≤ sup
x′∈B̄r(0)

‖id−Df(x′)‖op‖x1 − x2‖ ≤
1

2
.

Hence gy is a 1/2-Lipschitz map from B̄r(0) to itself for every y ∈ B̄r/2(0).
By the Banach fixed-point theorem, for every y ∈ B̄r/2(0) there exists a
unique x ∈ B̄r(0) with f(x) = y. Thus, if we let V = Br/2(0) and U =
f−1(V ) ∩Br(0), the map f : U → V is bijective.

It remains to show that f |−1
U is continuously differentiable. The bound

‖id−Df(x)‖op ≤ 1/2 for x ∈ U implies thatDf(x) is bijective andDf(x)−1 ∈
L(Y,X). We will prove that later in the course (Neumann series).

Let us first prove that f |−1
U is continuous. For x1, x2 ∈ U we have

‖x1 − x2‖ ≤ ‖f(x1)− f(x2)‖+ sup
x′∈B̄r(0)

‖id−Df(x′)‖op‖x1 − x2‖

≤ ‖f(x1)− f(x2)‖+
1

2
‖x1 − x2‖.

Hence ‖x1 − x2‖ ≤ 2‖f(x1)− f(x2)‖. Thus f |−1
U is 2-Lipschitz.

To show that f |−1
U is differentiable, let y, y′ ∈ V and x = f |−1

U (y), x′ =
f |−1
U (y′). We have

‖f−1(y′)− f−1(y)−Df(x)−1[y − y′]‖
‖y − y′‖

≤ ‖Df(x)−1‖op
‖Df(x)[x− x′]− f(x)− f(x′)‖

‖x− x′‖
‖f−1(y)− f−1(y′)‖

‖y − y′‖

≤ ‖Df(x)−1‖op

2

‖Df(x)[x− x′]− f(x)− f(x′)‖
‖x− x′‖

.
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If y′ → y, then x′ → x by the continuity of f |−1
U . Thus f |−1

U is differentiable
with Df |−1

U (f(x)) = Df(x)−1. Continuity of Df |−1
U follows from the conti-

nuity of the inverse map, which will also be shown later in the course.

Remark 1.1.120. In the situation of the inverse function theorem, if f is r
times continuously differentiable, then the local inverse f |−1

U is also r times
continuously differentiable. In particular, if f is smooth and Df(x) is bijec-
tive for all x ∈ W , then f is a local diffeomorphism.

Remark 1.1.121. If X = Rm and Y = Rn, then Df(x0) : Rm → Rn can only
be bijective if m = n, and this is the case if and only if detDf(x0) 6= 0.

Remark 1.1.122. If one only assumes that f is differentiable (not necessarily
continuously differentiable) and Df(x) is bijective for all x in a neighborhood
of x0, then the conclusion of the inverse function theorem still holds (except
that the inverse is only differentiable, not necessarily continuously differen-
tiable). This little known result relies on the Brouwer fixed-point theorem
instead of the Banach fixed-point theorem.

A close relative of the inverse function theorem is the implicit function
theorem. To state it, we need the following bit of notation. Let X, Y be
Banach spaces. There are several ways to turn the cartesian product X × Y
into a Banach space, for example by defining

‖(x, y)‖X×Y =
(
‖x‖2

X + ‖y‖2
Y

)1/2
.

In this way, if Km and Kn are endowed with the Euclidean norm, then Km×
Kn carries the Euclidean norm, too. This norm on the product has the
property that the projection mappings

πX : X × Y → X, (x, y) 7→ x,

πY : X × Y → Y, (x, y) 7→ y

are continuous.
Let Z be another Banach space and U ⊂ X × Y and open subset. If

f : U → Z is a (continuously) differentiable function, then for every x0 ∈
π−1
X (U) and y0 ∈ π−1

Y (U) the functions

f( · , y0) : π−1
X (U)→ Z, x 7→ f(x, y0)

f(x0, · ) : π−1
Y (U)→ Z, y 7→ f(x0, y)

are (continuously) differentiable. We will denote their derivatives byD1f( · , y0)
and D2f(x0, · ), respectively.
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Theorem 1.1.123 (Implicit function theorem). Let X, Y , Z be Banach
spaces, W ⊂ X × Y open and F : W → Z continuously differentiable. If
(x0, y0) ∈ W such that D2F (x0, y0) is bijective with bounded inverse, then
there exist neighborhoods U of (x0, y0) and V of x0 and a unique function
f : V → Y such that

{(x0, y0) ∈ U | F (x, y) = F (x0, y0)} = {(x, f(x)) | x ∈ V }.

Moreover, the function f is continuously differentiable and

Df(x) = −(D2F (x, f(x)))−1D1F (x, f(x)).

for all x ∈ V .

Remark 1.1.124. If g : A → B is a function, the preimage g−1(b) is called a
level set of g. The set {(a, g(a)) | a ∈ A} is called the graph of g. Thus
the implicit function theorem states that if D2F (x0, y0) is bijective, then the
level set of F is locally the graph of a function.

Remark 1.1.125. If X = Rl, Y = Rm and Z = Rn, the invertibility of
D2f(x0, y0) implies m = n and is equivalent to detD2f(x0, y0) 6= 0, as in the
case of the inverse function theorem.

In a typical application of the implicit function theorem, one chooses the
decomposition of the domain into a cartesian product based on the function
at hand in the following sense: Let U ⊂ Rm be open and F : U → Rn

continuously differentiable. If q0 ∈ imF such that DF (p0) is surjective
(rkDF (p0) = n) for every p0 ∈ F−1(q0), one calls q0 a regular value of
F .

Let X = kerDF (p0) and Y = {y ∈ Rm | x · y = 0 for all x ∈ X}. Then
X ∩ Y = {0}, X + Y = Rm and the norm on the product described above is
exactly the norm of Rm. Since DF (p0) is surjective, DF (p0)|Y is bijective.
Hence one can apply the implicit function theorem.

1.2 Vector Fields and Flows

1.2.1 Vector Fields

From now on we focus on finite-dimensional real vector spaces, which we take
to be Rn for some n ∈ N without loss of generality. It is convenient to work
with functions that have derivatives of arbitrary order.

Definition 1.2.1. Let X, Y be normed spaces and let U ⊂ X, V ⊂ Y be
open. A map f : U → V is called a diffeomorphism if it is smooth, bijective
and has a smooth inverse.
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Remark 1.2.2. More generally, one can define diffeomorphisms of class Cr as
r times continuously differentiable bijective maps with inverse in Cr. In this
sense, the diffeomorphisms from the previous definition are diffeomorphisms
of class C∞. As we will work exclusively in the category of smooth manifolds
and smooth maps later, we drop the suffix “of class C∞” and simply say
diffeomorphism.

Definition 1.2.3. Let U be an open subset of Rn and p ∈ U . A linear map
Xp : C∞(U) → R is called derivation at p if it satisfies the Leibniz rule (or
product rule)

Xp(fg) = f(p)Xp(g) +Xp(f)g(p)

for all f, g ∈ C∞(U).

Example 1.2.4. The partial derivative ∂
∂xj

∣∣
p

is a derivation.

Lemma 1.2.5 (Hadamard). Let U ⊂ Rn be open and p ∈ U . If f ∈
C∞(U), then there exists an open subset V of U containing p and there
exist g1, . . . , gn ∈ C∞(V ) such that

f(x) = f(p) +
n∑
j=1

gj(x)(xj − pj)

for all x ∈ V and gj(p) = ∂f
∂xj

(p).

Proof. Let r > 0 so that Br(p) ⊂ U . For x ∈ Br(p) let

h : [0, 1]→ R, h(t) = f(tx+ (1− t)p).

By the chain rule, h is differentiable on [0, 1] and

h′(t) =
n∑
j=1

∂f

∂xj
(tx+ (1− t)p)(xj − pj).

Thus

f(p)− f(x) = h(1)− h(0)

=

∫ 1

0

h′(t) dt

=
n∑
j=1

(xj − pj)
∫ 1

0

∂f

∂xj
(tx+ (1− t)p) dt.
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Let

gj : Br(p)→ R, gj(x) =

∫ 1

0

∂f

∂xj
(tx+ (1− t)p) dt.

It is not hard to see that gj is smooth. Moreover,

f(x) = f(p) +
n∑
j=1

(xj − pj)gj(x)

holds by definition. The last property follows by directly by plugging in p in
the definition of gj.

Definition 1.2.6 (Support of a function). Let X be a topological space and
f : X → K a map. The support supp f of f is the set {x ∈ X | f(x) 6= 0}.

Lemma 1.2.7 (Bump functions). If C ⊂ U ⊂ V ⊂ Rn with C closed and U ,
V open in Rn, then there exists f ∈ C∞(V ) such that 0 ≤ f ≤ 1, f(x) = 1
if x ∈ C and supp f ⊂ U .

Proposition 1.2.8 (Locality of derivations). Let U ⊂ V ⊂ Rn be open
subsets and p ∈ U . If f ∈ C∞(V ) is constant on U and Xp : C∞(V )→ R is
a derivation at p, then Xp(f) = 0.

Proof. First assume that f is constant on all of U . Since f 2 = f(p)f , we
have

f(p)Xp(f) = Xp(f
2) = 2f(p)Xp(f).

If f(p) 6= 0, this implies Xp(f) = 0. If f(p) = 0, then f = 0 and Xp(f) = 0
follows from linearity.

Now let us prove the general case. By the first part, we may assume that
f = 0 on U . By the previous lemma, there exists g ∈ C∞(V ) with g(p) = 1
and supp g ⊂ U . In particular, fg = 0. By the product rule,

0 = Xp(fg) = f(p)Xp(g) +Xp(f)g(p) = Xp(f).

Theorem 1.2.9. Let U ⊂ Rn be open and p ∈ U . Then set of derivations
at p forms an n-dimensional vector space with basis ∂

∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p
.

Proof. Let Xp be a derivation at p. There is r > 0 and smooth functions
g1, . . . , gn ∈ C∞(Br(p),Rn) such that

f(x) = f(p) +
n∑
j=1

(xj − pj)gj(x)
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for x ∈ Br(p). Let ψ ∈ C∞(U) with ψ|Br/4(p) = 1 and suppψ ⊂ Br/2(p) and
define

g̃j : U → R, f̃(x) =

{
ψ(x)gj(x) if x ∈ Br(p),

0 otherwise.

As g̃j vanishes on the complement of Br/2(p) and is smooth on Br(p), it is
smooth on all of U .

Let

f̃ : U → R, f̃(x) = f(p) +
n∑
j=1

(xj − pj)g̃j(x).

By definition, f̃ |Br/4(p) = f |Br/4(p) and g̃j(p) = gj(p) = ∂f
∂xj

(p). The previous

lemma implies Xp(f) = Xp(f̃).
Let πj : U → R, x 7→ xj. By the Leibniz rule,

Xp(f) =
n∑
j=1

Xp((π
j − pj)g̃j) =

n∑
j=1

Xp(π
j)g̃j(p) =

n∑
j=1

Xp(π
j)
∂f

∂xj
(p).

It follows that Xp =
∑n

j=1Xp(π
j) ∂
∂xj

∣∣
p
. Linear independence of the deriva-

tions ∂
∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p

is not hard to see.

Remark 1.2.10. A rephrasing of the previous result is that the derivations at
p are in one-to-one correspondence with n-tuples (v1, . . . , vn) ∈ Rn via

(v1, . . . , vn) 7→
n∑
j=1

vj∂xj
∣∣
p
.

Note that the right side is nothing but the directional derivative ∂v|p for
v = (v1, . . . , vn). Hence the derivations at p are exactly the directional
derivatives at p.

Definition 1.2.11 (Vector field). Let U ⊂ Rn be an open subset. A vector
field on U is a linear operator X : C∞(U)→ C∞(U) that satisfies the Leibniz
rule (or product rule)

X(fg) = fX(g) +X(f)g

for all f, g ∈ C∞(U). The space of vector fields on U is denoted by X (U).

Lemma 1.2.12 (Locality of vector fields). If U , V are open subsets of Rn

with U ⊂ V and X ∈ X (V ), then X(f)|U = X(g)|U for all f, g ∈ C∞(V )
with f |U = g|U .
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Theorem 1.2.13. Let U ⊂ Rn be open. The map

C∞(U,Rn)→ X (U), (f 1, . . . , fn) 7→
n∑
j=1

f j
∂

∂xj

is a linear bijection.

Lemma 1.2.14 (Lie bracket). Let U ⊂ Rn be open and X, Y ∈ X (U). The
map

[X, Y ] : C∞(U)→ C∞(U), f 7→ X(Y (f))− Y (X(f))

is a vector field, called the Lie bracket of X and Y .

Proof. We only need to verify the Leibniz rule. For f, g ∈ C∞(U) we have

[X, Y ](fg) = X(Y (fg))− Y (X(fg))

= X(fY (g) + Y (f)g)− Y (fX(g)−X(f)g)

= X(f)Y (g) + fX(Y (g)) +X(Y (f))g + Y (f)X(g)

− Y (f)X(g)− fY (X(g))− Y (X(f))g −X(f)Y (g)

= f(X(Y (g))− Y (X(g))) + (X(Y (f))− Y (X(f)))g

= f [X, Y ](g) + [X, Y ](f)g.

Lemma 1.2.15. Let U ⊂ Rn be open. The Lie bracket [ · , · ] : X (U) ×
X (U)→ X (U) is bilinear and satisfies the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

for all X, Y, Z ∈ X (U).

Definition 1.2.16 (Push-forward). Let U , V be open subsets of Rn and
Φ: U → V a smooth bijective map with smooth inverse. If X ∈ X (U), then
the push-forward of X under Φ is defined as

Φ∗X : C∞(V )→ C∞(V ), f 7→ X(f ◦ Φ) ◦ Φ−1.

Lemma 1.2.17. Let U , V be open subsets of Rn and Φ: U → V a smooth bi-
jective map with smooth inverse. If X, Y ∈ X (U), then Φ∗[X, Y ] = [Φ∗X,Φ∗Y ].

1.2.2 Flows

Definition 1.2.18 (Integral curve). Let U ⊂ Rn be open and X ∈ X (U).
A continuously differentiable map γ : I → U defined on an open interval I is
called an integral curve or flow curve of X if

γ̇(t) = Xγ(t)

for all t ∈ I.
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Remark 1.2.19. Recall that every vector field X on U can be written as
X =

∑
j f

j ∂
∂xj

with f1, . . . , fn ∈ C∞(U). Hence the equation γ̇(t) = X(γ(t))
can be rewritten as

ẋ1(t) = f 1(x1(t), . . . , xn(t))

...

ẋn(t) = fn(x1(t), . . . , xn(t))

with γ(t) =
∑n

j=1 x
j(t) ∂

∂xj
.

Theorem 1.2.20 (Picard–Lindelöf). Let I = (a, b) ⊂ R, U ⊂ Rn open
and X : I × U → Rn continuous in the first variable and Lipschitz continu-
ous in the second variable. For each (t0, x0) ∈ I × U there exists a unique
maximal interval (t−(t0, x0), t+(t0, x0)) containig t0 and a unique curve γ ∈
C1((t−, t+), U) that satisfies

γ̇(t) = X(t, γ(t)), t ∈ (t−(t0, x0), t+(t0, x0)),

γ(t0) = x0.

Remark 1.2.21. The Picard–Lindelöf theorem deals with general non-autonomous
equations, i.e., equations for which the right side depends explicitly on t.
The flow equation defining integral curves of a vector field in contrast is au-
tonomous. In this case, one can always assume t0 = 0 by shifting the time
parameter. In this case, we simply write t±(x0) for t±(0, x0).

Definition 1.2.22 (Local Flow). Let U ⊂ Rn be open and X ∈ X (U). Let
V =

⋃
x∈U(t−(x), t+(x))× {x} ⊂ R× U . A map

ΦX : V → U, (t, x) 7→ Φt
X(x)

is called a local flow for X if

• Φ0
x = idU ,

• t 7→ Φt
X(x) is an integral curve of X for every x ∈ U .

In this case, the vector field X is called the infinitesimal generator of ΦX .
If t−(x) = −∞, t+(x) = ∞ for every x ∈ U , then ΦX is called a global

flow.

Remark 1.2.23. By the Picard–Lindelöf theorem, the local flow of a vector
field exists and is unique.
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Proposition 1.2.24. Let U ⊂ Rn be open and X ∈ X (U). The local flow
ΦX has the following properties.

(a) The map ΦX : V → U is smooth.

(b) For every (t0, x0) ∈ V there exists an open neighborhood Ux0 of x0 such
that Φt0

X : Ux0 → Φt0
X(Ux0) is a diffeomorphism.

(c) If s, t ∈ R and x ∈ U such that both sides are well-defined, then

Φs
X(Φt

X(x)) = Φs+t
X (x).

Remark 1.2.25. Let us consider the case U = Rn, V = R×Rn. In particular,
the flow is a global flow. In this case, Φt

X : Rn → Rn is a diffeomorphism for
all t ∈ R and the semigroup property

Φs
X(Φt

X(x)) = Φs+t
X (x)

holds for all s, t ∈ R, x ∈ Rn.
Let Diffeo(Rn) denote the set of all diffeomorphisms from Rn to itself.

The global flow ΦX induces a group homomorphism

ΦX : R→ Diffeo(Rn), t 7→ Φt
X .

In a suitable sense, this map is also smooth.

Remark 1.2.26. The flow equation implies that the push-forward of X under
its flow satisfies (Φt

X)∗X = X, at least if ΦX is a global flow.

Definition 1.2.27. Let U ⊂ Rn be open and X, Y ∈ X (U). The Lie deriva-
tive of Y along X is defined as

LXY = lim
t→0

(Φt
X)∗Y − Y

t
.

Remark 1.2.28. Technically, this definition is not quite correct: For every
given t ∈ R, the set of x ∈ U such that t ∈ (t−(x), t+(x)) may be a proper
subset of U , and the set on which Φt

X acts as a diffeomorphism may be even
smaller. This difficulty can be overcome by defining (LXY )p for a point p ∈ U
with Y restricted to a neighborhood of p on which Φt

X exists and acts as a
diffeomorphism. Then one has to check that this definition is independent
of the choice of this neighborhood. We will not concern ourselves with these
technical difficulties here.

Proposition 1.2.29. If U ⊂ Rn is open and X, Y ∈ X (U), then LXY =
[X, Y ].
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Proposition 1.2.30. Let U ⊂ Rn be open and X, Y ∈ X (U). The local
flows ΦX , ΦY commute for small times, that is, for every x ∈ U there exists
ε > 0 such that

Φs
X(Φt

Y (x)) = Φt
Y (Φs

X(x)), s, t ∈ (−ε, ε)

if and only if [X, Y ] = 0.

The vector fields ∂
∂x1
, . . . , ∂

∂xn
commute in the sense of the previous propo-

sition as a consequence of Schwarz’s theorem. In fact, up to a change of
coordinates, all full rank systems of commuting vector fields are locally of
this form.

Theorem 1.2.31. Let U ⊂ Rn be open. If X1, . . . , Xn ∈ X (U) and p ∈ U
satisfy

(a) [Xi, Xj] = 0 for all i, j ∈ {1, . . . , n},

(b) (X1)p . . . , (Xn)p are linearly independent,

then there exists an open neighborhood Up of p and a diffeomorphism ϕ : Up →
V onto an open subset of V such that ϕ∗Xj = ∂

∂yj
for j ∈ {1, . . . , n}. Here

∂
∂y1
, . . . , ∂

∂yn
denotes the basis vector fields on V .

Proof. Recall that there are functions fkj ∈ C∞(U) such thatXj =
∑n

k=1 f
k
j
∂
∂xk

.
Let

F : U → Rn×n, F (x) = (fkj(x))nj,k=1.

By assumption, detF (p) 6= 0. Since F is smooth, there exists an open neigh-
borhood Wp of p such that detF (x) 6= 0 for x ∈ Up, that is, (X1)x, . . . , (Xn)x
are linearly independent for x ∈ Wp.

For ε > 0 sufficiently small we define

Ψ: (−ε, ε)n → U, (t1, . . . , tn) 7→ (Φt1
X1
◦ · · · ◦ Φtn

Xn
)(p).

By the previous proposition, the order of the vector fields X1, . . . , Xn does
not matter in this definition. Hence we can compute

∂

∂ti
Ψ(t1, . . . , tn) =

∂

∂ti
Φti
Xi

(Φt1
X1
◦ Φ

Xj−1

tj−1
◦ Φ

Xj+1

tj+1
◦ · · · ◦ Φtn

Xn
)(p)

= (Xi)Ψ(t1,...,tn).

Thus DΨ = F ◦Ψ. In particular, DΨ(t1, . . . , tn) is invertible for (t1, . . . , tn) in
a neighborhood of 0. By the inverse function theorem, there exist neighbor-
hoods V of 0 and Up of p such that Ψ(V ) = Up and Ψ|V is a diffeomorphism
onto its image. Let ϕ = (Ψ|V )−1, which is a diffeomorphism from Up to V
by definition. It follows from the previous computation that ϕ∗Xi = ∂

∂ti
.
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1.2.3 Tensor fields

Let V be a (finite-dimensional) vector space over K. We write Tr,s(V ) for
the set of all (r, s)-tensors.

Definition 1.2.32 (Tensor field). Let U ⊂ Rn be open. An (r, s)-tensor
field on U is a smooth map from U to Tr,s(Rn).

Remark 1.2.33. To speak of a smooth map with values in Tr,s(Rn), we need a
norm on it. Fortunately, Tr,s(Rn) is finite-dimensional and thus all norms are
equivalent. Hence it does not matter which one we choose for the definition
of smoothness.

Remark 1.2.34. Note that T0,1(V ) is canonically isomorphic to V . Thus the
space of (0, 1)-tensor fields on U is canonically isomorphic to C∞(U,Rn),
which in turn is canonically isomorphic to X (U).

Remark 1.2.35. Let Ω1(U) denote the set of all (1, 0)-tensor fields on U . We
have a pairing between C∞(U,Rn) and Ω1(U) given by

(·|·) : C∞(U,Rn)× Ω1(U)→ C∞(U), (X,ω) 7→ (p 7→ ωp(Xp)).

For every ω ∈ Ω1(U) the map ( · |ω) is C∞(U)-linear, that is, it satisfies

(fX|ω) = f(X|ω)

for all f ∈ C∞(U), X ∈ C∞(U,Rn). Conversely, for any C∞(U)-linear map
T : C∞(U,Rn) → C∞(U) there exists ω ∈ Ω1(U) such that T (X) = (X|ω)
for all X ∈ C∞(U,Rn).

Therefore Ω1(U) can be identified with the set of all C∞(U)-linear maps
from X (U) to C∞(U).

More generally, there is a canonical identification between (r, s)-tensor
fields on U and C∞(U)-multilinear maps from X (U)r × Ω1(U)s → C∞(U).

Definition 1.2.36 (Connection). Let U ⊂ Rn be open. A connection on U
is a bilinear map

∇ : X (U)×X (U)→ C∞(U), (X, Y ) 7→ ∇XY

with the following two properties:

(a) ∇fXY = f∇XY for all f ∈ C∞(U), X, Y ∈ X (U).

(b) ∇X(fY ) = f∇XY +X(f)Y for all f ∈ C∞(U), X, Y ∈ X (U).

35



The torsion T∇ of ∇ is defined as

T∇ : X (U)×X (U)→ X (U), (X, Y ) 7→ ∇XY −∇YX − [X, Y ]

and the curvature R∇ is defined as

R∇ : X (U)3 → X (U), (X, Y, Z) 7→ ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

Remark 1.2.37. A C∞(U)-multilinear map T : X (U)r → X (U) can be iden-
tified with a C∞(U)-multilinear map T̃ : X (U)r × Ω1(U)→ C∞(U) via

T̃ (X1, . . . , Xr, ω) = (T (X1, . . . , Xr)|ω).

In this sense, the torsion of a connection can be viewed as a (2, 1)-tensor and
the curvature can be viewed as a (3, 1)-tensor.

1.3 Global Analysis – Manifolds Part I

1.3.1 Topological and smooth manifolds

Definition 1.3.1 (Basis of a topology). Let (X, T ) be a topological space.
A subset B of T is called a basis of the topology T if for every U ∈ T and
every x ∈ U there exists B ∈ B with x ∈ B and B ⊂ U . The space (X, T )
is called second-countable if it has a countable basis.

Remark 1.3.2. A rewording of this definition is that B is a basis if every open
set is a union of elements of B.

Proposition 1.3.3. (a) If (X, T ) is a second-countable topological space
and Y ⊂ X, then the subspace topology on Y is second-countable.

(b) A metric space (X, d) is second-countable if and only if there exists a
countable subset D of X with D = X.

Example 1.3.4. The set Qn ⊂ Rn has closure Rn and is countable. By (b),
the space Rn (with the Euclidean topology) is second-countable, and by (a),
the same is true for every subset of Rn.

Definition 1.3.5 (Topological manifold). A topological space M is called a
topological manifold of dimension n if it satisfies the following three proper-
ties:

(a) M is a Hausdorff space.
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(b) M is locally Euclidean, that is, for every x ∈ M there exists an open
subset Ux of M containing x that is homeomorphic to an open subset
of Rn.

(c) The topology on M is second-countable.

Remark 1.3.6. If M is a subset of Rn (with the subspace topology), we only
need to check property (b) as (a) and (c) are automatically satisfied.

Example 1.3.7. The sphere Sn = {(x0, . . . , xn) ∈ Rn+1 |
∑

j x
2
j = 1} ⊂ Rn+1

with the subspace topology is a topological manifold of dimension n. For
simplicity, let consider n = 1. The stereographic projection

ϕN : S1 \ {(0, 1)} → R, (x, y) 7→ 2x

1− y

is a continuous bijective map with continuous inverse

ϕ−1
N : R→ S1 \ {(0, 1)}, s 7→

(
4s

4 + s2
,
s2 − 4

4 + s2

)
,

hence a homeomorphism.
Likewise, the stereographic projection

ϕS : S1 \ {(0,−1)} → R, (x, y) 7→ 2x

1 + y

is a homeomorphism. Thus every point (x, y) in S1 has an open neighborhood
(namely S1 \ {(0, 1)} if (x, y) 6= (0, 1) and S1 \ {(0,−1)} if (x, y) = (0, 1))
that is homeomorphic to R.

Example 1.3.8. The intersection of two lines, for example M = R × {0} ∪
{0}×R is not a topological manifold: The open subset (0,∞)×{0} of M is
homeomorphic to (0,∞) ⊂ R, hence M could only be a topological manifold
of dimension 1. However, the open subset U = (−1, 1)× {0} ∪ {0} × (−1, 1)
is not homeomorphic to any subset of R. To see this, one needs a concept not
covered in this course, namely connectedness. The subset U is connected,
but if you remove {(0, 0)}, what remains has four connected components.
Connected subsets of R however are intervals, and if you remove a point
from an interval, you end up with a space with at most two connected com-
ponents. Since homeomorphisms preserve connected components, U cannot
be homeomorphic to a subset of Rn.

Definition 1.3.9 (Chart, atlas). Let M be a topological manifold of dimen-
sion n. A chart is a pair (U,ϕ) consisting of an open subset U of M and a
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homeomorphism ϕ from U onto an open subset of Rn. An atlas is a family
((Ui, ϕi))i∈I of charts such that M ⊂

⋃
i∈I Ui.

If i, j ∈ I with Ui ∩ Uj 6= ∅, the transition map ϕij is defined by

ϕij : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj), ϕij = ϕj ◦ ϕ−1
i .

Definition 1.3.10 (Smooth atlas, smooth structure). LetM be a topological
manifold of dimension n. An atlas ((Ui, ϕi))i∈I is called a smooth atlas if the
transition map ϕij is smooth for all i, j ∈ I such that Ui ∩ Uj 6= ∅.

Two smooth atlases A and B are called equivalent if A ∪ B is again a
smooth atlas. An equivalence class of smooth atlases is called a smooth
structure on M and a topological manifold with a smooth structure is called
a smooth manifold.

Example 1.3.11. Every open subset U of Rn is a topological manifold of
dimension n. It admits a smooth atlas containing only the singly chart (U, id).
The induced smooth structure is called the standard smooth structure on U .
Unless otherwise stated, we always consider the standard smooth structure
on open subsets of Rn.

Example 1.3.12. Every homeomorphism ϕ : R → R gives rise to a chart
(R, ϕ). If f or f−1 is not smooth, then the atlas with the single chart (R, ϕ)
is not equivalent to the atlas with the single chart (R, id).

Example 1.3.13. The n-sphere Sn = {x ∈ Rn+1 : ‖x‖2 = 1} is a topological
manifold of dimension n. As in Example 1.3.7 let us consider the case n = 1.
For the atlas given by (S1\{(0, 1)}, ϕN) and (S1\{(0,−1)}, ϕS) the transition
map given by

ϕNS : R \ {0} → R \ {0}, ϕNS = ϕS ◦ ϕ−1
N

evaluates to

ϕS(ϕ−1
N (s)) = ϕS

(
4s

4 + s2
,
s2 − 4

4 + s2

)
=

4

s

for s ∈ R \ {0}. Hence ϕNS is a smooth map.

Definition 1.3.14 (Smooth map). Let M , N be topological manifolds and
((Ui, ϕ))i∈I , ((Vj, ψj))j∈J atlases of M and N , respectively. A map f : M →
N is called smooth if for all i ∈ I, j ∈ J with Ui ∩ f−1(Vj) 6= ∅ the map

ψj ◦ f ◦ ϕ−1
i |Ui∩f−1(Vj) : ϕi(Ui ∩ f−1(Vj))→ ψj(Vj)

is smooth. The set of all smooth maps from M to N is denoted by C∞(M,N).
We simply write C∞(M) for C∞(M,R).

The map f is called a diffeomorphism if it is bijective and both f and
f−1 are smooth.
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Remark 1.3.15. This definition of smooth map depends on the chosen atlases.
However, if we replace ((Ui, ϕ))i∈I and ((Vj, ψj))j∈J by equivalent atlases, we
end up with the same smooth maps. In particular, there is a well-defined
notion of smooth maps between smooth manifolds.

Remark 1.3.16. If U ⊂ Rm and V ⊂ Rn with the standard smooth structures,
then a map f : U → V is smooth in the sense of this definition if and only
if it is smooth in the sense of the previous definition as map between open
subsets of normed spaces.

1.3.2 Submanifolds of Rn

Definition 1.3.17 (Smooth submanifold of Rn). A subset M of Rm is called
a smooth n-dimensional submanifold of Rm if there exists a family (Vi,Ψi)i∈I ,
with Vi ⊂ Rn open and Ψi : Vi → Rm a smooth map for all i ∈ I, that satisfies
the following properties:

(a) Ψi is injective and Ψi(Vi) ⊂M for all i ∈ I.

(b) rkDΨi(x) = n for all i ∈ I, x ∈ Vi.

(c) For every i ∈ I, x0 ∈ Vi there exist open neighborhoods Vx0 of x0,
UΨi(x0) of Ψi(x0) such that

Ψi|Vx0 : Vx0 → UΨi(x0) ∩M

is a homeomorphism.

(d) M =
⋃
i∈I Ψi(Vi).

Remark 1.3.18. The maps Ψi are called parametrizations of M . Note that
they go in the opposite direction (from Rn into the manifold) from charts.

Remark 1.3.19. Every smooth n-dimensional submanifold of Rn is a smooth
n-dimensional manifold with smooth atlas (UΨi(x0) ∩M,Ψi|−1

Vx0
)i∈I,x0∈Vi . The

converse is also true in the following sense: Every smooth n-dimensional
manifold can be smoothly embedded into R2n. This is known as Whitney’s
embedding theorem. Note however, that this embedding is by no means
canonical.

Proposition 1.3.20. Let F : Rm → Rm−n be a smooth map. If c ∈ Rm−n is
a regular value of F , then F−1(c) is a smooth n-dimensional submanifold of
Rm.
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Example 1.3.21. Let F : Rn+1 → R, x 7→
∑n+1

j=1 (xj)2. Clearly, F is smooth.

We have DF (x) =
∑n

j=0 2xjdxj. By the rank-nulllity theorem, any non-zero

linear functional on Rn+1 is surjective. Hence 1 is a regular value of F . It
follows that

Sn = F−1(1) = {x ∈ Rn+1 | (x1)2 + · · ·+ (xn+1)2 = 1}

is smooth n-dimensional submanifold of Rn+1.

Example 1.3.22. Let Rn×n
sym denote the symmetric n × n matrices. Observe

that Rn×n
sym is a real vector space of dimension 1

2
n(n+ 1). Let

F : Rn×n → Rn×n
sym , A 7→ ATA.

Again, it is not hard to see that F is smooth and DF (A)[H] = ATH+HTA.
If ATA = 1 and B ∈ Rn×n

sym , then

DF (A)[AB/2] =
1

2
ATAB +BTATA = B.

Thus DF (A) is surjective whenever ATA = 1n, which means that 1n is a
regular value of F .

It follows that

On(R) = F−1(1n) = {A ∈ Rn×n | ATA = 1n}

is a smooth submanifold of Rn×n of dimension 1
2
n(n− 1).

1.3.3 Tangent spaces

Definition 1.3.23 (Tangent vector). Let M be a smooth manifold and p ∈
M . A tangent vector at p is a linear map Xp : C∞(M)→ R that satisfies the
Leibniz rule (or product rule)

Xp(fg) = Xp(f)g(p) + f(p)Xp(f)

for all f, g ∈ C∞(M). The set of all tangent vectors at p is denoted by TpM .

Remark 1.3.24. If M is an open subset of Rn (with the standard smooth
structure), then a tangent vector at p is exactly what we called a derivation
at p in a prior section.

Lemma 1.3.25. Let M be a smooth manifold and p ∈M . If f ∈ C∞(M) is
constant on an open set containing p and Xp ∈ TpM , then Xp(f) = 0.
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As a consequence of the previous lemma, whenever U is an open neigh-
borhood of p ∈ M and Xp ∈ TpM , then Xp restricts to a derivation on
C∞(U) at p and this restriction is consistent in the following sense: If V is
another open neighborhood of p ∈M and f ∈ C∞(M), thenXp|C∞(U)(f |U) =
Xp|C∞(V )(f |V ).

For open subsets of Rn, we have seen that tangent vectors at a point
are the same as directional derivatives at that point. The same is true for
smooth manifolds, but we need a more sophisticated concept of directional
derivative as there are no longer “straight lines”.

Proposition 1.3.26. Let M be a smooth manifold and p ∈ M . For every
Xp ∈ TpM there exists ε > 0 and a smooth map γ : (−ε, ε) → M such that
γ(0) = p and

Xp(f) =
d

dt
(f ◦ γ)(0)

for all f ∈ C∞(M).

Proof. Let (U,ϕ) be a chart (from a smooth atlas in the smooth structure of
M) with p ∈ U and let q = ϕ(p). Consider the map

X̃q : C∞(ϕ(U))→ R, f 7→ Xp(f ◦ ϕ).

It is easy to see that X̃q is a derivation at q. Hence there exist v ∈ Rn such
that X̃q = ∂v|q. For ε > 0 sufficiently small let

γ : (−ε, ε)→M, t 7→ ϕ−1(q + tv).

Then γ(0) = p and

d

dt
(f ◦ γ)(0) =

d

dt
(f ◦ ϕ−1)(q + tv)(0) = X̃q(f ◦ ϕ−1) = Xp(f).

Remark 1.3.27. Unlike in the case of open subsets of Rn, the correspondence
in the previous proposition is not one-to-one. A trivial observation is that
if we restrict a smooth curve γ to a smaller interval, we still get the same
tangent vector. But beyond that, there can be “genuinely different” curves
that result in the same tangent vector, for example γ1, γ2 : (−1, 1)→ R with
γ1(t) = t2 and γ2(t) = −t4. The reason is that we do not have a canonical
choice of a curve in a given direction like the straight lines in Euclidean space.

Example 1.3.28. LetM be a smooth n-dimensional submanifold of Rm. Every
smooth map γ : (−ε, ε) → M can be viewed as a map with values in Rm.
As such, the derivative at zero is a linear map from R to Rm, which can be
identified with a vector in Rm.
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If U is an open neighborhood of M and f : U → R is smooth, then the
tangent vector from the previous proposition satisfies

Xp(f) =
d

dt
(f ◦ γ)(0) = Df(p)[γ̇(0)] = ∂γ̇(0)f(p).

Hence every element of TpM is a directional derivative in a direction “tan-
gent” to M . This explains the notion of tangent space in this abstract setting.

Definition 1.3.29 (Differential). Let M , N be smooth manifolds, p ∈ M
and ϕ ∈ C∞(M,N). For Xp ∈ TpM the pushforward ϕ∗Xp ∈ Tϕ(p)N is
defined by

ϕ∗Xp : C∞(N)→ R, g 7→ Xp(g ◦ ϕ).

The differential of ϕ at p is the map

Dϕ(p) : TpM → Tϕ(p)N, Xp 7→ ϕ∗Xp.

If N = R, we also write dϕ(p) for Dϕ(p).

Example 1.3.30. Let U ⊂ Rm, V ⊂ Rn be open and ϕ : U → V be smooth.
For p ∈ U the spaces TpU and Tϕ(p)V are the directional derivatives in p and
ϕ(p), respectively.

If h ∈ Rm, then

ϕ∗∂h|p : C∞(V )→ R, g 7→ ∂h(g ◦ ϕ)|p = ∂Dϕ(p)[h]g|ϕ(p),

where we used Dϕ(p) to denote the derivative of ϕ at p defined before.

Hence if we make the identification Rm
∼=→ TpU , h 7→ ∂h|p and likewise for

Tϕ(p)V , then the differential Dϕ(p) is the same as the derivative of ϕ at p.

Definition 1.3.31 (Tangent bundle). Let M be a smooth n-dimensional
manifold. The tangent bundle TM of M is defined as

TM =
⋃
p∈M

{p} × TpM.

The canonical projection π : TM → M is defined by π(p,Xp) = p for all
p ∈M , Xp ∈ TpM .

Proposition 1.3.32. Let M be a smooth n-dimensional manifold with atlas
((Ui, ϕi))i∈I . For i ∈ I let

ϕ̃i : π
−1(Ui)→ ϕi(U)× Rn, (p, v) 7→ (ϕi(p), Dϕi(p)[v]).
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The set

TTM = {W ⊂ TM | ϕ̃i(W ∩ π−1(Ui)) open in Rn × Rn for all i ∈ I}

is a second countable Hausdorff topology on TM that makes TM into an
n-dimensional topological manifold.

Moreover, ((π−1(Ui), ϕ̃i))i∈I is a smooth atlas on TM and equivalent at-
lases on M gives rise to equivalent atlases on TM .

Remark 1.3.33. • Intuitively, the tangent bundle is the collection of tan-
gent spaces, assembled in a way that the tangent space varies smoothly
with the base point. This proposition makes this intuition rigorous.

• As a consequence of the previous proposition, the tangent bundle of
a smooth n-dimensional manifold carries a canonical structure of a
smooth 2n-dimensional manifold.

• The tangent bundle carries additional structure: For every p ∈ M ,
the set π−1(p) = TpM is an n-dimensional vector space, and whenever
(ϕ,U) is a chart of M , then Dϕi(p) is a bijective linear map from TpM
onto Rn. This can be summarized as saying that TM is a smooth vector
bundle of rank n over M .

• The space of smooth sections in the vector bundle TM is defined as

Γ(TM) = {s ∈ C∞(M,TM) | π ◦ s = idM}.

This space of smooth sections can be canonically identified with X (M).

Definition 1.3.34 (Cotangent bundle). Let M be a smooth n-dimensional
manifold. If p ∈ M , we write T ∗pM for (TpM)∗. The cotangent bundle T ∗M
of M is defined as

T ∗M =
⋃
p∈M

{p} × T ∗pM.

The canonical projection π : T ∗M → M is defined as π(p, ωp) = p for all
p ∈M , ωp ∈ TpM .

Remark 1.3.35. The cotangent bundle can be turned into a smooth 2n-
dimensional manifold and a smooth vector bundle of rank n over M in much
the same way as TM , one just has to adapt the definition of ϕ̃i to be

ϕ̃i : π
−1(Ui)→ ϕi(U)× Rn, (p, ω) 7→ (ϕi(p), ω ◦Dϕi(p)−1).
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Definition 1.3.36 (Differential 1-form). Let M be a smooth n-dimensional
manifold. The set of sections Γ(T ∗M) is denoted by Ω1(M). An element
ω ∈ Ω1(M) is called a differential 1-form.

Remark 1.3.37. We have seen that TpRn can be canonically identified with
Rn. Thus, if f ∈ C∞(M) and p ∈ M , then df(p) can be viewed as a linear
map from TpM to R, or, in other words, an element of T ∗pM . One can check
that

df : M → T ∗M, p 7→ (p, df(p))

is smooth. In other words, df ∈ Γ(T ∗M) = Ω1(M).

Remark 1.3.38. Let M be a smooth n-dimensional manifold and (ϕ,U) a
chart. We write (x1, . . . , xn) for the coordinate maps of ϕ, that is, ϕ(p) =
(x1(p), . . . , xn(p)) for p ∈ U . The maps x1, . . . , xn are smooth maps from U
to R, hence dx1(p), . . . , dxn(p) ∈ T ∗pM . This is consistent with our notation
of the dual basis used earlier. In fact, since ϕ is a diffeomorphism onto its
image, dx1(p), . . . , dxn(p) form a basis of T ∗pM for every p ∈ U .

1.4 Global Analysis – Manifolds Part II

1.4.1 Differential forms

Definition 1.4.1 (Exterior power of the cotangent bundle). Let M be an
n-dimensional smooth manifold. For r ∈ N we define r-th exterior power of
the cotangent bundle as

ΛrT ∗M =
⋃
p∈M

{p} × ΛrT ∗pM.

Moreover, we let ΛT ∗pM =
⊕n

k=0 ΛrT ∗pM and

ΛT ∗M =
⋃
p∈M

{p} × ΛT ∗pM.

Remark 1.4.2. Just like the cotangent bundle, the r-th exterior power of the
cotangent bundle has a natural structure of a smooth manifold such that
the projection map π : ΛrT ∗M → M, (p, αp) 7→ p is smooth and the fibers
π−1(p) are real vector spaces, in this case of dimension

(
n
r

)
. In other words,

ΛrT ∗M is a smooth vector bundle (of rank
(
n
r

)
) over M . The same is true

for ΛT ∗M (with rank 2n).

Remark 1.4.3. Recall that we defined Λ0T ∗pM = R. Thus Ω0(M) = C∞(M).

44



Definition 1.4.4 (Differential form). Let M be a smooth n-dimensional
manifold and r ∈ N. The set of smooth sections Γ(ΛrT ∗M) is denoted by
Ωr(M). An element of Ωr(M) is called a differential r-form on M . The set
of smooth sections Γ(ΛT ∗M) is denoted by Ω(M). An element of Ω(M) is
called differential form on M .

Remark 1.4.5. Note that not every differential is a differential r-form for some
r. For example, if f ∈ C∞(M) and ω ∈ Ω1(M), then f + ω is a differential
form, but not a differential r-form for any r unless ω = 0 or f = 0.

Example 1.4.6. Let U ⊂ Rn be open. With the notation from the previous
section,

Ωr(U) =

{ ∑
1≤j1<···<jr≤n

αj1,...,jrdx
j1 ∧ · · · ∧ dxjr : αj1,...,jr ∈ C∞(U)

}
.

Remark 1.4.7. The wedge product on alternating forms can be extended to
a wedge product on differential forms by defining (α ∧ β)p = αp ∧ βp for
α ∈ Ωr(M), β ∈ Ωs(M), p ∈ M . Likewise, we can define the product of a
smooth function and a differential form by (fα)p = f(p)α(p).

Definition 1.4.8 (Pull-back). Let M , N be smooth manifolds and ϕ ∈
C∞(M,N). The pull-back operation ϕ∗ is defined as

ϕ∗ : Ωr(N)→ Ωr(M), (ϕ∗ω)p(v1, . . . , vr) = ωϕ(p)(Dϕ(p)[v1], . . . , Dϕ(p)[vr])

for p ∈M , v1, . . . , vr ∈ TpM .

Lemma 1.4.9. Pull-back is compatible with wedge products: If M , N are
smooth manifolds, ϕ ∈ C∞(M,N) and α ∈ Ωr(N), β ∈ Ωs(N), then

ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β.

Proof. If p ∈M , then

ϕ∗(α ∧ β)p = (αϕ(p) ∧ βϕ(p)) ◦Dϕ(p)⊗(r+s)

=
(r + s)!

r!s!
P∧(αϕ(p) ⊗ βϕ(p)) ◦Dϕ(p)⊗(r+s)

=
(r + s)!

r!s!
P∧((αϕ(p) ◦Dϕ(p)⊗r)⊗ (βϕ(p) ◦Dϕ(p)⊗s))

= (ϕ∗α)p ∧ (ϕ∗β)p.

As discussed before, the differential df of a smooth function is a differen-
tial 1-form. One can extend this notion of differential to produce a differential
(r + 1)-form from a differential r-form in the following way.
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Proposition 1.4.10 (Exterior derivative). Let M be a smooth n-dimensional
manifold. There exists a unique linear map d : Ω(M)→ Ω(M) such that

• d(Ωr(M)) ⊂ Ωr+1(M) for all r ∈ {0, . . . , n},

• df = Df for all f ∈ Ω0(M),

• d(fα) = fdα + df ∧ α for all f ∈ Ω0(M), α ∈ Ωr(M), r ∈ {0, . . . , n}.

• d2 = 0.

The map d is called the exterior derivative.
It has the following properties:

• If ϕ ∈ C∞(M,N), then d ◦ ϕ∗ = ϕ∗ ◦ d.

• If α ∈ Ωr(M), β ∈ Ωs(M), then d(α ∧ β) = dα ∧ β + (−1)rα ∧ dβ.

Remark 1.4.11. • As the differential, the exterior derivative is local: If
α, β ∈ Ωr(M) coincide on an open subset U of M , then dα and dβ
coincide on U .

• The graded Leibniz rule together with locality give a recipe to compute
the exterior derivative in local coordinates: If (ϕ,U) is a chart, then

d

( ∑
j1<···<jr

fj1...jrdx
j1 ∧ · · · ∧ dxjr

)

=
n∑
i=1

∑
j1<···<jr

∂fj1...jr
∂xi

dxi ∧ dxj1 ∧ · · · ∧ dxjr

on U .

Definition 1.4.12 (Contraction). Let M be a smooth n-dimensional man-
ifold, α ∈ Ωr+1(M) and X ∈ X (M). The contraction of X into α is the
r-form iXα defined by

(iXα)p = αp(Xp, · )
for p ∈M .

Example 1.4.13. If f ∈ C∞(M) and X ∈ X (M), then iX(df) = df(X) =
X(f).

Definition 1.4.14 (Lie derivative). Let M be a smooth n-dimensional man-
ifold, X ∈ X (M) with local flow ΦX and α ∈ Ωr(M). The Lie derivative of
α along X is defined as

LXα = lim
t→0

(Φt
X)∗α− α
t

.
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Remark 1.4.15. As in the case of vector fields, some care has to be taken in
this definition as Φt

X is usually not a global diffeomorphism. Note that in
contrast to the Lie derivative of vector fields, we take the pull-back instead
of the pushforward along the flow.

As the Lie derivative of a vector field along a vector field, there is a simpler
algebraic formula for the Lie derivative of a differential form.

Proposition 1.4.16 (Cartan’s homotopy formula). Let M be a smooth n-
dimensional manifold. If X ∈ X (M) and α ∈ Ωr(M), then

LXα = d(iXα) + iX(dα).

1.4.2 The de Rham complex and vector calculus

Let M be an n-dimensional smooth manifold. The exterior derivative can be
diagrammatically written as

{0} → Ω0(M)
d→ Ω1(M)

d→ . . .
d→ Ωn(M)→ {0},

where the composition of any two adjacent arrows is zero. This diagram is
abbreviated as (Ω•(M), d) and called the de Rham complex. It is a funda-
mental example of a cochain complex.

Definition 1.4.17 (Closed and exact forms, de Rham cohomology). Let M
be an n-dimensional smooth manifold. A differential form α ∈ Ω(M) is called
closed if dα = 0 and exact if there exists β ∈ Ω(M) such that α = dβ.

The r-th de Rham cohomology group Hr
dR(M) is defined as

Hr
dR(M) = (ker d ∩ Ωr(M))/(ran d ∩ Ωr(M)).

Remark 1.4.18. Since d2 = 0, every exact differential form is closed and thus
ran d ∩ Ωr(M) ⊂ ker d ∩ Ωr(M).

Example 1.4.19. If U ⊂ Rn is convex, then Hr
dR(U) = {0} for every r ∈

{0, . . . , n}.
Example 1.4.20. Every differential 1-form on S1 is closed since Ω2(S1) = {0}.
However, not every 1-form is exact: Recall that we can identify TvS

1 with
{w ∈ R2 | v ∈ S1, v · w = 0}. Let

A =

(
0 −1
1 0

)
.

and
ωv : TvS

1 → R, w 7→ Av · w.
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One can show that ω ∈ Ω1(S1) and there exists no function f ∈ C∞(S1)
such that df = ω. This is easy to see once one has Stokes’s theorem at hand:
If ω = df , then

∫
S1 ω = 0, which is not the case.

Note that this is a global statement: For every chart (ϕ,U) there exists
a function f ∈ C∞(U) such that ω|U = df |U , but such a function cannot be
extended to a smooth function on S1 that still obeys this identity.

Definition 1.4.21 (Tensor field). For r, s ∈ N we define

(T ∗M)⊗r ⊗ (TM)⊗s =
⋃
p∈M

{p} × (T ∗pM)⊗r ⊗ (TpM)⊗s

and
π : (T ∗M)⊗r ⊗ (TM)⊗s →M, (p, Tp) 7→ p.

There is a canonical structure of a smooth manifold on (T ∗M)⊗r ⊗ (TM)⊗s

such that π is smooth and (T ∗M)⊗r ⊗ (TM)⊗s becomes a smooth vector
bundle over M . A smooth section T ∈ Γ((T ∗M)⊗r ⊗ (TM)⊗s) is called an
(r, s)-tensor field on M .

Example 1.4.22. • A (0, 1) tensor field is a vector field and a (1, 0) tensor
field is a differential 1-form. Every differential r-form is a (r, 0) tensor
field, but not vice versa – tensor fields do not have to be alternating.

Definition 1.4.23. Let M be a smooth manifold. A Riemannian metric on
M is a (2, 0) tensor field such that gp is an inner product on TpM for every
p ∈ M . A Riemannian manifold is a pair (M, g) consisting of a smooth
manifold M and a Riemannian metric g on M .

Example 1.4.24. Let M be a smooth n-dimensional submanifold of Rm. Re-
call that one can identify TpM with the subspace

{γ̇(0) | γ ∈ C∞((−ε, ε),Rm), γ(0) = p, im γ ⊂M}

of Rm. A Riemannian metric on M is defined by

gp : TpM × TpM → R, (v, w) 7→ 〈v, w〉,

where 〈 · , · 〉 is any inner product on Rm.

Definition 1.4.25 (Musical isomorphisms). Let (M, g) be a Riemannian
metric. For p ∈M , the musical isomorphism [ is defined as

[ : TpM → T ∗pM, v 7→ v[ = gp(v, ·).
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Moreover, ] is the inverse of [.
These isomorphisms are extended to maps between X (M) and Ω1(M) by

(X[)p = (Xp)
[, (ω])p = (ωp)

]

for X ∈ X (M), ω ∈ Ω1(M), p ∈M .

Remark 1.4.26. If v[ = 0,then gp(v, v) = 0, hence v = 0. Thus [ is injective,
and since TpM and T ∗pM have the same dimension, also surjective. Therefore
[ is really an isomorphism and the inverse ] is well-defined.

Remark 1.4.27. Let (ϕ,U) be a chart with ϕ = (x1, . . . , xn) and p ∈ U . If g
is a Riemannian metric and gp

(
∂
∂xj
|p, ∂

∂xk
|p
)

= gjk(p), then(
n∑
j=1

λj
∂

∂xj

∣∣∣∣
p

)[

=
n∑

j,k=1

gjk(p)λ
jdxk|p(

n∑
j=1

µjdx
j|p

)]

=
n∑

j,k=1

gjk(p)µj
∂

∂xk

∣∣∣∣
p

Here (gjk(p))jk denotes the inverse matrix of (gjk(p))jk. This is what is known
as “lowering and raising the indices” in physics.

Definition 1.4.28 (Gradient). Let (M, g) be a Riemannian manifold. The
gradient of f ∈ C∞(M) is defined as ∇gf = (df)].

Remark 1.4.29. With the notation from Remark 1.4.27, the gradient of f ∈
C∞(M) is given by

(∇gf)p =
∑
j,k

gjk(p)
∂f(p)

∂xj
∂

∂xk

∣∣∣∣
p

.

Definition 1.4.30 (Volume form). Let M be a smooth n-dimensional man-
ifold. A volume form on M is a differential n-form vol ∈ Ωn(M) such that
volp 6= 0 for all p ∈M .

Remark 1.4.31. Not every smooth manifold admits a volume form. Those
that do are called orientable.

Lemma 1.4.32. Let M be a smooth n-dimensional manifold. If vol ∈ Ωn(M)
is a volume form, then the maps

C∞(M)→ Ωn(M), f 7→ fvol

X (M)→ Ωn−1(M), X 7→ iXvol

are isomorphisms.
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Definition 1.4.33 (Divergence). LetM be a smooth n-dimensional manifold
with volume form vol ∈ Ωn(M). The divergence operator is defined by

div : X (M)→ C∞(M), (divX)vol = d(iXvol)

Moreover, if n = 3 and g is a Riemannian metric on M , then the curl operator
is defined by

curlg : X (M)→ X (M), icurlg Xvol = d(X[).

Remark 1.4.34. The previous lemma shows that div and curlg are well-
defined. Note that we only need a volume form to defined div, while we
need a Riemannian metric to define curlg, and the latter only makes sense in
dimension 3.

Let (M, g) be a 3-dimensional Riemannian manifold. The definitions of
∇g, curlg and div can be summarized by the following commutative diagram:

{0} Ω0(M) Ω1(M) Ω2(M) Ω3(M) {0}

{0} C∞(M) X (M) X (M) C∞(M) {0}

d d d

id

∇g

[

curlg

i•vol

div

• vol

In particular, d2 = 0 implies curlg ◦∇g = 0 and div ◦ curlg = 0.

Example 1.4.35. Let U ⊂ Rn be open and let g be the Riemannian metric
on U described in Example 1.4.24. Note that with this choice of Riemannian
metric, we have

gp

(
∂

∂xj

∣∣∣∣
p

,
∂

∂xk

∣∣∣∣
p

)
= δjk

for all j, k ∈ {1, . . . , n}.
The musical isomorphisms are given by

[ : TpU → T ∗pU,
n∑
j=1

λj
∂

∂xj

∣∣∣∣
p

7→
n∑
j=1

λjdxj|p

] : T ∗pU → TpU,

n∑
j=1

µjdx
j|p 7→

n∑
j=1

µj
∂

∂xj

∣∣∣∣
p

.

Thus

∇gf =
n∑
j=1

∂f

∂xj
∂

∂xj
.
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Moreover, if we take the volume form dx1 ∧ · · · ∧ dxn, we obtain

div

(
n∑
j=1

f j
∂

∂xj

)
=

n∑
j=1

∂f j

∂xj
.

Finally, if n = 3, then

curlg

(
3∑
j=1

f j
∂

∂xj

)
= (∂2f

3 − ∂3f
2)∂1 + (∂3f

1 − ∂1f
3)∂2 + (∂1f

2 − ∂2f
1)∂3,

where we used the shortened notation ∂j = ∂
∂xj

.

1.4.3 Integration of differential forms

Recall that two bases (vj)1≤j≤n and (wj)1≤j≤n of a real vector space V have
the same orientation if there exists λ > 0 such that v1 ∧ · · · ∧ vn = λw1 ∧
· · · ∧ wn. This defines an equivalence relation on the set of (ordered) bases
of V with two equivalence classes. An orientation of V is a choice of an
equivalence class.

Definition 1.4.36. A linear map ϕ : Rn → Rn is called orientation-preserving
if it is invertible and (ϕ(ej))1≤j≤n has the same orientation as (ej)1≤j≤n.

Let U, V ⊂ Rn be open. A diffeomorphism ϕ : U → V is called orientation-
preserving if Dϕ(p) is orientation-preserving for every p ∈ U .

Lemma 1.4.37. A linear map ϕ : Rn → Rn is orientation-preserving if and
only if detϕ > 0.

Definition 1.4.38 (Orientable manifold). Let M be a smooth manifold. A
smooth atlas ((ϕi, Ui))i∈I is called an orientation of M if for all i, j ∈ I such
that Ui ∩ Uj 6= ∅ the transition maps

ϕij : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj), ϕij = ϕj ◦ ϕ−1
i

are orientation-preserving diffeomorphisms. A smooth manifold with a choice
of an orientation is called oriented manifold. A chart (ψ, V ) in an oriented
manifold is called positively oriented if the union of ((ϕi, Ui))i∈I and (ψ, V )
is again an orientation.

If M admits an orientation, it is called orientable.

Remark 1.4.39. In the light of the previous lemma, an atlas is an orientation
if and only if the differential of the transition maps has positive determinant
at every point.
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As remarked before, orientable manifolds are exactly those that admit a
volume form. We can prove one of these two implications now.

Lemma 1.4.40. If a smooth manifolds admits a volume form, then it is
orientable.

Proof. Let M be a smooth n-dimensional manifold and vol ∈ Ωn(M) a
volume form. For any chart (ϕ,U) the pull-back (ϕ−1)∗vol is of the form
gdx1 ∧ · · · ∧ dxn for some g ∈ C∞(ϕ(U)). Since vol vanishes nowhere, the
function g vanishes nowhere. Moreover, we can change the sign of g by
switching two coordinates. Thus for every point p ∈ M there exists a chart
(ϕp, Up) such that (ϕ−1)∗vol = gdx1 ∧ · · · ∧ dxn with g > 0. It is not hard to
check that ((ϕp, Up))p∈U is an orientation of M .

We want to define the integral of differential forms. To avoid running
into integrability issues, we will restrict ourselves to differential forms with
compact support.

Definition 1.4.41 (Support of a differential form). Let M be a smooth
manifold. If ω ∈ Ω(M), the support of ω is defined as

suppω = {p ∈M | ωp 6= 0}.

The set of all compactly supported differential forms (resp. different r-forms)
is denoted by Ωc(M) (resp. Ωr

c(M)). We also write C∞c (M) for Ω0
c(M).

Definition 1.4.42 (Integral of top-level differential forms). Let U ⊂ Rn be
open. We define the integral of compactly supported n-forms on U by∫

U

: Ωn
c (U)→ R, fdx1 ∧ · · · ∧ dxn 7→

∫
U

f d(x1, . . . , xn),

where the integral on the right side is the usual Riemann (or Lebesgue)
integral of functions on U .

Remark 1.4.43. Every differential form ω ∈ Ωn(U) is of the form fdx1∧· · ·∧
dxn with f ∈ C∞(U). Moreover, the support of fdx1 ∧ · · · ∧ dxn is easily
seen to be the same as the support of f . Thus the integral of compactly
supported n-forms on U is well-defined.

Remark 1.4.44. For the definition of the integral of n-forms, it is important
that we express ω as fdx1∧· · ·∧dxn and not fdx2∧dx1∧· · ·∧dxn, for example.
This means that the integral takes the orientation of U into account.
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Lemma 1.4.45. Let U, V ⊂ Rn be open. If ϕ : U → V is an orientation-
preserving diffeomorphism and ω ∈ Ωn

c (V ), then∫
V

ω =

∫
U

ϕ∗ω.

Proof. We write (x1, . . . , xn) for the coordinates of U and (y1, . . . , yn) for the
coordinates of V . Say ω = gdy1 ∧ · · · ∧ dyn with g ∈ C∞c (V ). We need to
compute the pull-back ϕ∗ω. Since dim ΛnT ∗pU = 1, we know that

(ϕ∗ω)p = f(p)dx1 ∧ · · · ∧ dxn|p

for some f ∈ C∞(U). By definition of the pullback,

(ϕ∗ω)p[∂x1 , . . . , ∂xn ] = g(ϕ(p))dy1(Dϕ(p)∂x1) ∧ · · · ∧ dyn(Dϕ(p)∂xn)

= g(ϕ(p)) det((dyj(Dϕ(p)∂xk))j,k).

The matrix (dyj(Dϕ(p)∂xk))j,k) is the representation matrix of Dϕ(p) in the
standard basis. Thus f(p) = g(ϕ(p)) detDϕ(p) and hence

(ϕ∗ω)p = detDϕ(p)g(ϕ(p))dx1 ∧ · · · ∧ dxn.

Therefore∫
V

ω =

∫
V

gd(y1, . . . , yn) =

∫
U

detDϕ(p)g(ϕ(p)) d(x1, . . . , xn) =

∫
U

ϕ∗ω

by the transformation formula.

In general, a manifold cannot be covered by a single chart. For most
operations we have defined so far, this was no problem: These operations
were local so that we could restrict our attention to the domain of chart.
This is not true for the integral, which takes all values of a function (or later
a differential form) into account. To deal with this issue, we need some more
technical tools.

Definition 1.4.46 (Locally finite covering). Let X be a topological space.
A family (Ui)i∈I of open subsets of X is called locally finite if every point
p ∈ X has a neighborhood Vp such that the set {i ∈ I | Ui∩Vp 6= ∅} is finite.

A family (Vj)j∈J of open subsets of X is called a refinement of (Ui)i∈I if
for every j ∈ J there exists i ∈ I such that Vj ⊂ Ui.

Proposition 1.4.47. Let M be a topological manifold. Every family (Ui)i∈I
of open subsets of M such that M =

⋃
i∈I Ui admits a locally finite refinement

(Vj)j∈J such that M =
⋃
j∈J Vj.
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Remark 1.4.48. Topological spaces with the property that every open cover
has a locally finite refinement are called paracompact. Hence the previous
proposition says that every topological manifold is paracompact.

Definition 1.4.49 (Partition of unity). Let M be a smooth manifold and
(Ui)i∈I be a locally finite open cover of M . A family (ψi)i∈I in C∞(M) is
called a partition of unity subordinate to the cover (Ui)i∈I if

• suppψi ⊂ Ui for all i ∈ I,

• ψi(p) ≥ 0 for all i ∈ I, p ∈M ,

•
∑

i∈I ψi(p) = 1 for all p ∈M .

Remark 1.4.50. Note that for every p ∈ M there are only finitely many
indices i ∈ I such that ψi(p) 6= 0. Hence there is no problem defining the
sum in the third bullet point.

Theorem 1.4.51. Let M be a smooth manifold. Every locally finite open
cover of M admits a subordinate partition of unity.

Theorem 1.4.52 (Integral of differential n-forms). Let M be a smooth ori-
ented n-dimensional manifold. There exists a unique linear map∫

M

: Ωn
c (M)→ R

such that ∫
M

ω =

∫
ϕ(U)

(ϕ−1)∗ω

for every positively oriented chart (ϕ,U) and every ω ∈ Ωn
c (U).

Proof. Let ((ϕi, Ui))i∈I be a smooth atlas of positively oriented charts. To
show uniqueness, let

∫
M

,
∫ ′
M

be linear maps that satisfy the conditions from
the theorem. If ω ∈ Ωn

c (M), then there exists a finite subset J ⊂ I such
that suppω ⊂

⋃
j∈J Uj. Let (ψj)j∈J be a partition of unity subordinate to

(Uj)j∈J . We have∫
M

ω =

∫
M

∑
j∈J

ψjω =
∑
j∈J

∫
ϕj(Uj)

(ϕ−1
j )∗(ψjω) =

∑
j∈J

∫ ′
M

ψjω =

∫ ′
M

ω.

This settles uniqueness.
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The existence part of the statement takes a bit more work. Essentially,
one has to show that the expression∫

M

ω =
∑
j∈J

∫
ϕj(Uj)

(ϕ−1
j )∗(ψjω)

is independent of the atlas and the partition of unity. We will not go into
details here.

Remark 1.4.53. The proof contains a recipe for computing the integral: Let
ω ∈ Ωn

c (M). Choose a positively oriented atlas ((ϕi, Ui))i∈I . Since suppω is
compact, there exists a finite subset J of I such that suppω ⊂

⋃
j∈J Uj. Let

(ψj)i∈J be a partition of unity subordinate to (Uj)j∈J . Then∫
M

ω =
∑
j∈J

∫
M

ψjω =
∑
j∈J

∫
ϕj(Uj)

(ϕ−1
j )∗ω,

where the integrals on the right side are determined by our previous defini-
tion.

1.4.4 Manifolds with boundary and Stokes’s theorem

For the formulation of Stokes’ theorem, we need objects that are not quite
manifolds in our sense, like the closed unit disk or more generally the closed
unit ball in Rn. Unlike topological manifolds, that are locally homeomorphic
to open subsets of Rn, topological manifolds are locally homeomorphic to a
closed half space in Rn.

Definition 1.4.54 (Manifold with boundary). Let Hn = {(x1, . . . , xn) ∈
Rn | xn ≥ 0}. A topological space M is called an n-dimensional topological
manifold with boundary if it satisfies the following three properties:

(a) M is a Hausdorff space.

(b) For every x ∈ M there exists an open neighborhood Ux of x that is
homeomorphic to an open subset of Hn.

(c) The topology on M is second-countable.

Remark 1.4.55. Note that the only difference to the definition of a topological
boundary is in bullet point (b), where Rn is replaced by Hn.

Lemma 1.4.56. Every topological manifold is a topological manifold with
boundary.
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Proof. It suffices to show that every open subset U of Rn is homeomorphic
to an open subset of Hn. For that purpose consider the map

ϕ : Rn → Hn, (x1, . . . , xn) 7→ (x1, . . . , xn−1, exp(xn)).

This map is continuous and has image Hn
+ = {(x1, . . . , xn) ∈ Rn | xn > 0}.

The inverse of Φ on Hn
+ is given by

ϕ−1 : Hn
+ → Rn, (x1, . . . , xn) 7→ (x1, . . . , xn−1, log xn),

which is also continuous. In particular, ϕ restricts to a homeomorphism from
U to ϕ(U).

Definition 1.4.57 (Interior, boundary). Let M be an n-dimensional topo-
logical manifold with boundary. The interior intM of M is the set of all
points x ∈ M that have a neighborhood that is homeomorphic to an open
subset of Rn. The complement M \ intM is called the boundary of M and
denoted by ∂M .

Remark 1.4.58. There are also topological notions of interior and boundary
of a set. These are relative notion, i.e., if A ⊂ X a, B ⊂ Y and ϕ : A →
B is a homeomorphism, then ϕ does not necessarily map the interior (or
boundary) of A onto the interior (or boundary) of B. Consequently, the
topological notions of interior and boundary are not the same as the interior
and boundary of a manifold with boundary.

Example 1.4.59. The interior and boundary of Hn are Hn
+ and Rn × {0}. If

we view Hn as subspace of Rn, then the manifold interior and boundary of
Hn coincide with the topological interior and boundary.

Example 1.4.60. The closed unit ball B̄1(0) ⊂ Rn is an n-dimensional man-
ifold with boundary. The interior of B̄1(0) is the open unit ball B1(0) and
the boundary is the unit sphere Sn−1.

Lemma 1.4.61. The boundary of an n-dimensional topological manifold with
boundary is an (n− 1)-dimensional topological manifold (or empty) and the
interior is an n-dimensional topological manifold.

Proof. The Hausdorff property and second countable of ∂M are inherited
from M . To show that ∂M is locally Euclidean, let x ∈ ∂M . By definition,
there exists an open neighborhood U of x in M , an open subset V of Hn and
a homeomorphism ϕ : U → V . By definition of the boundary and interior,
we have ϕ(U ∩ ∂M) = V ∩ (Rn−1×{0}). Since Rn−1×{0} is homeomorphic
to Rn−1, the open neighborhood U ∩ ∂M of x in ∂M is homeomorphic to an
open subset of Rn−1. The proof that intM is an n-dimensional topological
manifold is similar.
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To define a smooth manifold with boundary, we proceed exactly as before
for manifolds with boundary. To do so, we need a notion of smoothness for
maps defined on open subsets of Hn, which are not necessarily open in Rn.

Definition 1.4.62 (Smooth map). Let A ⊂ Rm. A map f : A→ Rn is called
smooth if there exists an open neighborhood U of A in Rm and a smooth map
g : U → Rn such that g|A = f .

If A ⊂ Rm is open, we can just take U = A and g = f and recover the
previous definition of smooth maps.

Definition 1.4.63 (Smooth manifold with boundary). Let M be an n-
dimensional topological manifold with boundary. A chart is a pair (ϕ,U)
consisting of an open subset U of M and a homeomorphism ϕ from U onto
an open subset of Hn. A smooth atlas is a family ((ϕi, Ui))i∈I of charts such
that M =

⋃
i∈I Ui and the transition maps

ϕij : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj), ϕij = ϕ−1
j ◦ ϕi

are smooth for all i, j ∈ I with Ui ∩ Uj 6= ∅.
Two smooth atlases A and B are called equivalent if A ∪ B is again a

smooth atlas. An equivalence class of smooth atlases is called a smooth
structure on M and a topological manifold with boundary equipped with a
smooth structure is called a smooth manifold with boundary.

IfM , N are smooth manifolds with boundary and ((Ui, ϕi))i∈I , ((Vj, ψj))j∈J
are smooth atlases, then a map ϕ : M → N is called smooth if ψj ◦ ϕ ◦ ϕ−1

i

is smooth for all i ∈ I, j ∈ J with Ui ∩ ϕ−1(Vj) 6= ∅. As before, we write
C∞(M,N) for the set of all smooth maps from M to N and C∞(M) for
C∞(M,R).

Lemma 1.4.64. If M is a topological manifold with boundary and ((ϕi, Ui))i∈I
is a smooth atlas, then ((ϕi|Ui∩∂M , Ui∩∂M))i∈I is a smooth atlas for ∂M such
that the inclusion map i : ∂M → M is smooth. Similarly, ((ϕi|Ui∩intM , Ui ∩
intM))i∈I is a smooth atlas for intM .

The definition of the tangent space of a smooth manifold with boundary
is exactly the same as before.

Definition 1.4.65 (Tangent vector, tangent space). Let M be a smooth
manifold with boundary and p ∈ M . A tangent vector at p is a linear map
Xp : C∞(M)→ R that satisfies the Leibniz rule

Xp(fg) = f(p)Xp(g) +Xp(f)g(p)

for all f, g ∈ C∞(M). The set of all tangent vectors at p is denoted by TpM
and called the tangent space of M at p.
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Remark 1.4.66. One can also characterize tangent vectors in terms of curves.
However, for points on the boundary, it does not suffice to consider curves
defined on open intervals around 0, one has to allow for curves defined on
half-open intervals containing 0.

Definition 1.4.67 (Inward and outward pointing vectors). Let M be a
smooth n-dimensional manifold with boundary and p ∈ ∂M . A tangent
vector Xp ∈ TpM is called tangential to ∂M if there exists a smooth curve
γ : (−ε, ε)→ ∂M for some ε > 0 such that γ(0) = p and

Xp(f) =
d

dt

∣∣∣∣
t=0

f(γ(t))

for all f ∈ C∞(M).
A tangent vector Xp ∈ TpM is called outward pointing (resp. inward

pointing) if it is not tangent to ∂M and there exists a smooth curve γ : (−ε, 0]→
M (resp. γ : [0, ε)→M) for some ε > 0 such that γ(0) = p and

Xp(f) =
d

dt

∣∣∣∣
t=0

f(γ(t))

for all f ∈ C∞(M).

Lemma 1.4.68. Let M be a smooth n-dimensional manifold with boundary
and p ∈ ∂M . A tangent vector Xp ∈ TpM belongs to the image of Di(p) if
and only if it is tangential to ∂M . Moreover, TpM \ imDi(p) is the disjoint
union of the inward and the outward pointing tangent vectors at p.

Differential forms and the exterior derivative on smooth manifolds with
boundary can be defined just as before for manifolds without boundary. To
define integration of differential forms and state Stokes’s theorem, we also
need a notion of orientation of smooth manifolds with boundary.

Definition 1.4.69 (Orientation, orientable manifold). Let M be a smooth
manifold with boundary. A smooth atlas ((ϕi, Ui))i∈I is called an orientation
if ((ϕi|Ui∩intM , Ui ∩ intM))i∈I is an orientation for intM . If M admits an
orientation, then it is called orientable.

Lemma 1.4.70. Let M be a smooth oriented dimensional manifold with
boundary of even (resp. odd) dimension. There exists a unique orientation
on the boundary ∂M such that for every positively oriented chart (ϕ,U) of
M with U ∩∂M 6= ∅ the chart (ϕ|U∩∂M , U ∩∂M) is positively oriented (resp.
negatively oriented).
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Remark 1.4.71. The geometric interpretation of this orientation on ∂M is
the following: At any point p ∈ ∂M , if one takes a positively oriented basis
of Tp∂M and adds an outward pointing vector as last basis element, one gets
a positively oriented basis of TpM . Additionally, this orientation convention
makes Stokes’s theorem true.

The orientation from the previous lemma is called the induced orienta-
tion on ∂M . The integral of a compactly supported differential n-form on a
smooth oriented n-dimensional manifold with boundary can be defined anal-
ogously to the case of manifolds without boundary using positively oriented
atlases and partitions of unity.

Theorem 1.4.72 (Stokes). Let M be a smooth oriented n-dimensional man-
ifold with boundary and endow ∂M with the induced orientation. If ω ∈
Ωn−1
c (M), then i∗ω ∈ Ωn−1

c (∂M) and∫
∂M

i∗ω =

∫
M

dω.

Proof. We first prove the result for M = Hn with standard orientation.
An (n− 1)-form on Hn is of the form

ω =
n∑
j=1

fjdx
1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn

with f1, . . . , fn ∈ C∞(Hn). It has compact support if and only if f1, . . . , fn
have compact support.

We have

dω =
n∑
j=1

(−1)j−1 ∂fj
∂xj

dx1 ∧ · · · ∧ dxn

i∗ω = fn|∂Hndx1 ∧ · · · ∧ dxn−1.

By the definition of the integral of differential forms,∫
Hn
dω =

n∑
j=1

∫ ∞
0

∫ ∞
−∞
· · ·
∫ ∞
−∞

(−1)j−1 ∂fj
∂xj

dx1 . . . dxn−1 dxn,∫
∂Hn

i∗ω = (−1)n
∫ ∞
−∞
· · ·
∫ ∞
−∞

fn(x1, . . . , xn−1, 0) dx1 . . . dxn−1

If j ∈ {1, . . . , n − 1} and supp fj ⊂ [−R,R]n−1 × [0, R], then we have for
j ≤ n− 1 that ∫ ∞

−∞

∂fj
∂xj

dxj = fn|xj=R − fn|xj=−R = 0
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and ∫ ∞
0

∂fn
∂xn

dxn = fn|xn=R − fn|xn=0 = −fn|xn=0

by the fundamental theorem of calculus.
Therefore∫
Hn

dω =

∫ ∞
−∞
· · ·
∫ ∞
−∞

(−1)nfn(x1, . . . , xn−1, 0) dx1 . . . dxn−1 =

∫
∂Hn

i∗ω.

Now let M be an arbitrary smooth oriented n-dimensional manifold with
boundary and ω ∈ Ωn−1

c (M). Let ((ϕi, Ui))i∈I be a positively oriented atlas
of M . Since suppω is compact, there exists J ⊂ I finite such that suppω ⊂⋃
j∈J Uj. Let (ψj)j∈J be a partition of unity subordinate to (Uj)j∈J . We have∫

M

dω =
∑
j∈J

∫
Uj

d(ψjω)

=
∑
j∈J

∫
ϕj(Uj)

(ϕ−1
j )∗d(ψjω)

=
∑
j∈J

∫
Hn

(ϕ−1
j )∗d(ψjω)

=
∑
j∈J

∫
Hn
d((ϕ−1

j )∗(ψjω))

=
∑
j∈J

∫
∂Hn

(ϕ−1
j ◦ i)∗(ψjω)

=
∑
j∈J

∫
Uj∩∂M

i∗(ψjω)

=

∫
∂M

i∗ω.

1.5 Hamiltonian formalism and symplectic ge-

ometry

1.5.1 Symplectic manifolds

The fundamental model of a symplectic manifold is the cotangent bundle
of a smooth manifold, which occurs as phase space for many mechanical
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models. Let Q be a smooth manifold with cotangent bundle T ∗Q, which is
itself again a smooth manifold. Recall that there is a canonical projection
map π : T ∗Q → Q. The pull-back π∗ maps Ω1(Q) to Ω1(T ∗Q). Moreover,
any α ∈ Ω1(Q) is a smooth map from Q to T ∗Q, hence the pull-back α∗

maps Ω1(T ∗Q) to Ω1(Q).

Proposition 1.5.1. There exists a unique 1-form λ ∈ Ω1(T ∗Q) such that
for every α ∈ Ω1(Q) we have α∗λ = α. It satisfies

λ(q,p)(ξ) = p(Dπ(q, p)[ξ])

for all q ∈ Q, p ∈ TqQ, ξ ∈ T(q,p)T
∗Q.

Proof. For every q ∈ Q, p ∈ TqQ, the map

λ(q,p) : T(q,p)T
∗Q→ R, ξ 7→ p(Dπ(q, p)[ξ])

is linear. In other words, λ(q,p) ∈ T ∗(q,p)T ∗Q. Since all the maps involved in
the definition of λ are smooth, it is not hard to see that the map

T ∗Q→ T ∗(T ∗Q), (q, p) 7→ ((q, p), λ(q,p))

is smooth. Thus λ ∈ Ω1(T ∗Q).
If α ∈ Ω1(Q) and v ∈ TqQ, then

(α∗λ)q[v] = λα(q)[Dα(q)[v]]

= αq[Dπ(α(q)[Dα(q)[v]]]

= αq[D(π ◦ α)(q)[v]]

= αq[v],

where we used that π ◦ α = id. Thus α∗λ = α. This proves the existence
part of the statement.

For uniqueness, let µ ∈ Ω1(T ∗Q) such that α∗µ = α for all α ∈ Ω1(Q).
Hence 0 = α∗(λ− µ) for all α ∈ Ω1(Q). For every ξ ∈ T(q,pT

∗Q kerDπ(q, p)
we find a neighborhood U of q and α ∈ Ω1(T ∗U) such that α(q) = p and
p(Dπ(q, p)[ξ]) = 0. Thus λ = µ on T(q,p)T

∗Q \ Dπ(q, p). By continuity, we
conclude λ = µ.

Definition 1.5.2 (Liouville 1-form). The 1-form λ from the previous propo-
sition is called Liouville 1-form.
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Remark 1.5.3. If (U,ϕ) is a coordinate chart of Q and ϕ = (x1, . . . , xn), then
one can define coordinates (q1, . . . , qn, p1, . . . , pn) of T ∗U by

qj : T ∗U → R, (q, p) = xj(q)

pj : T ∗U → R, (q, p) = p

(
∂

∂xj

∣∣∣∣
q

)
.

In these coordinates, the Liouville 1-form λ can be expressed as

λ =
n∑
j=1

pjdq
j.

Definition 1.5.4 (Canonical Symplectic form, symplectic manifold). Let Q
be a smooth manifold and λ ∈ T ∗Q the Liouville 1-form. The canonical
symplectic form on T ∗Q is ωLiouv = dλ ∈ Ω2(T ∗Q).

Remark 1.5.5. Since d2 = 0, the canonical symplectic form satisfies dωLiouv =
0.

Remark 1.5.6. In local coordinates as above, the canonical symplectic form
can be expressed as

ωLiouv =
n∑
j=1

dpj ∧ dqj.

Definition 1.5.7 (Symplectic form, symplectic manifold). LetM be a smooth
manifold. A symplectic form on M is a 2-form ω ∈ Ω2(M) with the following
two properties:

(a) Non-degeneracy: The map

TxM → T ∗xM, v 7→ ωx(v, · )

is a linear isomorphism for every x ∈M .

(b) Integrability: dω = 0.

A pair (M,ω) consisting of a smooth manifold M and a symplectic form ω
on M is called a symplectic manifold.

Remark 1.5.8. A symplectic form on M can only exist if M has even dimen-
sion. The non-degeneracy condition (a) is equivalent to requiring that ω∧n

is a nowhere vanishing 2n-form if the dimension of M is 2n.

Example 1.5.9. The canonical symplectic form ωLiouv ∈ Ω2(T ∗Q) is indeed a
symplectic form on T ∗Q. Thus (T ∗Q,ωLiouv) is a symplectic manifold.
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Example 1.5.10. If M is a smooth orientable 2-dimensional manifold and
ω ∈ Ω2(M) is a volume form, then ω is a symplectic form.

Example 1.5.11. The sphere S2n does not admit any symplectic form for
n ≥ 2. Indeed, any closed 2-form ω on S2n is exact, i.e. ω = dα for some
α ∈ Ω1(S2n). If ω∧n were a volume form, then

0 6=
∫
M

ω∧n =

∫
M

d(α ∧ ω∧(n−1)) = 0

by Stokes’s theorem, a contradiction.

Theorem 1.5.12 (Darboux). If (M,ω) is a 2n-dimensional symplectic man-
ifold and x ∈ M , then there exists a chart (ϕ,U) with x ∈ U and ϕ =
(q1, . . . , qn, p1, . . . , pn) such that ω|U =

∑n
j=1 dpj ∧ dqj.

Definition 1.5.13 (Canonical coordinates). Let (M,ω) be a symplectic
manifold. If (ϕ,U) is a chart with ϕ = (q1, . . . , qn, p1, . . . , pn such that
ω|U =

∑n
j=1 dpj ∧ dqj, then (q1, . . . , qn, p1, . . . , pn) are called canonical co-

ordinates.

1.5.2 Hamiltonian systems

Lemma 1.5.14. Let (M,ω) be a symplectic manifold. If H ∈ C∞(M), then
there exists a unique vector field XH ∈ X (M) such that

iXHω + dH = 0.

Proof. By the non-degeneracy condition, for every x ∈ M there exists a
unique vx ∈ TxM such that

ω(vx, · ) = −(dH)x.

A vector field X ∈ X (M) satisfies iXω + dH = 0 if and only if Xx = vx for
every x ∈M .

Definition 1.5.15 (Hamiltonian vector field). Let (M,ω) be a symplectic
manifold and H ∈ C∞(M). The triple (M,ω,H) is called a Hamiltonian sys-
tem. The vector field XH from the previous lemma is called the Hamiltonian
vector field associated with the Hamiltonian H.

Example 1.5.16. Let M = T ∗R with coordinates (q, p), ω = dp ∧ dq and
H(q, p) = 1

2
(q2+p2). This is a mathematical model of the harmonic oscillator.
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The associated Hamiltonian vector field is XH = p ∂
∂q
− q ∂

∂p
. Indeed,

iXHω(Y ) = dp ∧ dq
(
p
∂

∂q
− q ∂

∂p

)

=

∣∣∣∣∣∣dp
(
p ∂
∂q
− q ∂

∂p

)
dp(Y )

dq
(
p ∂
∂q
− q ∂

∂p

)
dq(Y )

∣∣∣∣∣∣
=

∣∣∣∣−q dp(Y )
p dq(Y )

∣∣∣∣
= −qdq(Y )− pdp(Y )

= −dH(Y ).

Proposition 1.5.17. Let (M,ω,H) be a Hamiltonian system. In canonical
coordinates (q1, . . . , qn, p1, . . . , pn) on U , the Hamiltonian vector field satisfies

XH |U =
n∑
j=1

∂H

∂pj

∂

∂qj
− ∂H

∂qj
∂

∂pj
.

Proof. If Y ∈ X (U), then

ω

(
n∑
j=1

∂H

∂pj

∂

∂qj
− ∂H

∂qj
∂

∂pj
, Y

)
=

n∑
j,k=1

(dqk ∧ dpk)
(
∂H

∂pj

∂

∂qj
− ∂H

∂qj
∂

∂pj
, Y

)

=
n∑
j=1

−∂H
∂qj

dqj(Y )− ∂H

∂pj
dpj(Y )

= −dH(Y ).

From the uniqueness statement in the previous lemma we deduce

XH |U =
n∑
j=1

∂H

∂pj

∂

∂qj
− ∂H

∂qj
∂

∂pj
.

Corollary 1.5.18 (Hamilton equations). Let (M,ω,H) be a Hamiltonian
system. In canonical coordinates, (q(t), p(t)) is an integral curve of XH if
and only if

q̇j(t) =
∂H

∂pj

ṗj(t) = −∂H
∂qj

for all j ∈ {1, . . . , n}.
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Proposition 1.5.19 (Energy conservation). If (M,ω,H) is a Hamiltonian
system, H ◦ γ is constant for any integral curve γ of XH .

Proof. By definition of XH and integral curves, we have

d

dt
(H ◦ γ) = dH(γ̇) = dH(XH) = −iXHω(XH) = −ω(XH , XH) = 0.

Proposition 1.5.20 (Liouville). Let (M,ω,H) be a Hamiltonian system.
The flow Φ of XH satisfies Φ∗tω = ω.

Proof. We have

d

dt
Φ∗tω = Φ∗tLXHω

= Φ∗t (diXHω + iXHdω)

= Φ∗t (d(−dH) + 0)

= 0.

The first identity uses the fact that Φ is the flow of XH , the second is Cartan’s
magic formula and the third used the integrability of ω and the definition of
the Hamiltonian vector field. Since Φ∗0ω = ω, we conclude Φ∗tω = ω for all
t.

Remark 1.5.21. With the definition of the Lie derivative of differential forms,
the previous result can be rewritten as LXHω = 0. Moreover, an easy conse-
quence is that Φ∗tω

∧n = ω∧n. Since ω is a symplectic form, ω∧n is a volume
form on M . In this sense, the flow of a Hamiltonian vector field is volume-
preserving.

Definition 1.5.22 (Poisson bracket). Let (M,ω) be a symplectic manifold.
For f, g ∈ C∞(M), the Poisson bracket {f, g}ω is defined as

{f, g}ω = −ω(Xf , Xg).

Lemma 1.5.23. Let (M,ω) be a symplectic manifold and f, g ∈ C∞(M). In
symplectic coordinates we have

{f, g}ω =
n∑
j=1

∂f

∂qj
∂g

∂pj
− ∂f

∂pj

∂g

∂qj
.

Proposition 1.5.24. Let (M,ω,H) be a Hamiltonian system and Φ the flow
of XH . If f ∈ C∞(M), then

d

dt
(f ◦ Φt) = {f,H}ω ◦ Φt.
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Definition 1.5.25 (Constant of motion). Let (M,ω,H) be a Hamiltonian
system. A function f ∈ C∞(M) is called a constant of motion or first integral
if {f,H}ω = 0.
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Chapter 2

Lie Groups

2.1 Basic definitions and Lie algebras

Definition 2.1.1 (Lie group). A Lie group is a group G with the structure
of a smooth manifold such that the multiplication G×G→ G, (g, h) 7→ gh
and the inversion G→ G, g 7→ g−1 are smooth.

Example 2.1.2. The general linear group GLn(R) = {A ∈ Rn×n | det(A) 6= 0}
is an open subset of Rn×n ∼= Rn2

since det is a continuous map. As such,
GLn(R) carries a natural smooth structure. Moreover, matrix multiplication
and inversion are polynomials in the entries of the matrices and thus smooth
maps. Hence GLn(R) is a Lie group.

Example 2.1.3. The special linear group SLn(R) = {A ∈ Rn×n | det(A) = 1}
is a smooth manifold of dimension n2 − 1 by the implicit function theorem.

Example 2.1.4. The orthogonal group On(R) = {A ∈ Rn×n | ATA = 1} is a
smooth manifold of dimension n(n− 1)/2.

Example 2.1.5. The unitary group Un(C) = {A ∈ Cn×n | AHA = 1} is a
smooth manifold of dimension n2. Note that this dimension refers to the
dimension over R, not C.

If G is a Lie group, the inversion map i : G → G, g 7→ g−1 and the left
multiplication map LgG→ G, h 7→ gh for g ∈ G are diffeomorphisms.

Definition 2.1.6 (Left-invariant vector field). Let G be a Lie group. A
vector field X ∈ X (G) is called left-invariant if (Lg)∗X = X for all g ∈ G.
The space of all left-invariant vector fields on G is denoted by g.

Lemma 2.1.7. Let G be a Lie group. If X, Y ∈ g, then [X, Y ] ∈ g.

Lemma 2.1.8. Let G be a Lie group. The evaluation map g → TeG, X 7→
Xe is a linear isomorphism.
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Proof. For v ∈ TeG and g ∈ G let χ(v)g = DLg(e)[v]. We have

((Lh)∗χ(v))g = DLh(L
−1
h (g))[χ(v)h−1g]

= DLh(L
−1
h (g))DLh−1g(e)[v]

= D(LhLh−1g)(e)[v]

= χ(v)g.

Thus χ is an inverse of X 7→ Xe.

Definition 2.1.9 (Lie algebra of a Lie group). Let G be a Lie group. The
space of left-invariant vector fields g is called the Lie algebra of the Lie group
G.

Remark 2.1.10. By the previous result, the Lie algebra of a Lie group can be
canonically identified with the tangent space at the unit element.

Another important property of left-invariant vector fields on a Lie group
is that they are globally integrable.

Proposition 2.1.11. Let G be a Lie group. For every X ∈ g and g ∈ G
there exists a unique smooth curve γ : R→ G such that{

γ̇(t) = Xγ(t), t ∈ R
γ(0) = g

Proof. Suppose there exists g ∈ G such that the maximal existence interval
(t−(g), t+(g)) is not R, say t+(g) <∞. For t0 > 0 let h = γ(t0)g−1 and

γ̃ : (t−(g) + t0, t
+(g),+t0)→ G, γ̃(t) = Lhγ(t− t0).

By definition, γ̃(t0) = γ(t0) and

d

dt
γ̃(t) = DLh(γ(t− t0))γ̇(t− t0)

= DLh(γ(t− t0))Xγ(t−t0)

= DLh(h
−1γ̃(t))Xh−1γ̃(t)

= ((Lh)∗X)γ̃(t)

= Xγ̃(t).

By the uniqueness of integral curves, we conclude γ̃ = γ on (t−(g)+t0, t
+(g)).

Thus one can extend γ to an integral curve on (t−(g), t+(g) + t0) in contra-
diction to the maximality of (t−(g), t+(g)). Therefore (t−(g), t+(g)) = R.
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As a consequence, every X ∈ g admits a global flow ΦX : R×G→ G and
for every t ∈ R, the map Φt

X is a group isomorphism.

Definition 2.1.12 (Exponential map). Let G be a Lie group. The exponen-
tial map exp on G is defined by

exp: g→ G, X 7→ Φ1
X .

Example 2.1.13. LetG = GLn(R). Since GLn(R) is open in Rn×n, the tangent
space at 1n is canonically isomorphic to Rn×n. Under this identification, the
exponential map is given by

exp: Rn×n → GLn(R), A 7→ exp(A) =
∞∑
k=0

tkAk

k!
.

The series on the right side converges absolutely in each entry.

Example 2.1.14. If G ⊂ Rn×n is a Lie subgroup, then g can be identified with
a Lie subalgebra of Rn×n and the exponential map is again given by

exp(A) =
∞∑
k=0

tkAk

k!
.

Proposition 2.1.15. Let G be a Lie group. There exists an open subset U
of TeG with 0 ∈ U and an open subset V of G with e ∈ V such that exp |U is
a diffeomorphism onto V .

Theorem 2.1.16 (Campbell–Baker–Hausdorff formula). Let G be a Lie
group.

(a) If X, Y ∈ g with [X, Y ] = 0, then

exp(X + Y ) = exp(X) exp(Y ).

In particular, exp(X) exp(Y ) = exp(Y ) exp(X).

(b) There exists an open subset U of g with 0 ∈ U such that if X, Y ∈ U ,
then there exists Z ∈ g such that exp(X + Y ) = exp(Z). There is an
explicit series expansion for Z starting with

Z = X+Y+
1

2
[X, Y ]+

1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]]− 1

24
[Y, [X, [X, Y ]]]+. . . ,

where all the higher order terms are iterated commutators of X and Y .
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Definition 2.1.17 (Lie algebra). A (finite-dimensional real) Lie algebra is a
finite-dimensional vector space g over R with an alternating form [ · , · ] : g×
g→ g that satisfies the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

for all X, Y, Z ∈ g.

Remark 2.1.18. If M is a smooth manifold, then X (M) with the Lie bracket
of vector fields satisfies all the properties of a Lie algebra except that it is
rarely a finite-dimensional vector space.

Example 2.1.19. If G is a Lie group, then the space g of left-invariant vector
fields on G with the Lie bracket is a Lie algebra, justifying the name “Lie
algebra of G”.

Definition 2.1.20 (Lie algebra homomorphism). Let g, h be Lie algebras. A
Lie algebra homomorphism is a linear map ψ : g→ h that satisfies ψ([X, Y ]) =
[ψ(X), ψ(Y )] for all X, Y ∈ g.

Example 2.1.21. LetG, H be Lie groups with Lie algebras g, h and ϕ : G→ H
a smooth group homomorphism. The pushforward map ϕ∗ : g → h is a Lie
algebra homomorphism.

Theorem 2.1.22 (Lie’s second theorem). Let G, H be Lie groups with Lie
algebras g, h and let ψ : g → h be a Lie algebra homomorphism. If G is
simply connected, then there exists a unique smooth group homomorphism
ϕ : G→ H such that ψ = ϕ∗.

Remark 2.1.23. A topological space X is called path-connected if for every
x, y ∈ X there exists a continuous map γ : [0, 1]→ X such that γ(0) = x and
γ(1) = y. The space X is called simply connected if it is path connected and
for every x ∈ X and γ : S1 → X continuous with γ(1, 0) = x there exists a
continuous H : S1 × [0, 1]→ X such that

• H( · , 0) = γ, H(p, 1) = x for all p ∈ S1,

• H((1, 0), t) = x for all t ∈ [0, 1].

Intuitively this means that a space is path-connected if any two points can
be joint by a continuous path and simply connected if additionally any loop
can be continuously be deformed to a point.
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2.2 The examples SO3(R) and SU2(C)

2.2.1 The special orthogonal group SO3(R)

Recall that SOn(R) = {A ∈ Rn×n | ATA = 1n, det(A) = 1}.

Lemma 2.2.1. A matrix A ∈ Rn×n satisfies ATA = 1n if and only if

‖Ax‖2 = ‖x‖2

for all x ∈ Rn.
Moreover, A ∈ GLn(R) satisfies det(A) > 0 if and only if (Av1, . . . , Avn)

has the same orientation as (v1, . . . , vn) for every basis (vi)
n
i=1 of Rn.

In other words, SOn(R) contains exactly those matrices that present
orientation-preserving isometries. The description is particularly easy in di-
mensions 2 and 3: The orientation-preserving isometries of R2 are the rota-
tions around the origin and the orientation-preserving isometries of R3 are
the rotations around an axis through the origin.

Hence for every O ∈ SO3(R) there exists a unit vector v ∈ R3 and α ∈
[0, π] such that O represents the rotation around the axis Rv (oriented in
direction of v) with angle α. Note that a rotation around v by an angle
α ∈ (π, 2π) can be represented by a rotation by the angle 2π−α around −v.

The pairs (v, α) and (v′, α′) represent the same rotation if and only if
α′ = α and v′ = v or α′ = α = π and v′ = −v. This gives an identification of
SO3(R) with B̄π(0)/ ∼ with w ∼ w′ if w = w′ or |w| = π, w′ = −w, where
the rotation around v with angle α is mapped to [(v, α)]. It takes some work
to see that this identification in fact gives rise to a homeomorphism from
SO3(R) and RP 3. With the right choice of smooth structure on the real
projective space, even more is true:

Proposition 2.2.2. The Lie group SO3(R) is diffeomorphic to PR3.

Now let us have short look at the Lie algebra of SO3(R). Since SO3(R) is
embedded in R3×3, we can compute the tangent space T1 SO3(R) as subspace
of R3×3. If γ : (−ε, ε)→ R3×3 is a smooth curve such that γ(t) ∈ SO3(R) for
all t ∈ (−ε, ε) and γ(0) = I3, then

0 =
d

dt

∣∣∣∣
t=0

(γ(t)Tγ(t)) = γ̇(0)T + γ̇(0).

Hence T1 SO3(R) ⊂ {A ∈ R3×3 | AT = −A}. On the other hand, if A ∈ R3×3

such that AT = −A, let γ(t) = exp(tA). By assumption, AT commutes with
A, hence

γ(t)Tγ(t) = exp(tAT) exp(tA) = exp(t(AT + A)) = 13.

71



Moreover,

det γ(t) = exp(tr(A)) = exp

(
1

2
tr(A) +

1

2
tr(AT)

)
= exp(0) = 13.

Thus γ(t) ∈ SO3(R) for all t ∈ R.
We conclude that T1 SO3(R) = {A ∈ R3×3 | AT = −A}. In fact, an

analogous result holds in arbitrary dimensions:

Proposition 2.2.3. T1 SOn(R) = {A ∈ Rn×n | AT = −A}.

Definition 2.2.4 (Special orthogonal Lie algebra). The Lie algebra so(n) =
{A ∈ Rn×n | AT = −A} is called the (special) orthogonal Lie algebra. It is
the same as the Lie algebra of On(R).

2.2.2 The special unitary group SU2(C)

Now let us turn to the special unitary group SUn(C), which is defined as
SUn(C) = {U ∈ Cn×n | UHU = 1n, detU = 1}. An n × n matrix is unitary
if and only if its row (or equivalently columns) are orthonormal with respect
to the Euclidean inner product. Thus

SU2(C) =

{(
a b
−b̄ ā

)
: a, b ∈ C, |a|2 + |b|2 = 1

}
.

The following result is then not hard to see.

Lemma 2.2.5. The map

SU2(C)→ S3,

(
a b
−b̄ ā

)
7→ (Re a, Im a,Re b, Im b)

is a homeomorphism

With this homeomorphism, S3 also inherits a group structure from SU2(C).
To describe it, it is most convenient to work with quaternions. Formally, H
is the skew field {t + xi + yj + zk | t, x, y, z ∈ R}, where the elements i, j, k
satisfy the relations i2 = j2 = k2 = −1 and ij = k, jk = i, ki = j.

Quaternions can be represented as complex 2×2 matrices as follows: Let

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

These are the Pauli matrices. The map

H→ C2×2, t+ xi + yj + zk 7→ t12 − ixσ1 − iyσ2 − izσ3

72



is an algebra homomorphism (a map that respects addition and multiplica-
tion).

We can view S3 as unit group of the quaternions, and the multiplication
on S3 is the one induced by quaternion multiplication.

If g ∈ H \ {0}, then the conjugation map g · g−1 leaves {xi + yj + zk |
x, y, z ∈ R} invariant. If we identify {xi + yj + zk | x, y, z ∈ R} with R3,
we obtain a linear map Tg : R3 → R3. If θ ∈ [0, 2π), u ∈ S2 ⊂ R3 and
g = cos θ + sin θ(u1i + u2j + u3k), we can explicitly compute

Tgv = uTvu+ cos 2θ(u× v)× u+ sin 2θu× v.

In particular, Tg ∈ SO3(R) if g is a unit quaternion. The map T : g 7→ Tg
can be viewed as a surjective 2-to-1 map from SU2(C) to SO3(R), a so-
called double covering. On the level of Lie algebras, the map DT (1) is an
isomorphism.
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Chapter 3

Measure and Integration
Theory

3.1 Measures

Definition 3.1.1 (σ-algebra). Let X be a set. A σ-algebra on X is a subset
A of P(X) with the following three properties:

(a) X ∈ A.

(b) If A ∈ A, then X \ A ∈ A.

(c) If An ∈ A, n ∈ N, then
⋃
nAn ∈ A.

An element of A is called an (A-)measurable set. A pair(X,A) consisting of
a set X and a σ-algebra A on X is called a measurable space.

Example 3.1.2. For every set X, {∅, X} and P(X) are σ-algebras.

Example 3.1.3. If X is an infinite set, then A = {A ⊂ X | A countable or X\
A countable} is a σ-algebra.

Lemma 3.1.4. If X is a set and (Ai)i∈I is a family of σ-algebras, then⋂
i∈I Ai is a σ-algebra.

Definition 3.1.5 (Generated σ-algebra). If A ⊂ P(X), then the σ-algebra
generated σ(A) by A is defined as

A =
⋂

B⊃Aσ-algebra

B.

If (X, T ) is a topological space, the σ-algebra generated by T is called Borel
σ-algebra and denoted by B(X).
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Remark 3.1.6. Unless stated otherwise, we always endow Kn with the Borel
σ-algebra induced by the Euclidean topology. Note that there is no explicit
description of the elements of the Borel σ-algebra in this case. It is in fact
much harder to find maps that are not Borel measurable than sets that are.

Definition 3.1.7 (Trace σ-algebra). Let (X,A) be a measurable space. If
S ∈ A, then

AS = {A ∩ S | A ∈ A} ⊂ P(S)

is a σ-algebra on S, called the trace σ-algebra. If not stated otherwise, subsets
of a measurable space are always endowed with the trace σ-algebra.

Definition 3.1.8 (Measurable map). Let (X,A), (Y,B) be measurable spaces.
A map f : X → Y is called (A-B-)measurable if f−1(B) ∈ A for every B ∈ B.

Lemma 3.1.9. (a) The composition of measurable maps is measurable.

(b) Let f : X → Y be a map, A a σ-algebra on X and C ⊂ P(Y ). If
B = σ(C) and f−1(C) ∈ A for all C ∈ C, then f is A-B-measurable.

(c) Every continuous map between topological spaces is Borel measurable.

Lemma 3.1.10. Let (X,A) be a measurable space and A ⊂ X. The charac-
teristic function 1A is measurable if and only if A is measurable.

Definition 3.1.11 (Measure). Let (X,A) be a measurable space. A measure
on (X,A) is a map µ : X → [0,∞] with the following two properties:

• µ(∅) = 0.

• If An, n ∈ N, and An ∩ Am = ∅ for m 6= n, then

µ

(
∞⋃
n=1

An

)
=
∞∑
n=1

µ(An).

A measure space is a triple (X,A, µ) consisting of a measurable space (X,A)
and a measure µ on (X,A). A measure µ on (X,A) is called finite if µ(X) <
∞ and σ-finite if there exists a sequence (An) in A such that µ(An) <∞ for
all n ∈ N and X =

⋃∞
n=1An.

Example 3.1.12. If X is a countable set, then

µ : P(X)→ [0,∞], A 7→ #A

is a measure, called the counting measure. Here #A denotes the cardinality
(number of elements) of A. The counting measure on a countable space is
always σ-finite and it is finite if and only if X is finite.
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Example 3.1.13. If (X,A) is a measurable space and x ∈ X, then

δx : A → [0, 1], A 7→

{
1 if x ∈ A
∞ otherwise

is a finite measure, called the Dirac measure.

Lemma 3.1.14. If (X,A, µ) is a measure space and (An)n∈N is an increasing
sequence in A, then

µ

(⋃
n∈N

An

)
= lim

n→∞
µ(An).

Proof. Let Bn = An \
⋃n−1
k=1 Ak. The sets Bn, n ∈ N, are pairwise disjoint

and we have

µ

(⋃
n∈N

An

)
= µ

(⋃
n∈N

Bn

)

=
∞∑
n=1

µ(Bn)

=
∞∑
n=1

(µ(An)− µ(An−1))

= lim
n→∞

µ(An).

Definition 3.1.15 (Borel measure). Let X be a topological space. A Borel
measure on X is a measure µ on (X,B(X)) such that

• µ(K) <∞ for every compact K ⊂ X,

• µ(A) = sup{µ(K) | K ⊂ A compact} for every A ∈ B(X).

Theorem 3.1.16 (Existence and uniqueness of Haar measure). Let G be
a Lie group. There exists a non-zero Borel measure µ on G such that
µ(gA) = µ(A) for all A ∈ B(G), g ∈ G. Moreover, the measure µ is uniquely
determined up to multiplication by a positive constant.

Definition 3.1.17 (Haar measure). Let G be a Lie group. A non-zero Borel
measure µ on G such that µ(gA) = µ(A) for all A ∈ B(G), g ∈ G is called a
left Haar measure on G. If G is abelian, one simply calls µ a Haar measure.
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Remark 3.1.18. There is a dual notion of a right Haar measure where the
right translates Ag are considered instead of the left translates gA. In gen-
eral, a right Haar measure need not be a left Haar measure, and vice versa.
Lie groups for which a left Haar measure is also a right Haar measure are
called unimodular. In addition to the obvious example of abelian Lie groups,
compact Lie groups form another class of unimodular groups.

Corollary 3.1.19 (Existence and uniqueness of Lebesgue measure). There
exists a unique translation-invariant Borel measure on Rn such that [0, 1]n

has measure 1.

Definition 3.1.20 (Lebesgue measure). The unique translation-invariant
Borel measure Ln on Rn such that Ln([0, 1]n) = 1 is called the Lebesgue
measure.

Remark 3.1.21. There are various approaches to show the existence and
uniqueness of the Lebesgue measure, all of which are at least somewhat
technically involved. The difficulty is to define Ln(A) not only for ”nice”
sets A, but all Borel sets.

Lemma 3.1.22. The Lebesgue measure is σ-finite.

Proof. By translation invariance, every cube a+[0, 1]n has Lebesgue measure
1. Thus

An =
⋃

k∈Zn,|k|≤n

(k + [0, 1]n)

has finite Lebesgue measure. Since Rn =
⋃∞
n=1An, the Lebesgue measure is

σ-finite.

Definition 3.1.23 (Null set). Let (X,A, µ) be a measure space. A subset
N of X is called a null set of there exists A ∈ A with µ(A) = 0 such that
N ⊂ A. A property is said to hold µ-almost everywhere, abbreviated as
µ-a.e., if it holds on the complement of a null set.

Remark 3.1.24. Informally, a null set is a set of measure zero. Note however
that a null set need not be measurable so that its measure is not defined.
However, one can always extend a measure to a bigger σ-algebra, the com-
pletion, which contains all the null sets.

Definition 3.1.25 (Semi-finite, localizable measure). Let (X,A) be a mea-
surable space. A measure µ on (X,A) is called semi-finite if for every A ∈ A
with µ(A) > 0 there exists B ⊂ A with 0 < µ(B) <∞.

The measure µ is called localizable if it is semi-finite and for every family
(Ai)i∈I in A there exists S ∈ A such that
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• µ(Ai \ S) = 0 for all i ∈ I,

• if S ′ ∈ A such that µ(Ai \ S ′) = 0 for all i ∈ I, then µ(S \ S ′) = 0.

Such a set S is called an envelope of (Ai)i∈I .

Remark 3.1.26. If I is countable, then
⋃
i∈I Ai is an envelope of (Ai)i∈I . If I

is uncountable however, then
⋃
i∈I Ai ∈ A is not guaranteed. Localizability

of µ provides us with a way to take ”unions of uncountable families up to
measure zero”.

Example 3.1.27. If X is a non-empty set and

µ : P(X)→ {0,∞}, A 7→

{
0 if A = ∅
∞ otherwise

,

then µ is a measure that is not semi-finite.

Example 3.1.28. Every Borel measure is semi-finite.

Lemma 3.1.29. Every σ-finite measure is localizable.

Proof. Let (An) be a sequence in A such that µ(An) <∞ and X =
⋃∞
n=1An.

We can assume without loss of generality that An ⊂ An+1 for n ∈ N. If
A ∈ A with µ(A) > 0, then

µ(A ∩ An) = µ(An)− µ(An \ A) ≤ µ(An) <∞.

Moreover,

µ(A ∩ An) =
n−1∑
j=1

µ(A ∩ (Aj+1 \ Aj))→
∞∑
j=1

µ(A ∩ (Aj+1 \ Aj)) = µ(A).

In particular, µ(A ∩ An) > 0 for n sufficiently large. Thus µ is semi-finite.
To show that µ is localizable, let (Bi)i∈I be a family in A. For n ∈ N

let cn = sup{µ(
⋃
j∈J Bj ∩ An) | J ⊂ I countable}. For k ∈ N we can choose

Jk,n ⊂ I finite such that µ(
⋃
j∈Jk,n Bj ∩ An) ≥ cn − k−1 and Jk+1,n ⊃ Jk,n.

Then Jn =
⋃
k∈N Jk is countable and Sn =

⋃
j∈Jn Bj ∩ An ∈ A satisfies

cn ≥ µ(Sn) = lim
k→∞

µ

 ⋃
j∈Jk,n

Bj ∩ An

 ≥ lim sup
k→∞

(cn − k−1) = cn,

hence µ(Sn) = cn. Let S =
⋃
n∈N Sn ∈ A.
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To show that S is an envelope of (Bi)i∈I , we first show that Sn is an
envelope of (Bi ∩ An)i∈I . Note that

µ(Sn) + µ((Bi ∩ An) \ Sn) = µ(Sn ∪ (Bi ∩ An)) ≤ cn = µ(Sn)

Thus µ((Bi∩An)\Sn) = 0. Moreover, if S ′n ∈ A such that µ((Bi∩An)\S ′n) =
0 for all i ∈ I, then

µ(Sn \ S ′n) = µ

(⋃
j∈Jn

(Bj ∩ An) \ S ′n

)
≤
∑
j∈Jn

µ((Bj ∩ An) \ S ′n) = 0.

Therefore Sn is an envelope of (Bi ∩ An)i∈I . To see that S is an envelope of
(Bi)i∈I , one uses the monotonicity of the measure. The details are left as an
exercise.

Example 3.1.30. Let J be a set. The counting measure on (J,P(J)) is local-
izable. It is σ-finite if and only if J is countable. To see that the counting
measure is localizable, it suffices to notice that arbitrary unions of subsets
of J belong to the σ-algebra P(J). An envelope of (Ai)i∈I is therefore sim-
ply given by

⋃
i∈I Ai. To see the statement about σ-finiteness, notice that

sets with finite counting measure are exactly the finite subsets, and J is a
countable union of finite subsets if and only if it is countable.

3.2 Integration

Definition 3.2.1 (Extended real line). We endow [0,∞] with the σ-algebra
B([0,∞]) = {A ⊂ [0,∞] | A ∩ [0,∞) ∈ B([0,∞))}. Further, we extend
addition and multiplication to [0,∞] by defining a+∞ =∞+ a =∞ for all
a ∈ [0,∞] and a · ∞ =∞ · a =∞ if a 6= 0 and 0 · ∞ =∞ · 0 = 0.

Definition 3.2.2 (Lebesgue integral). Let (X,A, µ) be a measure space and
f : X → [0,∞] measurable. The Lebesgue integral of f is defined as∫

X

f dµ = sup

{
n∑
j=1

αjµ(Aj) | αj ∈ [0,∞], Aj ∈ A,
n∑
j=1

αj1Aj ≤ f

}
.

Example 3.2.3. Let µ be the counting measure on (N,P(N)). If f : N →
[0,∞], then ∫

N
f dµ =

∞∑
n=1

f(n).
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Note that since f is nonnegative, the sum on the right side does not depend
on the order of summation.

More generally, if µ is the counting measure on (J,P(J)) for an arbitrary
set J and f : J → [0,∞], then∫

J

f dµ = sup
F⊂J finite

∑
j∈F

f(j).

That is a way to make sense of the sum
∑

j∈J f(j) for uncountable sets J .

Proposition 3.2.4. Let (X,A, µ) be a measure space. The Lebesgue integral
has the following properties:

• If αn ∈ [0,∞] and An ∈ A for n ∈ N, then∫
X

∞∑
n=1

αn1An dµ =
∞∑
n=1

αnµ(An).

• If f, g : X → [0,∞] are measurable and f ≤ g, then
∫
X
f dµ ≤

∫
X
g dµ.

• If f, g : X → [0,∞] and α, β ∈ [0,∞], then∫
X

(αf + gµ) dµ = α

∫
X

f dµ+ β

∫
X

g dµ.

Proposition 3.2.5. Let (X,A, µ) be a localizable measure space. If (fi)i∈I is
a family of measurable maps from X to [0,∞], then there exists a measurable
function f : X → [0,∞] with the following two properties:

• fi ≤ f µ-a.e. for every i ∈ I.

• If g : X → [0,∞] is measurable and fi ≤ g µ-a.e. for every i ∈ I, then
f ≤ g µ-a.e.

Moreover, f is uniquely determined up to equality µ-a.e.

Definition 3.2.6 (Envelope). If (X,A, µ) is a measure space and (fi)i∈I is a
family of measurable functions from X to [0,∞], then a measurable function
f : X → [0,∞] that satisfies the properties from the previous proposition is
called an envelope of (fi)i∈I .

Example 3.2.7. Let J be a set and µ the counting measure on (J,P(J)).
The envelope f of a family (fi)i∈I of functions from J to [0,∞] is uniquely
determined and given by f(j) = supi∈I fi(j).
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Example 3.2.8. Let (X,A, µ) be an arbitrary measure space. If (fn)n∈N is a
sequence of measurable functions from X to [0,∞], then an envelope f of
(fn)n∈N is given by f(x) = supn∈N fn(x) for x ∈ X.

Example 3.2.9. For x ∈ R let fx = 1{x} on (R,B(R),L1). A measurable
function f : R→ [0,∞] is an envelope of (fx)x∈R if and only if f = 0 L1-a.e.
In particular, the pointwise supremum, which is the constant function 1, is
not an envelope of (fx)x∈R: Clearly, fn ≤ f for all n ∈ N. Moreover, if
g : X → [0,∞] is measurable and fn ≤ g µ-a.e. for all n ∈ N, let An =
{x ∈ X | fn(x) > g(x)}. By assumption, µ(An) = 0 and f(x) ≤ g(x) for
all x ∈ X \

⋃
n∈NAn. By σ-additivity of µ, we have µ(

⋃
n∈NAn) = 0. Hence

f ≤ g µ-a.e.

Definition 3.2.10 (Directed set, Net). A directed set is a pair (I,≺) con-
sisting of a set I and a relation ≺ on I such that

• i ≺ i for all i ∈ I,

• i ≺ j and j ≺ k implies i ≺ k for all i, j, k ∈ I,

• for all i, j ∈ I there exists k ∈ I such that i ≺ k and j ≺ k.

A net (xi)i∈I in X is a map from a directed set I to X. In particular, if X
is a set of functions, then a net (fi)i∈I is called increasing if i ≺ j implies
fi ≤ fj.

Example 3.2.11. The natural numbers with their natural order form a di-
rected set. Thus every sequence is a net.

Example 3.2.12. If J is any set, then P(J) with the preorder A ≺ B if A ⊂ B
is directed set. The same holds if one replaces P(J) by the set of finite subsets
of J .

Theorem 3.2.13 (Monotone Convergence Theorem for Nets). Let (X,A, µ)
be a localizable measure space. If (fi)i∈I is an increasing net of measurable
function from X to [0,∞] and f is an envelope of (fi)i∈I , then∫

X

f dµ = sup
i∈I

∫
X

fi dµ.

Theorem 3.2.14 (Monotone Convergence Theorem for Sequences). Let (X,A, µ)
be a measure space. If (fn)n∈N is an increasing sequence of measurable func-
tions from X to [0,∞] and f is the pointwise limit limn→∞ fn, then∫

X

f dµ = lim
n→∞

∫
X

fn dµ.
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Proof. By a previous example, the envelope of (fn)n∈N exists and coincides
with f µ-a.e. However, to apply the previous theorem, we need a localizable
measure space.

There are two cases: If
∫
X
fn dµ =∞ for some n ∈ N, then∫

X

f dµ ≥
∫
X

fn dµ =∞

by monotonicity of the integral. In this case, there is nothing left to show.
Let us assume that

∫
X
fn dµ < ∞ for all n ∈ N and let Ak,n = {x ∈ X |

fn(x) ≥ 2−k}, A =
⋃
k,n∈NAk,n. We have

µ(Ak,n) =

∫
X

1Ak,n dµ ≤
∫
X

2kfn dµ <∞.

Thus A is a countable union of sets with finite measure. As fn|X\A = 0
for all n ∈ N, we can restrict the integrals in the monotonce convergence
theorem to A with the trace σ-algebra. As we have just seen, this measure
space is σ-finite. Hence we can apply the monotonce convergence theorem
for nets.

Lemma 3.2.15 (Fatou). If (X,A, µ) be a measure space. If (fn) is a se-
quence of measurable functions from X to [0,∞], then the pointwise limit
inferior lim infn→∞ fn is measurable and∫

X

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
X

fn dµ.

Proof. Let
gn : X → [0,∞], gn(x) = inf

k≥n
fk(x).

By definition, (gn) is an increasing sequence of measurable functions from X
to [0,∞] such that gn ≤ fn and limn→∞ gn(x) = lim infn→∞ fn(x) for all x ∈
X. By the monotone convergence theorem for sequences and monotonicity
of the integral, we have∫

X

lim inf
n→∞

fn dµ =

∫
X

lim
n→∞

gn dµ = lim
n→∞

∫
X

gn dµ ≤ lim inf
n→∞

∫
X

fn dµ.

Remark 3.2.16. With an appropriate definition of the limit inferior of nets,
there is also a version of Fatou’s lemma for nets on localizable measure spaces.

So far, we have only integrated non-negative functions (that possibly
take the value ∞). To define the integral of general real- or complex-valued

82



functions, one needs to make sure that no ”competing divergences” of the
form∞−∞ arise. This can be done for example by decomposing the function
into positive functions and requiring that these functions have finite integrals.
This is the content of the next definition.

Definition 3.2.17 (Integrable function). Let (X,A, µ) be a measure space.
A function f : X → R is called integrable if it is measurable and the integrals∫

X

f+ dµ,

∫
X

f− dµ

are both finite. In this case we define∫
X

f dµ =

∫
X

f+ dµ−
∫
X

f− dµ.

Likewise, a function f : X → C is called integrable if Re f , Im f are integrable,
and in this case we define∫

X

f dµ =

∫
X

Re f dµ+ i

∫
X

Im f dµ.

Lemma 3.2.18. Let (X,A, µ) be a measure space. The integral has the
following properties

• If f, g : X → K are are integrable and f ≤ g, then infX f dµ ≤
∫
X
g dµ.

• If f, g : X → K are integrable and α, β ∈ K, then αf + βg is integrable
and ∫

X

(αf + βg) dµ = α

∫
X

f dµ+ β

∫
X

g dµ.

Theorem 3.2.19 (Dominated Convergence Theorem). Let (X,A, µ) be a
measure space. If (fn) is a sequence of measurable functions from X to K
for which the pointwise limit limn→∞ fn exists and there exists an integrable
function g : X → [0,∞) such that |fn| ≤ g µ-a.e. for every n ∈ N, then
limn→∞ fn is integrable and∫

X

lim
n→∞

fn dµ = lim
n→∞

∫
X

fn dµ.

Proof. We only prove the case K = R here. The case K = C can be deduced
by considering real and imaginary parts of the involved functions.

Write f for limn→∞ fn. Upon changing g on a null set, we may assume
that |fn(x)| ≤ g(x) for all x ∈ X. By monotonicity of the integral,∫

X

(fn)± dµ ≤
∫
X

|fn| dµ ≤
∫
X

g dµ <∞.
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Thus fn is integrable. Similarly, |f | = limn→∞|fn| ≤ g implies that f is
integrable.

Let hn = g−fn, which is non-negative by assumption. By Fatou’s lemma,∫
X

(g − f) dµ =

∫
X

lim inf
n→∞

hn dµ

≤ lim inf
n→∞

∫
X

hn dµ

=

∫
X

g dµ− lim sup
n→∞

∫
X

fn dµ.

Hence ∫
X

f dµ ≥ lim sup
n→∞

∫
X

fn dµ.

If we apply Fatou’s lemma to g + fn instead, we obtain∫
X

f dµ ≤ lim inf
n→∞

∫
X

fn dµ.

These two inequalities combined yield the claim.

3.3 Lebesgue spaces

Definition 3.3.1 (Lebesgue space). Let (X,A, µ) be a measure space and
p ∈ [1,∞). We write Lp(X,µ) for the set of all functions from X to K for
which |f |p is integrable. We define an equivalence relation on Lp(X,µ) by
f ∼ g if f = g µ-a.e. The Lebesgue space Lp(X,µ) is the set of all equivalence
classes of the equivalence relation ∼ on Lp(X,µ).

Moreover, we write L∞(X,µ) for the set of all measurable functions f
from X to K for which there exists C > 0 such that |f | ≤ C µ-a.e. The set
of all µ-a.e. equivalence classes in L∞(X,µ) is denoted by L∞(X,µ).

Definition 3.3.2 (Lp semi-norm). Let (X,A, µ) be a measure space and
p ∈ [1,∞]. The Lp semi-norm on Lp(X,µ) is defined by

‖f‖p =

(∫
X

|f |p dµ
)1/p

.

if p <∞ and by

‖f‖∞ = inf{C > 0 : |f | ≤ C µ-a.e.}.

if p =∞.
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Proposition 3.3.3 (Hölder inequality). Let (X,A, µ) be a measure space
and p, q ∈ [1,∞] such that 1

p
+ 1

q
= 1. If f ∈ Lp(X,µ) and g ∈ Lq(X,µ),

then fg ∈ L1(X,µ) and
‖fg‖1 ≤ ‖f‖p‖g‖q.

Proof. Let a, b > 0. Since log is concave, we have

log(ab) =
1

p
log ap +

1

q
log bq ≤ log

(
ap

p
+
bq

q

)
.

Thus ab ≤ ap

p
+ bq

q
. It follows that∫
X

|fg| dµ ≤ 1

p

∫
X

|f |p dµ+
1

q

∫
X

|g|q dµ.

If we replace f by λf and g by g/λ for λ > 0, we obtain

‖fg‖1 ≤
λp

p
‖f‖pp +

1

qλq
‖g‖qq.

If we optimize the right side over λ > 0, we obtain the desired inequality.

Proposition 3.3.4 (Minkowski inequality). Let (X,A, µ) be a measure space
and p ∈ [1,∞]. If f, g ∈ Lp(X,µ), then f + g ∈ Lp(X,µ) and ‖f + g‖p ≤
‖f‖p + ‖g‖p.

Let V be a normed space. In the following we write V ∗ for L(V,K), which
is the set of all bounded linear maps from V to K. This is strictly smaller
than the set of all not necessarily bounds linear maps from V to K if V is
infinite-dimensional.

Proposition 3.3.5. Let (X,A, µ) be a measure space and p ∈ [1,∞].

(a) The space Lp(X,µ) is a vector space.

(b) ‖f‖p = 0 if and only if f = 0 µ-a.e.

(c) The map
‖·‖p : Lp(X,µ)→ [0,∞), f 7→ ‖[f ]µ‖p

defines a norm on Lp(X,µ). Here [f ]µ denotes the µ-a.e. equivalence
class of f .
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(d) If p, q ∈ (1,∞) with 1
p

+ 1
q

= 1, then the map

Lp(X,µ)→ Lq(X,µ)∗, f 7→
(
g 7→

∫
X

fg dµ

)
is an isometric isomorphism. The same is true for p = ∞, q = 1 if
and only (X,A, µ) is localizable.

Remark 3.3.6. One can also define Lp spaces for p ∈ (0, 1) in the same way.
However, the functional

f 7→
(∫

X

|f |p dµ
)1/p

fails to be a norm for p < 1.

Example 3.3.7. If I is a set and µ the counting measure on P(I), then
Lp(I, µ) = `p(I), the set of all families (ai)i∈I with

∑
i∈I |ai|p <∞.

Proposition 3.3.8. If V,W are normed spaces and W is complete, then
L(V,W ) is complete in the operator norm. In particular, V ∗ is complete.

Proof. Let (Tn) be a Cauchy sequence in L(V,W ). For every v ∈ V , we have
‖Tnv−Tmv‖ ≤ ‖Tn−Tm‖op‖v‖. Since W is complete, there exists T (v) such
that Tnv → T (v) in W . It is not hard to see that the assignment v 7→ T (v)
is linear. Moreover, if m ∈ N such that ‖Tn − Tm‖ ≤ 1 for n ≥ m, then

‖T (v)‖ = lim
n→∞
‖Tnv‖ ≤ lim inf

n→∞
‖Tnv − Tmv‖+ ‖Tmv‖ ≤ (1 + ‖Tm‖op)‖v‖.

Thus T is bounded.
To finish the proof, we have to show that Tn → T in operator norm. Let

ε > 0 and N ∈ N such that ‖Tn − Tm‖ ≤ ε for m,n ≥ N . If v ∈ V and
n ≥ N , then

‖Tnv − Tv‖ = lim
m→∞

‖Tnv − Tmv‖ ≤ lim inf
m→∞

‖Tn − Tm‖op‖v‖ ≤ ε‖v‖.

Therefore ‖Tn − T‖op ≤ ε.

Corollary 3.3.9. Let (X,A, µ) be a measure space. For p ∈ (1,∞), the
Lebesgue space Lp(X,µ) is a Banach space.

Remark 3.3.10. The same is true for p = 1 and p = ∞, but one cannot
appeal to duality (for p = 1) or only in the case of localizable measure spaces
(for p =∞).
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3.4 Integration with respect to the Lebesgue

measure and Fubini’s theorem

The definition of the Lebesgue integral suggests possible numerical approaches
to the integral. However, it is not obvious how to compute the Lebesgue in-
tegral symbolically even for nice functions. One advantage of the Riemann
integral is that we can compute it for continuously differentiable functions
f by finding a primitive function, that is, a function F such that F ′ = f .
Luckily enough, both integral coincide for this class (and a broader class) of
functions.

Theorem 3.4.1. Let a, b ∈ R with a < b. A f : [a, b] → K is Riemann
integrable if and only if its bounded and continuous at L1-a.e. point. In this
case, ∫ b

a

f(x) dx =

∫
[a,b]

f dL1.

Remark 3.4.2. The result is no longer true if one considers improper Riemann
integrals. For example, the function

(0,∞)→ R, x 7→ sinx

x

has an improper Riemann integral, but is not Lebesgue integrable.

The Lebesgue integral in higher dimensions can be reduced to iterated
one-dimensional integrals by Tonelli’s and Fubini’s theorem. Both have sim-
ilar statements, just under different conditions to avoid problems with diver-
gences of the form ∞−∞.

Theorem 3.4.3 (Tonelli). If f : Rm × Rn → [0,∞] is a Borel-measurable
function, then f(x, ·) is Borel-measurable for Lm-a.e. x ∈ Rm, f(·, y) is
Borel-measurable for Ln-a.e. y ∈ Rn and∫

Rm×Rn
f dLm+n =

∫
Rm

(∫
Rn
f(x, y) dLn(y)

)
dLm(x)

=

∫
Rn

(∫
Rm

f(x, y) dLm(x)

)
dLn(y).

Theorem 3.4.4 (Fubini). If f : Rm × Rn → K is an Lm+n-integrable func-
tion, then f(x, ·) is Ln-integrable for Lm-a.e. x ∈ Rm, f(·, y) is Lm-integrable
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for Ln-a.e. y ∈ Rn and∫
Rm×Rn

f dLm+n =

∫
Rm

(∫
Rn
f(x, y) dLn(y)

)
dLm(x)

=

∫
Rn

(∫
Rm

f(x, y) dLm(x)

)
dLn(y).

Remark 3.4.5. While we only state these results for the Lebesgue measure,
they are valid more generally. To formulate them, one needs the notion of
product measure of σ-finite measures, which we did not introduce in this
course.
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Chapter 4

Operators and Spectral Theory

4.1 Hilbert spaces

Definition 4.1.1 (Inner product). Let V be a vector space over K. An inner
product on V is a map 〈 · , · 〉 : V ×V → K with the following three properties:

(a) Linearity in the second argument:

〈ξ, λη + µζ〉 = λ〈ξ, η〉+ µ〈ξ, ζ〉

for all ξ, η, ζ ∈ V and λ, µ ∈ K

(b) Conjugate symmetry:
〈η, ξ〉 = 〈ξ, η〉

for all ξ, η ∈ V .

(c) Positive definiteness:
〈ξ, ξ〉 > 0

for all ξ ∈ V \ {0}.

A vector space with an inner product is called an inner product space.

Remark 4.1.2. • The are two different conventions for inner products.
Some authors assume linearity in the first argument, some authors
linearity in the second argument. Note that this only makes a difference
if K = C (see below).

• · denotes the complex conjugate of an element. In the case K = R, (b)
reduces to ordinary symmetry 〈η, ξ〉 = 〈ξ, η〉.
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• If K = C, property (b) implies 〈ξ, ξ〉 ∈ R for all ξ ∈ V . Thus the
inequality in (c) makes sense.

• Properties (a) and (b) together imply that an inner product is conjugate
linear in the first argument:

〈λξ + µη, ζ〉 = λ〈ξ, ζ〉+ µ〈η, ζ〉.

Example 4.1.3. The Euclidean inner product on Kn:

〈ξ, η〉 =
n∑
j=1

ξjηj, ξ, η ∈ Kn

Example 4.1.4. Let (X,A, µ) be a measure space. The L2-inner product on
L2(X,µ) is defined as

〈[f ], [g]〉 =

∫
X

fg dµ, f, g ∈ L2(X,A).

One can check that this definition is indeed independent of the chosen rep-
resentatives f , g.

In the special case when X = {1, . . . , n}, A = P(X) and µ is the counting
measures, one obtains the Euclidean inner product from the previous exam-
ple. In this case, one does not have to quotient out almost-everywhere equal
functions because the measure has no-nontrivial null sets.

Proposition 4.1.5 (Cauchy–Schwarz inequality). If V is an inner product
space, then

|〈ξ, η〉| ≤ 〈ξ, ξ〉1/2〈η, η〉1/2

for all ξ, η ∈ V .

Proof. First note that

0 ≤ 〈ξ − η, ξ − η〉 = 〈ξ, ξ〉+ 〈η, η〉−〈ξ, η〉 − 〈η, ξ〉︸ ︷︷ ︸
−2 Re〈ξ,η〉

.

Thus Re〈ξ, η〉 ≤ 1
2
〈ξ, ξ〉+ 1

2
〈η, η〉.

Let λ ∈ K with |λ| = 1 such that λ〈ξ, η〉 = |〈ξ, η〉|. If we apply the
previous inequality to ξ and λη, we obtain

|〈ξ, η〉| = Re〈ξ, λη〉 ≤ 1

2
〈ξ, ξ〉+

1

2
〈λη, λη〉︸ ︷︷ ︸
|λ|2〈η,η〉

.
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Hence |〈ξ, η〉| ≤ 1
2
〈ξ, ξ〉+ 1

2
〈η, η〉.

Let µ ∈ K \ {0}. If we apply the previous inequality to ξ/µ and µη, we
obtain

|〈ξ, η〉| = |〈ξ/µ, µη〉| ≤ 1

2|µ|2
〈ξ, ξ〉+

|µ|2

2
〈η, η〉.

We can assume ξ, η 6= 0, since otherwise the left side is zero by linearity in

the second argument. If we apply the previous inequality with µ = 〈ξ,ξ〉1/4
〈η,η〉1/4 ,

we obtain

|〈ξ, η〉| ≤ 1

2
〈ξ, ξ〉1/2〈η, η〉1/2 +

1

2
〈ξ, ξ〉1/2〈η, η〉1/2 = 〈ξ, ξ〉1/2〈η, η〉1/2.

Lemma 4.1.6. If V is a vector space over K and 〈 · , · 〉 is an inner product
on V , then

‖ · ‖ : V → [0,∞), ξ 7→ 〈ξ, ξ〉1/2

is a norm.

Proof. The only property of a norm that is not obvious from the properties of
an inner product is the triangle inequality. To prove it, we use the Cauchy–
Schwarz inequality: If ξ, η ∈ V , then

‖ξ+η‖2 = ‖ξ‖2+2 Re〈ξ, η〉+‖η‖2 ≤ ‖ξ‖2+2‖ξ‖‖η‖+‖η‖2 = (‖ξ‖+‖η‖)2.

Remark 4.1.7. The norm from the previous lemma is called the norm induced
by the inner product. The norm in turn gives rise to a metric (and the metric
to a topology). As such, metric properties like completeness make sense for
inner product spaces.

Proposition 4.1.8. Let V be an inner product space and ξ, η ∈ V .

(a) Polarization identity: If V is a real inner product space, then

〈ξ, η〉 =
1

4
(‖ξ + η‖2 − ‖ξ − η‖2),

and if V is a complex inner product space, then

〈ξ, η〉 =
1

4

3∑
k=0

i−k‖ξ + ikη‖2.

(b) Parallelogram identity: ‖ξ − η‖2 + ‖ξ + η‖2 = 2‖ξ‖2 + 2‖η‖2.
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Remark 4.1.9. Both identities from the previous proposition follow from a
direct computation. They are very useful: The polarization identity shows
that an inner product is uniquely determined by its induced norm and the
parallelogram identity characterizes inner product spaces among all normed
spaces – a norm is induced by an inner product if and only if it satisfies the
parallelogram identity.

Definition 4.1.10 (Hilbert space). A Hilbert space is an inner product space
which is complete.

Example 4.1.11. The Euclidean space Kn with the Euclidean inner product
is a Hilbert space.

Example 4.1.12. The Lebesgue space L2(X,µ) with the L2 inner product is
a Hilbert space.

Example 4.1.13. Let cc denote the space of all functions from N to K that
have finite support, i.e., {n ∈ N | f(n) 6= 0} is finite for every f ∈ cc. An
inner product on cc can be defined by

〈f, g〉 =
∞∑
n=1

f(n)g(n).

Note that only finitely many summands are non-zero, so there is no conver-
gence problem. This inner product is not complete.

Definition 4.1.14 (Orthonormal family). Let H be a Hilbert space. A fam-
ily (ξi)i∈I is called orthogonal if 〈ξi, ξj〉 = 0 for i 6= j. It is called orthonormal
if it is orthogonal and ‖ξi‖ = 1 for every i ∈ I.

Proposition 4.1.15 (Bessel’s inequality). If H is a Hilbert space and (ξi)i∈I
is an orthonormal family, then∑

j∈J

|〈ξj, η〉|2 ≤ ‖η‖2

for every η ∈ H and every finite subset J of I.

Definition 4.1.16 (Orthonormal basis). Let H be a Hilbert space. An
orthonormal basis is an orthonormal family (ei)i∈I in H that satisfies

sup
J⊂I finite

∑
j∈J

|〈ej, η〉|2 = ‖η‖2

for all η ∈ H. A Hilbert space is called separable if it admits a countable
orthonormal basis.
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Remark 4.1.17. Every Hilbert space admits an orthonormal basis, but it may
have a large cardinality. For most applications in mathematics and quantum
mechanics, it suffices to study separable Hilbert spaces.

Definition 4.1.18 (Unitary operator). Let H, K be Hilbert spaces. A linear
operator U : H → K is called an isometry if ‖Uξ‖ = ‖ξ‖ for all ξ ∈ H. A
surjective isometry is called unitary.

Lemma 4.1.19. Let H, K be Hilbert spaces. If U : H → K is an isometry,
then 〈Uξ, Uη〉 = 〈ξ, η〉 for all ξ, η ∈ H.

Proof. The map

〈·, ·〉U : H ×H → K, (ξ, η) 7→ 〈Uξ, Uη〉

is an inner product on H. Since U is an isometry, we have 〈ξ, ξ〉 = 〈Uξ, Uξ〉
for all ξ ∈ H. By the polarization identity, 〈·, ·〉U = 〈·, ·〉.

Theorem 4.1.20. If H is a Hilbert space, then there exists a set J and a
unitary operator U : H → `2(J). If H is separable, then J can be chosen
countable.

Proof. Let (ej)j∈J be an orthonormal basis of H. For ξ ∈ H let

Uξ : J → K, (Uξ)(j) = 〈ej, ξ〉.

By the definition of an orthonormal basis, Uξ ∈ `2(J) and ‖Uξ‖ = ‖ξ‖. Thus
U is an isometry from H to `2(J).

In particular, U preserves Cauchy sequences. Thus U(H) is complete and
thus closed in `2(J). To show that U is surjective, it suffices therefore to show
that U(H) = `2(J). For f ∈ `2(J) and F ⊂ J finite let ξF =

∑
j∈F f(j)ej ∈

H. Then
‖f − U(ξF )‖2

2 =
∑
j /∈F

|f(j)|2.

Recall that the counting measure on (J,P(J)) is localizable. By the mono-
tone convergence theorem for nets, we have

‖f‖2
2 = sup

F⊂J finite

∑
j∈F

|f(j)|2.

In particular, for every ε > 0 there exists F ⊂ J finite such that∑
j /∈F

|f(j)|2 = ‖f‖2
2 −

∑
j∈F

|f(j)|2 < ε.

Therefore f ∈ U(H).

93



Corollary 4.1.21. If H is a separable infinite-dimensional Hilbert space and
(en)n∈N is an orthonormal basis, then

lim
n→∞

n∑
k=1

〈ek, ξ〉ek = ξ

for every ξ ∈ H.

Theorem 4.1.22 (Riesz representation theorem). Let H be a Hilbert space.
For every ϕ ∈ L(H,K) there exists a unique η ∈ H such that ϕ(ξ) = 〈η, ξ〉
for all ξ ∈ H. Moreover, ‖η‖ = ‖ϕ‖op.

Vice versa, for every η ∈ H the map ϕη : H → K, ξ 7→ 〈η, ξ〉 is a bounded
linear map.

Proof. Since H is isometrically isomorphic to `2(J) for some set J , this can
easily be deduced from the Riesz representation theorem for L2 spaces.

Definition 4.1.23 (Orthogonal complement). Let V be an inner product
space. Two elements ξ, η are called orthogonal, denoted by ξ ⊥ η, if 〈ξ, η〉 =
0. For a subset S of V , the orthogonal complement S⊥ is defined as S⊥ =
{ξ ∈ V | ξ ⊥ η for all η ∈ S}.

Lemma 4.1.24. Let V be an inner product space.

(a) The orthogonal complement of any subset of V is a closed subspace of
V .

(b) If V is a Hilbert space, then K ⊂ V is a closed linear subspace if and
only if K⊥⊥ = K.

(c) The inner product space V is a Hilbert space if and only if K⊥⊥ = K
for every closed subspace K of V .

Proposition 4.1.25. Let H be a Hilbert space and K ⊂ H a closed linear
subspace. For every ξ ∈ H there exists a unique decomposition ξ = η + ζ
with η ∈ K and ζ ∈ K⊥.

Proof. We only give the proof in the case whenK is separable here. The proof
in the general case is similar, one just has to deal properly with uncountable
orthonormal bases. Let (ej)j∈J be an orthonormal basis of K with J finite
or J = N. For ξ ∈ H let η =

∑
j∈J〈ej, ξ〉ej if J finite and

η = lim
n→∞

n∑
j=1

〈ej, ξ〉ej
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if J = N. To see that the limit exists, let m > n. We have∥∥∥∥∥
m∑
j=1

〈ej, ξ〉ej −
n∑
j=1

〈ej, ξ〉ej

∥∥∥∥∥ =

∥∥∥∥∥
m∑

j=n+1

〈ej, ξ〉ej

∥∥∥∥∥
2

=
m∑

j=n+1

|〈ej, ξ〉|2

≤
∞∑

j=n+1

|〈ej, ξ〉|2.

Since
∑∞

j=1|〈ej, ξ〉|2 ≤ ‖ξ‖2 by Bessel’s inequality, the right side of the
previous displayed formula goes to zero as n → ∞. This implies that(∑n

j=1〈ej, ξ〉ej
)
n

is a Cauchy sequence. As H is complete, it converges.

Let ζ = ξ − η. If J is finite, then

〈ζ, ek〉 = 〈ξ − η, ek〉 = 〈ξ, ek〉 −
∑
j∈J

〈ξ, ej〉〈ej, ek〉 = 0,

that is, ζ ⊥ ek. The same is true if J = N using a limiting argument.Since
(ej)j∈J is an orthonormal basis of K, every element of K is in the closed
linear span of {ej | j ∈ J}. Thus ζ ∈ K⊥. The equality ξ = η + ζ holds by
definition. This settles the existence part of the statement.

For uniqueness, let η, η′ ∈ K and ζ, ζ ′ ∈ K⊥ such that η + ζ = η′ + ζ ′.
Then η − η′ = ζ ′ − ζ and 〈η − η′, ζ ′ − ζ〉 = 0. Thus η = η′ and ζ ′ = ζ.

Definition 4.1.26 (Orthogonal projection). Let H be a Hilbert space and
K ⊂ H a closed linear subspace. The map PK from H to H that maps ξ ∈ H
to the unique element η ∈ K such that ξ− η ∈ K⊥ is called the (orthogonal)
projection onto K.

Lemma 4.1.27. Let H be a Hilbert space.

(a) If K ⊂ H is a closed linear subspace, then PK is a bounded linear map.

(b) For P ∈ L(H) there exists a closed linear subspace K ⊂ H such that
P = PK if and only if P 2 = P and 〈Pξ, η〉 = 〈ξ, Pη〉 for all ξ, η ∈ H.

Proof. (a) To show linearity of PK , let ξ1, ξ2 ∈ H and α1, α2 ∈ K. We have

(α1ξ1 + α2ξ2)− (α1PK(ξ1) + α2PK(ξ2)) = α1(ξ1 − PK(ξ1)) + α2(ξ2 − PK(ξ2))

∈ K⊥.
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Thus PK(α1ξ1 + α2ξ2) = α1PK(ξ1) + α2PK(ξ2).

To show boundedness, let ξ ∈ K. Since ξ − PKξ ⊥ ξ, we have

‖ξ‖2 = ‖PKξ‖2 + ‖ξ − PKξ‖2 ≥ ‖PKξ‖2.

Thus PK is bounded (with ‖PK‖op ≤ 1).

(b) First assume that P = PK for some closed linear subspace K of H.
Clearly, P 2 = P . Let ξ, η ∈ H. Since ξ − PKξ, η − PKη ⊥ K, we have

〈PKξ, η〉 = 〈PKξ, η − PKη + PKη〉 = 〈PKξ, PKη〉 = 〈ξ, PKη〉.

Now assume conversely that P ∈ L(H) with P 2 = P and 〈Pξ, η〉 =
〈ξ, Pη〉. Let K = (kerP )⊥. If ξ ∈ H and η ∈ kerP , then

〈Pξ, η〉 = 〈ξ, Pη〉 = 0.

Thus Pξ ∈ K. Furthermore, P (ξ − Pξ) = Pξ − P 2ξ = 0. Hence
ξ − Pξ ∈ kerP = K⊥. Hence P = PK .

4.2 Uniform boundedness, open mapping and

closed graph theorem

In this section we will prove three of the cornerstone results of functional
analysis – the uniform boundedness principle, the open mapping theorem
and the closed graph theorem. These three results are intimately related.
They are usually presented as consequences of Baire’s theorem, which is
quite useful on its own. However, in this course, we will take a short cut that
avoids Baire’s theorem altogether. All we need is the following lemma with
a three-line proof.

Lemma 4.2.1. Let X, Y be normed spaces and T : X → Y a bounded linear
operator. For all x ∈ X and r > 0 we have

sup
‖y−x‖≤r

‖Ty‖ ≥ ‖T‖r.

Proof. For ξ ∈ X we have

‖Tξ‖ ≤ 1

2
(‖T (x− ξ)‖+ ‖T (x+ ξ)‖) ≤ max{‖T (x+ ξ)‖, ‖T (x− ξ)‖}.

Taking the supremum over all ξ ∈ B̄r(0) yields the claim.
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Theorem 4.2.2 (Uniform boundedness principle). Let X be a Banach space,
Y a normed space, and (Ti)i∈I a family of bounded linear operators from X
to Y such that supi∈I‖Tix‖ <∞ for all x ∈ X. Then supi∈I‖Ti‖ <∞.

Proof. Suppose that supi∈I‖Ti‖ = ∞. Let (in) be a sequence in I such
that ‖Tin‖ ≥ 4n. Set x0 = 0 and choose inductively xn ∈ X such that
‖xn − xn−1‖ ≤ 3−n and ‖Tinxn‖ ≥ 2

3
· 3−n‖Tin‖ (this is possible due to the

previous lemma).
Then (xn) is a Cauchy sequence, hence it converges to some x ∈ X (that’s

where the completeness of X is needed). Furthermore,

‖x− xn‖ = lim
m→∞

‖xm − xn‖ ≤ lim
m→∞

m∑
k=n+1

‖xk − xk−1‖ ≤
∞∑

k=n+1

3−k ≤ 1

2
3−n.

Thus,

‖Tinx‖ ≥ ‖Tinxn‖ − ‖Tin(x− xn)‖ ≥ 2

3
· 3−n‖Tin‖ −

1

2
3−n‖Tin‖ ≥

1

6

(
4

3

)n
,

contradicting the assumption supi∈I‖Tix‖ <∞.

Definition 4.2.3 (Open map). A map between topological spaces is called
open if the images of open sets are open.

Theorem 4.2.4 (Open mapping theorem). Let X, Y be Banach spaces. If
the bounded linear operator T : X → Y is surjective, then it is open.

Proof. Let U ⊂ X be open. Since translations are homeomorphisms, we
may assume that 0 ∈ U . Then there is a ball B with center 0 such that
B ⊂ U . Since dilations are homeomorphisms, we additionally assume that
B = B1(0). It suffices to show that T (B) contains a neighborhood of 0.

In the first step we show that T (B) contains a neighborhood of 0. For
each n ∈ N define the norm ‖·‖n on Y by

‖y‖n = inf{‖u‖+ n‖v‖ : u ∈ X, v ∈ Y, Tu+ v = y}.

Let Z be the set of all finitely supported sequences in Y with pointwise
addition and scalar multiplication and the norm

‖·‖Z : Z → [0,∞), ‖f‖Z = sup
n
‖f(n)‖n.

For n ∈ N let Sn : Y → Z, y 7→ yδn. Note that ‖Sny‖Z = ‖y‖n.
Taking u = 0, v = y in the definition of ‖·‖n we get ‖y‖n ≤ n‖y‖, hence Sn

is bounded for all n ∈ N. Taking u ∈ T−1(y), v = 0, we obtain ‖y‖n ≤ ‖u‖,
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thus (Sny)n is bounded for all y ∈ Y . By the uniform boundedness theorem
there is a constant C > 0 such that ‖Sn‖ ≤ C for all n ∈ N.

Now let δ = 1/C. If y ∈ Bδ(0), then ‖y‖n ≤ C‖y‖ < 1. Thus for every
n ∈ N there exist un ∈ X, vn ∈ Y such that Tun+vn = y and ‖un‖+n‖vn‖ <
1. In particular un ∈ B1(0) and vn ∈ B1/n(0), hence T (B) 3 Tun → y. Thus

y ∈ T (B).
In the second step we show that T (B) contains Bδ/2(0). If ‖y‖ < δ/2, then

by the first step and scaling there exists x1 ∈ B1/2(0) such that ‖y− Tx1‖ <
δ/4.

This way we get recursively a sequence (xn) in X with ‖xn‖ < 2−n and∥∥∥∥∥y −
n∑
k=1

Txk

∥∥∥∥∥ < δ2−(n+1).

Hence y =
∑∞

k=1 Txk. On the other hand, the norm estimate for xn and
completeness of X imply that (

∑n
k=1 xk)n converges to some x ∈ B1(0).

Thus y = Tx ∈ T (B).

Corollary 4.2.5 (Bounded inverse). Let X, Y be Banach spaces. If T ∈
L(X, Y ) is bijective, then its inverse is bounded.

Corollary 4.2.6. Let X be a vector space and ‖·‖1, ‖·‖2 complete norms. If
there exists a constant C > 0 such that ‖·‖1 ≤ C‖·‖2, then ‖·‖1 and ‖·‖2 are
equivalent.

Definition 4.2.7 (Closed operator). Let X, Y be normed spaces and let
T : X → Y be a linear operator. The graph norm ‖·‖T is defined as

‖·‖T : X → [0,∞), ‖x‖T = ‖x‖+ ‖Tx‖.

The operator T is called closed if (X, ‖·‖T ) is complete.

Proposition 4.2.8. Let X be a normed space and Y a Banach space. A
linear operator T : X → Y is closed if and only if whenever (xn) is a Cauchy
sequence in X and (Txn) is a Cauchy sequence in Y , then (xn) converges
and T (limn→∞ xn) = limn→∞ Txn.

Example 4.2.9. Let Ω be a domain. The operator ∆: H2(Ω) → L2(Ω) is
closed.

Theorem 4.2.10 (Closed graph theorem). Let X be a normed space, Y a
Banach space and T : X → Y be linear. Of the following three properties,
every pair of two implies the third.
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(i) T is closed.

(ii) X is complete.

(iii) T is continuous.

Proof. The only nontrivial implication is (i)+(ii) =⇒ (iii). By definition, T
is continuous w.r.t. the graph norm on X. Moreover, ‖·‖X ≤ ‖·‖T . Since X
is complete with respect to both ‖·‖X and ‖·‖T , the norms are equivalent.
Thus T is continuous with respect to ‖·‖X .

4.3 Spectrum

From now on, we assume that K = C, i.e., all Hilbert spaces are complex
Hilbert spaces.

Definition 4.3.1. Let H, K be Hilbert spaces. A (possibly unbounded)
operator from H to K is a linear map T defined on a linear subspace of H
with values in K. If H = K, we also say that T is an operator in H. The
domain of T is denoted by dom(T ). The operator T is called densely defined
if dom(T ) is dense in H.

Remark 4.3.2. The domain of an operator is a crucial part of information.
It often happens in that two operators act in the same way, but on different
domains.

Definition 4.3.3 (Spectrum). Let H be a Hilbert space and T a densely
defined operator in H. For z ∈ C, the operator T − z is defined by dom(T −
z) = dom(T ) and (T − z)ξ = Tξ − zξ. The resolvent set ρ(T ) is defined as

ρ(T ) = {z ∈ C | T − z bijective with bounded inverse}.

For z ∈ ρ(T ), the resolvent of T at z is the (bounded) operator (T − z)−1.
The spectrum σ(T ) of T is the complement of ρ(T ).

Example 4.3.4. If H = Cn, then T−z is bijective if and only if it is injective if
and only if it surjective. Thus z ∈ σ(T ) if and only if there exists ξ 6= 0 such
that Tξ = zξ. In other words, the spectrum of T is the set of eigenvalues of
T .

In infinite dimensions, one can have spectral values that are not eigenval-
ues:
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Example 4.3.5. Let

T : L2([0, 1])→ L2([0, 1]), (Tf)(x) = xf(x).

For every z ∈ [0, 1], the operator T − z is not surjective: If Tf − zf = 1,
then (x− z)f(x) = 1 for a.e. x ∈ [0, 1], which implies f(x) = (x− z)−1 a.e.
However, x 7→ (x− z)−1 is not square integrable.

The operator T − z is injective for every z ∈ C: If Tf − zf = 0, then
xf(x) = zf(x) for a.e. x ∈ [0, 1], which implies f = 0 a.e. Thus T has no
eigenvalues.

Example 4.3.6. Let (X,A, µ) be a semi-finite measure space and ϕ : X → C
measurable. The operator Mϕ of multiplication with ϕ on L2(X,µ) is defined
by

dom(Mϕ) = {f ∈ L2(X,µ) | ϕf ∈ L2(X,µ)},
Mϕf = ϕf.

Let us first show that Mϕ is densely defined. Let An = {x ∈ X : |ϕ(x)| ≤
n}. Clearly 1An → 1 pointwise. By the dominated convergence theorem,
‖f − f1An‖2 → 0 for every f ∈ L2(X,µ). Moreover,∫

X

|ϕf1An|2 dµ ≤ n2

∫
X

|f |2 dµ <∞.

Thus f1An ∈ dom(Mϕ). Therefore Mϕ is densely defined. The operator
Mϕ is also closed, but that requires some measure theory tools we have not
covered in this course.

We claim that

σ(Mϕ) = {λ ∈ C | µ(ϕ−1(Bε(λ))) > 0 for all ε > 0}.

First, if there exists ε > 0 such that µ(ϕ−1(Bε(λ))) = 0, let Rλ = M(ϕ−λ)−1 .
Note that the function (ϕ− λ)−1 is finite µ-a.e., and functions that coincide
µ-a.e. define the same multiplication operator.

If x /∈ ϕ−1(Bε(0)), then |ϕ(x)−λ| ≥ ε. As µ(ϕ−1(Bε(0)) = 0, we conclude
that |ϕ− λ| ≥ ε µ-a.e. and hence∫

X

|f(ϕ− λ)−1|2 dµ ≤ ε−2

∫
X

|f |2 dµ.

Thus dom(Rλ) = L2(X,µ) and Rλ is bounded. The identities Rλ(Mϕ−λ)f =
f for f ∈ dom(Mϕ) and (Mϕ − λ)Rλf = f for f ∈ L2(X,µ) are clear.
Therefore λ ∈ ρ(Mϕ).
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For the converse inclusion, let λ ∈ C with µ(ϕ−1(Bε(λ))) > 0 for all
ε > 0. Since (X,A, µ) is assumed to be semi-finite, there exists for every
ε > 0 a set Aε ∈ A such that Aε ⊂ ϕ−1(Bε(λ)) and 0 < µ(Aε) < ∞. Let
fε = 1Aε/µ(Aε)

1/2. We have ‖fε‖2 = 1 and

|(Mϕ − λ)fε| < ε|fε|.

Hence ‖(Mϕ−λ)fε‖2 ≤ ε, which implies that Mϕ−λ cannot have a bounded
inverse. Therefore λ ∈ σ(Mϕ).

Lemma 4.3.7. Let H be a Hilbert space and T a densely defined operator in
H. If T is not closed, then ρ(T ) = ∅.

Proposition 4.3.8. Let H be a Hilbert space. For densely defined operator
T in H the resolvent set ρ(T ) is an open subset of C and the map

ρ(T )→ C, z 7→ 〈ξ, (T − z)−1η〉

is differentiable for all ξ, η ∈ H.

Remark 4.3.9. Since we are dealing with a function on a complex domain,
differentiability is much stronger than for functions with real domain. For
example, if U ⊂ C is open and f : U → C is differentiable, then for every
w ∈ U and every r > 0 such that Br(w) ⊂ U there exists a sequence (an)
in C such that

∑∞
n=0 an(z − w)n converges absolutely on Br(w) to f(z). In

particular, such a function is necessarily smooth.

Proof. Let z0 ∈ ρ(T ). If z ∈ C with |z − z0| < ‖(T − z0)−1‖−1, let

Sn =
n∑
k=0

(z − z0)k(T − z0)−(k+1).

We want to show that (Sn) is a Cauchy sequence. If m > n, then

‖Sm − Sn‖ ≤
m∑

k=n+1

|z − z0|k‖(T − z0)−1‖k+1

≤ ‖(T − z0)−1‖
∞∑

k=n+1

(
|z − z0|‖(T − z0)−1‖

)k
.

Since |z − z0| < ‖(T − z0)−1‖−1, the series
∑∞

k=0 (|z − z0|‖(T − z0)−1‖)k

converges. In particular, for every ε > 0 there exists N ∈ N such that∑∞
k=N (|z − z0|‖(T − z0)−1‖)k < ε. Thus (Sn) is a Cauchy sequences.
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As L(H) is complete, there exists S ∈ L(H) such that Sn → S. We claim
that S is an inverse of T − z. Indeed, if ξ ∈ H, then Snξ ∈ dom(T ) and

(T − z)Snξ =
n∑
k=0

(z − z0)k(T − z)(T − z0)−(k+1)ξ

=
n∑
k=0

(z − z0)k(T − z0 + z0 − z)(T − z0)−(k+1)ξ

=
n∑
k=0

(
(z − z0)k(T − z0)−k − (z − z0)k+1(T − z0)−(k+1)

)
ξ

= ξ − (z − z0)n+1(T − z0)−(n+1)ξ.

Since Snξ → Sξ and T is closed, we conclude Sξ ∈ dom(T ) and

(T − z)Sξ = lim
n→∞

(ξ − (z − z0)n+1(T − z0)−(n+1)ξ) = ξ.

A similar argument shows that S(T − z)ξ = ξ for every ξ ∈ dom(T ). Thus
z ∈ ρ(T ) and (T − z)−1 = S. Furthermore, if ξ, η ∈ H, then

〈ξ, (T − z)−1η〉 = lim
n→∞
〈ξ, Snη〉 =

∞∑
k=0

〈ξ, (T − z0)−(k+1)η〉(z − z0)k,

which depends smoothly on z.

Remark 4.3.10. Here is a brief summary of the proof: For R ∈ L(H) with
‖R‖ < 1, the series

∞∑
k=0

Rk

converges in operator norm. This is called the Neumann series (named after
Carl Neumann, not John von Neumann). By a telescoping trick one can
show that

(1−R)
∞∑
k=0

Rk =
∞∑
k=0

Rk(1−R) = 1.

Thus 1 − R is invertible with inverse
∑∞

k=0R
k. What we used in the proof

is that one can write T − z as

T − z0 + z0 − z = (1− (z − z0)(T − z0)−1)(T − z0).

If |z − z0| < ‖(T − z0)−1‖−1, one can then apply the Neumann series to
R = (z − z0)(T − z0)−1 to find an inverse of T − z.
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4.4 Symmetric and self-adjoint operators

Definition 4.4.1 (Adjoint of an operator). Let H, K be Hilbert spaces and
T a densely defined operator from H to K. The adjoint T ∗ of T is the
(possibly unbounded) operator from K to H defined by

dom(T ∗) = {ξ ∈ K | ∃η ∈ H ∀ζ ∈ dom(T ) : 〈ξ, T ζ〉 = 〈η, ζ〉},
T ∗ξ = η.

An operator T in H is called self-adjoint if T ∗ = T .

Remark 4.4.2. The density of dom(T ) in H guarantees that the element η in
the definition of the adjoint is uniquely determined, if it exists.

Lemma 4.4.3. The adjoint of a densely defined operator between Hilbert
spaces is closed.

Proof. Let T be a densely defined operator from H to K, (ξn) a sequence in
dom(T ∗) such that ξn → ξ in K and T ∗ξn → η in H. To prove that T ∗ is
close, we have to show that ξ ∈ dom(T ∗) and T ∗ξ = η.

Let ζ ∈ dom(T ). By definition of the adjoint,

〈ξ, T ζ〉 = lim
n→∞
〈ξn, T ζ〉 = lim

n→∞
〈T ∗ξn, ζ〉 = 〈η, ζ〉.

Hence ξ ∈ dom(T ∗) and T ∗ξ = η.

Proposition 4.4.4. Let H, K be Hilbert spaces. A densely defined opera-
tor T from H to K has an everywhere defined adjoint if and only if T is
continuous.

Proof. First let T be a densely defined continuous operator from H to K. If
ξ ∈ K, then

H → C, ζ 7→ 〈ξ, T ζ〉
is a bounded linear functional. By the Riesz representation theorem, there
exists η ∈ H such that 〈ξ, T ζ〉 = 〈η, ζ〉 for all ζ ∈ H. Thus dom(T ∗) = H.

Assume conversely that T has an everywhere defined adjoint. Since the
adjoint is closed by the previous lemma, it is also bounded by the closed
graph theorem. We claim that Tξ = T ∗∗ξ for all ξ ∈ dom(T ). In fact, T ∗∗ is
everywhere defined and bounded and

〈ξ, T ∗η〉 = 〈Tξ, η〉

for all ξ ∈ dom(T ), η ∈ dom(T ∗), hence ξ ∈ dom(T ∗∗) and T ∗∗ξ = Tξ. Since
T ∗∗ is continuous, so is T .
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Definition 4.4.5 (Extension of operators, symmetric operator). Let H, K
be Hilbert spaces and S, T (possibly unbounded) operators from H to K.
The operator T is called an extension of S, written as S ⊂ T , if dom(S) ⊂
dom(T ) and Tξ = Sξ for ξ ∈ dom(S).

A densely defined operator T in H is called symmetric if T ⊂ T ∗.

Remark 4.4.6. Clearly, every self-adjoint operator is symmetric. The converse
is not true, as we shall see in the examples.

Example 4.4.7. A bounded everywhere defined operator is symmetric if and
only if it self-adjoint since an everywhere defined operator has no non-trivial
extensions. In this case, it suffices to check

〈Tξ, η〉 = 〈ξ, Tη〉

for all ξ, η ∈ H.

Example 4.4.8. Let (X,A, µ) be a semi-finite measure space and ϕ : X → R
measurable. If

D ⊂ {f ∈ L2(X,µ) | ϕf ∈ L2(X,µ)}
is a dense subspace, then Mϕ|D is symmetric. However, it is self-adjoint if
and only if D = dom(Mϕ), the maximal domain:

The symmetry is not hard to see: If f, g ∈ D, then

〈Mϕ|Df, g〉 =

∫
X

ϕfg dµ =

∫
X

f̄(ϕg) dµ = 〈f,Mϕ|Dg〉.

In fact, the same computation shows that if f ∈ D and g ∈ dom(Mϕ), then

〈Mϕ|Df, g〉 = 〈f,Mϕg〉.

Therefore dom(Mϕ) ⊂ dom(Mϕ|∗D) and Mϕf = Mϕ|∗Df for f ∈ dom(Mϕ|∗D),
which can be summarized as Mϕ ⊂ Mϕ|∗D. Thus a necessary condition for
self-adjointness is D = dom(Mϕ).

Let us show that it is also sufficient. Let f ∈ dom(M∗
ϕ) and An = {x ∈

X : |ϕ(x)| ≤ n}, gn = 1Anϕf . As |ϕgn| ≤ n2|f |, we have gn ∈ dom(Mϕ).
Therefore

‖gn‖2
2 =

∣∣∣∣∫
X

ḡnϕf dµ

∣∣∣∣ = |〈Mϕgn, f〉| = |〈gn,M∗
ϕf〉| ≤ ‖gn‖2‖M∗

ϕf‖2.

It follows that ‖gn‖2 ≤ ‖M∗
ϕf‖2. By the monotone convergence theorem,

‖gn‖2
2 →

∫
X

|ϕf |2 dµ.

We conclude that ϕf ∈ L2(X,µ), which implies f ∈ dom(Mϕ). As we have
already shown that Mϕ ⊂M∗

ϕ, we arrive at M∗
ϕ = Mϕ.
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Remark 4.4.9. The previous example my suggest that symmetric operators
differ from self-adjoint operators only in that one has not chosen the maxi-
mal domain. It is true that self-adjoint operators do not have a non-trivial
symmetric extension. However, there are symmetric operators with several
self-adjoint extensions and symmetric operators with no self-adjoint exten-
sion, as the next examples show.

Example 4.4.10. The operator

T : C2
c ((0, π))→ L2((0, π)), f 7→ f ′′

is a symmetric operator in L2((0, π)), as integration by parts shows. However,
it is not self-adjoint and has several self-adjoint extensions

Two of them are given as follows: Let ak =
∫ π

0
cos2(kx) dx for k ∈

N0 and bk =
∫ π

0
sin2(kπ) dx for k ∈ N. Note that (a

−1/2
k cos(k·))k∈N0 and

(b
−1/2
k sin(k·))k∈N are orthonormal bases of L2((0, π)).

The Laplacian with Dirichlet boundary conditions on L2((0, π)) is defined
by

dom(∆(D)) =

{
f ∈ L2((0, π)) :

∞∑
k=1

k4b−1
k |〈f, sin(k·)〉|2 <∞

}
,

∆(D)f = −
∞∑
k=1

k2b−1
k 〈f, sin(k·)〉 sin(k·).

The Laplacian with Neumann boundary conditions on L2((0, π)) is defined
by

dom(∆(N)) =

{
f ∈ L2((0, π)) :

∞∑
k=1

k4a−1
k |〈f, cos(k·)〉|2 <∞

}
,

∆(N)f = −
∞∑
k=0

k2a−1
k 〈f, cos(k·)〉 cos(k·).

We will see later that both ∆(D) and ∆(N) are self-adjoint. Moreover, if
f =

∑N
k=1 b

−1
k 〈f, sin(k · )〉 sin(k · ), then

f ′′(x) =
N∑
k=1

b−1
k 〈f, sin(k · )〉 d

2

dx2
sin(kx)

= −
N∑
k=1

k2b−1
k 〈f, sin(k · )〉 sin(kx)

= ∆(D)f(x).
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An analogous result holds for ∆(N) and finite linear combinations of co-
sine functions. With a bit more work, one can show that C2

c ((0, π)) ⊂
dom(∆(D)) ∩ dom(∆(N)) and f ′′ = ∆(D)f = ∆(N)f for f ∈ C2

c ((0, π)).

Example 4.4.11. The operator

T : C1
c ((0,∞))→ L2((0,∞)), f 7→ if ′

is a densely defined symmetric operator in L2((0,∞)) without self-adjoint
extensions.

Lemma 4.4.12. Let H be a Hilbert space. If T is a symmetric operator in
H, then ker(T − λ) = {0} for λ ∈ C \ R.

Proof. If ξ ∈ ker(T − λ), then

λ〈ξ, ξ〉 = 〈ξ, T ξ〉 = 〈Tξ, ξ〉 = λ̄〈ξ, ξ〉.

If λ 6= λ̄, we conclude ξ = 0.

In other words, symmetric operators have only real eigenvalues. Note
however, that an operator on an infinite-dimensional Hilbert space can have
spectral values that are not eigenvalues. This is in fact always the case for
symmetric operators that are not self-adjoint, as the next result shows. This
is one of the reasons why one requires the observables in quantum mechanics
to be self-adjoint and not only symmetric.

Proposition 4.4.13. Let H be a Hilbert space and T a densely defined sym-
metric operator in H. The spectrum of T is either C, {λ ∈ C | Imλ ≥ 0},
{λ ∈ C | Imλ ≤ 0} or a subset of R, and T is self-adjoint if and only if
σ(T ) ⊂ R.

Corollary 4.4.14. Let H be a Hilbert space. A densely defined closed sym-
metric operator T in H is self-adjoint if and only if ran(T ± i) = H.

Corollary 4.4.15. Let H be a Hilbert space. If T is a densely defined sym-
metric operator in H such that ρ(T ) ∩ R 6= ∅, then T is self-adjoint.

4.5 The spectral theorem

The spectral theorem links self-adjoint operators (observables in quantum
mechanics) to measurements. It takes a particularly simple form in finite
dimensions.

106



Proposition 4.5.1 (Spectral theorem in finite dimensions). Let H be finite-
dimensional Hilbert space and T : H → H a symmetric operator. For λ ∈
σ(T ) let Pλ be the orthogonal projection on ker(T − λ). Then

T =
∑

λ∈σ(T )

λPλ.

Proof. Let λ ∈ σ(T ). For ξ ∈ ker(T − λ) we have Tξ = λξ. Moreover, if
η ∈ ker(T − λ)⊥, then

〈Tη, ξ〉 = 〈η, T ξ〉 = λ〈η, ξ〉 = 0,

hence Tη ∈ ker(T − λ)⊥. Thus (T − λPλ)(ker(T − λ)⊥) ⊂ ker(T − λ)⊥.
Hence we can apply the previous step to (T − λPλ)|ker(T−λ)⊥ . If we iterate
this procedure, we end up with the claimed identity (this iteration terminates
because we are in finite dimensions).

In infinite dimensions, not all spectral values are eigenvalues and in gen-
eral, one cannot expect a self-adjoint operator to be a linear combination of
projections. To deal with cases as in Example 4.3.5 where the spectrum is
continuous and ker(T −λ) = {0} for all λ ∈ C, we need the following concept
that generalizes families of orthogonal projections.

Definition 4.5.2 (Projection-valued measure). Let (X,A) be a measurable
space and H a Hilbert space. A map E : A → L(H) is called projection-
valued measure (PVM) if

• E(A) is a projection for all A ∈ A,

• E(∅) = 0, E(X) = 1H ,

• A → [0,∞), A 7→ 〈ξ, E(A)ξ〉 is a measure for all ξ ∈ H.

Remark 4.5.3. By definition of a projection-valued measure, the map µξ : A 7→
〈ξ, E(A)ξ〉 is a measure. We write

∫
Ω
g(ω) d〈ξ, E(ω)ξ〉 for

∫
Ω
g dµξ.

Example 4.5.4. Let X = {1, . . . , n} and A = P(X). If P1, . . . , Pn ∈ L(H)
are projections such that P1 + · · ·+ Pn = 1, then

E : A → L(H), E(A) =
∑
k∈A

Pk

is a projection-valued measure.
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Example 4.5.5. If H = L2(R), then the map

E : A → L(H), A 7→M1A

is a projection-valued measure on (X,A).

The following properties of projection-valued measures come in handy.

Lemma 4.5.6. Let (X,A) be a measurable space, H a Hilbert space and E
a projection-valued measure on (X,A) with values in L(H).

(a) If A,B ∈ A, then E(A)E(B) = E(A∩B). In particular, if A∩B = ∅,
then E(A)E(B) = 0.

(b) If (An) is an increasing sequence in A and ξ ∈ H, then E(An)ξ →
E(
⋃
n∈NAn)ξ.

Lemma 4.5.7. Let H be a Hilbert space and T an operator in H. If 〈ξ, T ξ〉 =
0 for all ξ ∈ dom(T ), then Tξ = 0 for all ξ ∈ dom(T ).

Proposition 4.5.8. Let H be a Hilbert space, (Ω,A) a measurable space and
E : A → L(H) a projection-valued measure. For every measurable function
f : Ω→ C there exists a unique operator T in H with domain

dom(T ) =

{
ξ ∈ H :

∫
Ω

|f(ω)|2 d〈ξ, E(ω)ξ〉 <∞
}

that satisfies

〈ξ, T ξ〉 =

∫
Ω

f(ω) d〈ξ, E(ω)ξ〉

for all ξ ∈ dom(T ).
The operator T is densely defined and it is bounded if f is bounded

Proof. For ξ ∈ H let µξ denote the measure A 7→ 〈ξ, E(A)ξ〉. The domain
of T can be rephrased as

dom(T ) = {ξ ∈ H | f ∈ L2(Ω, µξ)}.

First note that since |f(ω)| ≤ 1 + |f(ω)|2 for all ω ∈ Ω, we have∫
Ω

|f(ω)| dµξ(ω) ≤ µξ(A) +

∫
Ω

|f(ω)|2 dµξ(ω).

Hence the integral
∫

Ω
f(ω) dµξ(ω) is well-defined whenever f ∈ L2(Ω, µξ). By

the previous lemma, T is uniquely determined by 〈ξ, T ξ〉 for ξ ∈ dom(T ).
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To see that dom(T ) is dense, let An = {ω ∈ Ω : |f(ω)| ≤ n}. By a
previous lemma, E(An)ξ → ξ for all ξ ∈ H. Moreover, µE(An)ξ(Ω \ An) = 0.
Thus ∫

Ω

|f(ω)|2 dµE(An)ξ(ω) =

∫
Ω

1An(ω)|f(ω)|2 dµE(An)ξ(ω)

≤ n2‖E(An)ξ‖2

<∞,

which implies E(An)ξ ∈ dom(T ). Therefore dom(T ) is dense.
To show existence of T , let

Qf : dom(T )× dom(T )→ C, (ξ, η) 7→
3∑

k=0

i−k
∫

Ω

f dµξ+ikη.

Note that by the polarization identity, Qf (ξ, ξ) =
∫

Ω
f dµξ.

If f =
∑n

j=1 αj1Aj with disjoint measurable sets Aj, then the polarization
identity implies

|Qf (ξ, η)| =

∣∣∣∣∣
n∑
j=1

3∑
k=0

i−kαj〈ξ + ikη, E(Aj)(ξ + ikη)〉

∣∣∣∣∣
=

∣∣∣∣∣
n∑
j=1

αj〈ξ, E(Aj)η〉

∣∣∣∣∣
≤

(
n∑
j=1

〈ξ, E(Aj)ξ〉

)1/2( n∑
j=1

|αj|2〈η, E(Aj)η〉

)1/2

≤ ‖ξ‖
(∫

Ω

|f |2 dµη
)1/2

.

For arbitrary measurable f : Ω→ R, the inequality |Qf (ξ, η)| ≤ ‖ξ‖‖f‖L2(Ω,µη)

can be proven by approximation.
It follows from the Riesz representation theorem that for every η ∈

dom(T ) there exists a unique Tη ∈ H such that 〈ξ, Tη〉 = Qf (ξ, η) for
all ξ ∈ dom(T ), and ‖Tη‖ ≤ ‖f‖L2(Ω,µη). In particular, 〈ξ, T ξ〉 =

∫
Ω
f dµξ as

observed above.
If f is bounded, then∫

Ω

|f(ω)|2 dµξ(ω) ≤ ‖f‖2
∞‖ξ‖2 <∞

for all ξ ∈ H. Thus dom(T ) = H and ‖Tξ‖ ≤ ‖f‖L2(Ω,µξ) ≤ ‖f‖∞‖ξ‖.
Therefore T is bounded.
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Definition 4.5.9 (Integral with respect to a PVM). Let H be a Hilbert
space, (Ω,A) a measurable space, E : A → L(H) a projection-valued measure
and f : Ω → C a measurable function. The unique self-adjoint operator T
from the previous result is called the integral of f with respect to E and
denoted by

∫
f dE.

Proposition 4.5.10. Let H be a Hilbert space, (Ω,A) a measurable space,
E : A → L(H) a projection-valued measure and f, g : Ω→ C measurable.

(a) If (fn) is an increasing sequence of non-negative bounded measurable
functions on Ω and f : Ω → R is a bounded measurable function such
that f(ω) = limn→∞ fn(ω) for all ω ∈ Ω, then〈

ξ,

∫
Ω

fn dE η

〉
→
〈
ξ,

∫
Ω

f dE η

〉
for all ξ, η ∈ H.

(b) If f, g are bounded and α, β ∈ C, then∫
Ω

(αf + βg) dE = α

∫
Ω

f dE + β

∫
Ω

g dE∫
Ω

fg dE =

(∫
Ω

f dE

)(∫
Ω

g dE

)
.

(c) (
∫

Ω
f dE)∗ =

∫
Ω
f̄ dE. In particular,

∫
Ω
f dE is self-adjoint if f is real-

valued.

(d)
∫

Ω
f dE is closed.

Proof. (a) By the polarization identity, it suffices to consider the case ξ = η.
In this case, the statement is a direct consequence of the definition of the
integral together with the monotone convergence theorem.

(b) Linearity is an easy consequence of the linearity of the integral of
scalar-valued functions. Multiplicativity is a bit trickier. First note that if
A ∈ A, then ∫

Ω

1A(ω) d〈ξ, E(ω)ξ〉 = 〈ξ, E(A)ξ〉

for all ξ ∈ H, hence
∫

Ω
1A dE = E(A) by uniqueness. Therefore, if A,B ∈ A,

110



then ∫
Ω

1A1B dE =

∫
Ω

1A∩B dE

= E(A ∩B)

= E(A)E(B)

=

(∫
Ω

1A dE

)(∫
Ω

1B dE

)
.

By linearity, we obtain
∫

Ω
fg dE = (

∫
Ω
f dE)(

∫
Ω
g dE) whenever f and g are

linear combinations of indicator functions of measurable sets. With the help
of (a), one can then extend this identity to arbitrary bounded measurable
functions. We leave the details as an exercise.

(c) Let Tf =
∫

Ω
f dE. By the polarization identity, if ξ, η ∈ dom(Tf ),

then

〈ξ, Tfη〉 =
1

4

4∑
k=1

i−k〈ξ + ikη, Tf (ξ + ikη)〉

=
1

4

4∑
k=1

i−k
∫

Ω

f dµξ+ikη(ω)

=
1

4

4∑
k=1

ik
∫

Ω

f̄ dµξ+ikη(ω)

=
1

4

4∑
k=1

ik〈ξ + ikη, Tf̄ (ξ + ikη)〉

=
1

4

4∑
k=1

i−k〈Tf̄ (ξ + ikη), ξ + ikη〉

= 〈Tf̄ξ, η〉.

Thus Tf̄ ⊂ T ∗f . In particular, T ∗f = Tf̄ if f is bounded.
To prove T ∗f ⊂ Tf̄ , let An = {ω ∈ Ω : |f(ω)| ≤ n}. First note that

µE(An)ξ(B) = 〈E(An)ξ, E(B)E(An)ξ〉 = 〈ξ, E(B ∩ An)ξ〉 = µξ(B ∩ An)

for all B ∈ A. Approximation by simple functions then shows that∫
Ω

|f |2 dµE(An)ξ =

∫
An

|f |2 dµξ ≤ n2‖ξ‖2

and

〈E(An)ξ, TfE(An)ξ〉 =

∫
Ω

f dµE(An)ξ =

∫
An

f dµ(ξ) = 〈ξ, Tf1Anξ〉
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for all ξ ∈ H. In particular, E(An)H ⊂ dom(Tf ) and TfE(An)ξ = Tf1Anξ
for all ξ ∈ H.

If ξ ∈ dom(T ∗f ) and η ∈ H, then the result in the bounded case implies

〈Tf̄1Anξ, η〉 = 〈ξ, TfE(An)η〉 = 〈E(An)T ∗f ξ, η〉.

Hence Tf̄1Anξ = E(An)T ∗f ξ. By the monotone convergence theorem,∫
Ω

|f |2 dµξ = lim
n→∞

∫
An

|f |2 dµ = lim
n→∞
‖Tf1Anξ‖

2 = lim
n→∞
‖E(An)T ∗f ξ‖2 ≤ ‖T ∗f ξ‖2.

Therefore, ξ ∈ dom(Tf̄ ).
(d) Since Tf = T ∗

f̄
, the operator Tf is closed.

Remark 4.5.11. Similar to the case of measures, if E is a projection-valued
measure, one can define an equivalence relation ∼E on the space of all mea-
surable functions from Ω to R by setting f ∼E g if there exists N ∈ A with
E(N) = 0 such that {ω ∈ Ω | f(ω) = g(ω)} ⊂ N . Let L∞(Ω, E) be the set
of all equivalence classes of bounded measurable functions from Ω to C.

The space L∞(Ω, E) has the structure of a von Neumann algebra, and the
previous result says that the integral with respect to E is a (normal unital)
∗-homomorphism between the von Neumann algebras L∞(Ω, E) and L(H).

An important application concerns operators that admit an orthonormal
basis consisting of eigenvectors:

Example 4.5.12. Let H be a separable Hilbert space with orthonormal basis
(ξn)n∈N and (λn)n∈N a sequence in R. The map

E : B(R)→ L(H), A 7→
∑

n : λn∈A

〈ξn, · 〉ξn

is a spectral measure and the operator given by

dom(T ) =

{
ξ ∈ H :

∞∑
n=1

λ2
n|〈ξn, ξ〉|2

}

Tξ =
∞∑
n=1

λn〈ξn, ξ〉ξn

is self-adjoint.
In particular, the Laplacian with Dirichlet and Neumann boundary con-

ditions in L2((0, π)) are self-adjoint.
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Theorem 4.5.13 (Spectral theorem). Let H be a Hilbert space. For ev-
ery self-adjoint operator T in H the there exists a unique projection-valued
measure E on (R,B(R)) with values in L(H) such that

T =

∫
R
λ dE(λ).

Theorem 4.5.14 (Spectral theorem in multiplication operator form). Let
H be a Hilbert space. For every self-adjoint operator T in H there exists a
localizable measure space (X,A, µ), a measurable function ϕ : X → R and a
unitary operator U : H → L2(X,µ) such that

T = U∗MϕU.

Definition 4.5.15 (Spectral measure, functional calculus). Let H be a
Hilbert space. If T is a self-adjoint operator in H, then the unique PVM
E on (R,B(R)) with values in L(H) such that

T =

∫
R
λ dE(λ)

is called the spectral measure of E.
If f : R→ C is a measurable function, we define

f(T ) =

∫
R
f(λ) dE(λ).

We will not give a full proof of either version of the spectral theorem
here. However, let us at least see how the spectral measure of intervals can
be described. To do so, we need to properly define powers of a (possibly
unbounded) operator.

Definition 4.5.16 (Powers of an operator). Let H be a Hilbert space and T
an operator in H. The powers T n, n ∈ N, are inductively defined by T 1 = T
and

dom(T n+1) = {ξ ∈ dom(T n) | T nξ ∈ dom(T )},
T n+1ξ = T (T nξ).

Lemma 4.5.17. Let H be a Hilbert space and T a self-adjoint operator in
H with spectral measure E. For a, b ∈ R with a < b, the spectral projection
E([a, b]) is the orthogonal projection onto{

ξ ∈
∞⋂
n=1

dom(T n) : ‖(T − 1

2
(a+ b))nξ‖ ≤ (a− b)n

2n
‖ξ‖ for all n ∈ N

}
.

In particular, E({a}) is the orthogonal projection onto ker(T − a).
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Remark 4.5.18. If R ≥ 0, then the previous lemma implies that E([−R,R])
is the orthogonal projection onto{

ξ ∈
∞⋂
n=1

dom(T n) : ‖T nξ‖ ≤ Rn‖ξ‖ for all n ∈ N

}
,

which can be interpreted as the maximal closed subspace on which T acts
like a bounded operator with norm less or equal to R.

Example 4.5.19. Let T be a self-adjoint operator in H that admits an or-
thonormal basis (ξi)i∈I of eigenfunctions with associated eigenvalues λi, i ∈ I.
Since (ξi)i : λi=λ is an orthonormal basis of ker(T − λ), we have

E({λ})ξ =
∑

i : λi=λ

〈ξi, ξ〉ξi

for all ξ ∈ H. As
∑

λ : ker(T−λ)6={0}E({λ}) = 1, we conclude

E({λ ∈ R : ker(T − λ) = {0}}) = 0.

This completely determines the spectral measure E and we have

dom(T ) = {ξ ∈ H :
∑
i∈I

λ2
i |〈ξi, ξ〉|2 <∞},

T ξ =
∑
i∈I

λi〈ξi, ξ〉ξi.

Example 4.5.20. Let (X,A, µ) be a semi-finite measure space and ϕ : X → R
measurable. Recall that the multiplication operator Mϕ is defined by

dom(Mϕ) = {f ∈ L2(X,µ) | ϕf ∈ L2(X,µ)},
Mϕf = ϕf.

As we have seen before, this operator is self-adjoint.
If f = 0 µ-a.e. on the complement of ϕ−1([a, b]), then∫

X

|(ϕ− 1

2
(a+ b))nf |2 dµ ≤ (a− b)2n

22n
‖f‖2

2.

If on the other hand µ({x ∈ X | f(x) 6= 0} \ ϕ−1([a, b])) > 0, then there
exists ε > 0 such that ∫

X\ϕ−1([a−ε,b+ε])
|f |2 dµ > 0.
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Then∫
X

|(ϕ− 1

2
(a+ b))nf |2 dµ ≥

∫
X\ϕ−1([a−ε,b+ε])

|(ϕ− 1

2
(a+ b))nf |2 dµ

≥
(
a− b

2
+ δ

)2n ∫
X\ϕ−1([a−ε,b+ε])

|f |2 dµ

This shows that ‖(Mϕ − 1
2
(a+ b))nf‖2 ≤ (a−b

2
)n‖f‖2 cannot hold. Therefore

E([a, b]) is the projection onto{
f ∈ L2(X,µ) | f = 0 µ-a.e. outside ϕ−1([a, b])

}
This shows that E(A) = M1A◦ϕ for every closed interval A in R. In fact,

the same is true for arbitrary Borel sets, but one needs more measure theory
to show this.

As the name and the previous two examples suggest, the spectral theorem
is also related to the spectrum.

Proposition 4.5.21. Let H be a Hilbert space and T a self-adjoint operator
in H with spectral measure E. The spectrum of T satisfies

σ(T ) = {λ ∈ R | E((λ− ε, λ+ ε)) 6= 0 for all ε > 0}.
In particular, E(ρ(T )) = 0.

Going further, the spectral theorem allows for a finer distinction between
parts of the spectrum.

Proposition 4.5.22. Let H be a Hilbert space and T a self-adjoint operator
in H with spectral measure E. The sets

Hac = {ξ ∈ H | E(A)ξ = 0 for all A ∈ B(R) s.t. L1(A) = 0},

Hpp = {ξ ∈ H | ∃λk ∈ R, αk ≥ 0 ∀A ∈ B(R) : ‖E(A)ξ‖2 =
∞∑
k=1

αkδλk(A)}

are closed orthogonal subspaces of H. Moreover, T (H• ∩ domT ) ⊂ H• and
σ(T |H•∩domT ) ⊂ σ(T ) for • ∈ {ac, pp}.
Definition 4.5.23 (Absolutely continuous, singularly continuous and pure
point spectrum). Let H be a Hilbert space and T a self-adjoint operator in
H. The subsets

σac(T ) = σ(T |Hac∩domT )

σpp(T ) = σ(T |Hpp∩domT )

σsc(T ) = σ(T ) \ (σac(T ) ∪ σpp(T ))

are called the absolutely continuous spectrum, pure point spectrum and sin-
gular continuous spectrum of T .
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Remark 4.5.24. If µ is a finite measure on (R,B(R)), then the function

Fµ : R→ [0,∞), t 7→ µ((−∞, t])

is called its distribution function. The measure µ is called a pure point
measure if Fµ is constant except for (countably many) jumps and continuous
otherwise.

A continuous measure µ is called absolutely continuous if there exists
f ∈ L1(R) such that

Fµ(t) =

∫
(−∞,t]

f dL1

for all t ∈ R.
A continuous measure µ is called singular continuous if it is continuous

and there exists N ∈ B(R) such that L1(N) = 0 and µ(R \N) = 0.
The Lebesgue decomposition theorem states that every finite measure on

(R,B(R)) can be uniquely decomposed as µ = µpp +µac +µsc with µpp a pure
point measure etc.

4.6 Stone’s theorem

Proposition 4.6.1. Let H be a Hilbert space, T a self-adjoint operator in
H and let Ut = eitT for t ∈ R.

(a) U∗t Ut = UtU
∗
t = 1 for all t ∈ R,

(b) U0 = 1,

(c) UsUt = Us+t for all s, t ∈ R,

(d) R→ H, t 7→ Utξ is continuous for all ξ ∈ H.

Proof. (a), (b) and (c) follow immediately from the algebraic properties of
functional calculus. To show (d), let E be the spectral measure of T and let
(tn) be a sequence in R such that tn → t. By the definition of functional
calculus,

‖Utnξ−Utξ‖2 = 〈ξ, (eitnT−eitT )∗(eitnT−eitT )ξ〉 =

∫
R
|eitnλ−eitλ|2 d〈ξ, E(λ)ξ〉.

The last integral converges to zero by the dominated convergence theorem.
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Definition 4.6.2 (Strongly continuous unitary group). Let H be a Hilbert
space. A strongly continuous unitary group on H is a family (Ut)t∈R of
bounded operators on H such that

(a) U∗t Ut = UtU
∗
t = 1 for all t ∈ R,

(b) U0 = 1,

(c) UsUt = Us+t for all s, t ∈ R,

(d) R→ H, t 7→ Utξ is continuous for all ξ ∈ H.

The previous proposition shows that if T is a self-adjoint operator, then
(eitT )t∈R is a strongly continuous unitary group. Stone’s theorem asserts that
the converse is also true.

Theorem 4.6.3 (Stone). Let H be a Hilbert space. If (Ut)t∈R is a strongly
continuous unitary group, then

D = {ξ ∈ H | ∃η ∈ H ∀ζ ∈ H :
d

dt

∣∣∣∣
t=0

〈Utξ, ζ〉 = 〈η, ζ〉}

is a dense subspace of H and the operator

T : D → H, ξ 7→ −iη

is a self-adjoint operator in H. Moreover, Ut = eitT for all t ∈ R.

Proof. Clearly, D is a subspace. For ξ ∈ H and δ > 0 let

fδ : H → C, η 7→ 1

δ

∫ δ

0

〈Utξ, η〉 dt.

Since

|fδ(η)| ≤ 1

δ

∫ δ

0

|〈Utξ, η〉| dt ≤ ‖ξ‖‖η‖

for all η ∈ H, by the Riesz representation theorem there exists a unique
ξδ ∈ H such that fδ = 〈ξδ, · 〉. Moreover,

|fδ(η)− 〈ξ, η〉| ≤ 1

δ

∫ δ

0

|〈Utξ − ξ, η〉| dt ≤ sup
t∈[0,δ]

‖Utξ − ξ‖‖η‖.

In particular, for η = ξ − ξδ, we obtain

‖ξδ − ξ‖ ≤ sup
t∈[0,δ]

‖Utξ − ξ‖ → 0, δ → 0.
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We want to show that ξδ ∈ D. Formally,

d

dt

∣∣∣∣
t=0

Utξδ =
1

δ

∫ δ

0

d

dt

∣∣∣∣
t=0

Ut+sξ ds =
1

δ

∫ δ

0

d

ds
Usξ ds =

1

δ
(Uδξ − ξ).

Let us make this rigorous:

δ

t
〈Utξδ − ξδ, η〉 =

1

t
〈ξδ, U−tη − η〉

=
1

t

∫ δ

0

〈Usξ, U−tη − η〉 ds

=
1

t

∫ t+δ

t

〈Usξ, η〉 ds−
1

t

∫ δ

0

〈Usξ, η〉 ds

=
1

t

∫ t+δ

δ

〈Usξ, η〉 ds−
1

t

∫ t

0

〈Usξ, η〉 ds

→ 〈Uδξ, η〉 − 〈ξ, η〉.

Therefore ξδ ∈ D and Tξδ = − i
δ
(Uδξ − ξ). It follows that D is dense in H.

Next we show that T is self-adjoint. An element η ∈ H belongs to
dom(T ∗) if and only if there exists ζ ∈ H such that for all ξ ∈ dom(T ) we
have

〈ξ, ζ〉 = 〈Tξ, η〉 = i lim
t→0

1

t
〈Utξ − ξ, η〉 = i lim

t→0

1

t
〈ξ, U−tη − η〉,

which holds if and only if η ∈ dom(T ), and in this case T ∗η = ζ = Tη.
We next show that Ut(D) ⊂ D and TUtξ = UtTξ for ξ ∈ D. In fact, if

ξ ∈ D and ζ ∈ H, then

1

h
〈UhUtξ − Utξ, ζ〉 =

1

h
〈Uhξ − ξ, U−tζ〉

h→0→ 〈iT ξ, U−tζ〉 = 〈iUtTξ, ζ〉.

Thus Utξ ∈ D and TUtξ = UtTξ.
It remains to show that Ut = eitT for all t ∈ R. To do so, we will show

that for all ξ ∈ D, the function

w : R→ R, t 7→ Utξ − eitT ξ

is constant.
First note that by the spectral theorem,∣∣∣∣〈ξ, 1

h
(ei(t+h)T ξ − eitT ξ)− ieitTTξ〉

∣∣∣∣ ≤ ∫
R

∣∣∣∣1h(ei(t+h)λ − eitλ)− iλeitλ
∣∣∣∣ dµξ(λ)

=

∫
R

∣∣∣∣1h(eihλ − 1)− iλ
∣∣∣∣2 dµξ(λ).
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Since 1
h
(eihλ − 1) → iλ as h → 0 uniformly in λ (exercise), the integral on

the right side converges to 0 as h→ 0. By the polarization identity,

lim
h→0

1

h
〈η, ei(t+h)T ξ − eitT ξ〉 = 〈η, ieitTTξ〉

for all ξ, η ∈ D.
Combined with the result for Ut, this implies that

lim
h→0

1

h
〈w(t+ h)− w(t), η〉 = 〈iTw(t), η〉.

Therefore,

1

h
‖w(t+ h)− w(t)‖2 =

1

h
〈w(t+ h)− w(t), w(t+ h)〉+

1

h
〈w(t), w(t+ h)− w(t)〉

h→0→ 〈iTw(t), w(t)〉+ 〈w(t), iTw(t)〉
= 〈w(t),−iTw(t) + iTw(t)〉
= 0.

Hence w is constant. As w(0) = 0, we conclude that Utξ = eitT ξ for all t ∈ R
and ξ ∈ D. Finally, since D is dense in H and Ut and eitT are bounded, the
equality extends to all ξ ∈ H by continuity.

Remark 4.6.4. In the last step of the proof we tacitly used that if (ξn) and
(ηn) are sequences in H such that ξn → ξ and 〈ηn, ζ〉 → 〈η, ζ〉 for all ζ ∈ H,
then 〈ξn, ηn〉 → 〈ξ, η〉. The proof of this fact is left as an exercise.

Remark 4.6.5. If (ηn) is a sequence in H such that 〈ηn, ζ〉 → 〈η, ζ〉 for all
ζ ∈ H, then one says that (ηn) converges weakly to η. In general, weak
convergence does not imply convergence in the norm of H. For example,
if (en) is an orthonormal basis of H, then en converges weakly to zero, but
‖en‖ = 1 for all n ∈ N, so en cannot converge to zero in norm. In the situation
of the proof of Stone’s theorem however it is true that 1

h
(Uhξ − ξ) → iT ξ

holds in norm for all ξ ∈ D.

Remark 4.6.6. Informally, Stone’s theorem states that for any self-adjoint
operator T , the solution operator Ut that maps ξ ∈ H to the solution ξ(t) of
the initial-value problem {

d
dt
ξ(t) = iT ξ(t)

ξ(0) = ξ

In the case when T is the Hamiltonian of a physical system, this initial-value
problem describes the time evolution of the state of the system with initial
state ξ (time-dependent Schrödinger equation).
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Note however that the strongly continuous unitary group Ut gives a
mathematically well-defined time evolution for all initial states whereas the
Schrödinger equation only makes sense if ξ(t) ∈ dom(T ), which is guaranteed
for ξ ∈ dom(T ), but not for general initial states.

This is an instance of the general phenomenon for ordinary and partail
differential equations that it is often easier to rigorously define a general
notion of solution of the equation even when the equation itself is not well-
defined in this generality.
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