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Chapter 1

Introduction

The goal of these lecture notes is to explain the necessary basics and introduce the modern
tools of intersection theory as a formalism. The goal of the course is to enable students to use
this formalism in practice and on examples. The focus is therefore not on proof techniques or
maximal generality of the results. We will skip several of the more technical proofs and try to
understand the relevant results and notions by way of examples.

1.1. Degree
The degree of a variety plays a central role in intersection theory. Wewill consider subvarieties of
smooth projective varieties. The simplest case is 𝑋 ⊂ ℙ𝑛. The degree has equivalent definitions
in this case.

Definition. For an irreducible variety 𝑋 ⊂ ℙ𝑛, the degree deg(𝑋) (German: Grad) of 𝑋 is
leading coefficient of the Hilbert polynomial of 𝑋 , up to a factor of (dim(𝑋))!. Concretely, if
𝑎𝑑𝑡

𝑑 + 𝑎𝑑−1𝑡𝑑−1 + . . . + 𝑎0 is the Hibert polynomial of 𝑋 , then deg(𝑋) = 𝑑!𝑎𝑑.
The Hilbert polynomial of 𝑋 is the Hilbert polynomial 𝑃 (𝑡) ∈ ℚ[𝑡] of the graded algebra

𝐾 [𝑋] = 𝐾 [𝑥0, . . . , 𝑥𝑛]/I+(𝑋), the homogeneous coordinate ring of 𝑋 . This means by definition
that dim(𝐾 [𝑋]𝑘) = 𝑃 (𝑘) for sufficiently large 𝑘 ∈ ℕ. Here, dim(𝐾 [𝑋]𝑘) is the dimension of the
𝑘th graded piece of 𝐾 [𝑋] as a 𝐾-vector space. Equivalently, the degree is the number of points
in the intersection 𝑋 ∩ 𝐿, where 𝐿 ⊂ ℙ𝑛 is a generic linear subspace of dimension 𝑛 − dim(𝑋).
In other words, 𝐿 is the intersection of 𝑑 = dim(𝑋) many generic hyperplanes in ℙ𝑛 so that
𝑋 ∩ 𝐿 = 𝑋 ∩ 𝐻1 ∩ . . . ∩ 𝐻𝑑 for generic hyperplanes 𝐻𝑖 ⊂ ℙ𝑛. This last characterization holds
for more linear spaces 𝐿 ⊂ ℙ𝑛 if we count intersection points with multiplicity, see below.

1.2. Some basic examples
Let 𝐾 be an algebraically closed field of characteristic 0 (usually the field of complex numbers).
We use the standard notation𝔸𝑛 for 𝐾𝑛 with the Zariski topology and the ring of regular func-
tions 𝐾 [𝑥1, . . . , 𝑥𝑛] as well as ℙ𝑛 for the 𝑛-dimensional projective space over 𝐾 , also equipped
with the Zariski topology.
Dimension 1. Consider a homogeneous polynomial 𝑓 ∈ 𝐾 [𝑥, 𝑦] of degree 𝑑 and its zero set
V+(𝑓 ) ⊂ ℙ1. Since 𝑓 factors into precisely 𝑑 linear factors 𝑓 =

∏𝑑
𝑖=1(𝑏𝑖𝑥 − 𝑎𝑖 𝑦), the setV+(𝑓 )
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6 1. Introduction

consists of 𝑑 points, namely [𝑎𝑖, 𝑏𝑖]. However, this statement is, of course, only true if we count
each zero with the multiplicity of the corresponding linear factor of 𝑓 . This is the most basic
instance of counting zeros with multiplicities.
Dimension 2. In the projective plane, two curves without a common irreducible component
intersect in only finitelymany points. The number of points is determined by Bézout’s Theorem.

1.2.1 Theorem (Bézout’s Theorem). Given two relatively prime homogeneous polynomials 𝑓 , 𝑔 ∈
𝐾 [𝑥, 𝑦, 𝑧] of degree 𝑑 and 𝑒, thenV+(𝑓 ) ∩V+(𝑔) ⊂ ℙ2 is finite and consists of 𝑑 · 𝑒 points, if counted
correctly with multiplicity.

We saw one way to count the multiplicity last semester: we first compute the resultant 𝑅 of
of the two polynomials 𝑓 and 𝑔 with respect to 𝑧 (at least after a generic change of coordinates).
Then the multiplicity of [𝑎, 𝑏, 𝑐] ∈ V+(𝑓 , 𝑔) is the multiplicity of [𝑎, 𝑏] as a root of 𝑅 in the sense
of the previous paragraph. Geometrically, the resultant of 𝑓 and 𝑔 with respect to 𝑧 defines the
image of the projection 𝜋𝑝 : ℙ2 d ℙ1 ofV+(𝑓 , 𝑔) from the point 𝑝 = [0, 0, 1]. The above defini-
tion only makes sense if any line through 𝑝 intersectsV+(𝑓 , 𝑔) in at most 1 point (counted here
without multiplicity). This approach is computationally easy (at least using computer algebra
systems), given that the genericity condition is satisfied. Bézout’s Theorem then follows essen-
tially from classical determinantal formulas to compute the resultant (via the Sylvester matrix).

However, it is technically better to have a more local definition of the intersection multiplic-
ity. Oneway to achieve this inℙ2 is by looking at the local ring. Assuming that we are interested
in [0, 0, 1] ∈ V+(𝑓 , 𝑔), we consider the local ring O𝔸2,(0,0) of 𝔸2 � 𝐷+(𝑧) ⊂ ℙ2 at 𝑂 = (0, 0)
consisting of all rational functions 𝑎/𝑏 where 𝑎, 𝑏 ∈ 𝐾 [𝑥, 𝑦] and 𝑏(0, 0) ≠ 0. Then 𝑓 (𝑥, 𝑦, 1)
and 𝑔(𝑥, 𝑦, 1) are in the maximal ideal 𝔪𝔸2,(0,0) of O𝔸2,(0,0) . The intersection multiplicity of 𝑓
and 𝑔 at𝑂 is defined as the dimension of the quotientO𝔸2,𝑂/(𝑓 (𝑥, 𝑦, 1), 𝑔(𝑥, 𝑦, 1)) as a 𝐾-vector
space.

1.2.2 Example. Consider 𝑓 = (𝑥 + 𝑧)2 + 𝑦2 − 𝑧2 and 𝑔 = (𝑥 − 𝑧)2 + 𝑦2 − 𝑧2 intersecting
at [0, 0, 1] ∈ ℙ2. A basis of O𝔸2,(0,0)/(𝑓 (𝑥, 𝑦, 1), 𝑔(𝑥, 𝑦, 1)) as a 𝐾-vector space is 1 and 𝑦. To
check this claim, we can first compute 𝐾 [𝑥, 𝑦]/((𝑥 − 1)2 + 𝑦2 − 1, (𝑥 + 1)2 + 𝑦2 − 𝑧2) and the
localize at the maximal ideal 𝔪 = (𝑥, 𝑦). The quotient is isomorphic to 𝐾 [𝑥, 𝑦]/(𝑥, 𝑦2) (since
𝑓 − 𝑔 = −4𝑥𝑧).

The intersection multiplicity of the two curves at [0, 0, 1] is therefore 2.

Exercise 1.2.3. � Compute the resultant of the two polynomials in the previous example and verify
that the multiplicity assigned to [0, 0, 1] by this method is also 2.
� Find the other intersection points ofV+(𝑓 ) andV+(𝑔) of the curves in the previous example and

determine the intersection multiplicity at those points.

A lot of work in this class will be around good notions of multiplicities and degrees. The
following short excursion into projective duality gives some examples.

1.3. Projective duality

Let 𝑉 be an (𝑛 + 1)-dimensional vector space over 𝐾 so that ℙ𝑛 � ℙ(𝑉 ). Let 𝑉 ∗ be the dual
vector space of linear forms � : 𝑉 → 𝐾 . The dual projective space (ℙ𝑛)∗ is thenℙ(𝑉 ∗). In other

Algebraische Geometrie II / Rainer Sinn / Uni Leipzig (2023)



1.3. Projective duality 7

words, a point in (ℙ𝑛)∗ corresponds to a hyperplane in ℙ𝑛, namely [�] ∈ ℙ(𝑉 ∗) defines {𝑝 ∈
ℙ(𝑉 ) : � (𝑝) = 0}. Given a hyperplane 𝐻 ⊂ ℙ𝑛, we sometimes write [𝐻] for the corresponding
point in (ℙ𝑛)∗.

Let us first look at the dual variety of a plane curve: let 𝐶 = V+(𝑓 ) ⊂ ℙ2 be an irreducible
plane curve (meaning that 𝑓 ∈ 𝐾 [𝑥, 𝑦, 𝑧] is irreducible). Define the dual curve 𝐶∗ to be the
Zariski closure of all [𝐿] , where the line 𝐿 ⊂ ℙ2 is tangent to 𝐶 at some point.

1.3.1 Example. Let 𝑓 = (𝑥, 𝑦, 𝑧)𝐴(𝑥, 𝑦, 𝑧)> be a quadratic form represented by a symmetric
matrix 𝐴 of full rank 3 and 𝐶 = V+(𝑓 ) the corresponding conic. Then the dual curve 𝐶∗ is the
Zariski closure of the set {𝐴(𝑥, 𝑦, 𝑧)> : [𝑥, 𝑦, 𝑧] ∈ 𝐶} because the gradient of 𝑓 is 2𝐴(𝑥, 𝑦, 𝑧)>
and is perpendicular to the tangent to 𝑝 = [𝑥, 𝑦, 𝑧] for 𝑝 ∈ 𝐶. Since [𝑥, 𝑦, 𝑧] ∈ 𝐶 if and only if
0 = (𝑥, 𝑦, 𝑧)𝐴(𝑥, 𝑦, 𝑧)> = (𝐴(𝑥, 𝑦, 𝑧)>)>𝐴−1(𝐴(𝑥, 𝑦, 𝑧)>), it follows that𝐶∗ is the conic defined
by 𝐴−1.

This fact about duality of conics (whichworks exactly the same for any quadratic form of full
rank in any number of variables) gives a simple solution to a classical, geometric, enumerative
problem: howmany conics are tangent to five general lines? This means that we fix five random
lines 𝐿1, . . . , 𝐿5 ⊂ ℙ2 and look for conics 𝐶 ⊂ ℙ2 such that 𝐶 is tangent to 𝐿𝑖 at some point
𝑝𝑖 ∈ 𝐿𝑖.

Let’s translate this problem to the dual projective plane: to each line 𝐿𝑖 corresponds a point
[𝐿𝑖] ∈ (ℙ2)∗ and the conic 𝐶 is tangent to 𝐿𝑖 (at some point) if and only if the dual curve 𝐶∗

contains [𝐿𝑖]. We have just seen that 𝐶∗ is again a conic and we require it to pass through five
generic points. Since the space of quadratic forms in three variables has dimension six, there is
a unique such conic. The answer to the above problem is therefore 1.
The class of a curve. The class (German: Klasse) of a curve𝐶 ⊂ ℙ2 is the number of tangents to
𝐶 that pass through a generic point 𝑝 ∈ ℙ2. This notion was introduced and studied by Plücker.

Exercise 1.3.2. Show that the class of a curve𝐶 ⊂ ℙ2 is equal to the degree of the dual curve𝐶∗ ⊂ (ℙ2)∗.

One way to compute the class of 𝐶 = V+(𝑓 ) is to consider 𝐷𝑞𝑓 = 〈∇𝑓 , 𝑞〉 the directional
derivative of 𝑓 in direction 𝑞. If 𝑓 is homogeneous of degree 𝑑, then 𝐷𝑞𝑓 is homogeneous of
degree 𝑑−1. The intersection pointsV+(𝑓 , 𝐷𝑞𝑓 ) are the points of𝐶 such that the corresponding
tangents pass through 𝑞 – if they are smooth points of 𝐶! So if 𝑓 is irreducible and 𝐶 is smooth,
𝐷𝑞𝑓 cannot have a nontrivial common factor with 𝑓 and Bézout’s Theorem tells us that the class
of 𝐶 is 𝑑(𝑑 − 1). The curve 𝐶𝑞 defined by 𝐷𝑞𝑓 is called a polar curve (German: Polare) of 𝐶.

However, if 𝑝 ∈ 𝐶 is a singular point, ∇𝑓 (𝑝) = 0 and this point lies on every polar curve
𝐶𝑞 but there is no tangent to 𝐶 at 𝑝. The question becomes of how a singularity of 𝐶 affects the
above count for the class of𝐶. If 𝑝 is a node, which means that ∇𝑓 (𝑝) = 0 but the Hessian 𝑓 ′′(𝑝)
at 𝑝 has rank 2, then it turns out that the intersection multiplicity of 𝑝 inV+(𝑓 , 𝐷𝑞𝑓 ) is 2. So the
node counts for two tangents through 𝑞 and the class of a curve of degree 𝑑 with 𝛿 nodes (and
no other singularities) is 𝑑(𝑑 − 1) − 2𝛿 .

Exercise 1.3.3. Verify that the intersection multiplicity of a node 𝑝 of a curveV+(𝑓 ) in the intersection
with a generic polar curveV+(𝐷𝑞𝑓 ) is 2 as claimed in the previous paragraph.

Exercise 1.3.4. What is an ordinary cusp (see the classification of singularities of plane curves) and how
does it affect the class of a curve?

Algebraische Geometrie II / Rainer Sinn / Uni Leipzig (2023)



8 1. Introduction

Degree of a dual surface. We now consider a suface 𝑆 ⊂ ℙ3 and aim to compute the degree of
the dual surface 𝑆∗ in some special cases. This was pioneered by Salmon in 1847. Similar to the
case of plane curves, we can compute the degree of the dual surface 𝑆∗ by intersecting it with a
generic line 𝐿 ⊂ (ℙ3)∗. Such a line is dual to the family of planes in ℙ3 containing a fixed line
in ℙ3, namely the intersection of all planes {𝑥 ∈ ℙ3 : � (𝑥) = 0} with [�] ∈ 𝐿. So the degree
of 𝑆∗ is the number of points of 𝑆 such that the tangent plane contains a generic, fixed line in
ℙ3. We can try to compute this number by the same construction as before: if 𝑆 = V+(𝑓 ), take
now two directional derivatives 𝐷𝑞1𝑓 and 𝐷𝑞2𝑓 for generic points 𝑞𝑖 ∈ ℙ3. Then the tangent
plane 𝑇𝑝𝑆 to 𝑆 at a nonsingular point 𝑝 ∈ 𝑆 contains the line spanned by 𝑞1 and 𝑞2 if and only
if 𝑝 ∈ V+(𝑓 , 𝐷𝑞1𝑓 , 𝐷𝑞2𝑓 ). By this argument, we would expect 𝑆∗ to have degree 𝑑(𝑑 − 1)2, where
𝑑 = deg(𝑓 ).

Again, singular points of 𝑆 change this calculation, similar to plane curves. However, there
is also a more serious new phenomenon in this case: excess intersection (German: ?über-
schießender Durchschnitt?). What if 𝑆 is singular along a curve? Then this curve is contained in
V+(𝑓 , 𝐷𝑞1𝑓 , 𝐷𝑞2𝑓 ) independent of which points 𝑞1, 𝑞2 ∈ ℙ3 we choose. But dimension 1 is not
the expected dimension of this intersection (hence the word excess intersection). Let us only
consider the case that 𝑆 is singular along a line 𝐶 ⊂ 𝑆. Salmon then argues that the presence of
singularities along a line should decrease the degree of 𝑆∗ by 3𝑑−4 as follows (heuristically from
a modern point of view!): the answer to this question should not really depend on the surface 𝑆
too much, so let’s take our surface 𝑆 to be the union of a plane 𝐻 containing 𝐶 and a “general”
surface 𝑆′ of degree 𝑑 − 1. By Bézout’s Theorem in ℙ3, the surface 𝑆′ intersectsV+(𝐷𝑞1𝑓 , 𝐷𝑞2𝑓 )
in (𝑑 − 1)3 points. Of these, 𝑑 − 1 lie on the line 𝐶 (those are the points in 𝐶 ∩ 𝑆′). The plane 𝐻
intersectsV(𝐷𝑞𝑖𝑓 ) in a (plane!) curve of degree 𝑑−1. However, the line𝐶 is an irreducible com-
ponent of each (𝑖 = 1, 2) of these curves. So 𝐻 intersectsV(𝐷𝑞1𝑓 , 𝐷𝑞2𝑓 ) in (𝑑−2)2 points outside
of𝐶 (by Bézout’s Theorem in the plane 𝐻). In total we have counted (𝑑−1)3− (𝑑−1) + (𝑑−2)2
intersection points that do not lie on the line𝐶. Compared to the expected count 𝑑(𝑑 − 1)2, the
difference is 3𝑑 − 4.

We will later see a systematic way of dealing with excess intersection and do such computa-
tions rigorously.

1.4. Tangent conics

A classical problem in intersection theory with a long history is to determine the number of
conics that are tangent to five given generic conics in ℙ2. Again, the condition to be tangent
to a given curve at some point is a codimension 1 condition. The space of conics in ℙ2 is a
5-dimensional projective space. So we expect a 0-dimensional intersection and would like to
compute the number of points. The degree of the hypersurface of conics that are tangent to
a given conic is 6. So a naive application of Bézout’s Theorem suggests that there should be
65 = 7776 conics tangent to five conics. However, this is incorrect due to excess intersection,
which consists of “double lines”. Let � be a linear form in 𝐾 [𝑥, 𝑦, 𝑧]. Then V+(�2) is tangent
to any conic, because it intersects the conic in two points and this intersection appears to be
tangent. It has multiplicity 2 coming from �2. More precisely, the variety of squares, which is
isomorphic to a Veronese surface 𝜈2(ℙ2), is contained in any hypersurface of conics tangent to
a fixed conic. So in the intersection of five “tangency hypersurfaces” of degree 6 as above, the
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Veronese surface 𝜈2(ℙ2) ⊂ ℙ5 is always an irreducible component. The question is, how to
count this in analogy to a line of singularities in the problem of computing the degree of a dual
surface. We will eventually see, that in this case, the Veronese surface counts for 4512 points
(and is the only excess intersection) so that the correct answer to this enumerative problem is:
65 − 4512 = 7776 − 4512 = 3264.

Let us verify that the hypersurface 𝑍 of conics in ℙ5 = ℙ(𝐾 [𝑥, 𝑦, 𝑧]2) that are tangent to a
given conic has degree 6 using another kind of tool, namely the Riemann-Hurwitz formula.
This tool works particularly well in the context of curves. It says the following: for a non-
constant morphism 𝑓 : 𝐶 → 𝐶′ of degree 𝑑 of curves𝐶,𝐶′ (irreducible and smooth), the number
of ramification points (German: Verzweigungspunkte) is given by the formula

2𝑔(𝐶) − 2 = 𝑑(2𝑔(𝐶′) − 2) +
∑︁
𝑃∈𝐶
(𝑒𝑃 − 1).

This formula involves the genus 𝑔(𝐶) of the curves and the ramification index 𝑒𝑃 . We need
this formula only for 𝐶 � 𝐶′ � ℙ1, in which case the genus is 0. The ramification index will
correspond to an intersection point of higher multiplicity in our case.

Exercise 1.4.1. � Research the definition of the Euler characteristic of a polyhedron.
� What is a triangulation of a Riemann surface?
� Look up the combinatorial proof of the Hurwitz formula (as explained, for instance, in Rick Mi-

randa’s book “Algebraic Curves and Riemann Surfaces”).

To construct themap 𝑓 , we first choose coordinates onℙ2 such that the fixed conic is 𝜈2(ℙ1) =
{[𝑠2, 𝑠𝑡, 𝑡2] : [𝑠, 𝑡] ∈ ℙ1} = V+(𝑥𝑧 − 𝑦2) = 𝐶. Next, we choose two generic conics V+(𝑔)
and V+(ℎ) that intersect 𝐶 in four distinct points. Then the map 𝜑 from 𝐶 to ℙ1 given by
𝑝 ↦→ (𝑔(𝑝), ℎ(𝑝)) is a nonconstant morphism given by the pencil of conics 𝐿 = {𝑎𝑔 + 𝑏ℎ : 𝑎, 𝑏 ∈
ℂ}. The degree of the hypersurface 𝑍 of conics tangent to 𝐶 is the number of intersection
points of 𝑍 with 𝐿. But this we can compute with the Riemann-Hurzwitz formula applied to
𝑓 = 𝜑 ◦ 𝜈2 : ℙ1 → ℙ1. The degree of this map is 4 and so the formula predicts 6 ramification
points. Those correspond to conics in the pencil 𝐿 that do not intersect𝐶 in four distinct points
but rather with a point of higher multiplicity, which is a point of tangency.

1.5. The Chow Ring
The main tool to formalize and compute degrees in this class is the intersection ring orChow
ring (German: Schnitt- oder Chow-Ring). We will always study intersection problem in a com-
plete and smooth variety 𝑋 (usually curves, ℙ𝑛, Segre varieties, Grassmannians, or bundles over
such varieties). To this variety 𝑋 , we aim to associate a ring 𝐴∗(𝑋) generated by classes [𝑌 ] of
irreducible subvarieties 𝑌 ⊂ 𝑋 in such a way that the class of the intersection [𝑌1 ∩ 𝑌2] of two
subvarieties of 𝑋 is equal to the product [𝑌1] [𝑌2] of the classes. Moreover, we want the ring
𝐴∗(𝑋) to be graded and generated in degree 1. The degree of a homogeneous element gives the
codimension of the varieties it represents. Let us first discuss this formalism in some examples
(that for now remain absolutely formal).

1.5.1 Example. Consider 𝑋 = ℙ𝑚 ⊂ ℙ𝑛 the Segre variety embedded in ℙ𝑚𝑛+𝑚+𝑛 with the usual
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Segre embedding. We will compute the degree of this variety as a subvariety of ℙ𝑚𝑛+𝑚+𝑛. Let 𝜋1
be the projection ℙ𝑚 × ℙ𝑛 → ℙ𝑚, (𝑥, 𝑦) ↦→ 𝑥, and 𝜋2 the projection to the second factor. The
Chow ring of 𝑋 is 𝐴∗(𝑋) = ℤ[𝑠, 𝑡]/(𝑠𝑚+1, 𝑡𝑛+1), where 𝑠 represents the class of 𝜋−11 (𝐻) for a
hyperplane 𝐻 ⊂ ℙ𝑚 and 𝑡 analogously represents the class of 𝜋−12 (𝐻) for a hyperplane 𝐻 ⊂ ℙ𝑛.
In terms of bihomogeneous polynomials, 𝑠 represents the class of a variety defined by a (1, 0)
form. So 𝑠 + 𝑡 represents the class of a variety defined by a (1, 1) form. This is exactly what we
need to compute the degree of 𝑋 : by definition, we want to count the number of intersection
points of 𝑋 ⊂ ℙ𝑚𝑛+𝑚+𝑛 with dim(𝑋) = 𝑚+ 𝑛 generic hyperplanes. A hyperplane in the ambient
space gives a (1, 1) form on 𝑋 . Intersecting these hyperplanes corresponds to multiplication. So
we compute (𝑠 + 𝑡)𝑚+𝑛 in 𝐴∗(𝑋) which gives

𝑚+𝑛∑︁
𝑗=0

(
𝑚 + 𝑛
𝑗

)
𝑠 𝑗𝑡𝑚+𝑛−𝑗 =

(
𝑚 + 𝑛
𝑚

)
𝑠𝑚𝑡𝑛.

Here, we used that 𝑠𝑚+1 = 0 and 𝑡𝑛+1 hold in 𝐴∗(𝑋).

Exercise 1.5.2. Compute the degree of a threefold Segre product 𝑋 = ℙ𝑚 ×ℙ𝑛 ×ℙ𝑟 using that 𝐴∗(𝑋) =
ℤ[𝑠, 𝑡, 𝑢]/(𝑠𝑚+1, 𝑡𝑛+1, 𝑢𝑟+1).
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Chapter 2

Divisors, Vector Bundles and Sheaves

In this chapter, we will introduce the important notions of (Weil and Cartier) divisors, vector
bundles and (locally free) sheaves. On a sufficiently nice projective variety, these objects corre-
spond to each other. This is the case on every smooth variety, which is mostly our setup here. It
is, however, convenient, to have all three equivalent points of view. Wewill see later that this part
becomes 𝐴1(𝑋), the first graded part of the intersection ring of 𝑋 (with appropriate hypotheses
on 𝑋 ).

2.1. Sheaves
Wehave already seen the structure sheaf (German: Strukturgarbe) of an algebraic variety (with-
out calling it this name) last term.

Definition. Let 𝑋 be a topological space. A presheaf F (German: Prägarbe) of abelian groups
on 𝑋 assigns to every open subset𝑈 ⊂ 𝑋 an abelian group F (𝑈) and to every inclusion 𝑉 ⊂ 𝑈
of open sets a morphism 𝜌𝑈𝑉 : F (𝑈) → F (𝑉 ) of groups such that the following properties
hold.

� F (∅) = 0,
� 𝜌𝑈𝑈 is the identity for every open subset𝑈 of 𝑋 , and
� 𝜌𝑉𝑊 ◦ 𝜌𝑈𝑉 = 𝜌𝑈𝑊 for all chains of open subsets𝑊 ⊂ 𝑉 ⊂ 𝑈 .

For an open subset𝑈 of 𝑋 , every element 𝑠 ∈ F (𝑈) is called a section (German: Schnitt) of F
(on𝑈 ).

These properties are modelled on spaces of functions for which 𝜌𝑈𝑉 simply corresponds to
restriction of a function on𝑈 to the subset 𝑉 ⊂ 𝑈 .

2.1.1 Examples. (1) The assignment F (𝑈) = 𝐶(𝑈,ℝ) is a sheaf of abelian groups on ℝ𝑛

associating to every open subset 𝑈 ⊂ ℝ𝑛 the group of continuous functions from 𝑈 to
ℝ. The morphisms 𝜌𝑈𝑉 are restriction. The same holds for spaces of differentiable and
analytic functions like𝐶𝑘 or𝐶∞ because the properties of being differentiable or analytic
are local.

(2) The most important presheaf for us is the presheaf O of regular functions (German:
reguläre Funktion) on an affine algebraic variety. Let 𝑉 be an affine algebraic variety with

11



12 2. Divisors, Vector Bundles and Sheaves

coordinate ring 𝐾 [𝑉 ]. To a principal open subset 𝐷(𝑠) = 𝑉 \V(𝑠) with 𝑠 ∈ 𝐾 [𝑉 ] , 𝑠 ≠ 0,
the ring of regular functions on 𝐷(𝑠) is the localization of 𝐾 [𝑉 ] at 𝑆 = {1, 𝑠, 𝑠2, . . .}. So
we have F (𝐷(𝑠)) = 𝐾 [𝑉 ] 𝑠 = O(𝐷(𝑠)). Since the definition of a regular function on an
algebraic variety is local, we have O(𝑈) for every open subset 𝑈 ⊂ 𝑉 . The connecting
morphisms 𝜌𝑈𝑉 are given by restriction of functions as before.

Presheaves of functions usually have more properties making them sheaves.

Definition. A presheaf F on a topological space 𝑋 is a sheaf (German: Garbe) if it has the
following properties.

(1) For every open cover {𝑉𝑖} of any open subset 𝑈 ⊂ 𝑋 and every 𝑠 ∈ F (𝑈) such that
𝜌𝑈𝑉𝑖 (𝑠) = 0 for every 𝑖 it follows that 𝑠 = 0.

(2) For every open cover {𝑉𝑖} of any open subset 𝑈 ⊂ 𝑋 and all elements 𝑠𝑖 ∈ F (𝑉𝑖) with
the property that 𝜌𝑉𝑖𝑉𝑗 (𝑠𝑖) = 𝜌𝑉𝑗𝑉𝑖 (𝑠𝑗) for all 𝑖, 𝑗 there is an element 𝑠 ∈ F (𝑈) such that
𝜌𝑈𝑉𝑖 (𝑠) = 𝑠𝑖.

The second property in the above definition says that sections glue together and the first
property says that they do so in a unique way.

Definition. The stalk F𝑃 (German: Halm) of a sheaf F at a point 𝑃 ∈ 𝑋 is the group of germs
(German: Keime) at 𝑋 . These are equivalence classes of pairs (𝑈, 𝑠) of an open subset 𝑈 ⊂ 𝑋

containing 𝑃 and an element 𝑠 ∈ F (𝑈) with the equivalence relation (𝑈, 𝑠) ∼ (𝑉, 𝑡) if there is
an open subset𝑊 ⊂ 𝑈 ∩ 𝑉 such that 𝜌𝑈𝑊 (𝑠) = 𝜌𝑉𝑊 (𝑡) ∈ F (𝑊 ).

2.1.2 Example. The stalk of the structure sheaf O𝑋 of an algebraic variety 𝑋 at a point 𝑃 is the
local ring O𝑋,𝑃 with maximal ideal𝔪𝑋,𝑃 of all germs of regular functions that are 0 at 𝑃.

Exercise 2.1.3. Show that a sheaf is uniquely determined by its stalks.

The sheaf of regular functions on an algebraic variety is not only a sheaf of abelian groups
but also a sheaf of rings. This simply means that F (𝑈) is not only a group but also has a multi-
plication that makes it a ring and the restrictionmorhpisms are ring homomorphisms (for every
open subset𝑈 ⊂ 𝑋 ). Over rings, we can also look at modules.

Definition. Let 𝑋 be a topological space with a sheaf O𝑋 of rings. A sheaf of O𝑋-modules,
also simply called an O𝑋-module (German: Modulgarbe) is a sheaf F on 𝑋 such that for each
open subset𝑈 ⊂ 𝑋 , the group F (𝑈) is anO𝑋 (𝑈)-module and for each inclusion𝑉 ⊂ 𝑈 of open
subsets, the restriction morphism F (𝑈) → F (𝑉 ) is compatible with the module structures via
O𝑋 (𝑈) → O𝑋 (𝑉 ).

2.1.4 Example. An ideal of a ring is a module. Sheaves of ideals are special O𝑋-modules and
called ideal sheaves (German: Idealgarbe). They correspond to closed subschemes.

� Let 𝑋 be an affine variety with coordinate ring 𝐴 = 𝐾 [𝑋] and 𝑌 ⊂ 𝑋 be a closed subset.
The vanishing ideal of 𝑌 defines the ideal sheaf of 𝑌 directly: for any open subset𝑈 ⊂ 𝑋
we have the ideal I𝑌 (𝑈) = {𝑠 ∈ O𝑋 (𝑈) : ∀ 𝑝 ∈ 𝑌 ∩𝑈 𝑠(𝑝) = 0} ⊂ O𝑋 (𝑈).
� More generally, this construction works on any algebraic variety 𝑋 and closed subset
𝑌 ⊂ 𝑋 . On an open affine subset𝑈 ⊂ 𝑋 , we have the construction above and this unique
determines the ideal sheaf I𝑌 since any sheaf is uniquely determined on an open cover.
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� In general, we have to keep track of multiplicities and also consider nonreduced struc-
tures encoded in the ideal sheaf. We do this locally: Assume that 𝑋 is an affine algebraic va-
riety with coordinate ring 𝐴 = 𝐾 [𝑋]. In scheme language, this is written as 𝑋 = Spec(𝐴).
Consider any ideal 𝐼 ⊂ 𝐴 (not necessarily radical) and define an ideal sheaf I𝑌 by setting
I𝑌 (𝑈) to be the ideal generated by 𝜌𝑋𝑈 (𝐼) in O𝑋 (𝑈). The ring homomorphism 𝐴→ 𝐴/𝐼
corresponds to a morphism 𝑖 : 𝑌 = Spec(𝐴/𝐼) → 𝑋 = Spec(𝐴) of affine schemes (es-
sentially by definition of a morphism of schemes). This is a closed immersion (German:
abgeschlossene Immersion).
In the general, not necessarily affine case, the above is the local construction. In the lan-
guage of sheaves (and schemes), the ideal sheaf of a subscheme 𝑌 ⊂ 𝑋 is defined as the
kernel of the map 𝑖# : O𝑋 → 𝑖∗O𝑌 of O𝑋-modules. Explicitly, for an open affine subset
𝑈 ⊂ 𝑋 , it is the above construction because if𝑈 = Spec(𝐴) and 𝑌 ∩𝑈 = Spec(𝐴/𝐼), then
the map of O𝑋-modules 𝑖#(𝑋) : O𝑋 (𝑈) = 𝐴→ 𝐴/𝐼 = (𝑖∗O𝑌 ) (𝑈) is simply the quotient
map in this case.

Definition. AnO𝑋-moduleF is locally free (German: lokal frei) if there is an open cover {𝑈𝑖}
of 𝑋 such that F (𝑈𝑖) is a free O𝑋 (𝑈𝑖)-module. The rank (German: Rang) of a locally free O𝑋-
module F (at 𝑃 ∈ 𝑋 ) is the rank of the module F𝑃 as a O𝑋,𝑃 module. Locally free O𝑋-modules
of rank 1 are also called invertible sheaves (German: invertierbare Garbe).

If the algebraic variety 𝑋 is connected (which is the case of irreducible varieties over ℂ, for
example), then the rank of every locally free O𝑋-module is the same at every point.

2.1.5 Example. The simplest example is the structure sheaf itself: O𝑋 is a free O𝑋-module of
rank 1. Ideal sheaves tend to not be free. A notable exception are principal ideals which are
equivalent to line bundles and divisors.

2.1.6 Example. Let 𝑋 be an irreducible algebraic variety of dimension 𝑑. The tangent bundle
T𝑋 (German: Tangentialbündel) of 𝑋 is a locally freeO𝑋-module of rank 𝑑. The stalk at 𝑥 isO𝑑

𝑋,𝑥

that can be described as a sheaf in terms of derivations on the ring (or rather their dual).

2.2. Vector bundles

Definition. A (geometric) vector bundle (German: Vektorbündel, genauer: Vektorraumbün-
del) of rank 𝑟 on 𝑋 is a variety 𝐸 with a morphism 𝜋 : 𝐸 → 𝑋 that satisfies the following prop-
erties.

� The fiber 𝜋−1(𝑥) over a point 𝑥 ∈ 𝑋 is a 𝑟-dimensional 𝐾-vector space.
� There is an open cover {𝑈𝑖} of 𝑋 and isomorphisms 𝜑𝑖 of𝑈𝑖 ×𝔸𝑟 and 𝜋−1(𝑈𝑖) satisfying
two conditions: (𝜋 ◦ 𝜑𝑖) (𝑥, 𝑣) = 𝑥 for all 𝑣 ∈ 𝔸𝑟 and 𝑣 ↦→ 𝜑(𝑥, 𝑣) is a linear isomorphism
of 𝔸𝑟 with 𝜋−1(𝑥).

The variety 𝐸 is called the total space (German: Totalraum), the variety 𝑋 the base (German:
Basis) of the bundle. An isomorphism 𝜑 : 𝑈 ×𝔸𝑟 → 𝜋−1(𝑈) for an open subset𝑈 of 𝑋 is called
a local trivialization (German: lokale Trivialisierung). We will often simply refer to a vector
bundle by its total space (even though the data of the morphism 𝜋 is crucial). A vector bundle of
rank 1 is usually called a line bundle (German: Geradenbündel).
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2.2.1 Example. Projective spaceℙ𝑛 carries a tautological line bundle. To every point [𝑥] ∈ ℙ𝑛,
we associate the line 𝐾 · 𝑥 ⊂ 𝔸𝑛+1 that is represented by the point [𝑥] in ℙ𝑛. The total space
𝐸 of this bundle is a subset of ℙ𝑛 × 𝔸𝑛+1 An open cover is given by 𝐷+(𝑥𝑖) for 𝑖 = 0, 1, . . . , 𝑛
with respect to homogeneous coordinates [𝑥0, . . . , 𝑥𝑛] on ℙ𝑛. On 𝐷+(𝑥𝑖), a point has homoge-
neous coordinates [𝑥0/𝑥𝑖, . . . , 1, . . . , 𝑥𝑛/𝑥𝑖] with a 1 in the 𝑖th position. We define 𝜑𝑖(𝑥, 𝜆) to be
( [𝑥] , (𝜆𝑥0/𝑥𝑖, . . . , 𝜆, . . . , 𝜆𝑥𝑛/𝑥𝑖)) ∈ ℙ𝑛×𝔸𝑛+1. If 𝑥 is in 𝐷+(𝑥0) ∩𝐷+(𝑥1), then 𝜑0 maps ( [𝑥] , 𝜆)
to ( [𝑥] , (𝜆, 𝜆𝑥1/𝑥0, . . . , 𝜆𝑥𝑛/𝑥0)) and 𝜑1 maps it to ( [𝑥] , (𝜆𝑥0/𝑥1, 𝜆, 𝜆𝑥2/𝑥1, . . . , 𝜆𝑥𝑛/𝑥1)). The
transition function 𝑇01 : 𝐷+(𝑥0) ∩ 𝐷+(𝑥1) × 𝔸1 → 𝐷+(𝑥0) ∩ 𝐷+(𝑥1) × 𝔸1 maps ( [𝑥] , 𝜆) to
( [𝑥] , 𝜆𝑥0/𝑥1) so that 𝜑1 ◦ 𝑇01 = 𝜑0. For fixed [𝑥] , this is a linear automorphism of 𝔸1 and its
inverse is 𝑇10 = 𝑇−101 given by ( [𝑥] , 𝜆) ↦→ ([𝑥] , 𝜆𝑥1/𝑥0).

2.2.2 Example. Let 𝑋 ⊂ 𝔸𝑛 be an irreducible and smooth affine variety of dimension 𝑑 with
vanishing ideal I(𝑋) = (𝑓1, . . . , 𝑓𝑟). Then the Jacobian matrix 𝐽 = (𝜕𝑗𝑓𝑖)𝑖,𝑗 has rank 𝑛− 𝑑 at every
point 𝑝 ∈ 𝑋 .

(1) Let 𝐼 be a subset of {1, . . . , 𝑟} of size 𝑛 − 𝑑 and 𝑈𝐼 ⊂ 𝑋 be the open subset of 𝑋 where
the matrix 𝐽𝐼 obtained from 𝐽 by deleting every row with index 𝑗 not in 𝐼 has rank 𝑛 − 𝑑.
Then the maps𝑈𝐼 ×𝔸𝑛−𝑑 → 𝑋 ×𝔸𝑛, (𝑥, 𝑣) ↦→ (𝑥, 𝑣> 𝐽𝐼) defines a vector bundle on 𝑋 of
rank 𝑛 − 𝑑, the (relative) normal bundle (German: Normalenbündel) of 𝑋 ⊂ 𝔸𝑛. This
bundle is usually denoted byN𝑋/𝔸𝑛 .

(2) From the normal bundleN𝑋/𝔸𝑛 , we get the tangent bundle T𝑋 by taking the kernel of the
Jacobian instead of its row space. We will see below how this is related to the tangent
bundle in the language of sheaves in Example 2.1.6.

Instead of giving a vector bundle in terms of its total space 𝐸 with its projection 𝜋 : 𝐸→ 𝑋 ,
it can also be defined locally in terms of their transition functions. They have to satisfy the
following properties. Let 𝑈𝑖 be open subsets of 𝑋 with local trivializations 𝜑𝑖 : 𝑈𝑖 × 𝔸𝑟 →
𝜋−1(𝑈𝑖) (for 𝑖 in some index set 𝐼). Then 𝑈𝑖 × 𝔸𝑟 and 𝑈 𝑗 × 𝔸𝑟 must be related by transition
functions (German: Übergangsfunktionen) 𝑇𝑖 𝑗 : (𝑈𝑖 ∩ 𝑈 𝑗) × 𝔸𝑟 → (𝑈𝑖 ∩ 𝑈 𝑗) × 𝔸𝑟 which are
regular functions, the identity on𝑈𝑖 ∩𝑈 𝑗, and give a linear isomorphism𝑇𝑖 𝑗(𝑥) ∈ GL𝑟 for every
𝑥 ∈ 𝑈𝑖 ∩𝑈 𝑗. Moreover, they must satisfy the cocycle condition (German: Kozykelbedingung)

𝑇𝑗𝑘 |𝑈𝑖∩𝑈 𝑗∩𝑈𝑘 ◦ 𝑇𝑖 𝑗 |𝑈𝑖∩𝑈 𝑗∩𝑈𝑘 = 𝑇𝑖𝑘 |𝑈𝑖∩𝑈 𝑗∩𝑈𝑘 .

Exercise 2.2.3. What are the transition functions of the normal bundle N𝑋/𝔸𝑛 for a smooth affine va-
riety 𝑋 ⊂ 𝔸𝑛 (see Example 2.2.2)? What are the transition functions of the tangent bundle T𝑋 as in
Example 2.2.2?

Definition. Let 𝜋 : 𝐸 → 𝑋 be a vector bundle of rank 𝑟 on a smooth algebraic variety 𝑋 . A
section of 𝐸 is a morphism 𝑠 : 𝑋 → 𝐸 such that 𝜋 ◦ 𝑠 is the identity on 𝑋 . For an open subset𝑈
of 𝑋 , a section over𝑈 is a map 𝑠 : 𝑈 → 𝐸 with 𝜋 ◦ 𝑠 = id𝑈 .

2.2.4 Remark. In a local trivialization𝑈 ×𝔸𝑟 of 𝐸, a section is therefore a map that sends 𝑥 ∈ 𝑈 to a point
(𝑥, 𝑣), which means that a section assigns a vector in 𝜋−1(𝑥) to every 𝑥 ∈ 𝑋 . The trivial example is the
zero section that assigns the zero vector to every point 𝑥 ∈ 𝑋 .
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2.3. Sheaves and Vector Bundles 15

2.3. Sheaves and Vector Bundles

2.3.1 Construction. Let 𝜋 : 𝐸→ 𝑋 be a vector bundle of rank 𝑟 on a smooth algebraic variety
𝑋 . For an open subset𝑈 ⊂ 𝑋 , we assign the set of sections F𝐸 (𝑈) of 𝐸 over𝑈 . Since 𝜋−1(𝑥) is
a vector space for every 𝑥 ∈ 𝑋 , the set F𝐸 (𝑈) is an abelian group with pointwise addition. The
assignment𝑈 ↦→ F𝐸 (𝑈) is in fact the sheaf of sections of 𝐸.

Exercise 2.3.2. Check the defining properties of a sheaf for the sheaf of sections F𝐸 of a vector bundle
𝐸.

2.3.3 Proposition. Let 𝐸 be a vector bundle of rank 𝑟 on a smooth algebraic variety 𝑋 . The asso-
ciated sheaf F𝐸 of sections is a locally free O𝑋-module of rank 𝑟.

Proof. It suffices to prove the claim on a local trivialization 𝑈 × 𝔸𝑟 of the bundle 𝐸. A section
is then essentially a morphism to 𝔸𝑟 and therefore given as an 𝑟-tuple of regular functions on
𝑈 . The O𝑋 (𝑈)-module structure comes from pointwise multiplication of this 𝑟-tuple of regular
functions by an element of O𝑋 (𝑈). As an O𝑋 (𝑈)-module, F𝐸 (𝑈) is isomorphic to O𝑋 (𝑈)𝑟 . �

In this way, every vector bundle 𝐸 of rank 𝑟 on a smooth variety 𝑋 gives rise to a locally free
sheaf F𝐸 of rank 𝑟. This is in fact reversible.

2.3.4 Construction. Let F be a locally free sheaf of rank 𝑟 on a smooth variety 𝑋 . Then there
is an open cover {𝑈𝑖} of 𝑋 such that F (𝑈𝑖) = O𝑋 (𝑈𝑖)𝑟 for each𝑈𝑖. With this open cover come
transition functions 𝑇𝑖 𝑗 ∈ GL𝑟 (O𝑋 (𝑈𝑖 ∩𝑈 𝑗)) that satisfy the cocycle conditions (by the defining
properties of sheaves: sections are uniquely determined by their restriction, here to𝑈𝑖∩𝑈 𝑗∩𝑈𝑘).

Exercise 2.3.5. Check the cocycle condition for the transition functions 𝑇𝑖 𝑗 ∈ GL𝑟 (O𝑋 (𝑈𝑖 ∩𝑈 𝑗)).

We can also write the total space of the vector bundle constructed in Construction 2.3.4 by
giving its coordinate ring in the following sense. Let 𝑆(F ) be the symmetric algebra on F .
This is a construction as a sheaf: locally, F (𝑈) = O𝑋 (𝑈)𝑟 is free of rank 𝑟 and 𝑆(F )(𝑈) is
the symmetric algebra of the O𝑋 (𝑈)-module O𝑋 (𝑈)𝑟 . This symmetric algebra is isomorphic to
O𝑋 (𝑈) [𝑥1, . . . , 𝑥𝑟]. Overall, the result is the O𝑋-module 𝑆(F ). The total space of the bundle is
𝐸 = Spec(𝑆(F )). The ring homomorphisms O𝑋 (𝑈) → O𝑋 (𝑈) [𝑥1, . . . , 𝑥𝑟] locally define the
bundle projection 𝜋 : Spec(𝑆(F )) → 𝑋 .

We have not discussed all necessary technical details to understand this construction. The
point is that the language of sheaves is convenient here, because takes care of the necessary gluing
arguments.

2.4. Divisors

Divisors form a building block for the intersection ring 𝐴∗(𝑋), namely 𝐴1(𝑋). Weil divisors
are more elementary, Cartier divisors better suited for singular varieties. They are equivalent
notions on smooth varieties. We will discuss here only Weil divisors. Before we get started, we
need a little bit of commutative algebra.
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16 2. Divisors, Vector Bundles and Sheaves

2.4.1 Detour: Discrete Valuation Rings
Definition. Let 𝐾 be a field. A (discrete) valuation (German: diskrete Bewertung) of 𝐾 is a
map 𝜈 : 𝐾 → ℤ ∪ {∞} satisfying the following conditions.
� 𝜈(𝑎) = ∞ if and only if 𝑎 = 0
� 𝜈(𝑎𝑏) = 𝜈(𝑎) + 𝜈(𝑏) for all 𝑎, 𝑏 ∈ 𝐴 \ {0}
� 𝜈(𝑎 + 𝑏) ≥ min{𝜈(𝑎), 𝜈(𝑏)}

An integral domain 𝐴 is called a discrete valuation ring (German: diskreter Bewertungsring)
if there exists a discrete valuation on on its quotient fieldQuot(𝐴) with discrete valuation 𝜈 such
that 𝐴 = {𝑥 ∈ 𝐾∗ : 𝜈(𝑥) ≥ 0} ∪ {0}.

2.4.1 Remark. If 𝐾 carries a disrete valuation 𝜈 : 𝐾 → ℤ∪ {∞}, then the subset {𝑥 ∈ 𝐾 : 𝜈(𝑥) ≥ 0} ∪ {0}
is always a local subring with maximal ideal𝔪 = {𝑥 ∈ 𝐾 : 𝜈(𝑥) > 0}. This follows from from the last two
properties of valuations. Since 𝜈 is a homomorphism of semigroups (𝐴, ·) and (ℤ,+), we have 𝜈(1) = 0
and 𝜈(𝑥) = −𝜈(𝑥−1) for all 𝑥 ∈ 𝐾∗.

2.4.2 Example. Let 𝑝 ∈ ℤ be a prime and 𝐴 = ℤ(𝑝) be the localization ofℤwith respect to the
multiplicative set 𝑆 = {𝑚 ∈ ℤ : gcd(𝑚, 𝑝) = 1} = ℤ \ (ℤ𝑝). Then 𝐴 is a discrete valuation ring
for the 𝑝-adic valuation 𝜈𝑝 onℚ. Write a fraction 𝑎/𝑏 = 𝑝𝑘𝑐/𝑑 such that 𝑐 and 𝑑 are not divisible
by 𝑝, then 𝜈(𝑎/𝑏) = 𝑘. The valuation ring is the set of all fractions 𝑎/𝑏 such that 𝜈(𝑎/𝑏) ≥ 0.

2.4.3 Proposition. A discrete valuation ring 𝐴 is a local ring of dimension 1 and a principal ideal
domain. Its maximal ideal is generated by one element 𝑡 so that any element of Quot(𝐴) can be
written as 𝑢𝑡𝑘 for a unit 𝑢 ∈ 𝐴 and a 𝑘 ∈ ℤ. The valuation of 𝑢𝑡𝑘 is 𝑘.

A generator of the maximal ideal of a discrete valuation ring is called a uniformizing pa-
rameter.

Proof. Every unit of 𝐴 has valuation 0. Let 𝑡 be an element with smallest valuation. Since the
image of the valuation is a subgroup of ℤ generated by one element 𝑚. By replacing 𝜈 by 1/𝑚𝜈,
we can assume 𝜈(𝑡) = 1. For any 𝑡′ ∈ 𝐴with 𝜈(𝑡′), it follows that 𝜈(𝑡′/𝑡) = 0 so that 𝑡′ = 𝑢𝑡 for a
unit 𝑡 ∈ 𝐴. Moreover, if 𝑎 ∈ 𝐴 has 𝜈(𝑎) = 𝑘 for 𝑘 ∈ ℕ, then 𝑢 = 𝑎/𝑡𝑘 is a unit so that 𝑎 = 𝑢𝑡𝑘 is in
the ideal generated by 𝑡. Since any element 𝑎 ∈ 𝐴 that is not a unit has a positive valuation, it is
contained in (𝑡) so that 𝐴 is a local ring with maximal ideal which is principal. Hence 𝐴 is local
of dimension 1. If 𝐼 ⊂ 𝐴 is an ideal of 𝐴, 𝐼 ≠ (0), pick an element 𝑎 ∈ 𝐼 of minimial valuation,
say 𝜈(𝑎) = 𝑘. Then we conclude that 𝑎 = 𝑢𝑡𝑘 as above which implies 𝐼 = (𝑡𝑘). �

There is one central example in the context of divisors, namely discrete valuation rings cor-
responding to irreducible polynomials in coordinate rings of smooth irreducible varieties.

2.4.4 Example. Let 𝑋 ⊂ 𝔸𝑛 be a smooth irreducible variety and 𝐾 [𝑋] = 𝐾 [𝑥1, . . . , 𝑥𝑛]/I(𝑋)
its coordinate ring. Let 𝑓 ∈ 𝐾 [𝑋] be an irreducible polynomial. Then the ring 𝐴 = 𝐾 [𝑋] (𝑓 )
obtained by localization of 𝐾 [𝑋] at the prime ideal (𝑓 ) is a discrete valuation ring of the function
field 𝐾 (𝑋) and its maximal ideal is generated by 𝑓 .

2.4.5 Remark. A valuation ring of a field 𝐾 is a subring 𝐵 such that for all 𝑥 ∈ 𝐾∗ we have 𝑥 ∈ 𝐵 or
𝑥−1 ∈ 𝐵. A discrete valuation ring is a valuation ring of (Krull-)dimension 1.
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2.4.2 Weil divisors
To see the point and introduce some notions, we informally discuss the case of plane curves.

Let 𝐶 ⊂ ℙ2 be a smooth plane curve of degree 𝑑 > 1. For each line 𝐿 ⊂ ℙ2, we consider
𝐿 ∩ 𝐶, which is a set of 𝑑 points, if counted with multiplicity. Let us write this formally as
𝐿 ∩ 𝐶 =

∑
𝑚𝑖𝑃𝑖, where 𝑚𝑖 is the multiplicity of 𝑃𝑖 in 𝐿 ∩ 𝐶. Such a formal sum is a divisor

(German: Divisor) on 𝐶. As we vary 𝐿, this gives a family of divisors parametrized by the lines
𝐿, which are points in (ℙ2)∗. Such a family is called a linear system (German: Linearsystem)
of divisors on 𝐶. The embedding of 𝐶 to ℙ2 can be recovered from the linear system in the
following way. If 𝑝 is a point on𝐶, we can consider all divisors in the linear system that contain
𝑝. These divisors correspond to lines 𝐿 ∈ (ℙ2)∗ through 𝑝. These lines form a line in (ℙ2)∗ dual
to 𝑝 and so uniquely determine 𝑝.

For two different divisors 𝐷 = 𝐿 ∩ 𝐶 and 𝐷′ = 𝐿′ ∩ 𝐶 corresponding to two lines 𝐿, 𝐿′ ⊂
ℙ2, we get the rational function 𝑓/𝑓 ′ for defining linear forms 𝐿 = V+(𝑓 ), 𝐿′ = V+(𝑓 ′). The
restriction 𝑔 of the rational function 𝑓/𝑓 ′ to 𝐶 has zeros in the points of 𝐷 and poles in the
points of 𝐷′ (of order equal to the multiplicity of the point in the divisor). The divisors 𝐷 and
𝐷′ are called linearly equivalent (German: linear äquivalent).

Definition. Let 𝑋 be a smooth algebraic variety. A prime divisor (Deutsch: Primdivisor) is an
irreducible closed subvariety 𝑌 ⊂ 𝑋 of codimension 1. AWeil divisor (German: Weil-Divisor)
is an element of the free abelian group Div(𝑋) generated by the prime divisors. So a divisor can
be written as a finite sum 𝐷 =

∑
𝑛𝑖𝑌𝑖 where 𝑛𝑖 ∈ ℤ and 𝑌𝑖 ⊂ 𝑋 are prime divisors. A divisor is

called effective (German: effektiv) if all weights 𝑛𝑖 are nonnegative.

Let 𝑋 ⊂ 𝔸𝑛 be a smooth irreducible affine variety and 𝑌 ⊂ 𝑋 be a prime divisor that is
given by one equation 𝑌 = V+(𝑓 ) for an irreducible function 𝑓 ∈ 𝐾 [𝑋]. Then the localization
𝐾 [𝑋] (𝑓 ) of the coordinate ring of 𝑋 at the prime ideal generated by 𝑓 is a discrete valuation ring,
see Example 2.4.4. The corresponding valuation ring of the function field 𝐾 (𝑋) of 𝑋 is usually
written as O𝑋,𝑌 . We write 𝜈𝑌 for the discrete valuation of 𝐾 (𝑋). In particular, any non-zero
rational function 𝑔 on 𝑋 has a valuation 𝜈𝑌 (𝑔). If 𝜈𝑌 (𝑔) is positive, we say that 𝑔 has a zero
along 𝑌 of order 𝜈𝑌 (𝑔). If it is negative, we say that 𝑔 has a pole along 𝑌 of order |𝜈𝑌 (𝑔) |.

2.4.6 Lemma. For any nonzero rational function 𝑔 ∈ 𝐾 (𝑋) on a smooth irreducible variety 𝑋
there are only finitely many prime divisors 𝑌 ⊂ 𝑋 with 𝜈𝑌 (𝑔) ≠ 0.

Proof. We can assume that 𝑋 is affine by restricting to an affine open subset (since the com-
plement of this open is closed and therefore only has finitely many irreducible components).
Moreover, we can also assume that our function 𝑔 is regular on 𝑋 so that 𝜈𝑌 (𝑔) ≥ 0 for all
prime divisors 𝑌 ⊂ 𝑋 . So we have to show that 𝜈𝑌 (𝑔) is positive only for finitely many 𝑌 . But
those 𝑌 are exactly the minimal prime ideals in a primary decomposition of (𝑔) ⊂ 𝐾 [𝑋]. �

Definition. Let 𝑋 be a smooth irreducible algebraic variety and let 𝑔 ∈ 𝐾 (𝑋)∗. The divisor
of 𝑔, denoted by (𝑔), is

(𝑔) =
∑︁

𝜈𝑌 (𝑔)𝑌,
where the sum is taken over all prime divisors of 𝑋 . Any divisor equal to the divisor of a function
is called a principal divisor (German: Hauptdivisor).

This is a finite sum (and hence well defined) by the previous Lemma 2.4.6.
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Exercise 2.4.7. Show that the map sending a function 𝑓 ∈ 𝐾 (𝑋)∗ to its divisor (𝑓 ) gives a homomor-
phism of the multiplicative group 𝐾 (𝑋)∗ and the additive group Div(𝑋). So its image is a normal sub-
group of Div(𝑋).

Definition. Two divisors 𝐷 and 𝐷′ are linearly equivalent (German: linear äquivalent), writ-
ten 𝐷 ∼ 𝐷′, if 𝐷 − 𝐷′ is a principal divisor. The group of divisors modulo the normal subgroup
of principal divisors is called the divisor class group Cl(𝑋) of 𝑋 (German: Divisorklassen-
gruppe).

2.4.8 Proposition. Let 𝐴 be a finitely generated 𝐾-algebra without zero divisors. (So 𝐴 is the
coordinate ring of an irreducible affine variety 𝑋 = Spec(𝐴) over 𝐾 .) Then 𝐴 is a unique factorization
domain (German: faktorieller Ring) if and only if 𝐴 is integrally closed and Cl(Spec(𝐴)) = 0.

Proof. The main thing to prove here is that in an integrally closed domain 𝐴 every prime ideal
of height 1 is principal if and only if Cl(Spec(𝐴)) = 0. For details and a proof of this fact, see
for example Hartshorne, Part II, Proposition 6.2. �

This fact is useful for computing the first examples of divisor class groups.

2.4.9 Example. The divisor class group of 𝔸𝑛 is trivial because 𝐾 [𝑥1, . . . , 𝑥𝑛] is a unique fac-
torization domain.

2.4.10 Example. If you know some algebraic number theory: If 𝐴 is a Dedekind domain, then
the ideal class group from algebraic number theory is just the divisor class group of Spec(𝐴). So
Proposition 2.4.8 is a generalization of the fact that a Dedekind domain is a unique factorization
domain if and only if the ideal class group is trivial.

2.4.11 Proposition. Let 𝑋 = ℙ𝑛 be 𝑛-dimensional projective space over 𝐾 . For any divisor 𝐷 =∑
𝑛𝑖𝑌𝑖, define the degree of 𝐷 as deg(𝐷) = ∑

𝑛𝑖 deg(𝑌𝑖), where deg(𝑌𝑖) is the degree of the hyper-
surface 𝑌𝑖 ⊂ ℙ𝑛. Let 𝐻 = V+(𝑥0) be a hyperplane.

(1) If 𝐷 is any divisor of degree 𝑑, then 𝐷 ∼ 𝑑𝐻 .
(2) For any 𝑓 ∈ 𝐾 (ℙ𝑛)∗, deg(𝑓 ) = 0.
(3) The degree function gives an isomorphism deg : Cl(ℙ𝑛) → ℤ.

Proof. First, let 𝑔 be a homogeneous polynomial of degree 𝑑 and factor it into irreducible factors
𝑔 = 𝑔

𝑒1
1 · . . . · 𝑔

𝑒𝑟
𝑟 . Each factor 𝑔𝑖 defines a prime divisor 𝑌𝑖 ⊂ ℙ𝑛 of degree 𝑑𝑖 = deg(𝑔𝑖).

Checking the affine charts, it makes sense to define define the divisor of 𝑔 to be (𝑔) = ∑𝑟
𝑖=1 𝑒𝑖𝑌𝑖

of degree 𝑑 =
∑
𝑒𝑖𝑑𝑖 onℙ𝑛. A rational function 𝑓 onℙ𝑛 is the quotient 𝑔/ℎ of two homogeneous

polynomials 𝑔 and ℎ of the same degree. With the above definition, we have (𝑓 ) = (𝑔) − (ℎ) so
that deg(𝑓 ) = 0.

Now let 𝐷 be a divisor of degree 𝑑. We can write it as a difference 𝐷 = 𝐷1 − 𝐷2 of effective
divisors 𝐷1 and 𝐷2 of degrees 𝑑𝑖 with 𝑑 = 𝑑1 − 𝑑2. Since each 𝐷𝑖 is effective, we can write it
as 𝐷𝑖 = (𝑔𝑖), the divisor of a homogeneous polynomial 𝑔𝑖 of degree 𝑑𝑖. This is possible because
every prime ideal of the homogeneous coordinate ring of ℙ𝑛 of height 1 is principal. Then
𝐷 − 𝑑𝐻 = (𝑓 ) for the rational function 𝑓 = 𝑔1/𝑥𝑑0𝑔2 showing (1). (3) now follows from (1) and (2)
because deg(𝐻) = 1. �
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We will later see more divisor class groups. Feel free to browse the literature for more ex-
amples. For instance, Hartshorne shows in Section 6 of Part II that Cl(ℙ1 × ℙ1) � ℤ2 and
discusses the case of curves. This includes the example that the divisor class group of a smooth
plane cubic decomposes as a continuous group Cl𝑜(𝑋) and ℤ. In this case, the genus is 1 and
the continuous part is isomorphic to the curve 𝑋 itself. More generally, this part is an abelian
variety of dimension equal to the genus of the curve.

2.4.3 Divisors and line bundles
We will see that divisors and line bundles are the same on sufficiently nice algebraic varieties.
We will restrict our discussion here to smooth and irreducible varieties.

Definition. An invertible sheaf is a locally free O𝑋-module of rank 1.

2.4.12 Proposition. If L andM are invertible sheaves on 𝑋 , then so is L ⊗ M (on any ringed
space 𝑋 ). If L is invertible, then L ⊗ L∨ � O𝑋 .

Proof. The first part is straightforward since O𝑋 ⊗ O𝑋 � O𝑋 . For the second, the dual sheafL∨
isHom(L,O𝑋 ) so that L∨ ⊗ L � Hom(L,L) � O𝑋 . �

Definition. For any ringed space, we define the Picard group Pic(𝑋) of 𝑋 to be the group of
isomorphism classes of invertible sheaves on 𝑋 with multiplication ⊗.

The previous proposition shows that this is in fact a group with L−1 = L∨.
The point is that the Picard group of a smooth variety is isomorphic to its divisor class group.

We will show this via line bundles with fixed sections, which turn out to be the same as Weil
divisors.

Definition. A rational section of a line bundle L on an irreducible variety 𝑋 is a section of
L on some open and dense subset𝑈 ⊂ 𝑋 . (A rational section on a reducible variety is a rational
section that does not vanish identically on any irreducible component.) To a rational section 𝑠
of L, associate the Weil divisor

div(𝑠) =
∑︁
𝑌

𝜈𝑌 (𝑠)𝑌.

Here, the valuation 𝜈𝑌 (𝑠) makes sense as follows: on any local trivialization ofL on an open
subset𝑈 ⊂ 𝑋 such that𝑈∩𝑌 is Zariski-dense in 𝑌 , the section 𝑠 is a rational function. Since any
two trivializations differ by an invertible function (namely a transition function), the valuation
does not depend on the choice of local trivialization. Also, 𝜈𝑌 (𝑠) is 0 for all but finitely many
prime divisors 𝑌 .

Consider the set of pairs {(L, 𝑠)} of line bundles with a fixed nonzero rational section of L
up to isomorphism. A pair (L, 𝑠) is isomorphic to (L′, 𝑠′) if there is an isomorphism 𝜑 : L → L′
of line bundles and a dense open subset 𝑈 ⊂ 𝑋 on which the sections 𝑠′ and 𝜑 ◦ 𝑠 of L′ differ
by a regular function on𝑈 . This set forms an abelian group under tensor product with identity
(O𝑋 , 1). Themap div gives a homomorphism from the set of isomorphism classes of pairs (L, 𝑠)
and the group of divisors Div(𝑋). We will use that line bundles and invertible sheaves can be
identified.
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2.4.13 Proposition. If 𝑋 is normal, then the map div is injective. (A variety 𝑋 is normal if every
local ring O𝑋,𝑥 is an integrally closed domain.)
Proof. Since we already know that div is a group homomorphism, it suffices to show that any
pair (L, 𝑠) that gets mapped to 0 ∈ Div(𝑋) is isomorphic to (O, 1). We consider the map of
invertible sheaves ×𝑠 : O → L given by multiplication of 𝑠. So on a local trivilization of L over
𝑈 , this maps an element 𝑡 ∈ O𝑋 (𝑈) to 𝑠𝑡 ∈ L(𝑈). Here, 𝑠𝑡 is a section of the line bundle L
over𝑈 because the divisor of 𝑠 is 0 so that 𝑠 has no poles on 𝑋 and in particular not on𝑈 . Now
choose a local isomorphism 𝜄 : L|𝑈 → O𝑈 on 𝑈 ⊂ 𝑋 . The composition with ×𝑠 gives a map
×𝑠′ : O𝑈 → O𝑈 that is multiplication by 𝑠′ = 𝜄(𝑠). Since div(𝑠) = 0, this function 𝑠′ has no poles
and is therefore regular on𝑈 . The same holds for 1/𝑠′ because 𝑠 has no zeroes either. Therefore,
×𝑠′ is an isomorphism, which implies that ×𝑠 is an isomorphism over 𝑈 . Since we can cover 𝑋
by local trivializations of L, this shows that (L, 𝑠) is isomorphic to (O, 1). �

Definition. Let 𝑋 be a smooth irreducible algebraic variety and 𝐷 a Weil divisor on 𝑋 . Define
the sheaf O𝑋 (𝐷) on open subsets𝑈 ⊂ 𝑋 by

{𝑡 ∈ 𝐾 (𝑋)∗ : div|𝑈 𝑡 + 𝐷 |𝑈 ≥ 0} ∪ {0}.

Here, div|𝑈 𝑡 means that we take the divisor of 𝑡 considered as a rational function on 𝑈 (so we
only consider prime divisors of𝑈 ) and 𝐷 |𝑈 is

∑
𝑈∩𝑌≠∅ 𝑛𝑌 (𝑌 ∩𝑈) if 𝐷 =

∑
𝑌 𝑛𝑌𝑌 .

Here, O𝑋 (𝐷) (𝑈) is an abelian group with respect to addition of rational functions. This
is well defined because 𝜈𝑌 (𝑡1 + 𝑡2) ≥ min{𝜈𝑌 (𝑡1), 𝜈𝑌 (𝑡2)} for every prime divisor 𝑌 so that
div|𝑈 (𝑡1 + 𝑡2) ≥ −𝐷 |𝑈 whenever the same holds for each div|𝑈 (𝑡𝑖).

We now have to show that this sheaf is invertible. We will use that every local ring O𝑋,𝑥 of a
smooth variety 𝑋 is a unique factorization domain.

2.4.14 Proposition. Let 𝑋 be a smooth irreducible algebraic variety and 𝑌 ⊂ 𝑋 a prime divisor.
Then there is an open cover {𝑈𝑖} of 𝑋 and sections 𝑓𝑖 ∈ 𝐾 (𝑋) such that 𝑌 ∩ 𝑈𝑖 is defined by 𝑓𝑖.
In particular, if 𝐷 =

∑
𝑌 𝑛𝑌𝑌 is a Weil divisor, then there is an open cover {𝑈𝑖} of 𝑋 such that

𝐷 |𝑈𝑖 = div(𝑓𝑖) for suitable 𝑓𝑖 ∈ 𝐾 (𝑋).
Proof. Let 𝑥 ∈ 𝑋 be a point. If 𝑥 ∉ 𝑌 , then there is an neighborhood 𝑈 of 𝑋 such that 𝑌 ∩𝑈 =

V(1) and 1 ∈ O𝑋 (𝑈). If 𝑥 ∈ 𝑌 , then the vanishing ideal of 𝑌 inO𝑋,𝑥 is a prime ideal of height 1.
Since O𝑋,𝑥 is a unique factorization domain, this ideal is principal so that locally around 𝑥, 𝑌 is
defined by one equation 𝑓𝑥 ∈ 𝐾 (𝑋). Since any algebraic variety is a noetherian topological space,
this proves the first claim. To define any Weil divisor 𝐷 =

∑
𝑌 𝑛𝑌𝑌 , we refine take a common

refinement for all finitely many prime divisors 𝑌 in 𝐷 with non-zero coefficient 𝑛𝑌 . If 𝑌 ∩ 𝑈
is locally defined by a function 𝑓 ∈ 𝐾 (𝑋), then 𝑛𝑌𝑌 is defined by 𝑓 𝑛𝑌 . Since taking divisors is a
group homomorphism div : 𝐾 (𝑋)∗ → Div(𝑋), this proves the second claim. �

2.4.15 Proposition. Let 𝑋 be a smooth algebraic variety and 𝐷 be a Weil divisor on 𝑋 . The sheaf
O𝑋 (𝐷) is an invertible sheaf.
Proof. Cover 𝑋 by open subsets𝑈 such that 𝐷 |𝑈 = div(𝑓 ) as in Proposition 2.4.14. Then locally,
we get a map O|𝑈 → O(𝐷) |𝑈 , 𝑡 ↦→ 𝑡𝑓−1. Indeed, this is well defined because div|𝑈 (𝑡𝑓−1) =
div|𝑈 (𝑡) − 𝐷 |𝑈 + 𝐷 |𝑈 = div|𝑈 (𝑡) ≥ 0 since 𝑡 is a regular function on 𝑈 . The above morphism
of (local!) invertible sheaves is an isomorphism whose inverse is given by multiplication with 𝑓 ,
which shows that O(𝐷) is locally free of rank 1. �
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2.4.16 Proposition. Let 𝑋 be a smooth algebraic variety and (L, 𝑠) be a pair of a line bundle and
a rational section. Then the pair (L, 𝑠) is isomorphic to (O(div(𝑠)), 1), where 1 is a rational section
of O(div(𝑠)) defined away from the zeroes and poles of 𝑠 locally by the constant function 1.

Proof. Write 𝐷 = div(𝑠) throughout this proof. Let us first show that O(𝐷) and L are isomor-
phic invertible sheaves. We know that locally, O|𝑈 is isomorphic to O(𝐷) |𝑈 by a defining equa-
tion 𝑓 of 𝐷 on𝑈 via 𝑡 ↦→ 𝑡𝑓−1 (see proof of Proposition 2.4.15). Define the map 𝜑𝑈 : O(𝐷) (𝑈) →
L(𝑈), 𝑡 ↦→ 𝑠𝑡 in the following sense. Fix an isomorphism 𝜎 : L|𝑈 → O|𝑈 as O-modules. The
rational function 𝑠𝑡 ∈ 𝐾 (𝑋) is a regular function on𝑈 , because div|𝑈 (𝑠𝑡) = div|𝑈 (𝑠)+div|𝑈 (𝑡) =
𝐷 |𝑈 + div|𝑈 (𝑡) ≥ 0 by definition of O𝑋 (𝐷). So 𝑠𝑡 is in O(𝑈) and 𝜎−1(𝑠𝑡) is a section in L(𝑈).
Conversely, for every regular function 𝑓 on𝑈 , the element 𝑓/𝑠 ∈ 𝐾 (𝑋) is in O(𝐷) (𝑈) andmaps
to 𝑓 under multiplication by 𝑠. So the above map is an isomorphism of O𝑋 (𝑈)-modules over𝑈 .
To see that this gives an isomorphism 𝜑 ofO(𝐷) andL as sheaves (globally, so to speak), we have
to check compatibility of these isomorphisms for an open cover of 𝑋 with the restriction maps.
This is fine because we multiply locally by 𝑠 everywhere and we get the desired isomorphism.

Finally, we check that the above morphism can be chosen to take the rational section 1 of
O(𝐷) to 𝑠. Let us make concrete how 1 as a rational section of O(𝐷) first. Write 𝐷 =

∑𝑘
𝑖=1 𝑛𝑖𝑌𝑖

with prime divisors 𝑌𝑖 ⊂ 𝑋 and 𝑛𝑖 ≠ 0. Set supp(𝐷) = ⋃𝑘
𝑖=1 𝑌𝑖. Then 1 ∈ 𝐾 (𝑋) is a rational

function on 𝑈 = 𝑋 \ supp(𝐷) such that div|𝑈 (1) + 𝐷 |𝑈 ≥ 0. This is the rational section 1 of
O(𝐷). On this set𝑈 , we above isomorphismmaps the rational section 1 of O(𝐷) to the rational
section 𝑠 of L. �

So overall, on a smooth, irreducible algebraic variety 𝑋 , we have an isomorphism between
the group of Weil divisors Div(𝑋) and the group of isomorphism classes of pairs (L, 𝑠) of line
bundles with rational sections. The divisor class group Cl(𝑋) is isomorphic to the group of
isomorphism classes of line bundles. This follows from the above discussion because linear
equivalence of divisors corresponds to forgetting the chosen rational section of the line bundle.

Indeed, if 𝑠 and 𝑠′ are rational sections of a line bundle L, then div(𝑠) − div(𝑠′) is principal
so that the Weil divisors associated to (L, 𝑠) and (L, 𝑠′) are linearly equivalent. Conversely, if
𝐷 − 𝐷′ = div(𝑠/𝑠′), then O(𝐷) is isomorphic to O(𝐷′) via 𝑡 ↦→ 𝑠𝑡/𝑠′ so that 𝐷 corresponds to
(O(𝐷), 1) and 𝐷′ to (O(𝐷′), 1) � (O(𝐷), 𝑠′/𝑠).

We will later see how vector bundles of higher rank give rise to classes in the Chow ring
(rather than divisors) via the construction of Chern classes.

2.4.4 Line bundles on projective space

2.4.17 Example. Remember how a homogeneous polynomial 𝑓 ∈ 𝐾 [𝑥0, . . . , 𝑥𝑛] is not a func-
tion on ℙ𝑛? Rather, it is a global section of a line bundle on ℙ𝑛 usually called O(𝑑) (or more
precisely Oℙ𝑛 (𝑑)) which belongs to the linear system of divisors generated by the hypersurface
V+(𝑓 ). Clearly, a homogeneous polynomial 𝑓 ∈ 𝐾 [𝑥0, . . . , 𝑥𝑛] of degree 𝑑 is a function on every
open subset 𝐷+(𝑥𝑖) for 𝑖 = 0, 1, . . . , 𝑛 given by its dehomogenization. We describe the line bun-
dle on the local trivializations 𝐷+(𝑥𝑖) × 𝔸1 via the transition functions. On 𝐷+(𝑥0) ∩ 𝐷+(𝑥1),
the transition function 𝑇01 is given by (𝑥1/𝑥0)𝑑 because

𝑓 (1, 𝑥1/𝑥0, . . . , 𝑥𝑛/𝑥0) = (𝑥1/𝑥0)𝑑 𝑓 (𝑥0/𝑥1, 1, . . . , 𝑥𝑛/𝑥1).
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This last condition says that 𝑓 takes the same value as a section on 𝐷+(𝑥0) and 𝐷+(𝑥1) on their
intersection. Since the divisor associated to a line bundle is the zero-set of a section, the line
bundle corresponds to the linear system defined byV+(𝑓 ).

Exercise 2.4.18. Show that O(𝑑) on ℙ1 has a (𝑑 + 1)-dimensional space of global sections. In particular,
the line bundles are not isomorphic!

2.4.19 Example. We computed the divisor class group of ℙ𝑛 in Proposition 2.4.11, which we
now know is isomorphic to the Picard group of ℙ𝑛. This means: Pic(ℙ𝑛) is the abelian group
generated by O(1).

Exercise 2.4.20. Verify that O(𝑚 + 𝑛) = O(𝑚) ⊗ O(𝑛).

2.4.21 Construction. Every vector bundle 𝐸 has a dual bundle 𝐸∨: In terms of a local triv-
ialization 𝑈 × 𝔸𝑟 , it simply means that we take 𝑈 × (𝔸𝑟)∗. The transition functions then are
different: If 𝑇𝑖 𝑗 is the transition function for local trivializations 𝜑𝑖 : 𝑈𝑖 × 𝔸𝑟 , then for the dual
bundle we get (𝑇−1

𝑖 𝑗
)>. Indeed, for fixed 𝑥 ∈ 𝑈𝑖 ∩ 𝑈 𝑗, the transition function 𝑇∨

𝑖 𝑗
of the dual

bundle is defined by
(
𝑇∨
𝑖 𝑗
(�)

)
(𝑇𝑖 𝑗𝑣) = � (𝑣) for all 𝑣 ∈ 𝔸𝑟 and all linear functions � : 𝔸𝑟 → 𝔸1.

This implies 𝑇∨
𝑖 𝑗
= (𝑇−1

𝑖 𝑗
)>.

2.4.22 Example. The line bundleO(1) onℙ𝑛 is dual to the tautological bundle in Example 2.2.1
which means that the tautological bundle is the bundle O(1)∨ which is also written as O(−1).
We computed the transition function 𝑇∨01 of the tautological bundle to be 𝑥0/𝑥1. For O(1), we
computed it to be 𝑥1/𝑥0. So we have 𝑇∨01 =

(
𝑇−101

)> showing that O(−1) is dual to O(1).
Exercise 2.4.23. Show thatO(𝑑) is the dual bundle ofO(−1)⊗𝑑 , the 𝑑-th tensor power of the tautological
bundle. In a local trivialization𝑈 ×𝔸𝑟 , the tensor product of a bundle with itself is𝑈 × (𝔸𝑟 ⊗ 𝔸𝑟).

In general, vector bundles of higher rank can be complicated. For general education, here is
a result for ℙ1 classifying all vector bundles in terms of line bundles.

2.4.24 Theorem (Grothendieck). Any vector bundle 𝐸 on ℙ1 is isomorphic to a direct sum of line
bundles. Any line bundle on ℙ1 is isomorphic to O(𝑑) for some 𝑑 ∈ ℤ.

For more general varieties, like ℙ2, there are vector bundles of higher rank that are not
decomposable into line bundles (on ℙ2, the tangent bundle does not decompose, for example).
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Chapter 3

Chow Ring

We discuss the definition of Chow groups for smooth algebraic varieties and sketch some prop-
erties and methods to determine the Chow ring. We will not go into the details of the proof of
the intersection product, at least for now. We might return to the technical aspects (based on
Fulton’s book on Intersection Theory).

3.1. Cycles

Throughout, 𝑋 will mostly be a smooth irreducible algebraic variety. For the basic definitions,
this is usually not important. The most important reducible case for us to keep in mind is the
reduced, 0-dimensional case.

Definition. Let 𝑋 be an algebraic variety. The group of cycles on 𝑋 , denoted by 𝑍(𝑋), is
the free abelian group generated by the set of irreducible subvarieties of 𝑋 . Write 𝑍𝑘(𝑋) for the
(sub)group of cycles that are formal linear combinations of irreducible subvarieties of dimension
𝑘. The elements of 𝑍𝑘(𝑋) are called 𝑘-cycles. A cycle 𝑍 =

∑
𝑛𝑖𝑌𝑖 is effective if the coefficients

𝑛𝑖 are all nonnegative.

The group of cycles is graded by dimension (as a ℤ-module), that is 𝑍(𝑋) =
⊕

𝑘 𝑍𝑘(𝑋). If
𝑋 has dimension 𝑛, then 𝑍𝑛−1(𝑋) = Div(𝑋) is the group of Weil divisors on 𝑋 . Recall that two
divisors 𝐷 and 𝐷′ in Div(𝑋) are linearly equivalent if there is a rational function 𝑓 ∈ 𝐾 (𝑋) on
𝑋 such that 𝐷−𝐷′ = (𝑓 ). Another way to view this, is to consider 𝑓 as a map 𝜑𝑓 from 𝑋 toℙ1: if
𝑓 is defined in 𝑥 ∈ 𝑋 , map it to [𝑓 (𝑥), 1] ∈ ℙ1; if 𝑓 is not defined in 𝑥 ∈ 𝑋 , map it to [1, 0] ∈ ℙ1.
In this way, we can think of (𝑓 ) as 𝜑−1

𝑓
( [0, 1]) − 𝜑−1

𝑓
( [1, 0]). (More precisely, we should not take

the preimage but the pull back.) We generalize this point of view to 𝑘-cycles in 𝑋 for any 𝑘.

Exercise 3.1.1. Why is 𝜑𝑓 as defined in the previous paragraph a morphism of algebraic varieties? How
is it defined locally where 𝑓 = 𝑔/ℎ for 𝑔, ℎ ∈ O𝑋 (𝑈)?

For the following definition of equivalence, we need to properly take multiplicity into ac-
count. If 𝑋 is a smooth, irreducible affine variety with coordinate ring 𝐾 [𝑋] and 𝑌 ⊂ 𝑋 is de-
fined by an ideal 𝐼 ⊂ 𝐾 [𝑋] , take a primary decomposition of 𝐼 and let 𝑃1, . . . , 𝑃𝑠 be the minimal
primes of 𝐼 . We associate a multiplicity �𝑖 to each irreducible component 𝑌𝑖 ⊂ 𝑌 corresponding
to the prime 𝑃𝑖 as follows in terms of the length of amodule. Localize 𝐾 [𝑋]/𝐼 at the prime 𝑃𝑖 and
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24 3. Chow Ring

consider it as a module over the localization of 𝐾 [𝑋] at 𝑃𝑖. As such it has a length, namely the
maximal length of a chain of submodules (which is well-defined by the Jordan-Hölder Theorem).
The cycle associated to the subscheme 𝑌 is then

∑
�𝑖𝑌𝑖 which we write as 〈𝑌 〉.

Definition. Let Rat(𝑋) ⊂ 𝑍(𝑋) be the subgroup generated by differences of the form

〈Φ ∩ ({𝑡0} × 𝑋)〉 − 〈Φ ∩ ({𝑡1} × 𝑋)〉 ,

where 𝑡0, 𝑡1 are in ℙ1 and Φ is an irreducible subvariety of ℙ1 × 𝑋 not contained in any fiber
{𝑡} × 𝑋 of the projection ℙ1 × 𝑋 → ℙ1 to the first factor. We say that two cycles are rationally
equivalent if their difference is in Rat(𝑋).

Locally on 𝔸1 × 𝑈 , the subscheme Φ ∩ ({𝑡0} × 𝑋) is given by the ideal 𝐼 ⊂ 𝐾 [𝑥] ⊗ 𝐾 [𝑈]
generated by 𝑥− 𝑡0 and the ideal defining Φ and we mean the cycle associated to this subscheme
with multiplicities as above.

Exercise 3.1.2. Howdoes the rational equivalence of (𝑛−1)-cycles on an 𝑛-dimensional variety translate
to linear equivalence concretely? Consider the graph of the above map 𝜑𝑓 .

Definition. The Chow group of 𝑋 is the quotient

𝐴(𝑋) = 𝑍(𝑋)/Rat(𝑋),

the group of rational equivalence classes of cycles on 𝑋 . If 𝑌 ∈ 𝑍(𝑋) is a cycle, we write
[𝑌 ] ∈ 𝐴(𝑋) for its equivalence class.

3.1.3 Proposition. The Chow group is also graded by dimension

𝐴(𝑋) =
⊕
𝑘

𝐴𝑘(𝑋),

where 𝐴𝑘(𝑋) is the group of rational equivalence classes of 𝑘-cycles.

Proof. Let Φ ⊂ ℙ1×𝑋 be irreducible of dimension 𝑘+1. The ideal 𝐼 ⊂ 𝐾 [𝑥] ⊗ 𝐾 [𝑈] generated
by 𝑥 − 𝑡𝑖 and the ideal of Φ on an affine chart 𝔸1 × 𝑈 has dimension 𝑘 because 𝑥 − 𝑡𝑖 is not a
zero divisor. This shows that Rat(𝑋) is graded by dimension. The grading of 𝑍(𝑋) therefore
decends to the quotient 𝑍(𝑋)/Rat(𝑋) = 𝐴(𝑋). �

Wewill write 𝐴𝑐 (𝑋) for 𝐴dim(𝑋)−𝑐 (𝑋). In otherwords, we think of theChowgroup as graded
by codimension. (For singular varieties, this notation would conflict established conventions.)

We will not define the intersection product making the Chow group into a commutative,
graded ring for now. We assume its existence and might come back to the proof in Fulton’s
book [FIT]. For its defining propert, we need the notion of transverse intersection.

Definition. Two irreducible subvarieties 𝐴 and 𝐵 of an irreducible variety 𝑋 intersect trans-
versely at a point 𝑝 ∈ 𝑋 if 𝐴, 𝐵, and 𝑋 are smooth at 𝑝 and𝑇𝑝𝐴+𝑇𝑝𝐵 = 𝑇𝑝𝑋 . They are generi-
cally transverse if they intersect transversely at a general point of each irreducible component
𝐶 of 𝐴 ∩ 𝐵.

Two cycles 𝐴 =
∑
𝑚𝑖𝐴𝑖 and 𝐵 =

∑
𝑛𝑗𝐵 𝑗 are generically transverse if each 𝐴𝑖 is generically

transverse to each 𝐵 𝑗.
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The condition 𝑇𝑝𝐴 + 𝑇𝑝𝐵 = 𝑇𝑝𝑋 is equivalent to codim(𝑇𝑝𝐴 ∩ 𝑇𝑝𝐵) = codim(𝑇𝑝𝐴) +
codim(𝑇𝑝𝐵) and is an open condition on 𝑝.

3.1.4 Theorem. If 𝑋 is a smooth quasi-projective variety, then there is a unique product structure
on 𝐴(𝑋) satisfying the following conditions.

If two subvarieties 𝐴 and 𝐵 of 𝑋 are generically transverse, then [𝐴] · [𝐵] = [𝐴 ∩ 𝐵]. This
structure makes 𝐴(𝑋) into an associative, commutative ring graded by codimension

⊕dim(𝑋)
𝑐=0 𝐴𝑐 (𝑋).

Definition. The ring (𝐴(𝑋),+, ·) on the Chow group with the intersection product · in Theo-
rem 3.1.4 is called the Chow ring of 𝑋 . The degree map deg : 𝐴(𝑋) → ℤ is the homomorphism
of abelian groups defined by taking any class of a closed point to 1 and 𝐴𝑘(𝑋) to 0 for every
𝑘 > 0.

Chapter 1 contains some examples and in particular a discussion of how theChow ring relates
to Bézout’s Theorem.

3.2. Computing the Chow Ring
We will take a look at a few methods that can be used to determine the Chow ring of some
examples. Rational equivalence can be hard to understand...

Let’s go by codimension first.

3.2.1 Proposition. (1) If 𝑋 is an irreducible algebraic variety, then 𝐴0(𝑋) � ℤ and generated
by the fundamental class [𝑋] ∈ 𝐴0(𝑋).

(2) If 𝑋 has irreducible components 𝑋1, . . . , 𝑋𝑟 , then the classes [𝑋𝑖] generate a free abelian sub-
group of 𝐴(𝑋) of rank 𝑟.

Proof. The first claim is clear. The second follows from the fact that ℙ1 × 𝑋 has irreducible
components ℙ1 × 𝑋𝑖 so that any irreducible variety Φ ⊂ ℙ1 × 𝑋 is contained in one of the
varieties ℙ1 × 𝑋𝑖. �

3.2.2 Example. The Chow group of a set of points 𝑋 = {𝑝1, . . . , 𝑝𝑟} is the free abelian group
on its irreducible components, so ℤ𝑟 = ℤ𝑝1 ⊕ . . . ⊕ ℤ𝑝𝑟 . (More generally, the Chow group of a
0-dimensional scheme is the same as the Chow group of the underlying variety.)

Going up in codimension by 1, we find the divisor class group, which is the same as the Picard
group on a smooth irreducible variety. See the discussion above, and in particular Exercise 3.1.2,
for an argument.

3.2.3 Proposition. If 𝑋 is irreducible of dimension 𝑛, then 𝐴𝑛−1(𝑋) = 𝐴1(𝑋) is equal to the
divisor class group of 𝑋 . �

3.2.1 Mayer-Vietoris and excision
3.2.4 Proposition. Let 𝑋 be an algebraic variety.

(1) (Mayer-Vietoris) If 𝑋1 and 𝑋2 are closed subvarieties of 𝑋 , then there is an exact sequence of
ℤ-modules

𝐴(𝑋1 ∩ 𝑋2) → 𝐴(𝑋1) ⊕ 𝐴(𝑋2) → 𝐴(𝑋1 ∪ 𝑋2) → 0.
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(2) (Excision) If 𝑌 ⊂ 𝑋 is a closed subvariety and 𝑈 = 𝑋 \ 𝑌 its complement, then the inclusion
and restriction of maps of cycles give an exact sequence of ℤ-modules

𝐴(𝑌 ) → 𝐴(𝑋) → 𝐴(𝑈) → 0.

If 𝑋 is smooth, then the map 𝐴(𝑋) → 𝐴(𝑈) is a ring homomorphism.

Let us clarify the maps. If 𝑌 ⊂ 𝑋 is a closed subvariety, then cycles on ℙ1 × 𝑌 are also cycles
onℙ1×𝑋 , which induces amapRat(𝑌 ) → Rat(𝑋). Sowe get awell definedmap 𝐴(𝑌 ) → 𝐴(𝑋)
induced by the inclusion 𝑌 → 𝑋 . The intersection of a subvariety of 𝑋 with the open subset
𝑈 = 𝑋 \ 𝑌 is a (possibly empty) subvariety of 𝑈 , which gives a restriction map 𝑍(𝑋) → 𝑍(𝑈).
Since we can also restrict from ℙ1 × 𝑋 to ℙ1 × 𝑈 , this map sends Rat(𝑋) to 0 in 𝐴(𝑈) and we
get a group homomorphism 𝐴(𝑋) → 𝐴(𝑈).

Proof of Proposition 3.2.4. For any variety 𝑋 , there is an exact sequence of ℤ-modules

𝑍(ℙ1 × 𝑋) → 𝑍(𝑋) → 𝐴(𝑋) → 0

by definition of the Chow group 𝐴(𝑋). Here, the left-hand map, which we denote by 𝜕𝑋 , takes
an irreducible variety Φ ⊂ ℙ1 × 𝑋 to 0 if Φ is contained in a fiber; otherwise, it takes Φ to
〈Φ ∩ ({𝑡0} × 𝑋)〉 − 〈Φ ∩ ({𝑡1} × 𝑋)〉 for 𝑡0 = [0, 1] and 𝑡1 = [1, 0] in ℙ1. We begin with claim
(2), excision. Consider the following commutative diagram.

0 𝑍(ℙ1 × 𝑌 ) 𝑍(ℙ1 × 𝑋) 𝑍(ℙ1 ×𝑈) 0

0 𝑍(𝑌 ) 𝑍(𝑋) 𝑍(𝑈) 0

𝐴(𝑌 ) 𝐴(𝑋) 𝐴(𝑈)

0 0 0

𝜕𝑌 𝜕𝑋 𝜕𝑈

The two rows in the middle are evidently exact because a cycle [𝐴] for an irreducible variety
𝐴 ⊂ 𝑋 gets mapped to [𝐴∩𝑈] = 0 in 𝑍(𝑈) if and only if 𝐴 ⊂ 𝑌 . The three columns are exact by
definition of the Chow group. A diagram chase shows that the map 𝐴(𝑋) → 𝐴(𝑈) is surjective
with kernel equal to 𝐴(𝑌 ) (rather the image of 𝐴(𝑌 ) in 𝐴(𝑋)). If 𝑋 is smooth, the restriction
[𝐴] ↦→ [𝐴 ∩𝑈] from 𝐴(𝑋) → 𝐴(𝑈) is a ring homomorphism by Theorem 3.1.4.

To prove the claim (1), set 𝑌 = 𝑋1 ∩ 𝑋2 and assume that 𝑋 = 𝑋1 ∪ 𝑋2. We then have
a map 𝑍(𝑌 ) → 𝑍(𝑋1) ⊕ 𝑍(𝑋2) taking [𝐴] to ( [𝐴] ,−[𝐴]) where we think of an irreducible
subvariety 𝐴 ⊂ 𝑌 as a subvariety of 𝑋𝑖 by inclusion 𝑌 → 𝑋𝑖. Taking the sum as a map from
𝑍(𝑋1) ⊕ 𝑍(𝑋2) → 𝑍(𝑋) sending (𝐴, 𝐵) to 𝐴+ 𝐵with respect to the inclusions 𝑋𝑖 → 𝑋 , we get
a right exact sequence 𝑍(𝑌 ) → 𝑍(𝑋1) ⊕ 𝑍(𝑋2) → 𝑍(𝑋) → 0. We take the analogous maps
𝑍(ℙ1 × 𝑌 ) → 𝑍(ℙ1 × 𝑋1) ⊕ 𝑍(ℙ1 × 𝑋2) and 𝑍(ℙ1 × 𝑋1) ⊕ 𝑍(ℙ1 × 𝑋2) → 𝑍(ℙ1 × 𝑋). These
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fit together to make the following commutative diagram.

0 𝑍(ℙ1 × 𝑌 ) 𝑍(ℙ1 × 𝑋1) ⊕ 𝑍(ℙ1 × 𝑋2) 𝑍(ℙ1 × 𝑋) 0

0 𝑍(𝑌 ) 𝑍(𝑋1) ⊕ 𝑍(𝑋2) 𝑍(𝑋) 0

𝐴(𝑌 ) 𝐴(𝑋1) ⊕ 𝐴(𝑋2) 𝐴(𝑋)

𝜕𝑌 𝜕𝑋1 ⊕ 𝜕𝑋2 𝜕𝑋

Again, a diagram chase shows that the bottom row is exact and the right-hand map is surjective,
giving the exact Mayer-Vietoris sequence in claim (1). �

3.2.2 Affine space
We can stratify nice varieties into affine varieties and use the exact sequences in Proposition 3.2.4
to describe their Chow group. To that end, let us take a look at affine space.

3.2.5 Proposition. The Chow group of 𝔸𝑛 is isomorphic to ℤ and generated by the fundamental
class meaning 𝐴(𝔸𝑛) = ℤ[𝔸𝑛].
Proof. We already know that 𝐴0(𝔸𝑛) = ℤ[𝔸𝑛]. We show that every irreducible proper subva-
riety 𝑌 ⊂ 𝔸𝑛 is rationally equivalent to 0. Choose coordinates 𝑥1, . . . , 𝑥𝑛 on 𝔸𝑛 such that the
origin does not lie in 𝑌 . Define

𝑊 𝑜 = {(𝑡, 𝑡𝑥) ∈
(
𝔸1 \ {0}

)
×𝔸𝑛 : 𝑥 ∈ 𝑌 }.

The fiber of 𝑊 𝑜 over a point 𝑡 ∈ 𝔸1 \ {0} under the projection to the first factor is 𝑡 · 𝑌 . Let
𝑊 ⊂ ℙ1 × 𝔸𝑛 be the closure of 𝑊 𝑜 in ℙ1 × 𝔸𝑛, which is irreducible since it is the image of
the irreducible variety (𝔸1 \ {0}) × 𝑌 under the morphism (𝑡, 𝑥) ↦→ (𝑡, 𝑡𝑥). The fiber of 𝑊
over 𝑡1 = 1 ∈ 𝔸1 \ {0} (with respect to the projection to ℙ1) is 𝑌 . To show that the fiber of𝑊
over 𝑡0 = ∞ ∈ ℙ1 is empty, pick a polynomial 𝑔 in the vanishing ideal of 𝑌 that has a nonzero
constant coefficient 𝑐. The rational function 𝐺(𝑡, 𝑥) = 𝑔(𝑥/𝑡) on (𝔸1 \ {0}) × 𝔸𝑛 extends to a
regular function on (ℙ1 \ {0}) × 𝔸𝑛 with constant value 𝑐 on the fiber {∞} × 𝔸𝑛. So the fiber
of𝑊 over {∞} is empty and 𝑌 is rationally equivalent to 0 as claimed. �

Exercise 3.2.6. Show that the fiber of𝑊 as in the proof of the previous proposition over 0 is the cone
with vertex 0 ∈ 𝔸𝑛 over the intersection 𝑌 ∩ 𝐻∞, where 𝑌 is the projective closure of 𝑌 in ℙ𝑛 and
𝐻∞ = ℙ𝑛 \𝔸𝑛 the hyperplane at infinity.

Using excision, this result immediately gives the following statement.

3.2.7 Corollary. If 𝑈 ⊂ 𝔸𝑛 is a nonempty open set, then 𝐴(𝑈) = 𝐴0(𝑈) = ℤ[𝑈].

3.2.3 Projective Space
Using the Chow group of 𝔸𝑛 as a building block, we can compute the Chow group of ℙ𝑛 by its
affine stratification built inductively from ℙ𝑛 = 𝔸𝑛 ∪ 𝐻∞ using that 𝐻∞ is ℙ𝑛−1.
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3.2.8 Theorem. The Chow group of ℙ𝑛 is isomorphic toℤ[𝑠]/(𝑠𝑛+1) as a gradedℤ-module (where
the polynomial ring is graded by degree as usual). The intersection product is given by 𝑠𝑖 · 𝑠 𝑗 = 𝑠𝑖+𝑗

for all 𝑖, 𝑗 ≥ 0.

Proof. Writeℙ𝑛 = 𝐷+(𝑥0)∪V+(𝑥0), which is the beginning of the stratificationℙ𝑛 = 𝔸𝑛∪ℙ𝑛−1

into affine pieces. Setting 𝑌 = V+(𝑥0) and 𝑈 = 𝐷+(𝑥0), excision in Proposition 3.2.4(2) tells us
that 𝐴(ℙ𝑛) surjects onto 𝐴(𝑈) = ℤ[𝔸𝑛] with kernel 𝐴(ℙ𝑛−1). By induction and using that the
Chow group 𝐴(ℙ𝑛) is graded by dimension, it follows that 𝐴(ℙ𝑛) is a free abelian group on 𝑛+1
generators [𝔸0] , . . . , [𝔸𝑛].

Assuming the existence of the intersection product, it is determined by basic linear algebra.
Let 𝜁 be the class of a hyperplane, which generates 𝐴1(ℙ𝑛). Since any 𝑘 generic hyperplanes
in ℙ𝑛 intersect transversely in a linear space of codimension 𝑘, the class 𝜁 𝑘 is represented by
[ℙ𝑛−𝑘] , a general (𝑛 − 𝑘)-plane in ℙ𝑛. Sending 𝜁 to 𝑠 gives the isomorphism of the intersection
ring 𝐴(ℙ𝑛) with ℤ[𝑠]/(𝑠𝑛+1). �

3.2.9 Corollary. If 𝑋 ⊂ ℙ𝑛 is an irreducible variety of dimension 𝑚 and degree 𝑑, then the Chow
groups in dimension at least 𝑚 are 𝐴𝑚(ℙ𝑛 \ 𝑋) � ℤ/(𝑑) and 𝐴𝑚′ (ℙ𝑛 \ 𝑋) = ℤ for 𝑚′ > 𝑚.

Proof. By excision Proposition 3.2.4(2), there is an exact sequence 𝐴(𝑋) → 𝐴(ℙ𝑛) → 𝐴(ℙ𝑛 \
𝑋) → 0. Since 𝐴𝑚(𝑋) � ℤ is generated by the fundamental class [𝑋] of 𝑋 , which is mapped
to 𝑑[ℙ𝑚] in 𝔸(ℙ𝑛), we get the first claim 𝐴𝑚(ℙ𝑛 \ 𝑋) � ℤ/(𝑑). The second claim follows by
the same exact sequence using the fact that 𝐴𝑚′ (𝑋) = 0 for 𝑚′ > dim(𝑋) = 𝑚. �

3.2.10 Corollary (Bézout’s Theorem). Let 𝑋1, . . . , 𝑋𝑘 be irreducible subvarieties of ℙ𝑛 of codi-
mension 𝑐𝑖 with

∑𝑘
𝑖=1 𝑐𝑖 ≤ 𝑛 and assume that the 𝑋𝑖 intersect generically transversely. Then

deg(𝑋1 ∩ 𝑋2 ∩ . . . ∩ 𝑋𝑘) =
𝑘∏
𝑖=1

deg(𝑋𝑖).

Here, we define the degree of a class [𝐴] ∈ 𝐴𝑘(𝑋) to be deg( [𝐴] · [ℙ𝑛−𝑘]) for any 𝑘 > 0.

Exercise 3.2.11. Use excision to compute the Chow groups of Segre varieties ℙ𝑚 × ℙ𝑛 (or also with
arbitrary number of factors, not just two). Can you explain the intersection product (again assuming its
existence) by fnding transverse intersections of cycles? Use the intersection ring to compute the degree
of the Segre variety ℙ𝑚 × ℙ𝑛 in its Segre embedding.

3.2.4 Affine stratifications
The point of this section is to formalize the idea that we used to compute the Chow group ofℙ𝑛

in Theorem 3.2.8.

Definition. We say that 𝑋 is stratified by subvarieties𝑈𝑖 if there are finitely many𝑈𝑖, each𝑈𝑖
is irreducible and locally closed in 𝑋 , 𝑋 is a disjoint union of the𝑈𝑖, and the closure of any𝑈𝑖 is
a union of 𝑈 𝑗. The sets 𝑈𝑖 are called the (open) strata of the stratification, while their closures
𝑈𝑖 are called the closed strata. A stratification with strata 𝑈𝑖 is affine if each open stratum is
isomorphic to some 𝔸𝑘. It is called quasi-affine if each 𝑈𝑖 is isomorphic to an open subset of
some 𝔸𝑘.
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3.2.12 Remark. The open strata can be recovered from the closed strata since

𝑈𝑖 = 𝑌𝑖 \
©«
⋃
𝑌𝑗(𝑌𝑖

𝑌𝑗
ª®¬ .

3.2.13 Proposition. Let {𝑈𝑖} be a quasiaffine stratification of an algebraic variety 𝑋 . Then 𝐴(𝑋)
is generated by the classes of the closed strata.

Proof. We use induction on the number of strata. If there is only one stratum, then the claim is
exactly Corollary 3.2.7.

Now pick a minimal stratum 𝑈0 (with respect to in dimension). Since the closure of 𝑈0 is a
union of strata, it must already be closed. This implies that𝑈 = 𝑋 \𝑈0 is stratified by the strata
other than𝑈0. By induction, 𝐴(𝑈) is generated by the closures of the strata other than𝑈0. Using
again Corollary 3.2.7 for𝑈0 we get 𝐴(𝑈0) = ℤ[𝑈0]. We use the exact sequence

𝐴(𝑈0) → 𝐴(𝑋) → 𝐴(𝑈) → 0

given by excision Proposition 3.2.4(2). The Chow group 𝐴(𝑈) is generated by the closed strata
in 𝑈 . These generators come from (the same) closed strata in 𝑋 . So the exact sequence shows
that 𝐴(𝑋) is also generated by the closed strata of the stratification. �

It can happen that the classes of closed strata in a quasi-affine stratification of a variety 𝑋
can be 0 in 𝐴(𝑋).

3.2.14 Example. We can stratify 𝔸1 = (𝔸1 \ {𝑝}) ∪ {𝑝} for any point 𝑝 ∈ 𝔸1. This is a
quasiaffine stratification but the class of 𝑝 in 𝐴(𝑋) = ℤ[𝔸1] is 0.

For affine stratifications, this cannot happen by the following general, recent result.

3.2.15 Theorem (Totaro, 2014). The classes of the closed strata in an affine stratification of a variety
𝑋 form a basis of 𝐴(𝑋).
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Chapter 4

Grassmannians

Let𝑉 be a finite-dimensional vector space over an algebraically closed field 𝐾 . WewriteGr(𝑘, 𝑉 )
for theGrassmannian of 𝑘-dimensional linear subspaces of𝑉 . If𝑉 = 𝐾𝑛, then we simply write
Gr(𝑘, 𝑛). In the projective situation, we use black board notation: 𝔾(𝑘, 𝑛) is the Grassmannian
of 𝑘-dimensional projective subspaces of an 𝑛-dimensional projective space. The translation to
the linear setup is simply𝔾(𝑘, 𝑛) = Gr(𝑘+ 1, 𝑛+ 1). The Grassmannians are projective varieties
via the Plücker embedding: we map a linear subspace of 𝑉 spanned by a basis 𝑣1, . . . , 𝑣𝑘 to
𝑣1∧𝑣2∧. . .∧𝑣𝑘 ∈ Λ𝑘𝑉 , which is, up to scaling, independent of the choice of the basis. The image of
this map is exactly the variety of decomposable elements in Λ𝑘𝑉 , which is an algebraic variety
invariant under scaling. This is the affine cone over theGrassmannian in the Plücker embedding.
If 𝑉 = 𝐾𝑛 and we write the vectors 𝑣1, . . . , 𝑣𝑘 as rows of a matrix 𝐴, then 𝑣1 ∧ . . . ∧ 𝑣𝑘 can be
expanded in the basis 𝑒𝑖1 ∧ . . . ∧ 𝑒𝑖𝑘 of Λ𝑘𝐾𝑛 for 𝑖1 < 𝑖2 < . . . < 𝑖𝑘 in terms of the 𝑘 × 𝑘-minors
of 𝐴. The coefficient of 𝑒𝑖1 ∧ . . . ∧ 𝑒𝑖𝑘 is the 𝑘 × 𝑘 minor of 𝐴with columns 𝑖1, . . . , 𝑖𝑘.

4.1. Bundles on the Grassmannian
Similar to the tautological bundle on projective space, there is a similar bundle on a Grassman-
nian called the universal subbundle. This can be used to construct the universal quotient
bundle and to describe the tangent bundle of Grassmannians. This is our first goal.

4.1.1 Universal subbundle
Definition. Let 𝜋 : 𝐸 → 𝐵 be a vector bundle of rank 𝑟. A subbundle of 𝐸 is a closed set
𝐸′ ⊂ 𝐸 such that 𝜋−1(𝑥) ∩ 𝐸′ is a vector subspace of 𝜋−1(𝑥) for every 𝑥 ∈ 𝐵 and 𝜋 |𝐸′ : 𝐸′ → 𝐵

is a vector bundle of some rank 𝑘.

We fix a 𝐾-vector space 𝑉 of dimension 𝑛 ∈ ℕ and a 𝑘 ∈ ℕ0. Let 𝑋 = Gr(𝑘, 𝑉 ) × 𝑉 be the
trivial bundle of rank 𝑛 over Gr(𝑘, 𝑉 ) whose fiber over every point is 𝑉 . The total space of the
universal subbundle S is, as a subset of 𝑋 , the incidence correspondence

S = {([Λ] , 𝑥) ∈ Gr(𝑘, 𝑉 ) × 𝑉 : 𝑥 ∈ Λ}

consisting of pairs of 𝑘-dimensional subspaces Λ ⊂ 𝑉 and points 𝑥 in Λ. The bundle morphism
of S is, of course, the projection to the first factor.
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Exercise 4.1.1. Let 𝑉 be an (𝑛 + 1)-dimensional 𝐾-vector space. Show that the universal 𝑘-plane Φ =

{([Λ] , 𝑥) : 𝑥 ∈ Λ} ⊂ 𝔾(𝑘,ℙ(𝑉 )) × ℙ(𝑉 ) is a closed subvariety of 𝔾(𝑘,ℙ(𝑉 )) × ℙ(𝑉 ) of dimension
𝑘 + (𝑘 + 1) (𝑛 − 𝑘) that is defined by bilinear forms on ℙ(Λ𝑘+1𝑉 ) × ℙ(𝑉 ).

4.1.2 Example. For 𝑘 = 1, we have Gr(1, 𝑉 ) = ℙ(𝑉 ) and the universal subbundle is the tauto-
logical bundle Oℙ(𝑉 ) (−1) on ℙ(𝑉 ) as discussed in Example 2.2.1.

The universal subbundle is indeed a vector bundle of rank 𝑘 on Gr(𝑘, 𝑉 ). To show this, we
will locally trivialize the bundle. We recall affine charts on the Grassmannian in a more abstract
setup than last term.

4.1.3 Construction. For any subspace Γ ⊂ 𝑉 of dimension 𝑛 − 𝑘 there is an affine chart 𝑈Γ ⊂
Gr(𝑘, 𝑉 ) of all 𝑘-dimensional subspaces that are complementary to Γ; that is 𝑈Γ = {[Λ] ∈
Gr(𝑘, 𝑉 ) : Λ∩ Γ = {0}}. This is an open subset ofGr(𝑘, 𝑉 ). Indeed, set 𝜂 = 𝑤1 ∧ 𝑤2 ∧ . . .∧ 𝑤𝑛−𝑘
for a basis 𝑤1, . . . , 𝑤𝑛−𝑘 of Γ so that 𝑈Γ = {[𝜔] ∈ Gr(𝑘, 𝑉 ) : 𝜔 ∧ 𝜂 ≠ 0} is the complement of a
hyperplane section ofGr(𝑘, 𝑉 ). To see abstractly that𝑈Γ is isomorphic to an affine space𝔸𝑘(𝑛−𝑘)

of dimension 𝑘(𝑛 − 𝑘), fix [Ω] ∈ 𝑈Γ so that 𝑉 = Γ ⊕ Ω. Let 𝜋Γ : 𝑉 → Γ and 𝜋Ω : 𝑉 → Ω be
the quotient maps. A 𝑘-dimensional subspace Λ ∈ 𝑉 that is complementary to Γ is isomorphic
to Ω via 𝜋Ω. Write 𝜋−1Ω : Ω → Λ ⊂ 𝑉 for the inverse and define the linear map 𝜑 : Ω → Γ by
the composition 𝜋Γ ◦ 𝜋−1Ω . The subspace Λ is then the graph of 𝜑 in 𝑉 = Ω ⊕ Γ. Conversely
every linear map fromΩ to Γ gives rise to a 𝑘-dimensional subspace of 𝑉 , namely its graph. This
establishes a bijection of 𝑈Γ with Hom(Ω,Γ) � 𝔸𝑘(𝑛−𝑘) . To see that this is an isomorphism of
algebraic varieties, we have to choose coordinates, see Exercise 4.1.4. This exercise shows that
the entry 𝑎𝑖,𝑗 of the matrix 𝐴 is a regular function on 𝑈Γ making the bijection 𝑈Γ � 𝔸𝑘(𝑛−𝑘) an
isomorphism of affine algebraic varieties.

Exercise 4.1.4. Explicitly show that 𝑈Γ � 𝔸𝑘(𝑛−𝑘) for the choices of subspaces Γ = span{𝑒𝑘+1, . . . , 𝑒𝑛}
and Ω = span{𝑒1, . . . , 𝑒𝑘} in 𝐾𝑛. The concrete version of the abstract construction above is that𝑈Γ is the
set of 𝑘-dimensional subspaces of 𝐾𝑛 that are the row spaces of matrices of the form

©«
1 0 . . . 0 𝑎1,1 𝑎1,2 . . . 𝑎1,𝑛−𝑘
0 1 . . . 0 𝑎2,1 𝑎2,2 . . . 𝑎2,𝑛−𝑘
...

. . .
...

...
...

0 0 . . . 1 𝑎𝑘,1 𝑎𝑘,2 . . . 𝑎𝑘,𝑛−𝑘

ª®®®®¬
because the rowspan of 𝐵 corresponds to the linear map 𝜑 : Ω→ Γ given by the transpose of the matrix
𝐴 = (𝑎𝑖 𝑗).

4.1.5 Proposition. The subset S of 𝑋 whose fiber over a point [𝑈] ∈ Gr(𝑘, 𝑉 ) is the subspace
𝑈 ⊂ 𝑉 is a vector bundle of rank 𝑘 over Gr(𝑘, 𝑉 ).

Proof. We first show that S is an algebraic subset of the trivial bundle 𝑋 = Gr(𝑘, 𝑉 ) × 𝑉 and
then give local trivializations of S.

In the Plücker embedding, [𝑈] is given by 𝜂 = 𝑣1 ∧ 𝑣2 ∧ . . . ∧ 𝑣𝑘 ∈ Λ𝑘𝑉 for a basis 𝑣1, . . . , 𝑣𝑘
of 𝑈 . So an element 𝑥 ∈ 𝑉 is in 𝑈 if and only if 𝜂 ∧ 𝑥 ∈ Λ𝑘+1𝑉 is 0. This is an algebraic
condition. Explicitly, let 𝐴 be the (𝑘 + 1) × 𝑛 matrix whose rows are 𝑣1, . . . , 𝑣𝑘 and 𝑥 (in some
basis of 𝑉 ). Then 𝜂 ∧ 𝑥 = 0 is equivalent to the vanishing of all (𝑘 + 1) × (𝑘 + 1)-minors of 𝐴.
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On 𝑋 = Gr(𝑘, 𝑉 ) × 𝑉 , these minors are bilinear equations in the Plücker coordinates of 𝑈 and
the coordinates of 𝑥. Hence they are well-defined and S is a closed subset of 𝑋 .

On the usual affine charts as in Construction 4.1.3, the local trivialization ofS is simply given
by the projection 𝜋Ω, namely as 𝜋−11 (𝑈Γ) → 𝑈Γ × Ω, ( [Λ] , 𝑥) ↦→ ([Λ] , 𝜋Ω(𝑥)). �

Exercise 4.1.6. What are the transition functions of the universal subbundle of Gr(𝑘, 𝑉 )?

4.1.2 Universal quotient bundle
The universal subbundle S on Gr(𝑘, 𝑉 ) is a subbundle of the trivial bundle Gr(𝑘, 𝑉 ) × 𝑉 on
Gr(𝑘, 𝑉 ) and we can construct the quotient bundle Q of the trivial one modulo the universal
subbundle, which gives the universal quotient bundle Q on Gr(𝑘, 𝑉 ). The fiber over [Λ] ∈
Gr(𝑘, 𝑉 ) is simply 𝑉/Λ, which is a (𝑛− 𝑘)-dimensional vector space so that Q is a vector bundle
of rank 𝑛 − 𝑘 on Gr(𝑘, 𝑉 ).

As a locally free sheaf of OGr(𝑘,𝑉 )-modules, the quotient bundle Q is given by the exact se-
quence

0→ S → Odim(𝑉 ) � O ⊗𝐾 𝑉 → Q → 0,

where we write O for the structure sheaf OGr(𝑘,𝑉 ) of the Grassmannian. For the tensor product
O⊗𝐾𝑉 , we abused notation andwrote𝑉 for the constant sheaf with stalks𝑉 (as 𝐾-vector spaces)
so that O ⊗𝐾 𝑉 is the sheaf of sections of the trivial vector bundle. The point is that the sheaf
defined by this exact sequence is locally free of rank dim(𝑉 ) − 𝑘 and hence the sheaf of sections
of a vector bundle on Gr(𝑘, 𝑉 ). There is an open cover of {𝑈Γ} of Gr(𝑘, 𝑉 ) so that S is locally
free using the local trivialization 𝑈Γ × Ω. A section 𝑠 : 𝑈Γ → Ω of S on this local trivialization
maps to Λ ⊂ 𝑉 by 𝜋−1Ω ◦ 𝑠 with the isomorphism 𝜋Ω |Λ : Λ → Ω. The composition of 𝜋−1Ω ◦ 𝑠
with the projection map 𝑉 → 𝑉/Λ is a section of Q over𝑈Γ. A section 𝑠 : 𝑈Γ → 𝑉 of the trivial
bundle O ⊗ 𝑉 maps to 0 in Q if it satisfies 𝑠( [Λ]) ∈ Λ for all [Λ] ∈ 𝑈Γ, which is the condition
for being a section of S. We give local trivializations of Q below in Proposition 4.1.8.

4.1.7 Example. If 𝑘 = dim(𝑉 ) − 1 so that Gr(𝑘, 𝑉 ) = ℙ(𝑉 ∗), the universal quotient bundle Q
is isomorphic to Oℙ(𝑉 ∗) (1). The above exact sequence is

0→ S → Oℙ(𝑉 ∗) ⊗ 𝑉 → Q → 0

and Q is a line bundle so that Q = O(𝑑) for some 𝑑 ∈ ℤ (see Example 2.4.19). Let’s determine 𝑑.
Let 𝑉 = 𝐾𝑛+1 and choose local trivializations of S with Γ𝑖 = span{𝑒𝑖} for 𝑖 = 0, 1 and

Ω0 = span{𝑒1, 𝑒2, . . . , 𝑒𝑛} as well as Ω1 = span{𝑒0, 𝑒2, . . . , 𝑒𝑛}. A subspace [Λ] ∈ 𝑈Γ0 ∩ 𝑈Γ1 is
represented by two maps 𝜑𝑖 : Ω𝑖 → Γ𝑖. The graph of 𝜑0 representing a linear subspace Λ in
Γ0 ⊕ Ω0 is the row span of a 𝑛 × (𝑛 + 1) matrix of the form

𝐴 =

©«
𝑥1 −1 0 . . . 0
𝑥2 0 −1 0
...

...
. . .

. . .

𝑥𝑛 0 0 −1

ª®®®®¬
meaning that 𝜑0(−𝑒𝑗) = 𝑥 𝑗𝑒0 for 𝑗 = 1, . . . , 𝑛. A normal vector of this hyperplane is the vector
(1, 𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ (𝐾𝑛+1)∗ in the dual basis. In the affine chart𝑈Γ1 , the subspace is represented
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by 𝜑1 : Ω1 → Γ1, say 𝜑1(−𝑒𝑗) = 𝑦𝑗𝑒1 for 𝑗 = 0, 2, . . . , 𝑛, which corresponds to the matrix

𝐵 =

©«
−1 𝑦0 0 . . . 0
0 𝑦2 −1 0
...

...
. . .

...

0 𝑦𝑛 0 −1

ª®®®®¬
.

Here, a normal vector is ( 𝑦0, 1, 𝑦2, . . . , 𝑦𝑛). We know that 𝑦0 ≠ 0 because Λ ∩ Γ0 = {0}. Since
they represent the same hyperplane, the two normal vectors are equal up to scaling so that
(1, 𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑥1/𝑦0( 𝑦0, 1, 𝑦2, , . . . , 𝑦𝑛). Since this is the transition function of Oℙ(𝑉 ∗) (1),
the bundle Q is isomorphic to Oℙ(𝑉 ∗) (1) as claimed.

4.1.8 Proposition. The universal quotient bundle Q is a vector bundle of rank dim(𝑉 ) − 𝑘 on
Gr(𝑘, 𝑉 ).

Proof. We locally trivialize Q over the open sets 𝑈Γ ⊂ Gr(𝑘, 𝑉 ) as 𝑈Γ × Γ. For [Λ] ∈ 𝑈Γ repre-
sented by 𝜑 : Ω → Γ (for fixed Ω ⊂ 𝑉 with Ω ∩ Γ = {0}), the isomorphism 𝑉/Λ → Γ is given
by mapping (𝑥, 𝑦) ∈ Ω ⊕ Γ to 𝑦 − 𝜑(𝑥) ∈ Γ; this linear map induces a linear isomorphism
𝑉/Λ→ Γ because Λ is the kernel of that linear map. Now let Γ1 and Γ2 be two subspaces of 𝑉 of
dimension 𝑛− 𝑘 and pick a subspaceΩ ⊂ 𝑉 that is complementary to both (so thatΩ∩Γ𝑖 = {0}
for 𝑖 = 1, 2). The transition function of Q from 𝑈Γ1 × Γ1 → 𝑈Γ2 × Γ2 then comes from the iso-
morphisms 𝛼𝑖 : 𝑉/Ω→ Γ𝑖 (𝑖 = 1, 2) by mapping ( [Λ] , 𝑣) ∈ 𝑈Γ1 × Γ1 to ( [Λ] , 𝛼2 ◦ 𝛼−11 (𝑣)), which
indeed lands in𝑈Γ2 × Γ2. �

Exercise 4.1.9. What are the transition functions of the bundleQ in coordinates given by choosing bases
of Ω and Γ on Hom(Ω,Γ) � 𝔸𝑘(𝑛−𝑘)?

4.1.3 Tangent bundle
In terms of these two bundlesS andQ on aGrassmannianGr(𝑘, 𝑉 ), we can describe the tangent
bundle. Let us first look at a point. In a local chart 𝑈Γ of Gr(𝑘, 𝑉 ), the point Ω corresponds to
0 ∈ Hom(Ω,Γ) (see Construction 4.1.3 for notation). The vector spaceHom(Ω,Γ) is𝔸𝑘(𝑛−𝑘) with
𝑛 = dim(𝑉 ). The tangent space to 0 in 𝔸𝑚 is isomorphic to 𝔸𝑚. So point-wise, using Γ = 𝑉/Ω,
we have 𝑇[Λ] Gr(𝑘, 𝑉 ) = Hom(Λ, 𝑉/Λ). Globally, this suggests that TGr(𝑘,𝑉 ) = Hom(S,Q) as
locally free OGr(𝑘,𝑉 )-modules.

4.1.10 Theorem. The tangent bundle TGr(𝑘,𝑉 ) of the Grassmannian is isomorphic to the vector bun-
dleHom(S,Q), whereS is the universal subbundle andQ the universal quotient bundle ofGr(𝑘, 𝑉 ).

Proof. We have just seen that we have this isomorphism on every fiber so that we have to check
that these local isomorphisms extend to an isomorphism of bundles. Let 𝑈 = 𝑈Γ ∩ 𝑈Γ′ be
an open subset of the Grassmannian with the notation in Construction 4.1.3 and pick a point
[Ω] ∈ 𝑈 . Then𝑈 is the open subset of linear maps inHom(Ω,Γ) whose graphs meet Γ′ trivially.
As a subset of Hom(Ω,Γ′), this is the set of linear maps whose graphs meet Γ trivially. The two
representations of a subspace in 𝑈 are related via the isomorphisms 𝛼 : Γ → 𝑉/Ω ← Γ′ : 𝛽 by
mapping 𝜑 ∈ Hom(Ω,Γ) to 𝛽−1◦𝛼◦𝜑 ∈ Hom(Ω,Γ′). The vector spaceHom(Ω,Γ) is the tangent
space to𝑈Γ at Ω and the same for Γ′. We now argue that the transition functions of the tangent
bundle and the bundleHom(S,Q) are the same showing that TGr(𝑘,𝑉 ) � Hom(S,Q).

Algebraische Geometrie II / Rainer Sinn / Uni Leipzig (2023)



4.2. Lines in Projective 3-space 35

For the tangent bundle, the transition function from
(
TGr(𝑘,𝑉 ) |𝑈Γ

)
|𝑈Γ′ to

(
TGr(𝑘,𝑉 ) |𝑈Γ′

)
|𝑈Γ

is the derivative of the transition function of the Grassmannian. The charts 𝑈Γ and 𝑈Γ′ are
isomorphic to Hom(Ω,Γ) and Hom(Ω,Γ′), respectively. The transition is given by 𝛽−1 ◦ 𝛼 with
the maps above. Since this is linear, the differential of this map is again 𝛽−1 ◦ 𝛼 as a map from
the tangent space Hom(Ω,Γ) = 𝑇[Ω]𝑈Γ to Hom(Ω,Γ′) = 𝑇[Ω]𝑈Γ′ .

The bundleHom(S,Q) has the same transition functions completing the proof. �

4.1.11 Example. For ℙ𝑛 = Gr(1, 𝐾𝑛+1), this theorem is essentially the Euler sequence

0→ Oℙ𝑛 → Oℙ𝑛 (1) ⊗ 𝑉 → Tℙ𝑛 → 0.

We have seen in Example 4.1.2 that the universal subbundleS onGr(1, 𝐾𝑛+1) is Oℙ𝑛 (−1) so that
Tℙ𝑛 � Hom(Oℙ𝑛 (−1),Q) � Oℙ𝑛 (1) ⊗ Q by Theorem 4.1.10. We get the Euler sequence from

0→ S → Oℙ𝑛 ⊗ 𝑉 → Q → 0

by tensoring this sequence with the line bundle Oℙ𝑛 (1) using O(𝑑) ⊗ O(1) = O(𝑑 + 1).
Locally, at a point, the tangent space 𝑇𝑝ℙ𝑛 can be identified with (𝐾𝑛+1)/𝑝 by choosing a

basis 𝑝 = 𝐾 · 𝑣 of the line 𝑝. This isomorphism is the quotient map induced on (𝐾𝑛+1)/𝑝 by
the differential 𝑑𝑞𝑣 : 𝑇𝑣𝑈 → 𝑇[𝑣]ℙ

𝑛 of the quotient map 𝑞 : 𝑈 = 𝑉 \ {0} → ℙ𝑛, 𝑥 ↦→ [𝑥].
Since the quotient map is linear, the differential 𝑑𝑞𝑣 is also simply the quotient map. But how is
can we identify 𝑇𝑣𝑈 with 𝐾𝑛+1? The Zariski tangent space to 𝑈 at 𝑣 is (𝔪𝑣/𝔪2

𝑣)∗, where 𝔪 =

(𝑥0−𝑣0, . . . , 𝑥𝑛−𝑣𝑚) is the maximal ideal generated by the linear forms given by the coordinates
of 𝑣. An element 𝑤 ∈ 𝐾𝑛+1 is a linear form on 𝔪𝑣 by sending a polynomial 𝑓 to (𝐷𝑤𝑓 ) (𝑣), the
directional derivative of 𝑓 in direction 𝑤 at 𝑣. This isomorphism 𝛼𝑣 of 𝐾𝑛+1 with the Zariski
tangent space (𝔪𝑣/𝔪2

𝑣)∗ depends on the choice of 𝑣: the isomorphism 𝛼𝜆𝑣 of 𝐾𝑛+1 with 𝑇𝜆𝑣𝑈
is 𝑤 ↦→ (𝑓 ↦→ (𝐷𝑤𝑓 ) (𝜆𝑣)). So we get two surjections 𝜑𝑣 = 𝑑𝑞𝑣 ◦ 𝛼𝑣 : 𝐾𝑛+1 → 𝐾𝑛+1/𝐾 · 𝑣 as
well as 𝜑𝜆𝑣 = 𝑑𝑞𝜆𝑣 ◦ 𝛼𝜆𝑣 : 𝐾𝑛+1 → 𝐾𝑛+1/𝐾 · 𝑣. We have 𝜆𝜑𝑣(𝑢) = 𝜑𝜆𝑣(𝑢) and this map depends
on the scaling of 𝑣 even though [𝑣] = [𝜆𝑣] ∈ ℙ𝑛 for any non-zero 𝜆. To get a well-defined
map to 𝑇𝑝ℙ𝑛, independent of the scaling, we simply tensor with a 1-dimensional vector space:
there is a natural isomorphism span{𝑣}∗ ⊗ 𝑉/span{𝑣} → 𝑇[𝑣]ℙ

𝑛 sending (� , 𝑢) to � (𝑣)𝜑𝑣(𝑢).
A rescaling of 𝑣 therefore does not affect this map. This isomorphism is the local version of the
isomorphism of Oℙ𝑛 (1) ⊗ Q with Tℙ𝑛 .

4.2. Lines in Projective 3-space

Our next goal is to find an affine stratification of Gr(𝑘, 𝑉 ), which we will achieve in terms of
Schubert varieties. We start with the case 𝑘 = 2 and dim(𝑉 ) = 4 as a warm up. The construc-
tion relies on the choice of a complete flag, which is a nested and maximal sequence of vector
subspaces. Since the general linear group of 𝑉 acts transitively on the set of complete flags, it
turns out that the rational equivalence classes of the Schubert varieties do not depend on the
choice of the flag. We will give a reason for this below, see Theorem 4.3.1. The Schubert varieties
themselves do depend on the flag.

4.2.1 Construction. Fix a complete flag V in ℙ3, that is a point 𝑝 ∈ ℙ3, a line 𝐿 ⊂ ℙ3
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containing 𝑝 and a plane 𝐻 ⊂ ℙ3 containing 𝐿. Then we have the following Schubert varieties

Σ0,0 = 𝔾(1, 3)
Σ1,0 = {Λ : Λ ∩ 𝐿 ≠ ∅}
Σ2,0 = {Λ : 𝑝 ∈ Λ}
Σ1,1 = {Λ : Λ ⊂ 𝐻}
Σ2,1 = {Λ : 𝑝 ∈ Λ ⊂ 𝐻}
Σ2,2 = {Λ : 𝐿 = Λ}

The indexing is chosen such that Σ𝑎,𝑏 is the set of lines in ℙ3 that intersect the (2 − 𝑎)-
dimensional projective space of the flag V in a point and the (3 − 𝑏)-dimensional projective
space in a line. With this indexing, Σ𝑎,𝑏 has codimension 𝑎 + 𝑏 in 𝔾(1, 3). For simplicity, we will
usually drop trailing zeroes in the index (e.g. write Σ1 for Σ1,0). If we want to refer to the fixed
flag, we write Σ𝑎,𝑏(V). If the Schubert variety depends only on one subspace of the flag, we also
sometimes write the subspace instead of the flag, e.g. Σ2(𝑝) instead of Σ2,0(V).

4.2.2 Proposition. The Schubert varieties Σ𝑎,𝑏 ⊂ 𝔾(1, 3) defined above are irreducible.

Proof. The variety Σ1,0 is irreducible because it is the projection of the irreducible incidence
correspondence {(𝐿′, 𝑝) ∈ 𝔾(1, 3) ×𝐿 : 𝑝 ∈ 𝐿′}. This incidence correspondence remembers the
intersection point of a line 𝐿′ ∈ Σ1,0 with 𝐿. Its fibers over 𝑝 ∈ 𝐿 are isomorphic to ℙ2 (thought
of as the image of ℙ3 under projection away from 𝑝 ∈ 𝐿). The same argument works for Σ2,1.

The variety Σ2,0 is isomorphic to ℙ2 by projection away from 𝑝. The variety Σ1,1 is the dual
projective plane of 𝐻 . The last one, Σ2,2 is a point. �

Exercise 4.2.3. Show that Σ2,1 is irreducible by setting up the appropriate incidence correspondence.

Definition. A Schubert cell in 𝔾(1, 3) is the quasi projective variety Σ𝑜
𝑎,𝑏

obtained from Σ𝑎,𝑏
by removing all intersections of Σ𝑎,𝑏 with the other Schubert varieties Σ𝑎′,𝑏′ in 𝔾(1, 3) that are
strictly contained in Σ𝑎,𝑏.

The poset of Schubert varieties in 𝔾(1, 3) is the following.

Σ2

{𝐿} = Σ2,2 Σ2,1 Σ1 𝔾(1, 3)

Σ1,1

4.2.4 Example. The Schubert cell Σ𝑜1 is Σ1 \
(
Σ2 ∪ Σ1,1

)
. Concretely, Σ𝑜1 is the following set of

lines in ℙ3.
Σ𝑜1 = {Λ ⊂ ℙ3 : Λ ∩ 𝐿 ≠ ∅ but 𝑝 ∉ Λ and Λ ⊄ 𝐻}

4.2.5 Proposition. The Schubert cell Σ𝑜1 is isomorphic to an affine space.
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Proof. Let 𝐻′ be a plane in ℙ3 containing 𝑝 but not containing 𝐿 so that 𝐻′ ∩ 𝐿 = {𝑝}. Any line
Λ ∈ Σ𝑜1 intersects 𝐿 in a point that is not 𝑝 and so it intersects 𝐻′ in a unique point. Since any such
line Λ is not contained in 𝐻 , the intersection point of Λwith 𝐻 does not lie in 𝐻′∩𝐻 , which is a
line in 𝐻 . So we get two maps Σ𝑜1 → (𝐿 \ {𝑝}) � 𝔸1, Λ ↦→ Λ∩ 𝐿, and Σ𝑜1 → (𝐻′ \ (𝐻′ ∩ 𝐻)) �
𝔸2, Λ ↦→ Λ ∩ 𝐻′. The line Λ is uniquely determined by these two intersection points because
Λ ∩ 𝐿 ⊂ 𝐻 , whereas Λ ∩ 𝐻′ ⊄ 𝐻 . So the product of these two maps gives an isomorphism
Σ𝑜1 → 𝔸1 ×𝔸2 � 𝔸3. �

Exercise 4.2.6. Show that the map Σ𝑜1 → 𝐿 \ {𝑝} sending Λ to the intersection point Λ ∩ 𝐿 is indeed a
morphism of algebraic varieties.

Exercise 4.2.7. Show that Σ𝑜2,1 is isomorphic to 𝔸1. Then show that the Schubert cells Σ𝑜2 and Σ1,1 are
isomorphic to 𝔸2 by a similar argument as above (for Σ𝑜1).

So the Schubert varieties are the closed strata of an affine stratification of 𝔾(1, 3). Propo-
sition 3.2.13 shows that the Chow group of 𝔾(1, 3) is generated by the classes of the Schubert
varieties. Write 𝜎𝑎,𝑏 for the class of Σ𝑎,𝑏 in 𝐴(𝔾(1, 3)).
4.2.8 Remark. Since any two complete flagsV andV ′ in ℙ𝑛 are related by a change of coordinates, the
induced action of PGL𝑛+1 on 𝔾(𝑘, 𝑛) maps the Schubert cells and Schubert varieties with respect to the
flags to each other. So the rational equivalence class of a Schubert variety does not depend on the choice
of a complete flag in ℙ𝑛, see Theorem 4.3.1.

Now that we have generators of the Chow group of 𝔾(1, 3) as a free abelian group, we can
determine the intersection product, assuming its existence, because the Schubert varieties inter-
sect transversely.

4.2.9 Theorem. The six Schubert classes 𝜎𝑎,𝑏 ∈ 𝐴𝑎+𝑏(𝔾(1, 3)) for 0 ≤ 𝑏 ≤ 𝑎 ≤ 2 freely generate
𝐴(𝔾(1, 3)) as a graded abelian group. The intersection product is given by

𝜎 21 = 𝜎1,1 + 𝜎2 (𝐴1 × 𝐴1 → 𝐴2) (4.2.10)
𝜎1 · 𝜎1,1 = 𝜎1 · 𝜎2 = 𝜎2,1 (𝐴1 × 𝐴2 → 𝐴3) (4.2.11)

𝜎1 · 𝜎2,1 = 𝜎2,2 (𝐴1 × 𝐴3 → 𝐴4) (4.2.12)
𝜎 21,1 = 𝜎

2
2 = 𝜎2,2, 𝜎1,1 · 𝜎2 = 0 (𝐴2 × 𝐴2 → 𝐴4). (4.2.13)

Proof. Proposition 3.2.13 shows that the Schubert classes generate 𝐴(𝔾(1, 3)). The formulae for
the intersection show that the two generators of 𝐴2(𝔾(1, 3)) are independent so that freely
generate 𝐴(𝔾(1, 3)).

To prove the formulae for intersection, we will use that two Schubert varieties Σ𝑎,𝑏(V) and
Σ𝑎′,𝑏′ (V′) for two generic complete flagsV andV′ intersect generically transversely (which we
will prove later, at least in special cases). This is implied by general results, for example Kleiman’s
Theorem (see below, Theorem 4.3.1). For simplicity, write Σ𝑎,𝑏 and Σ′𝑎′,𝑏′ .

Let’s start with intersections of Schubert cycles of complementary dimension, in which case
we simply have to count the number of intersection points by generic transversality. To compute
𝜎 22 , we look at

Σ2 ∩ Σ′2 = {Λ ∈ 𝔾(1, 3) : 𝑝 ∈ Λ and 𝑝′ ∈ Λ},
which consists only of the unique line spanned by 𝑝 and 𝑝′. This means that 𝜎 22 = 𝜎2,2 as claimed.
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The intersection of Σ1,1 and Σ′1,1 consists of all lines Λ such that Λ ⊂ 𝐻 and Λ ⊂ 𝐻′, which
means that Λ = 𝐻 ∩ 𝐻′ and 𝜎 21,1 = 𝜎2,2.

The Schubert varieties Σ2 and Σ′1,1 are disjoint because 𝑝 ∉ 𝐻
′. The intersection product of

𝜎2 and 𝜎1,1 is therefore 0.
Finally, Σ1 ∩ Σ′2,1 contains all lines Λ such that Λ∩ 𝐿 ≠ ∅ and 𝑝′ ∈ Λ ⊂ 𝐻′. Since 𝐿 intersects

𝐻′ in a unique point which is not 𝑝′, there is a unique such line. So we have 𝜎1 · 𝜎2,1 = 𝜎2,2.
Next, we discuss the intersections that have codimension 1. The intersection Σ1 ∩ Σ′2 is the

set of lines Λ intersecting 𝐿 and containing the point 𝑝′, which is the set of lines spanned by 𝑝′

and a point in 𝐿. With respect to a flag starting with 𝑝′ and containing the plane spanned by 𝑝′

and 𝐿, this is the Schubert variety Σ2,1. So we get 𝜎1 · 𝜎2 = 𝜎2,1. The intersection of Σ1 with Σ′1,1 is
also Σ2,1 with respect to a flag containing the point 𝐿∩𝐻′ and the plane 𝐻′ so that 𝜎1 · 𝜎1,1 = 𝜎2,1.

The most interesting case is Σ1 ∩ Σ′1 because this is not a Schubert variety. We know that 𝜎 21
has codimension 2 so that it is unique a ℤ-linear combination

𝜎 21 = 𝛼𝜎1,1 + 𝛽𝜎2.

We determine these coefficients by intersecting with classes of complementary dimension. (This
is known as the method of undetermined coefficients.)

Assuming the existence of the intersection product, we have associativity so that

(𝛼𝜎1,1 + 𝛽𝜎2)𝜎2 = 𝜎 21 𝜎2 = 𝜎1(𝜎1𝜎2) = 𝜎1𝜎2,1 = 𝜎2,2.

Multiplying out the left hand side gives 𝛼0 + 𝛽𝜎2,2 = 𝛽𝜎2,2 (using 𝜎1,1 · 𝜎2 = 0 and 𝜎 22 = 𝜎2,2).
By comparing coefficients with the right-hand side of the above equation, this implies 𝛽 = 1. A
similar computation for 𝜎 21 · 𝜎1,1 gives 𝛼 = 1. In sum, we get 𝜎 21 = 𝜎1,1 + 𝜎2 as claimed.

This completes the description of the intersection product on 𝐴(𝔾(1, 3)). �

Assuming the existence of the intersection product, this result gives the following description
of 𝐴(𝔾(1, 3)).

4.2.14 Corollary. The Chow ring 𝐴(𝐺(1, 3)) is isomorphic as a graded ℤ-algebra to

ℤ[𝜎1, 𝜎2]/(𝜎 31 − 2𝜎1𝜎2, 𝜎21 𝜎2 − 𝜎 22 ).

Proof. The grading of 𝐴 = ℤ[𝜎1, 𝜎2]/(𝜎 31 − 2𝜎1𝜎2, 𝜎 21 𝜎2 − 𝜎 22 ) is given by assigning codimension
1 to 𝜎1 and codimension 2 to 𝜎2. With this grading, the two relations are homogeneous of degree
3 and 4, respectively. In the Chow ring, the relations 𝜎 21 = 𝜎1,1 + 𝜎2, 𝜎1𝜎2 = 𝜎2,1, and 𝜎 21 𝜎2 = 𝜎2,2
hold. So 𝜎1,1 is 𝜎 21 − 𝜎2 in 𝐴 and so forth. The two ways of writing 𝜎2,1 as 𝜎1𝜎2 and 𝜎1𝜎1,1 give rise
to the first relation 𝜎 31 − 2𝜎1𝜎2 = 0. The three ways of writing 𝜎2,2 as 𝜎 21,1, 𝜎1𝜎2,1, and 𝜎

2
2 give rise

to the second relation. �

The quotient ring on the right-hand side of the above equation is a 1-dimensionalℤ-algebra
(Krull dimension). In this sense, the Chow ring of 𝐴(𝔾(1, 3)) is a complete intersection. This
fact generalizes to Chow rings of any Grassmannian.

Let us check that Schubert cycles indeed intersect transversely by determining the tangent
space to Σ2. The tangent spaces to other Schubert cycles Σ𝑎,𝑏 have a similar description and imply
transversality of the intersections in the above proof (Exercise 4.2.16).
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4.2.15 Proposition. Let Σ = Σ2(𝑝) be the Schubert cycle of lines in ℙ3 = ℙ(𝑉 ) containing 𝑝.
For [𝐿] ∈ Σ, write �̂� ⊂ 𝑉 for the 2-dimensional subspace corresponding to 𝐿 ⊂ ℙ(𝑉 ). Using the
identification of 𝑇[𝐿]𝔾(1, 3) with Hom(�̂�→ 𝑉/�̂�), we have

𝑇[𝐿]Σ = {𝜑 ∈ Hom(�̂�, 𝑉/�̂�) : 𝜑(𝑝) = 0}.

This proposition implies in particular that two Schubert cycles Σ2(𝑝) and Σ2(𝑝′) for two
distinct points 𝑝, 𝑝′ ∈ ℙ3 intersect transversely at the line 𝐿 = 〈𝑝, 𝑝′〉, which is their unique
intersection point. Indeed,

𝑇[𝐿]Σ(𝑝) ∩ 𝑇[𝐿]Σ(𝑝′) = {𝜑 ∈ Hom(�̂�, 𝑉/�̂�) : 𝜑(𝑝) = 0 and 𝜑(𝑝′) = 0} = {0}

because 𝑝 and 𝑝′ span 𝐿.

Proof of Proposition 4.2.15. Choose a vector space Γ ⊂ 𝑉 complementary to �̂� so that the open
subset𝑈Γ of the Grassmannian can be identified with the vector spaceHom(�̂�,Γ) (see Construc-
tion 4.1.3). Then𝑈Γ∩Σ2(𝑝) is the linear subspace ofHom(�̂�,Γ) containing those 𝜑with 𝜑(𝑝) = 0.
Since this is a linear condition on 𝜑, the tangent space has the same description, as claimed. �

Exercise 4.2.16. Compute the tangent spaces of the Schubert varieties Σ𝑎,𝑏 for 0 ≤ 𝑏 ≤ 𝑎 ≤ 2 at a
general point [Λ] ∈ Σ𝑎,𝑏 as above. Use your description to show that the intersections in the proof of
Theorem 4.2.9 are generically transverse.

Exercise 4.2.17. Which of the Schubert varieties Σ𝑎,𝑏 with 0 ≤ 𝑏 ≤ 𝑎 ≤ 2 are smooth varieties? If they
are singular, what is their singular locus?

4.2.1 Applications

A straightforward application is the following result.

4.2.18 Corollary. Given four general lines 𝐿𝑖 ⊂ ℙ3, there are 2 lines that intersect all of them.

Proof. The Schubert variety of linesmeeting a fixed line 𝐿𝑖 is Σ1(𝐿𝑖). For four general lines, these
Schubert varieties meet transversely so that the number of points in their intersection is given
by the degree of 𝜎 41 , which is equal to

𝜎 41 = (𝜎1,1 + 𝜎2)2 = 𝜎 21,1 + 2𝜎1,1𝜎2 + 𝜎 22 = 𝜎2,2 + 0 + 𝜎2,2 = 2𝜎2,2,

which has degree 2. �

Let us try one application to secant varieties. Let 𝐶 ⊂ ℙ3 be a smooth curve of degree 𝑑
and genus 𝑔. Consider the map 𝜏 : 𝐶 × 𝐶 d 𝔾(1, 3) mapping two points 𝑝, 𝑞 ∈ 𝐶 to the line
𝐿 = 〈𝑝, 𝑞〉 spanned by these two points. This is, as such, not defined for 𝑝 = 𝑞 so that we only
get a rational map from the product 𝐶 × 𝐶 to the Grassmannian of lines in ℙ3. We want to
determine the class of the (closure of the) image of this map, which we expect to be a surface
having codimension 2 in 𝔾(1, 3).
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4.2.19 Proposition. Let 𝐶 ⊂ ℙ3 be a smooth irreducible curve of degree 𝑑 and genus 𝑔 that is not
contained in any hyperplane in ℙ3. The closure of the image of the map 𝜏 : 𝐶 → 𝐶 d 𝔾(1, 3)
mapping (𝑝, 𝑞) to the line 𝐿 = 〈𝑝, 𝑞〉 ⊂ ℙ3 has class((

𝑑 − 1
2

)
− 𝑔

)
𝜎2 +

(
𝑑

2

)
𝜎1,1 ∈ 𝐴2(𝔾(1, 3)).

Proof. We compute the class of 𝜏 (𝐶 × 𝐶) by specialization. The image has dimension 2 for
general reasons (since a general fiber of 𝜏 can only contain finitely many points). So we know
that the class [𝜏 (𝐶 × 𝐶)] is a ℤ-linear combination 𝛼𝜎2 + 𝛽𝜎1,1. Since 𝜎2𝜎1,1 = 0, we get 𝛽 by
couting the lines in [𝜏 (𝐶 × 𝐶)]𝜎1,1. Those lines intersect the curve 𝐶 in two points and they
are contained in the plane 𝐻 of a flag so that [Σ1,1(𝐻)] = 𝜎1,1. This plane 𝐻 intersects 𝐶 in 𝑑
distinct points so that it contains

(𝑑
2
)
lines through two points of 𝐶. This shows that 𝛽 =

(𝑑
2
)
.

Similarly, intersecting with 𝜎2 gives 𝛼. Choosing a flag starting with 𝑝 ∈ ℙ3, we have Σ2(𝑝) =
{[𝐿] ∈ 𝔾(1, 3) : 𝑝 ∈ 𝐿}. The secants of 𝐶 through 𝑝 make the intersection Σ2(𝑝) ∩ 𝜏 (𝐶 × 𝐶)
and we count these lines as follows. Consider the projection 𝜋𝑝 : ℙ3 d ℙ2 away from 𝑝. The
restriction of this map to 𝐶 gives a birational morphism to its image, which is therefore a plane
curve of degree 𝑑 and genus 𝑔. A secant to 𝐶 through 𝑝 gives a point in the image that has two
preimages. This will be a node of the image (because our projection center 𝑝 is general). The
number of nodes is given by the degree-genus formula as

(𝑑−1
2

)
− 𝑔. This is the number of secants

through a general point 𝑝 and we get 𝛼 =
(𝑑−1
2

)
− 𝑔 as claimed. �

4.2.20 Corollary. If 𝐶 and 𝐶′ are two rational normal curves in ℙ3 (so both are obtained by a
generic change of coordinates from the twisted cubics), then there are 10 lines that are secants to both
at the same time.

Proof. For this, we intersect the classes of 𝜏 (𝐶 × 𝐶) and 𝜏 (𝐶′ × 𝐶′), which are both rationally
equivalent to 𝜎2 + 3𝜎1,1 to get

(𝜎2 + 3𝜎1,1)2 = 𝜎 22 + 6𝜎2𝜎1,1 + 9𝜎 21,1 = 10𝜎2,2.

This class has degree 10 and we only need to verify that the varieties intersect generically trans-
versely. This can be done by hand (exercise) or by invoking Kleinman’s transversality theorem
(at least in charactersitic 0). �

4.2.2 Specialization – static
Static specialization is amethod used to intersect Schubert cycles. Wewill do this for the example
𝜎 21 = 𝜎1,1 + 𝜎2 below. The basic idea is to intersect Schubert varieties corresponding to flags that
are not generic so that determining the subspaces in their intersection becomes easier; but still
generic enough so that the intersection remains transversal. Concretely, for 𝜎 21 in 𝐴(𝔾(1, 3)),
this looks as follows.

4.2.21 Example. Pick two compelete flagsV andV′ in ℙ3 such that the line 𝐿 inV intersects
the line 𝐿′ inV′ in a point 𝑝. Then 𝐿 and 𝐿′ span a plane 𝐻 in ℙ3 (since they intersect). So as
sets, we get

Σ1(𝐿) ∩ Σ1(𝐿′) = {[Λ] ∈ 𝔾(1, 3) : Λ ∩ 𝐿 ≠ ∅ ≠ Λ ∩ 𝐿′}
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Since the span of 𝐿 and 𝐿′ is the plane 𝐻 , this means that a line [Λ] in Σ1(𝐿)∩Σ1(𝐿′) is contained
in 𝐻 or contains 𝑝 so that

Σ1(𝐿) ∩ Σ1(𝐿′) = Σ2(𝑝) ∪ Σ1,1(𝐻).

This equality holds on the level of sets. To show that this is also what we expect in the Chow ring,
we have to show that the intersection is generically transverse, which then implies 𝜎 21 = 𝜎1 + 𝜎1,1
as desired. We do this for both irreducible components of the intersection by the description of
the tangent space to Schubert varieties.

First, pick a general point [Λ] on Σ2(𝑝) ⊂ Σ1(𝐿) ∩Σ1(𝐿′) so that 𝑝 ∈ Λ. Set 𝐾 to be the span
of Λ and 𝐿 and 𝐾′ to be the span of Λ and 𝐿′. By Exercise 4.2.22, the tangent spaces are

𝑇[Λ]Σ1(𝐿) = {𝜑 : 𝜑( �̂�) ⊂ 𝐾 /̂Λ} and 𝑇[Λ]Σ1(𝐿′) = {𝜑 : 𝜑( �̂�) ⊂ �̂�′/̂Λ}.

Since the planes 𝐾 and 𝐾′ are distinct, they intersect in the line Λ, which shows that the inter-
section of the above tangent spaces consists of those linear maps 𝜑 : Λ̂→ 𝑉 /̂Λ that have 𝑝 in the
kernel. This vector space has dimension 2 so that the intersection is transversal at [Λ].

Secondly, pick again a general point [Λ] on Σ1,1(𝐻) ⊂ Σ1(𝐿) ∩ Σ1(𝐿′). Let 𝑞 be the inter-
section point of Λ and 𝐿 and 𝑞′ be the intersection point of Λ and 𝐿′. Then Proposition 4.2.15
shows

𝑇[Λ]Σ1(𝐿) = {𝜑 : 𝜑(𝑞) ∈ 𝐻/̂Λ} and 𝑇[Λ]Σ1(𝐿′) = {𝜑 : 𝜑(𝑞′) ∈ 𝐻/̂Λ},

so that 𝑇[Λ]Σ1(𝐿) ∩ 𝑇[Λ]Σ1(𝐿′) = {𝜑 ∈ Hom (̂Λ, 𝑉 /̂Λ) : 𝜑 (̂Λ) ⊂ 𝐻/̂Λ}. Again, this is a 2-
dimensional vector space so that the intersection is generically transversal along Σ1,1(𝐻) as well.

Exercise 4.2.22. Fix a line 𝐿 ⊂ ℙ3 and consider the Schubert variety

Σ1(𝐿) = {[Λ] ∈ 𝔾(1, 3) : Λ ∩ 𝐿 ≠ ∅}.

For a line [Λ] ∈ Σ1(𝐿) that is not equal to 𝐿, let 𝑞 be the intersection point of Λ and 𝐿. Let 𝐾 be the span
of Λ ∪ 𝐿, which is a plane. Show that [Λ] is a smooth point of Σ1(𝐿) with tangent space

𝑇[Λ]Σ1(𝐿) =
{
𝜑 ∈ Hom(̂Λ, 𝑉 /̂Λ) : 𝜑(�̂�) ⊂ 𝐾 /̂Λ

}
.

4.3. General Grassmannians

The goal of this section is to give a description of the Chow ring ofGr(𝑘, 𝑉 ) in terms of Schubert
cycles. Transversality of intersections of such cycles follows, in characteristic 0, from Kleiman’s
Theorem that we have referred to before. Let’s finally see a sketch of the proof.

4.3.1 Kleiman’s Theorem

4.3.1 Theorem (Kleiman’s Theorem). Let 𝐾 be an algebraically closed field of characteristic 0.
Let 𝐺 be an algebraic group (e.g. 𝐺 = GL𝑛(𝐾)) that acts transitively on an algebraic variety 𝑋
(e.g. 𝑋 = Gr(𝑘, 𝐾𝑛)). Let 𝐴 ⊂ 𝑋 be an irreducible closed subset.
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(a) If 𝐵 ⊂ 𝑋 is an irreducible closed set, then there is an open dense subset 𝑈 ⊂ 𝐺 such that 𝑔𝐴
is generically transverse to 𝐵 for all 𝑔 ∈ 𝑈 .

(b) If 𝜑 : 𝑌 → 𝑋 is a morphism of varieties and 𝑌 irreducible, then the preimage 𝜑−1(𝑔𝐴) is
generically reduced and of the same codimension as 𝐴 ⊂ 𝑋 for all 𝑔 in an open subset 𝑈 ⊂ 𝐺
or it is generically empty.

(c) If 𝐺 is affine (like 𝐺 = GL𝑛(𝐾)), then [𝑔𝐴] = [𝐴] in 𝐴(𝑋) for any 𝑔 ∈ 𝐺.

Sketch of proof. The first claim (a) follows from the second (b) for 𝑌 = 𝐵. We sketch a proof of
part (b). The map 𝐺 → 𝑋 , 𝑔 ↦→ 𝑔𝑥 is surjective for any 𝑥 ∈ 𝑋 since 𝐺 acts transitively on 𝑋 .
The fibers of this map are the cosets of the stabilizer of 𝑥; concretely, the fiber of 𝑔𝑥 is 𝑔 stab(𝑥),
where stab(𝑥) is the stabilizer of 𝑥. In particular, all fibers of this map have the same dimension,
which is then dim(𝐺) − dim(𝑋). Set

Γ = {(𝑥, 𝑦, 𝑔) ∈ 𝐴 × 𝑌 × 𝐺 : 𝑔𝑥 = 𝜑( 𝑦)}

Again, since 𝐺 acts transitively on 𝑋 , the projection of Γ to 𝐴 × 𝑌 is surjective and its fibers are
the stabilizer cosets. This shows that Γ has dimension dim(𝐴) + dim(𝑌 ) + (dim(𝐺) − dim(𝑋)).
The fiber over 𝑔 ∈ 𝐺 of the projection Γ → 𝐺 is isomorphic to {(𝑥, 𝑦) ∈ 𝐴 × 𝑌 : 𝑔𝑥 = 𝜑( 𝑦)},
which is 𝜑−1(𝑔𝐴). If this projection is dominant, then for general 𝑔 ∈ 𝐺 the fiber 𝜑−1(𝑔𝐴) has
dimension dim(𝐴) + dim(𝑌 ) − dim(𝑋) = dim(𝑌 ) − codim𝑋 (𝐴) as claimed in part (b). If the
projection Γ→ 𝐺 is not dominant, then a general fiber 𝜑−1(𝑔𝐴) is empty.

We can fromnowon assume that 𝜑−1(𝑔𝐴) is non-empty for general 𝑔 ∈ 𝐺 so that the projec-
tion Γ→ 𝐺 is dominant. We will show that 𝜑−1(𝑔𝐴) is smooth at a general point, which implies
that it is generically reduced. We essentially follow Harthorne’s proof (Chapter III, Section 10 –
which also contains the context on smooth morphisms).

Let ℎ : 𝐴𝑠𝑚 × 𝐺 → 𝑋 be the morphism mapping (𝑥, 𝑔) to 𝑔𝑥 where 𝐴𝑠𝑚 is the (non-empty,
open) set of smooth points of 𝐴. Thismorphism is dominant because𝐺 acts transitively on 𝑋 . By
generic smoothness (characteristic 0!), there is an open subset𝑈 ⊂ 𝑋 such that ℎ : ℎ−1(𝑈) → 𝑈

is smooth (which essentially means that the differential of ℎ is surjective). Since 𝐺 acts on 𝐴𝑠𝑚 ×
𝐺 by left multiplication on 𝐺 and this action commutes with the morphism ℎ, the morphism
ℎ : ℎ−1(𝑔𝑈) → 𝑔𝑈 is also smooth (for any 𝑔 ∈ 𝐺). The group 𝐺 acts transitively on 𝑋 so that
the translates 𝑔𝑈 of𝑈 cover 𝑋 . This shows that the morphism ℎ is smooth everywhere.

Let us consider the subset Γ′ = {(𝑥, 𝑦, 𝑔) ∈ 𝐴𝑠𝑚 × 𝑌𝑠𝑚 × 𝐺 : 𝑔𝑥 = 𝜑( 𝑦)} where the points
𝑥 ∈ 𝐴 and 𝑦 ∈ 𝑌 are smooth. Then Γ′ is smooth for general reasons by the smoothness of ℎ. In
fact, Γ′ is the fiber product

Γ′ = (𝐴𝑠𝑚 × 𝐺) ×𝑋 𝑌𝑠𝑚 𝑌𝑠𝑚

𝐴𝑠𝑚 × 𝐺 𝑋

𝜋𝑌

𝜋𝐴×𝐺

ℎ

𝜑

in which the map 𝜋𝑌 is smooth by base extension of ℎ and Γ′ is smooth (as a 𝐾-variety) be-
cause both 𝜋𝑌 is smooth and 𝑌𝑠𝑚 is smooth over 𝐾 . We now look at the projection 𝜋𝐺 : Γ′ →
𝐺, (𝑥, 𝑦, 𝑔) ↦→ 𝑔. Again, by generic smoothness, there is an open subset 𝑉 of 𝐺 such that
𝜋𝐺 : 𝜋−1𝐺 (𝑉 ) → 𝑉 is smooth. This implies that 𝜋−1

𝐺
(𝑔) will be smooth for every 𝑔 ∈ 𝑉 and in
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particular, this will be generically reduced. Moreover, smoothness implies that each connected
component of 𝜋−1

𝐺
(𝑔) in Γ′ has the same codimension equal to codim𝑋 (𝐴) as expected.

So now we have to take care of Γ𝑠 = Γ \ Γ′. If 𝜋𝐺 : Γ𝑠 → 𝐺 is not dominant, then the
proof is done with the above argument. So we assume now that this map is dominant. Then a
general fiber 𝜋−1

𝐺
(𝑔) ∩Γ𝑠 has dimension at most dim(Γ′) −dim(𝐺) which is strictly smaller than

dim(Γ) − dim(𝐺). The latter is the dimension of each connected component of the complete
fiber 𝜋−1

𝐺
(𝑔) for general 𝑔 ∈ 𝐺 so that overall, the fiber 𝜋−1

𝐺
(𝑔) is generically reduced.

The last claim (c) is easier in case that the algebraic group 𝐺 is a direct product of general
linear groups because𝐺 is then an open subset of the vector space of matrices of some size over
𝐾 containing the identity matrix. Indeed, if 𝐺 = GL𝑘1 × . . . × GL𝑘𝑟 , then its natural embedding
intoMat𝑘1×𝑘1 (𝐾)× . . .×Mat𝑘𝑟×𝑘𝑟 (𝐾) has the desired properties. To see that [𝑔𝐴] = [𝐴] ∈ 𝐴(𝑋),
let 𝐿 be the projective line spanned by the identity and 𝑔 and set

Φ = {(𝑔, 𝑥) ∈ (𝐺 ∩ 𝐿) × 𝑋 : 𝑔−1𝑥 ∈ 𝐴} ⊂ ℙ1 × 𝑋.

The fiber over the identity in 𝐿 is 𝐴 and the fiber over 𝑔 is 𝑔𝐴 showing that [𝐴] and [𝑔𝐴] are
rationally equivalent as claimed. �

Exercise 4.3.2. (Easy:) Show that the general linear group GL(𝑉 ) acts transitively on Gr(𝑘, 𝑉 ) for any
𝑘 = 1, 2, . . . , dim(𝑉 ) and more generally on complete flags in 𝑉 .
(Harder:) Does GL(𝑉 ) also act transitively on the set of pairs ( [Λ] , 𝜑) of subspaces [Λ] ∈ Gr(𝑘, 𝑉 ) and
tangent vectors 𝜑 ∈ 𝑇[Λ] Gr(𝑘, 𝑉 )?

4.3.2 Schubert cells, cycles, and varieties

We first describe the Schubert varieties in Gr(𝑘, 𝑉 ) for a fixed 𝑘 ∈ {1, . . . , 𝑛}.

4.3.3 Construction. Again, we choose a complete flagV in an 𝑛-dimensional 𝐾-vector space
𝑉 consisting of an inclusion of subspaces

{0} ⊂ 𝑉1 ⊂ 𝑉2 ⊂ . . . ⊂ 𝑉𝑛−1 ⊂ 𝑉𝑛 = 𝑉

such that dim(𝑉𝑖) = 𝑖. For a weakly decreasing sequence 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑘) of nonnegative
integers bounded by 𝑛 − 𝑘 (that is 𝑛 − 𝑘 ≥ 𝑎1 ≥ 𝑎2 ≥ . . . ≥ 𝑎𝑘 ≥ 0), we define the Schubert
variety Σ𝑎(V) ⊂ Gr(𝑘, 𝑉 ) to be

Σ𝑎(V) =
{
[Λ] ∈ Gr(𝑘, 𝑉 ) : dim(Λ ∩ 𝑉𝑛−𝑘+𝑖−𝑎𝑖) ≥ 𝑖 for all 𝑖

}
.

Since 𝑛− 𝑘 is the codimension of Λ, the expected dimension of the intersection Λ∩𝑉𝑛−𝑘+𝑖 is
𝑖. Since we subtract 𝑎𝑖 in the index of the subspace 𝑉𝑗 in the definition of the Schubert variety,
we are essentially saying that the 𝑘-plane Λ intersects the flag in dimension 𝑖 already 𝑎𝑖 steps
earlier than expected. To compare with the above notation, this means that Σ1,1 ⊂ Gr(2, 𝑉 ) is
the set of planes in 𝑉 that have a 1-dimensional intersection one step earlier than expected: in
this case, that means that the plane in𝑉 intersects the plane of the flag in a line since the expected
dimension of this intersection is 0; the second 1 says that it intersects the flag in a 2-dimensional
space one step earlier than expected meaning that it is contained in the hyperplane 𝐻 .
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Another way to look at this is to consider the sequence of subspaces

{0} ⊂ 𝑉1 ∩ Λ ⊂ 𝑉2 ∩ Λ ⊂ . . . ⊂ 𝑉𝑛−1 ∩ Λ ⊂ 𝑉𝑛 ∩ Λ = Λ.

In this sequence, any subspace is either equal to the one coming before it or its dimension in-
creases by exactly 1. This happens 𝑘 times in total because Λ has dimension 𝑘. In this interpre-
tation, the Schubert variety consists of all 𝑘-planes in 𝑉 for which the 𝑖th jump in this sequence
occurs (at least) 𝑎𝑖 steps early.

To simplify notation a little bit, we will drop trailing zeroes in the indexing sequences mean-
ing that we write for example (1, 1, 1) for (1, 1, 1, 0, 0, . . . , 0) in case that 𝑘 > 3. Also, for a
constant sequence (𝑏, 𝑏, . . . , 𝑏) of length 𝑟, we will write 𝑏𝑟 .

4.3.4 Example. (1) The Schubert variety Σ𝑛−𝑘+1−� (V) is the variety of 𝑘-planes inGr(𝑘, 𝑉 )
that intersect the �-dimensional subspace 𝑉� of the flag nontrivially. In particular, the
variety Σ1(V) is the variety of 𝑘-planes that meet 𝑉𝑛−𝑘 nontrivially.

(2) The Schubert variety Σ(𝑛−�)𝑘 (V) consists of all 𝑘-planes in 𝑉 that are contained in 𝑉� . To
see this, note that the index 𝑛 − 𝑘 + 𝑖 − 𝑎𝑖 simplifies to � − 𝑘 + 𝑖, which after 𝑘 steps is � .
Similarly, the Schubert variety Σ(𝑛−𝑘)𝑟 (V) is the set of 𝑘-planes that contain𝑉𝑟 (for 𝑟 ≤ 𝑘).
In this case, the computation 𝑛− 𝑘 + 𝑖 − 𝑎𝑖 = 𝑟 shows that there are 𝑟 jumps in dimension
of the sequence (Λ ∩ 𝑉𝑗) 𝑗.

Definition. The Schubert classes are the rational equivalence classes of the Schubert varieties
in 𝐴(Gr(𝑘, 𝑉 )). As before, we write 𝜎𝑎 for the class [Σ𝑎(V)] of the Schubert variety indexed by
the sequence 𝑎.

Kleiman’s Theorem 4.3.1 shows that the rational equivalence class does not depend on our
choice of complete flagV of 𝑉 because the general linear group on 𝑉 acts transitively on com-
plete flags so that [Σ𝑎(V)] = [Σ𝑎(V′)] and the above definition makes sense.

There are different ways to index Schubert varieties in the literature. The one that we have
copied here from Eisenbud and Harris’s book 3264 & all that has the following properties.

4.3.5 Proposition. Denote by ≥ the termwise partial order on the indexing sequences so that (𝑎1, . . . , 𝑎𝑘) ≥
(𝑏1, . . . , 𝑏𝑘) if and only if 𝑎𝑖 ≥ 𝑏𝑖 for 𝑖 = 1, . . . , 𝑘. With this notation, we have Σ𝑎 ⊂ Σ𝑏 if and only if
𝑎 ≥ 𝑏.

Proof. This follows immediately from the definition (maybe most directly from the jumps in
dimension for the sequence (𝑉𝑗 ∩ Λ) 𝑗 of vector spaces). �

Definition. The Schubert cell Σ𝑜𝑎 is defined as before

Σ𝑜𝑎 = Σ𝑎 \
(⋃
𝑏>𝑎

Σ𝑏

)
.

We show now in general that the Schubert cells give an affine stratification of the Grassman-
nian Gr(𝑘, 𝑉 ).

4.3.6 Theorem. The locally closed subset Σ𝑜𝑎 is isomorphic to 𝔸𝑘(𝑛−𝑘)−|𝑎| . In particular, Σ𝑜𝑎 is irre-
ducible and smooth. The Schubert varieties Σ𝑎 are irreducible and of codimension |𝑎| in Gr(𝑘, 𝑉 ).
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The tangent space to Σ𝑜𝑎 at [Λ] ∈ Σ𝑜𝑎 is the subspace of 𝑇[Λ] Gr(𝑘, 𝑉 ) = Hom(Λ, 𝑉/Λ) consisting of
those linear maps 𝜑 : Λ→ 𝑉/Λ that map

𝑉𝑛−𝑘+𝑖−𝑎𝑖 ∩ Λ ⊂ Λ

to (
𝑉𝑛−𝑘+𝑖−𝑎𝑖 + Λ

)
/Λ ⊂ 𝑉/Λ

for all 𝑖 = 1, . . . , 𝑘.

Proof. The proof relies on an explicit description in terms of the Plücker coordinates of 𝑘-planes
[Λ] ∈ Σ𝑎. To simplify our life, let us choose the coordinate flag with 𝑉𝑖 = span{𝑒1, . . . , 𝑒𝑖} in 𝑉
with respect to a chosen basis (𝑒1, . . . , 𝑒𝑛) of 𝑉 . We next use the sequence (𝑉𝑗 ∩ Λ) 𝑗 to pick a
suitable basis for Λ. The first subspace of this sequence that is guaranteed to be non-zero is
𝑉𝑛−𝑘+1−𝑎1 ∩ Λ. Moreover, the one that must have dimension at least 2 will be 𝑉𝑛−𝑘+2−𝑎2 ∩ Λ; and
so on. So we can choose a basis (𝑣1, . . . , 𝑣𝑘) of Λ with 𝑣𝑖 ∈ 𝑉𝑛−𝑘+𝑖−𝑎𝑖 . This shows in particular
that the coordinates of 𝑣𝑖 corresponding to 𝑒𝑗 with 𝑗 > 𝑛 − 𝑘 + 𝑖 − 𝑎𝑖 are all 0.

If [Λ] ∈ Σ𝑜𝑎, then the dimension jumps in the sequence (𝑉𝑗 ∩ Λ) 𝑗 occur exactly at the places
specified by the sequence 𝑎 so that we can choose a basis with 𝑣𝑖 ∈ 𝑉𝑛−𝑘+𝑖−𝑎𝑖 \ 𝑉𝑛−𝑘+𝑖−1−𝑎𝑖−1 . In-
deed, 𝑉𝑛−𝑘+1−𝑎1 ∩ Λwill have dimension exactly 1 and it is the first non-zero vector space of our
sequence. Similarly, 𝑉𝑛−𝑘+2−𝑎2 ∩ Λwill have dimension exactly 2 and it is the first one of dimen-
sion 2 in the sequence; and so on. Overall, this means that the coordinate of 𝑣𝑖 corresponding
to the basis vector 𝑒𝑛−𝑘+𝑖−𝑎𝑖 is non-zero. By rescaling 𝑣𝑖, we can assume that this coordinate is
1. Using row operations on the matrix with rows 𝑣𝑖 representing Λ, we can also assume that the
coordinate of 𝑣𝑗 corresponding to 𝑒𝑛−𝑘+𝑖−𝑎𝑖 is 0 if 𝑗 ≠ 𝑖. As an example, consider 𝑘 = 4, 𝑛 = 9
and 𝑎 = (3, 2, 2, 1) where this matrix will look as follows.

©«
∗ ∗ 1 0 0 0 0 0 0
∗ ∗ 0 ∗ 1 0 0 0 0
∗ ∗ 0 ∗ 0 1 0 0 0
∗ ∗ 0 ∗ 0 0 ∗ 1 0

ª®®®¬
The point is that this choice of basis of Λ makes the submatrix 𝐴𝑏 of the matrix 𝐴 with rows 𝑣𝑖
the identity for 𝑏 = (𝑛 − 𝑘 + 1 − 𝑎1, 𝑛 − 𝑘 + 2 − 𝑎2, . . . , 𝑛 − 𝑎𝑘). In particular, the corresponding
Plücker coordinate of Λ is 1.

It follows that the Schubert cell Σ𝑜𝑎 is contained in the open subset 𝑈Γ ⊂ Gr(𝑘, 𝑉 ) of all 𝑘-
planes that are complementary to the span Γ of all basis vectors whose indices are not in 𝑏. In
this subset 𝑈Γ, the Schubert cell Σ𝑜𝑎 is the coordinate subspace of all matrices with 𝑎𝑖 𝑗 = 0 for
𝑗 > 𝑛 − 𝑘 + 𝑖 − 𝑎𝑖, which are the zeroes of 𝑣𝑖 according to the last sentence in the first paragraph
of the proof. In particular, Σ𝑜𝑎 is smooth and irreducible. Its dimension is given by the number
of such zeroes. There are 𝑎𝑖 additional zeroes in row 𝑖 compared to a general element of 𝑈Γ so
that the codimension of Σ𝑜𝑎 in Gr(𝑘, 𝑉 ) is |𝑎| as claimed. (Indeed, the vector 𝑣𝑖 has 𝑛 − 𝑘 + 𝑖 − 𝑎𝑖
non-zero entries of which 𝑖many are 1 or 0. Those are the same for every element in𝑈Γ in this
basis so that we see 𝑎𝑖 additional zeroes compared to a general element.)

The Schubert variety Σ𝑎 is the closure of Σ𝑜𝑎. To see this, pick any basis (𝑣1, . . . , 𝑣𝑘) for [Λ] ∈
Σ𝑎. The condition on the matrix for [Λ] to be in Σ𝑎 is a rank condition in the following sense.
For 𝑗 = 1, . . . , 𝑘, build the matrix 𝑀𝑗 whose first 𝑘 rows are 𝑣1, . . . , 𝑣𝑘 and then append as rows
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a basis of our flag, so 𝑒1, . . . , 𝑒𝑛−𝑘+𝑗−𝑎𝑗 . The condition dim(Λ ∩ 𝑉𝑛−𝑘+𝑗−𝑎𝑗) ≥ 𝑗 translates to the
row-rank of 𝑀𝑗 being at most 𝑘 + (𝑛 − 𝑘 + 𝑗 − 𝑎𝑗) − 𝑗 = 𝑛 − 𝑎𝑗. It is exactly equal to 𝑛 − 𝑎𝑗 for
𝑗 = 1, . . . , 𝑘 if and only if [Λ] ∈ Σ𝑜𝑎. For [Λ] ∈ Σ𝑎, it can be even smaller. However, the minors
of 𝑀𝑗 vanishing on Σ𝑜𝑎 also vanish on Σ𝑎. In our chart𝑈Γ, those minors correspond to the linear
equations vanishing on Σ𝑜𝑎 ⊂ 𝑈Γ. So they define Σ𝑜𝑎 showing that every polynomial equation
vanishing on Σ𝑜𝑎 also vanishes on Σ𝑎.

The tangent space to Σ𝑜𝑎 at a point [Λ] is easy to deduce from this description because Σ𝑜𝑎 is
really a coordinate subspace of an affine space𝔸𝑘(𝑛−𝑘) � 𝑈Γ ⊂ Gr(𝑘, 𝑉 ). The point is to describe
this coordinate subspace abstractly in terms of linear maps in Hom(Λ, 𝑉/Λ) as in Exercise 4.1.4.
If 𝐴 is the matrix representing a linear map 𝜑 : Λ → 𝑉/Λ, then the row span of the matrix 𝐵
obtained from the transpose of 𝐴 by adding the 𝑗th coordinate vector to be column 𝑏𝑗 is the
representation of the linear space in the basis 𝑣𝑖 as above. We get the desired description for
the linear map from 𝑉 → 𝑉/Λ represented by this matrix as follows. The span of the first
𝑗 rows of this matrix 𝐵 is 𝑉𝑛−𝑘+𝑗−𝑎𝑗 ∩ Λ. These rows have zeroes in every column with index
� > 𝑛 − 𝑘 + 𝑗 − 𝑎𝑗, unless this index is in 𝑏. In other words, the image of this row span under
the linear map represented by this matrix is contained in (𝑉𝑛−𝑘+𝑗−𝑎𝑗 + Λ)/Λ as claimed. So Σ𝑜𝑎
corresponds to this coordinate subspace of Hom(Λ, 𝑉/Λ) and so then does its tangent space
𝑇[Λ]Σ

𝑜
𝑎. �

Again, excision Proposition 3.2.13 implies that we now know generators of 𝐴(Gr(𝑘, 𝑉 )) as
an abelian group.

4.3.7 Corollary. The Chow group 𝐴(Gr(𝑘, 𝑉 )) is generated, as an abelian group, by the Schubert
classes 𝜎𝑎. The group 𝐴0(Gr(𝑘, 𝑉 )) is free of rank 1 and generated by 𝜎(𝑛−𝑘)𝑘 .

Proof. The class of a point is 𝜎(𝑛−𝑘)𝑘 ∈ 𝐴(Gr(𝑘, 𝑉 )) by Example 4.3.4(2) with � = 𝑘 and all points
are rationally equivalent (since GL(𝑉 ) acts transitively on Gr(𝑘, 𝑉 )). That the Schubert classes
generate the Chow group is Proposition 3.2.13. �

4.3.8 Corollary. Both (𝜎𝑛−𝑘)𝑘 and (𝜎1𝑘)𝑛−𝑘 are equal to the class 𝜎(𝑛−𝑘)𝑘 of a point in 𝐴(Gr(𝑘, 𝑛))
so that we have

(𝜎𝑛−𝑘)𝑘 = (𝜎1𝑘)𝑛−𝑘 = 𝜎(𝑛−𝑘)𝑘 ∈ 𝐴𝑘(𝑛−𝑘) (Gr(𝑘, 𝑛)).

Proof. Let’s begin with (𝜎1𝑘)𝑘: Fix a flag V in 𝐾𝑛 and denote the hyperplane of the flag by 𝐻 .
Then Example 4.3.4(2) with � = 𝑛 − 1 says that Σ1𝑘 (𝐻) is the set of 𝑘-planes that are contained
in 𝐻 . The tangent space to Σ1𝑘 (𝐻) at a general [Λ] ∈ Σ1𝑘 (𝐻) is

𝑇[Λ]Σ1𝑘 (𝐻) = {𝜑 ∈ Hom(Λ, 𝑉/Λ) : 𝜑(Λ) ⊂ 𝐻}

by Theorem 4.3.6. So if we take (𝑛 − 𝑘) general hyperplanes 𝐻1, . . . , 𝐻𝑛−𝑘 ⊂ 𝐾𝑛, then there is
a unique 𝑘-plane in

⋂𝑛−𝑘
𝑖=1 Σ1𝑘 (𝐻𝑖), namely Λ =

⋂𝑛−𝑘
𝑖=1 𝐻𝑖. The description of the tangent space

above implies that the intersection is transversal at Λ so that this intersection has the class of a
point as claimed.

For (𝜎𝑛−𝑘)𝑘, we argue similarly. In this case, Σ(𝑛−𝑘) (V) is the set of 𝑘-planes that contain 𝑉1
(again, see Example 4.3.4(2) for 𝑟 = 1) so that Theorem 4.3.6 implies that

𝑇[Λ]Σ(𝑛−𝑘) = {𝜑 ∈ Hom(Λ, 𝑉/Λ) : 𝑉1 ⊂ ker(𝜑)} .

Algebraische Geometrie II / Rainer Sinn / Uni Leipzig (2023)



4.4. The intersection product 47

Now take 𝑘 general 1-dimensional subspaces 𝐿1, . . . , 𝐿𝑘 and consider
⋂𝑘
𝑖=1 Σ(𝑛−𝑘) (𝐿𝑖). This in-

tersection again contains a unique 𝑘-plane, namely Λ = span(𝐿1 ∪ . . .∪ 𝐿𝑘) and the interesction
at this plane is transversal. �

Exercise 4.3.9. Let 𝑛 = dim(𝑉 ). First, show that there is a natural isomorphism of algebraic varieties
Gr(𝑘, 𝑉 ) and Gr(𝑛 − 𝑘, 𝑉 ) taking a 𝑘-plane Λ to Λ⊥ = {� ∈ 𝑉 ∗ : Λ ⊂ ker(�)}. Then show that this
isomorphism takes the Schubert variety Σ1𝑘 (𝐻) to Σ𝑘 (𝐻⊥). More generally, it takes Σ𝑖 (𝑊 ) for a fixed
subspace 𝑊 ⊂ 𝑉 of dimension 𝑛 − 𝑘 + 1 − 𝑖 to the Schubert variety Σ1𝑖 (𝑊⊥) which consists of those
(𝑛 − 𝑘)-planes Λ′ in 𝑉 ∗ such that Λ′ +𝑊⊥ ≠ 𝑉 ∗.

4.3.10 Example. The Schubert varieties Σ𝑎 are not necessarily smooth (in contrast to the Schu-
bert cells). For instance, Σ1 ⊂ Gr(2, 4) is actually a singular quadric in ℙ4 because it has rank 4
only.

The homogeneous vanishing ideals of the Schubert varieties are known and very nice: they
are generated by the ideal of the Grassmannian and linear equations. In terms of the coordinate
flag, the linear equations are just Plücker coordinates. For now, we do not need this result.

4.4. The intersection product
Assuming the existence of the intersection product, we show that the Schubert cycles freely gen-
erate the Chow ring and derive a combinatorial formula for the intersection product (involving
the Littlewood-Richardson coefficients). We will see transversality of the intersections directly
by the description of the tangent spaces.

Definition. Two flagsV andW in an 𝑛-dimensional 𝐾-vector space 𝑉 are transverse if 𝑉𝑖∩
𝑊𝑛−𝑖 = {0} for all 𝑖 = 0, 1, . . . , 𝑛.

Exercise 4.4.1. Show that the two following conditions are equivalent to the flagsV andW in 𝐾𝑛 being
transverse.

(a) dim(𝑉𝑖 ∩𝑊𝑗) = max{0, 𝑖 + 𝑗 − 𝑛} for all 𝑖, 𝑗 ∈ {0, 1, . . . , 𝑛}
(b) There exists a basis 𝑥1, . . . , 𝑥𝑛 of 𝐾𝑛 such that 𝑉𝑖 = span{𝑥1, . . . , 𝑥𝑖} for 𝑖 = 1, . . . , 𝑛 and 𝑊𝑗 =

span{𝑥𝑛, . . . , 𝑥𝑛+1−𝑗} for 𝑗 = 1, . . . , 𝑛.

Exercise 4.4.2. Show that the set of pairs of transverse flags are a non-empty open subset in the space
of all pairs of flags. Show that the pairs of flags are a projective variety. Furthermore, show that GL(𝑉 )
acts transitively on the set of pairs of transverse flags in 𝑉 .

Definition. Fix a Schubert cell Σ𝑜𝑎 with respect to the flagV and pick [Λ] ∈ Σ𝑜𝑎. The induced
flag on Λ (byV) is the complete flag

{0} ( Λ ∩ 𝑉𝑛−𝑘+1−𝑎1 ( Λ ∩ 𝑉𝑛−𝑘+2−𝑎2 ( . . . ( Λ ∩ 𝑉𝑛−𝑎𝑘 = Λ.

Wewill use the notation ΛV
𝑖

= Λ∩𝑉𝑛−𝑘+𝑖−𝑎𝑖 for the 𝑖-th dimensional subspace of Λ in the induced
flag.

4.4.3 Lemma. Let Σ𝑎(V) and Σ𝑏(W) be Schubert varieties in Gr(𝑘, 𝑉 ) defined relative to trans-
verse flagsV andW. Let [Λ] be a general point of their intersection.

Algebraische Geometrie II / Rainer Sinn / Uni Leipzig (2023)



48 4. Grassmannians

(1) [Λ] does not lie in any strictly smaller Schubert variety Σ𝑎′ (V) ( Σ𝑎(V).
(2) The flags induced on Λ byV andW are transverse.

Proof. Since the flags are transverse, the intersection Σ𝑎(V) ∩ Σ𝑏(W) is generically transverse
by Kleiman’s Theorem 4.3.1. Directly, it says that there is an open subset 𝑈1 of GL(𝑉 ) such that
Σ𝑎(V) and 𝑔Σ𝑏(V) = Σ𝑏(𝑔V) intersect transversally. However, there is also an open subset
𝑈2 of GL(𝑉 ) such that 𝑔V is transverse toV . So for every 𝑔 ∈ 𝑈1 ∩ 𝑈2, both the intersection
Σ𝑎(V) ∩ Σ𝑏(𝑔V) and the flagsV and 𝑔V are transverse. Since any pair of transverse flags can
be moved to any other by an automorphism of 𝑉 , we get that Σ𝑎(V) ∩ Σ𝑏(W) is generically
transverse for any transverse pair of flags V andW. In particular, the intersection has the
expected codimension |𝑎| + |𝑏| in Gr(𝑘, 𝑉 ). If Σ𝑎′ (V) is strictly contained in Σ𝑎(V), then the
sequence 𝑎′ is strictly larger than 𝑎 in at least one entry and |𝑎′| > |𝑎|. So the dimension of the
intersection Σ𝑎′ (V) ∩ Σ𝑏(W) is smaller than the dimension of Σ𝑎(V) ∩ Σ𝑏(W). Therefore a
general point of Σ𝑎(V) ∩ Σ𝑏(W) does not lie on Σ𝑎′ (V) for any 𝑎′ > 𝑎.

To show the second claim, we will check the property in the above definition of transverse
flags. So we have to show that ΛV

𝑖
∩ ΛW

𝑘−𝑖 = {0} which is equivalent to

Λ ∩ 𝑉𝑛−𝑘+𝑖−𝑎𝑖 ∩𝑊𝑛−𝑖−𝑏𝑘−𝑖 = {0}.

To simplify notation, let us fix 𝑖 and write 𝑑 = 𝑛 − 𝑘 + 𝑖 − 𝑎𝑖 and 𝑒 = 𝑛 − 𝑖 − 𝑏𝑘−𝑖. Consider
the incidence correspondence

Φ = {([Λ] , 𝑣) ∈ (Σ𝑎(V) ∩ Σ𝑏(W)) × ℙ(𝑉𝑑 ∩𝑊𝑒) : 𝑣 ∈ Λ} .

For ( [Λ] , 𝑣) ∈ Φ we have that 𝑣 ∈ Λ ∩ 𝑉𝑑 ∩ 𝑊𝑒. To show the claim, it suffices to prove that
dim(Φ) < dim(Σ𝑎(V) ∩ Σ𝑏(W)) because then the projection from Φ to the first factor cannot
be dominant meaning exactly that the induced flags on a general point of that intersection is
transversal as claimed.

Since the flagsV andW are transverse, the intersection𝑉𝑑∩𝑊𝑒 has the expected dimension
max{0, 𝑑 + 𝑒 − 𝑛}, where 𝑑 + 𝑒 − 𝑛 = 𝑛 − 𝑘 − 𝑎𝑖 − 𝑏𝑘−1. If 𝑉𝑑 ∩𝑊𝑒 = {0} is trivial, then there is
nothing more to show. So we can assume that 𝑑 + 𝑒 − 𝑛 > 0.

Nowpick [𝑣] ∈ ℙ(𝑉𝑑∩𝑊𝑒). We describe the fiber over 𝑣 of the projectionΦ→ ℙ(𝑉𝑑∩𝑊𝑒) to
the second factor using the quotient space𝑉/span{𝑣}. The flagsV andW on𝑉 induce flags on
V andW by setting 𝑉𝑗 = (𝑉𝑗 + span{𝑣})/span{𝑣} and similarly𝑊𝑗 = (𝑊𝑗 + span{𝑣})/span{𝑣}
for all 𝑗 = 1, 2, . . . , 𝑛. Since 𝑣 ∈ 𝑉𝑑 ∩𝑊𝑒, we have 𝑉𝑗−1 = 𝑉𝑗 for some 𝑗 ≤ 𝑑 as well as𝑊𝑗−1 = 𝑊𝑗

for some 𝑗 ≤ 𝑒. For ( [Λ] , 𝑣) ∈ Φ it follows that the plane Λ = Λ/span{𝑣} ⊂ 𝑉/span{𝑣} lies in
the Schubert varieties Σ𝑎(V) and Σ𝑏(W) where the sequence 𝑎 of length 𝑘− 1 is obtained from
𝑎 by deleting 𝑎𝑖 and similarly 𝑏 from 𝑏 by deleting 𝑏𝑘−𝑖 because dim(Λ ∩ 𝑉𝑗) = dim(Λ ∩ 𝑉𝑗) if
𝑣 ∈ 𝑉𝑗. These Schubert varieties Σ𝑎(V) and Σ

𝑏
(W) lie in Gr(𝑘 − 1, 𝑉/span{𝑣}) and intersect

generically transversely, which implies that the fibers over 𝑣 have dimension

dim(Gr(𝑘 − 1, 𝑉/span{𝑣})) −
∑︁
𝑗≠𝑖

𝑎𝑗 −
∑︁
𝑗≠𝑘−𝑖

𝑏𝑗 = (𝑘 − 1) (𝑛 − 𝑘) − (|𝑎| − 𝑎𝑖) − (|𝑏| − 𝑏𝑘−𝑖).
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Since 𝑣 varies in ℙ(𝑉𝑑 ∩𝑊𝑒), the dimension of Φ is

dim(Φ) = (𝑑 + 𝑒 − 𝑛 − 1) + (𝑘 − 1) (𝑛 − 𝑘) − (|𝑎| − 𝑎𝑖) − (|𝑏| − 𝑏𝑘−𝑖)
= (𝑛 − 𝑘 − 𝑎𝑖 − 𝑏𝑘−1 − 1) + (𝑘 − 1) (𝑛 − 𝑘) − (|𝑎| − 𝑎𝑖) − (|𝑏| − 𝑏𝑘−𝑖)
= 𝑘(𝑛 − 𝑘) − |𝑎| − |𝑏| − 1
< dim(Σ𝑎(V) ∩ Σ𝑏(W)).

�

4.4.4 Proposition. Let V andW be transverse flags in 𝐾𝑛. Let Σ𝑎(V) and Σ𝑏(W) be two
Schubert varieties in Gr(𝑘, 𝑛) with |𝑎| + |𝑏| = 𝑘(𝑛− 𝑘). Then Σ𝑎(V) intersects Σ𝑏(W) transversely
in a unique point if 𝑎𝑖 + 𝑏𝑘+1−𝑖 = 𝑛 − 𝑘 for each 𝑖 = 1, . . . , 𝑘. The two Schubert varieties are disjoint
otherwise. This implies the following formulae in 𝐴(Gr(𝑘, 𝑛)).

𝜎𝑎𝜎𝑏 =

{
𝜎(𝑛−𝑘)𝑘 if 𝑎𝑖 + 𝑏𝑘+1−𝑖 = 𝑛 − 𝑘 for all 𝑖 = 1, 2, . . . , 𝑘,

0 otherwise.

}
Proof. Since |𝑎| + |𝑏| = dim(Gr(𝑘, 𝑛)) and the fact that the intersection is generically transvere,
the intersection will be 0-dimensional and hence transverse. We have to count the number of
intersection points. Fix 𝑖 = 1, 2, . . . , 𝑘 and consider the 𝑖th condition dim(Λ ∩ 𝑉𝑛−𝑘+𝑖−𝑎𝑖) ≥ 𝑖 for
[Λ] ∈ Σ𝑎(V) and the (𝑘+1− 𝑖)th condition dim(Λ∩𝑊𝑛−𝑖+1−𝑏𝑘+1−𝑖) ≥ 𝑘+1− 𝑖 for [Λ] ∈ Σ𝑏(W).
So the dimensions of the two subspaces Λ ∩ 𝑉𝑛−𝑘+𝑖−𝑎𝑖 and Λ ∩ 𝑊𝑛−𝑖+1−𝑏𝑘−𝑖+1 add up to at least
dim(Λ) + 1 which means that they have to intersect nontrivially. In particular, the subspaces
𝑉𝑛−𝑘+𝑖−𝑎𝑖 and𝑊𝑛−𝑖+1−𝑏𝑘+1−𝑖 of𝑉 meet nontrivially. The flagsV andW are transverse so that this
implies 𝑛− 𝑘 + 𝑖− 𝑎𝑖 + 𝑛− 𝑖 + 1− 𝑏𝑘+1−𝑖 ≥ 𝑛+ 1. This inequality simplifies to 𝑎𝑖 + 𝑏𝑘+1−𝑖 ≤ 𝑛− 𝑘.

This argument shows Σ𝑎(V) ∩ Σ𝑏(W) = ∅ if 𝑎𝑖 + 𝑏𝑘+1−𝑖 > 𝑛 − 𝑘 for some 𝑖 = 1, 2, . . . , 𝑘.
The assumption |𝑎| + |𝑏| = ∑𝑘

𝑖=1(𝑎𝑖 + 𝑏𝑘+1−𝑖) = 𝑘(𝑛 − 𝑘) implies that we must have 𝑎𝑖 + 𝑏𝑘+1−𝑖 =
𝑛 − 𝑘 if all inequalities 𝑎𝑖 + 𝑏𝑘+1−𝑖 ≤ 𝑛 − 𝑘 (𝑖 = 1, 2, . . . , 𝑘) hold. In this case, the intersection
Γ𝑖 = 𝑉𝑛−𝑘+𝑖−𝑎𝑖 ∩ 𝑊𝑛+1−𝑖−𝑏𝑘+1−𝑖 has dimension 1. Moreover, since [Λ] ∈ Σ𝑎(V) ∩ Σ𝑏(W), we
have Γ𝑖 ⊂ Λ. We get such a 1-dimensional space Γ𝑖 for each 𝑖 = 1, 2, . . . , 𝑘 and in the notation of
Exercise 4.4.1(b), Γ𝑖 = span{𝑒𝑛−𝑘+𝑖−𝑎𝑖}. So these subspaces of Λ are in general position and their
union spans Λ, which is therefore unique. �

This proposition gives a duality between 𝐴𝑚(Gr(𝑘, 𝑛)) and 𝐴𝑚(Gr(𝑘, 𝑛)). For any Schubert
index 𝑎 = (𝑎1, . . . , 𝑎𝑘), we will write 𝑎∗ = (𝑛 − 𝑘 − 𝑎𝑘, 𝑛 − 𝑘 − 𝑎𝑘−1, . . . , 𝑛 − 𝑘 − 𝑎1) for its dual
indexwhich then satisfies 𝜎𝑎𝜎𝑎∗ = 𝜎(𝑛−𝑘)𝑘 . This duality is the reason for the following statement.

4.4.5 Corollary. The Schubert classes form a free basis for 𝐴(Gr(𝑘, 𝑉 )) and the intersection form
𝐴𝑚(Gr(𝑘, 𝑉 )) × 𝐴𝑚(Gr(𝑘, 𝑉 )) → ℤ given by mapping 𝜎(𝑛−𝑘)𝑘 to deg(𝜎(𝑛−𝑘)𝑘) = 1 have the
Schubert classes as dual bases. �

We can use this duality to compute the coordinates of a cycle 𝛼 ∈ 𝐴𝑚(Gr(𝑘, 𝑉 )) by the
method of undetermined coefficients as before in the proof of Theorem 4.2.9.

4.4.6 Corollary. For any 𝛼 ∈ 𝐴𝑚(Gr(𝑘, 𝑉 )), we have

𝛼 =
∑︁
|𝑎|=𝑚

deg(𝛼 · 𝜎𝑎∗)𝜎𝑎,
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where deg : 𝐴0(Gr(𝑘, 𝑉 )) → ℤ is defined by deg(𝜎(𝑛−𝑘)𝑘) = 1. In particular, for any Schubert
classes 𝜎𝑎 and 𝜎𝑏 in Gr(𝑘, 𝑉 ), the product 𝜎𝑎 · 𝜎𝑏 is equal to∑︁

|𝑐 |=|𝑎|+|𝑏|
𝛾𝑎,𝑏;𝑐 𝜎𝑐,

where 𝛾𝑎,𝑏;𝑐 = deg(𝜎𝑎 · 𝜎𝑏 · 𝜎𝑐∗). �

The coefficients 𝛾𝑎,𝑏;𝑐 appearing in the previousCorollary are calledLittlewood-Richardson
coefficients and appear in many contexts in representation theory (of groups). Ways to com-
pute them is still an active area of research. It is in general not clear, for example, which ones are
0 and which ones are 1. They can also be greater than 1 and there is no complete description of
these cases. There are a few more accessible cases like special Schubert classeswhere we have
Pieri’s formula.

4.5. Pieri’s Formula

Definition. A special Schubert class is a class 𝜎𝑎 ∈ 𝐴(Gr(𝑘, 𝑉 )), where the Schubert index
𝑎 = (𝑎1, 0, 0, . . . , 0) has only one non-zero entry.

4.5.1 Proposition (Pieri’s Formula). For any Schubert class 𝜎𝑎 ∈ 𝐴(Gr(𝑘, 𝑉 )) and any integer 𝑏,
the product of 𝜎𝑎 with the special Schubert class 𝜎𝑏 is

𝜎𝑎 · 𝜎𝑏 =
∑︁

𝜎𝑐,

where the sum is over all Schubert indices 𝑐 such that |𝑐| = |𝑎| + 𝑏 and 𝑐𝑖 ≥ 𝑎𝑖 for 𝑖 = 1, 2, . . . , 𝑘 as
well as 𝑐𝑖 ≤ 𝑎𝑖−1 for 𝑖 = 2, 3, . . . , 𝑘.

Proof. By the Littlewood-Richardson rule in Corollary 4.4.6, the claim is equivalent to

𝜎𝑎𝜎𝑏𝜎𝑐∗ =

{
𝜎(𝑛−𝑘)𝑘 if 𝑎𝑖 ≤ 𝑐𝑖 ≤ 𝑎𝑖−1 for all 𝑖

0 otherwise

To show this, pick three transverse flagsU ,V , andW. By definition,

Σ𝑎(V) = {[Λ] : Λ ∩ 𝑉𝑛−𝑘+𝑖−𝑎𝑖 ≥ 𝑖 for all 𝑖}

and, since (𝑐∗)𝑖 = (𝑛 − 𝑘 − 𝑐𝑘+1−𝑖),

Σ𝑐∗ (W) = {[Λ] : Λ ∩𝑊𝑖+𝑐𝑘+1−𝑖 ≥ 𝑖 for all 𝑖}.

Set 𝐴𝑖 = 𝑉𝑛−𝑘+𝑖−𝑎𝑖 ∩ 𝑊𝑘+1−𝑖+𝑐𝑖 . Since the flags V andW are transversal, either dim(𝐴𝑖) = 0
or dim(𝐴𝑖) = 𝑐𝑖 − 𝑎𝑖 + 1 > 0. For any [Λ] ∈ Σ𝑎(V) ∩ Σ𝑐∗ (W), we have Λ ∩ 𝐴𝑖 ≠ {0}
(using the 𝑖th condition dim(Λ ∩ 𝑉𝑛−𝑘+𝑖−𝑎𝑖) ≥ 𝑖 from Σ𝑎(V) and the 𝑗th condition dim(Λ ∩
𝑊𝑗−𝑐𝑘+1−𝑗) ≥ 𝑗 for Σ𝑐∗ (W) with 𝑗 = 𝑘 + 1 − 𝑖). So for Σ𝑎(V) ∩ Σ𝑐∗ (W) to be non-empty, the
dimension of 𝐴𝑖 has to be positive. In particular, the intersection is empty if 𝑐𝑖 < 𝑎𝑖. So we
now assume 𝑐𝑖 ≥ 𝑎𝑖 for all 𝑖 = 1, 2, . . . , 𝑘. Choosing an adapted basis (𝑒1, . . . , 𝑒𝑛) of 𝑉 such that
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𝑉𝑖 = span{𝑒1, . . . , 𝑒𝑖} and𝑊𝑗 = span{𝑒𝑛, . . . , 𝑒𝑛+1−𝑗} as in Exercise 4.4.1(b), the intersection 𝐴𝑖 is
span{𝑒𝑛−𝑘+𝑖−𝑐𝑖 , . . . 𝑒𝑛−𝑘+𝑖−𝑎𝑖}. Set 𝐴 = span(𝐴1 ∪ . . . ∪ 𝐴𝑘). The dimension of 𝐴 is bounded by

dim(𝐴) ≤
𝑘∑︁
𝑖=1

(𝑐𝑖 − 𝑎𝑖 + 1) = 𝑘 + 𝑏.

We have equality here if and only if the ranges of indices [𝑛− 𝑘+ 𝑖− 1− 𝑐𝑖−1, 𝑛− 𝑘+ 𝑖− 1− 𝑎𝑖−1]
and [𝑛 − 𝑘 + 𝑖 − 𝑐𝑖, 𝑛 − 𝑘 + 𝑖 − 𝑎𝑖] do not intersect for any 𝑖 = 2, 3, . . . , 𝑘, which is equivalent to
𝑐𝑖 ≤ 𝑎𝑖−1.

Suppose that Σ𝑎(V) ∩ Σ𝑐∗ (W) is non-empty and that [Λ] ∈ Σ𝑎(V) ∩ Σ𝑐∗ (W) is general.
ThenΛ∩𝐴𝑖 is actuallyΛV𝑖 ∩Λ

W
𝑘+1−𝑖 sinceΛ

V
𝑖

= Λ∩𝑉𝑛−𝑘+𝑖−𝑎𝑖 andΛW𝑗 = Λ∩𝑊𝑗−𝑐𝑘+1−𝑗 . Lemma 4.4.3(2)
implies that Λ ⊂ 𝐴.

We show the last desired inequality 𝑐𝑖 ≤ 𝑎𝑖−1 by considering the dimension of 𝐴: The Schu-
bert variety Σ𝑏(U) consists of the 𝑘-planes Λ ⊂ 𝑉 that intersect the general linear subspace
𝑈 = 𝑈𝑛−𝑘+1−𝑏 ⊂ 𝑉 of dimension 𝑛 − 𝑘 + 1 − 𝑏 nontrivially. So if the triple intersection
Σ𝑎(V) ∩ Σ𝑐∗ (W) ∩ Σ𝑏(U) is nonempty, then this subspace 𝑈 must intersect 𝐴 nontrivially.
This implies that dim(𝑈) + dim(𝐴) ≥ dim(𝑉 ) + 1, showing dim(𝐴) ≥ 𝑘 + 𝑏. With the above
inequality on the dimension of 𝐴, this implies dim(𝐴) = 𝑘 + 𝑏, which is equivalent to 𝑐𝑖 ≤ 𝑎𝑖−1.

So we now know that 𝜎𝑎𝜎𝑏𝜎𝑐∗ = 0 if 𝑐𝑖 does not satisfy the inequalities 𝑎𝑖 ≤ 𝑐𝑖 ≤ 𝑎𝑖−1. In case
the inequalities hold, we can explicitly find the unique intersection point in Σ𝑎(V) ∩Σ𝑐∗ (W) ∩
Σ𝑏(U) in terms of 𝐴: Since𝑈 = 𝑈𝑛−𝑘+1−𝑏 is general of codimension 𝑘 + 𝑏− 1, it will intersect 𝐴
in a 1-dimensional space, say𝑈 ∩ 𝐴 = span{𝑣}. Write 𝑣 = 𝑣1 + 𝑣2 + . . . + 𝑣𝑘 with 𝑣𝑖 ∈ 𝐴𝑖, which
is a unique decomposition in this case (because dim(𝐴) = 𝑘 + 𝑏 implies 𝐴 =

⊕
𝐴𝑖). For an

intersection point [Λ] ∈ Σ𝑎(V) ∩ Σ𝑐∗ (W) ∩ Σ𝑏(U), we have Λ ⊂ 𝐴 and therefore Λ∩𝑈 ≠ {0}
as well as Λ = Σ(Λ ∩ 𝐴𝑖). It follows that 𝑣 ∈ Λ, which implies 𝑣𝑖 ∈ Λ for all 𝑖 = 1, 2, . . . , 𝑘,
which finally shows Λ = span{𝑣1, 𝑣2, . . . , 𝑣𝑘} so that 𝜎𝑎𝜎𝑏𝜎𝑐∗ is the class of a single point (using
transversality of the intersection by Kleiman’s Theorem 4.3.1). �

This formula implies a relation among the Schubert classes, that will reappear later in the
context of Chern classes.

4.5.2 Corollary. In the Chow ring 𝐴(Gr(𝑘, 𝑛)), the following relation holds.

(1 + 𝜎1 + 𝜎2 + . . . + 𝜎𝑛−𝑘) · (1 − 𝜎1 + 𝜎1,1 − 𝜎1,1,1 + . . . + (−1)𝑘𝜎1𝑘) = 1,

where 1 is the fundamental class [Gr(𝑘, 𝑛)] ∈ 𝐴0(Gr(𝑘, 𝑛)).

Proof. By Pieri’s formula Proposition 4.5.1, we have

𝜎�𝜎1𝑚 = 𝜎𝑙,1𝑚 + 𝜎𝑙+1,1𝑚−1

for any � ≤ 𝑛−𝑘 and𝑚 ≤ 𝑘. Now consider the terms of the product
∑𝑛−𝑘
𝑖=0 𝜎𝑖 ·

∑𝑘
𝑗=0(−1) 𝑗𝜎1𝑗 in the

claimby codimension. The homogeneous part of this product in 𝐴𝑑 (Gr(𝑘, 𝑛)) is∑𝑑
𝑖=0(−1) 𝑖𝜎𝑑−𝑖𝜎1𝑖

for all 𝑑 ≥ 1. Using the above equation, this product simplifies to

𝑑∑︁
𝑖=0

(−1) 𝑖𝜎𝑑−𝑖𝜎1𝑖 = 𝜎𝑑−(𝜎𝑑−1,1+𝜎𝑑)+(𝜎𝑑−2,1,1+𝜎𝑑−1,1)−+ . . .+(−1)𝑑−1(𝜎1𝑑+𝜎2,1𝑑−2)+(−1)𝑑𝜎1𝑑 = 0
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Figure 4.1: Young diagrams of Schubert indices (5, 3, 0, 0) in blue and (9, 6, 4, 2) in red.

because the sum telescopes. So the only term that remains is the fundamental class 1 · 1 as
claimed. �

We can use Young diagrams to count the number of Schubert classes inGr(𝑘, 𝑛): The Young
diagram of the Schubert index (𝑎1, . . . , 𝑎𝑘) of any Schubert class fits into a 𝑘× (𝑛−𝑘) grid. In the
𝑖th row of this grid, it contains the left most 𝑎𝑖 boxes. So it is uniquely determined by its bottom
right boundary. This boundary inside the box consists of edges going to the right (east) or up
(north). Traveling from the southwest corner to the north east corner, every Young diagram of
a Schubert index is bounded by 𝑘 edges going north and (𝑛− 𝑘) edges going east. If we list them
in order, we get a sequence of length 𝑛 with 𝑘 letters E and (𝑛 − 𝑘) letters N. These sequences
are in one-to-one correspondence with Young diagrams of Schubert indices of Schubert classes.

4.5.3 Example. The bottom right boundaries of the Young diagrams of the Schubert indeces
(5, 3, 0, 0) and (9, 6, 4, 2) in a 4×9 grid are shown in Figure 4.1 in blue and in red, respectively. The
corresponding sequences of edge directions are NNEEENEENEEEE and EENEENEENEEEN.

4.5.4 Corollary. As a ℤ-module, the Chow group 𝐴(Gr(𝑘, 𝑛)) is isomorphic to ℤ(𝑛𝑘) . �
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Chapter 5

Chern classes

The goal of this chapter is to introduce Chern classes and apply them to counting problems. We
aim to describe Chern classes for vector bundles on smooth varieties (mostly projective space
or Grassmannians) that are globally generated which means that they have plenty of global
sections. The general construction of Chern classes is more technical. We will not go through
the general construction here (at least not yet).

We write 𝐻0(𝑋, 𝐸) (or simply 𝐻0(𝐸)) for the 𝐾-vector space of global sections 𝑠 : 𝑋 → 𝐸

for any vector bundle 𝐸 on 𝑋 .

Definition. A vector bundle 𝐸 of rank 𝑟 on an irreducible variety 𝑋 is globally generated if
there are global sections 𝑠1, . . . , 𝑠𝑘 of 𝐸 such that the vector space 𝐸𝑝 = 𝜋−1(𝑝) attached to 𝑝 is
the linear span of 𝑠1(𝑝), . . . , 𝑠𝑘(𝑝).

Exercise 5.0.1. Show that a line bundleL on 𝑋 is globally generated if and only if there are global sections
𝑠1, . . . , 𝑠𝑘 of L that do not have any common zeroes.

Exercise 5.0.2. Prove that a vector bundle 𝐸 of rank 𝑟 is globally generated if and only if there is a
surjective morphism O𝑘

𝑋
→ E of sheaves for some 𝑘 ∈ ℕ, where E is the locally free sheaf of sections of

the vector bundle 𝐸.

5.1. Line bundles
The Chern class of a line bundle on a smooth variety 𝑋 is essentially the associated Weil divisor
(as an element of 𝐴1(𝑋)).

5.1.1 Construction. Let 𝑋 be a smooth and irreducible variety and L a line bundle on 𝑋 . A
rational section 𝑠 of L defines the Weil divisor div(𝑠) (compare Section 2.4.3). The first Chern
class ofL, denoted by 𝑐1(L), is defined as the rational equivalence class of div(𝑠) for any rational
section 𝑠 of L.

This is well defined as we saw in Section 2.4.3. In fact, we can summarize the discussion as
follows.

5.1.2 Proposition. If 𝑋 is an irreducible and smooth variety of dimension 𝑛, then 𝑐1 is a group
isomorphism

𝑐1 : Pic(𝑋) → 𝐴𝑛−1(𝑋).
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5.1.3 Example. On projective 𝑛-space, we saw that 𝑐1(Oℙ𝑛 (𝑑)) is the rational equivalence class
of a hypersurface of degree 𝑑 in ℙ𝑛, which is rationally equivalent to 𝑑 · 𝜁 , where 𝜁 = [𝐻] is the
rational equivalence class of a hyperplane 𝐻 ⊂ ℙ𝑛.

5.2. Characterizing Chern classes

The first Chern class of a globally generated vector bundle 𝐸 on 𝑋 is essentially a reduction to
the case of line bundles. Let 𝑟 be the rank of 𝐸. Then Λ𝑟𝐸 is a line bundle on 𝑋 and we define
the first Chern class of 𝐸 to be 𝑐1(Λ𝑟𝐸) ∈ 𝐴dim(𝑋)−1(𝑋). Intuitively, this measures the locus of
points in 𝑋 where global sections 𝜏1, . . . , 𝜏𝑟 of 𝐸 become linearly dependent. Pick general global
sections 𝜏1, . . . , 𝜏𝑟 of 𝐸 (assuming that 𝐸 has enough global sections for now) and consider the
map 𝜏 : O𝑟

𝑋
→ 𝐸 defined by sending the 𝑖th copy of O𝑋 to O𝑋 𝜏𝑖. Then 𝜏1 ∧ 𝜏2 ∧ . . . ∧ 𝜏𝑟 is

the determinant of this map, which vanishes if and only if the sections 𝜏𝑖 are linearly dependent.
(Clearly, we have not worried about the determinant of 𝜏 being rationally equivalent to 𝑐1(Λ𝑟𝐸).)

This point of view can be attempted for any 𝑘 ∈ {1, . . . , 𝑟}: we can consider the vanishing
scheme of a section 𝜏1 ∧ 𝜏2 ∧ . . . ∧ 𝜏𝑘 ∈ Λ𝑘𝐸 and hope to get a well defined equivalence class in
𝐴(𝑋). This is the intuition (in the globally generated case) behind the definition of the 𝑖th Chern
class of 𝐸 (for 𝑖 = 𝑟 + 1 − 𝑘).

The main ingredient from commutative algebra for this approach is Macaulay’s Unmixed-
ness Theorem stating the following.

5.2.1 Theorem (Eagon, Northcott; Macaulay). Let𝑀 be a 𝑝×𝑞matrix with entries in a noetherian
ring 𝑅. Let 𝑃 be a minimal prime of the ideal of 𝑅 generated by the 𝑘 × 𝑘 minors of 𝑀. Then 𝑃 has
codimension at most (𝑝 − 𝑘 + 1) (𝑞 − 𝑘 + 1).

As a consequence from this dimension result and Kleiman’s Theorem, we get that the above
construction does indeed make sense for globally generated vector bundles.

5.2.2 Lemma. Let 𝐸 be a vector bundle of rank 𝑟 on an irreducible and smooth variety 𝑋 . Let 𝑖 be an
integer between 1 and 𝑟 and let 𝜏0, 𝜏1, . . . , 𝜏𝑟−𝑖 be global sections of 𝐸. Let 𝐷 = 𝑉 (𝜏0∧ 𝜏1∧ . . .∧ 𝜏𝑟−𝑖)
be the degeneracy locus where these sections are linearly dependent.

(a) No irreducible component of 𝐷 has codimension bigger than 𝑖.
(b) If the 𝜏𝑖 are general elements of a vector space𝑊 of the vector space of global sections of 𝐸 that

generates 𝐸, then 𝐷 is generically reduced and has codimension 𝑖 in 𝑋 .

Proof. To show part (a), we interpret the vanishing of 𝜏0 ∧ 𝜏1 ∧ . . . ∧ 𝜏𝑟−𝑖 in terms of minors
as follows. Locally on an open cover {𝑈} of 𝑋 , the global sections 𝜏 𝑗 are given by vectors 𝑓𝑗� of
rational functions on𝑈 of length 𝑟. The outer product Λ𝑟−𝑖

𝑗=0𝜏 𝑗 is 0 if and only if all (𝑟− 𝑖+1)× (𝑟−
𝑖+1) minors of the (𝑟− 𝑖+1) × 𝑟matrix𝑀 with entries (𝑓𝑗� ) vanish. ByMacaulay’s (generalized)
Unmixedness Theorem 5.2.1 with 𝑘 = 𝑝 = 𝑟 − 𝑖 + 1 and 𝑞 = 𝑟, we get that every minimal prime
of the ideal of maximal minors of 𝑀 has codimension at most 𝑖.

Now using Kleiman’s Theorem 4.3.1, we get part (b). Let 𝑚 = dim(𝑊 ) and consider the
morphism 𝜑 : 𝑋 → Gr(𝑚 − 𝑟,𝑊 ) sending a point 𝑝 ∈ 𝑋 to the kernel of the evaluation map
𝑊 → 𝐸𝑝. (This linear map is surjective for every 𝑝 ∈ 𝑋 because of the assumption that 𝑊
globally generates 𝐸.) Let𝑈 be the subspace of dimension 𝑟 − 𝑖 + 1 spanned by general elements
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𝜏0, 𝜏1, . . . , 𝜏𝑟−𝑖 of𝑊 . Then the set 𝑉 (𝜏0 ∧ 𝜏1 ∧ . . . ∧ 𝜏𝑟−𝑖) is the preimage 𝜑−1(Σ) of the Schubert
cycle

Σ𝑖(𝑈) = {[Λ] ∈ Gr(𝑚 − 𝑟,𝑊 ) : Λ ∩𝑈 ≠ {0}} .
Part (b) of Theorem 4.3.1 says precisely that this preimage is generically reduced of the expected
codimension 𝑖 for general𝑈 . �

The desired properties of Chern classes are summarized in the following theorem. We will
prove parts of it, at least for globally generated vector bundles, and discuss applications of and
intuitions behind these properties.

5.2.3 Theorem. Let 𝑋 be a smooth, irreducible, quasi-projective variety. There is a unique way of
assigning to each vector bundle 𝐸 on 𝑋 a class 𝑐(𝐸) = 1 + 𝑐1(𝐸) + 𝑐2(𝐸) + . . . ∈ 𝐴(𝑋) called the
Chern class of 𝐸 such that the following properties hold.

(a) (Line bundles) If L is a line bundle on 𝑋 then the Chern class of L is 1 + 𝑐1(L), where
𝑐1(L) ∈ 𝐴1(𝑋) is the associated Weil divisor class.

(b) (Bundles with enough sections) If 𝜏0, . . . , 𝜏𝑟−𝑖 are global sections of 𝐸 such that the degeneracy
locus 𝐷 = 𝑉 (𝜏0 ∧ 𝜏1 ∧ . . . ∧ 𝜏𝑟−𝑖) has codimension 𝑖, then 𝑐𝑖(𝐸) is the rational equivalence
class of 𝐷 in 𝐴𝑖(𝑋).

(c) (Whitney’s formula) For any short exact sequence of vector bundles

0→ 𝐸→ 𝐹 → 𝐺 → 0

we have 𝑐(𝐹) = 𝑐(𝐸) · 𝑐(𝐺) ∈ 𝐴(𝑋).
(d) (Functoriality) For any morphism 𝜑 : 𝑌 → 𝑋 of smooth varieties we have

𝜑∗(𝑐(𝐸)) = 𝑐(𝜑∗(𝐸)).

Let’s look at a few consequences of these properties.

5.2.4 Corollary. If 𝐸 =
⊕
L𝑖 is a direct sum of line bundles L𝑖, then

𝑐(𝐸) =
∏

𝑐(L𝑖) =
∏
(1 + 𝑐1(L𝑖)) .

Concretely, 𝑐𝑖(𝐸) is the 𝑖th elementary symmetric polynomial evaluated in 𝑐1(L𝑖).

Proof. This follows by applying Whitney’s formula Theorem 5.2.3(c) inductively. �

5.2.5 Corollary. Any globally generated vector bundle 𝐸 on 𝑋 whose rank is greater than dim(𝑋)
has a nowhere vanishing global section.

Proof. This follows from the dimension statement Theorem 5.2.3(b). �

The functoriality in Theorem 5.2.3(d) allows us to reformulate Lemma 5.2.2 in terms of Schu-
bert calculus. The following statement is proved above, see proof of part (b) of Lemma 5.2.2.

5.2.6 Proposition. Let 𝐸 be a vector bundle of rank 𝑟 on an irreducible and smooth quasi-projective
variety 𝑋 . Let𝑊 be an 𝑚-dimensional vector space of global sections of 𝐸 generating 𝐸. Let 𝜑 : 𝑋 →
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Gr(𝑚 − 𝑟,𝑊 ) be the morphism that sends a point 𝑝 ∈ 𝑋 to the kernel of the evaluation 𝑊 → 𝐸𝑝,
then

𝑐𝑖(𝐸) = 𝜑∗(𝜎𝑖).

This approach works well for globally generated bundles and can in fact be used to prove at
least parts of Theorem 5.2.3 in this special case.

More generally, the splitting principle (based on the splitting construction) is a main tech-
nical tool. The basic idea is based on projectivized bundles.

Definition. Let 𝑋 be a variety (more generally this works even for schemes). Let 𝐸 be a vector
bundle of rank 𝑟+1 on 𝑋 and let E be the associated sheaf of sections of 𝐸. The projectivization
of 𝐸 is

𝜋E : Proj(Sym(E∗)) → 𝑋.

We write ℙE for the total space Proj(Sym(E∗)). A projective bundle over 𝑋 is any morphism
𝜋 : 𝑌 → 𝑋 that is 𝜋E for some locally free sheaf E over 𝑋 .

This is a local construction packed into the language of sheaves again. The vector bundle
associated to a locally free sheaf E is Spec(Sym(E∗)), which just means that we cover 𝑋 by
open subsets𝑈 over which E|𝑈 � O𝑋 (𝑈)𝑟+1 so that the ring of sections of the sheaf Sym(E∗) |𝑈
over 𝑈 is isomorphic to the polynomial ring O𝑋 (𝑈) [𝑥0, . . . , 𝑥𝑟]. And this is nothing other than
the coordinate ring of 𝑈 × 𝔸𝑟+1. Using now Proj instead of Spec amounts to locally attach a
homogeneous coordinate ring, namely this construction locally describes𝑈 × ℙ𝑟 . In this sense,
we attach to every point 𝑝 ∈ 𝑋 not the fiber 𝜋−1(𝑝) but rather the projective space ℙ(𝜋−1(𝑝))
(where 𝜋 is here the bundle map 𝜋 : 𝐸→ 𝑋 of the vector bundle 𝐸 over 𝑋 ).

We also need to construct the tautological bundle SE on ℙE . We do this via its associated
graded ring. The homogeneous coordinate ring of ℙ𝑛 is 𝐾 [𝑥0, . . . , 𝑥𝑛] with its usual grading
assigning every variable 𝑥𝑖 degree deg(𝑥𝑖) = 1. The line bundleO(1) has global sections, namely
the linear forms on ℙ𝑛. More generally, the vector space of global sections of O(𝑑) are the
forms of degree 𝑑. In this way, we get an isomorphism 𝐾 [𝑥0, 𝑥1, . . . , 𝑥𝑛] �

⊕
𝑖∈ℤ 𝐻

0(ℙ𝑛,O(𝑖)).
It turns out that we can reconstruct the line bundle O of ℙ𝑛 (in this case the structure sheaf)
from this associated graded ring: ℙ𝑛 = Proj(𝐾 [𝑥0, . . . , 𝑥𝑛]). This also works for any other line
bundleO(𝑑) onℙ𝑛: the associated graded ring

⊕
𝑖∈ℤ 𝐻

0(ℙ𝑛,O(𝑖+𝑑)) is again 𝐾 [𝑥0, 𝑥1, . . . , 𝑥𝑛]
with the only difference in grading: now we have deg(𝑥𝑖) = −𝑑 + 1 and deg(1) = −𝑑. The
associated graded ring of the tautological bundle O(−1) ofℙ𝑛 is 𝐾 [𝑥0, . . . , 𝑥𝑛] with deg(𝑥𝑖) = 2
and deg(1) = 1. We can do the same, namely shift the grading of Sym(E∗) by 1, to obtain the
associated graded ring of a line bundle SE = OℙE (−1) on ℙE .

The main result that make projective bundles over 𝑋 useful to define Chern classes of vector
bundles on 𝑋 is the following.

5.2.7 Theorem. Let 𝐸 be a vector bundle of rank 𝑟 on an irreducible and smooth variety 𝑋 . Let
𝜋E : ℙE → 𝑋 be the projectivization of 𝐸 and let 𝜁 be the first Chern class of S∗E , the dual of the
tautological line bundle on ℙE.

(a) The flat pullback map 𝜋∗ : 𝐴(𝑋) → 𝐴(ℙE) is injective.
(b) The element 𝜁 = 𝑐1(S∗E) ∈ 𝐴(ℙE) satisfies a unique monic polynomial 𝑓 (𝜁 ) of degree 𝑟 with

coefficients in 𝜋∗(𝐴(𝑋)).
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Here, the flat pullback is simply 𝜋∗( [𝐴]) = [𝜋−1(𝐴)] because the map 𝜋E is flat. If the
morphism 𝑓 : 𝑌 → 𝑋 is not flat, then the pullback 𝑓 ∗ : 𝐴(𝑋) → 𝐴(𝑌 ) is more complicated.

This result leads to the following way to define Chern classes.

Definition. Let 𝐸 be a vector bundle of rank 𝑟 on a smooth variety 𝑋 . The Chern classes 𝑐𝑖(𝐸)
are the unique elements of 𝐴(𝑋) such that

𝑓 (𝜁 ) = 𝜁 𝑟 + 𝜋∗(𝑐1(𝐸))𝜁 𝑟−1 + . . . + 𝜋∗(𝑐𝑟 (𝐸)).

This definition in fact entails that 𝐴(ℙE) is isomorphic to 𝐴(𝑋) [𝜁 ]/(𝑓 (𝜁 )).

5.3. The splitting principle
The splitting principle says that any identity among Chern classes of vector bundles that holds
for direct sums of line bundles is true in general. It is based on the following use of projectiviza-
tions of vector bundles.

5.3.1 Lemma (Splitting construction). Let 𝑋 be a smooth and irreducible variety. Let 𝐸 be a vector
bundle of rank 𝑟 on 𝑋 . There exists a smooth variety 𝑌 and a morphism 𝜑 : 𝑌 → 𝑋 such that the
following holds.

(a) The pullback map 𝜑∗ : 𝐴(𝑋) → 𝐴(𝑌 ) is injective.
(b) The pulled back bundle 𝜑∗(𝐸) on 𝑌 admits a filtration

0 = 𝐸0 ⊂ 𝐸1 ⊂ . . . ⊂ 𝐸𝑟−1 ⊂ 𝐸𝑟 = 𝜋∗(𝐸)

by vector subbundles 𝐸𝑖 such that the successive quotients 𝐸𝑖/𝐸𝑖−1 are line bundles.

Proof. The argument is essentially an iterated projectivization of bundles. First, set 𝑌1 = ℙE
which carries the tautological bundle S1 := SE which is a subbundle of 𝜋∗E (𝐸). Let Q1 be the
quotient of 𝜋∗E (𝐸) by SE so that we have the exact sequence 0→ SE → 𝜋∗E (𝐸) → Q1 → 0 on
𝑌1. Setting 𝑌2 = ℙQ1 and pulling this exact sequence back to 𝑌2 and repeating the construction,
we get the following two exact sequences on 𝑌2:

0→ 𝜋∗Q1 (S1) → 𝜋∗Q1𝜋
∗
E (𝐸) → 𝜋∗Q1 (Q1) → 0 and

0→ S2 → 𝜋∗𝑄1
(Q1) → Q2 → 0,

where S2 is the tautological bundle on 𝑌2 = ℙQ1. The line bundle S2 together with the line
bundle 𝜋∗Q1 (S1) gives a subbundle of rank 2 of 𝜋

∗
Q1𝜋
∗
E (𝐸) with quotient Q2. Continuing like this,

we get a space 𝑌 = 𝑌𝑟 and a morhpism 𝜑 : 𝑌 → 𝑋 where 𝜑 = 𝜋E ◦ 𝜋Q1 ◦ . . .◦ 𝜋Q𝑟 such that 𝜑∗(𝐸)
has a filtration into subbundles E𝑖 of rank 𝑖 obtained from the pullbacks of S1, . . . ,S𝑖 to 𝑌𝑟 . By
construction, the quotients E𝑖/E𝑖−1 are line bundles.

The injectivity of the pullbackmap 𝜑∗ : 𝐴(𝑋) → 𝐴(𝑌 ) follows from the above Theorem 5.2.7
and the Push-Pull Formula. �

For a vector bundle 𝐸 on 𝑋 , we can use this splitting construction to obtain 𝜑 : 𝑌 → 𝑋 .
Whitney’s formula Theorem 5.2.3(c) implies that the Chern class 𝑐(𝜑∗(𝐸)) of the pull back of 𝐸
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in 𝐴(𝑌 ) is∏ 𝑐(E𝑖/E𝑖−1) and these quotients are line bundles. So any identity among the Chern
classes of line bundles also holds for 𝑐(𝜑∗(𝐸)). The injectivity of the map 𝜑∗ : 𝐴(𝑋) → 𝐴(𝑌 )
implies that this class 𝑐(𝜑∗(𝐸)) ∈ 𝐴(𝑌 ) uniquely determines the Chern class 𝑐(𝐸) ∈ 𝐴(𝑋).

This approach directly gives several useful observations.

5.3.2 Proposition. Let 𝐸 be a vector bundle of rank 𝑟 on a smooth and irreducible variety 𝑋 . Then
the following hold.

(a) 𝑐𝑖(𝐸) = 0 for any 𝑖 > 𝑟;
(b) 𝑐𝑖(𝐸∗) = (−1) 𝑖𝑐𝑖(𝐸) for all 𝑖 ≥ 1;
(c) 𝑐1(Λ𝑟𝐸) = 𝑐1(𝐸).

Proof. By the splitting principle, it suffices to check these statements for vector bundles that
are direct sums of line bundles. So write 𝐸 =

⊕𝑟

𝑖=1 L𝑖. The Chern class of a line bundle is
𝑐(L𝑖) = 1 + 𝑐1(L𝑖) and so 𝑐(L∗𝑖 ) = 1− 𝑐1(L𝑖) (because 𝑐1 is a group isomorphism from Pic(𝑋)
to 𝐴1(𝑋). So part (a) follows from Whitney’s formula Theorem 5.2.3(c) showing that

𝑐(𝐸) =
𝑟∏
𝑖=1

𝑐(L𝑖) =
𝑟∏
𝑖=1

(1 + 𝑐1(L𝑖)).

There is no term of degree higher than 𝑟 in the expansion of this product. For part (b), we use
the same computation:

𝑐(𝐸∗) = 𝑐
(

𝑟⊕
𝑖=1

L∗𝑖

)
=

𝑟∏
𝑖=1

𝑐(L∗𝑖 ) =
𝑟∏
𝑖=1

(1 − 𝑐1(L𝑖))

which shows that 𝑐𝑖(𝐸∗) = (−1) 𝑖𝑐(𝐸) by comparing the two results writing the Chern class of
𝑐(𝐸) and 𝑐(𝐸∗) in terms of elementary symmetric polynomials in the 𝑐1(L𝑖).

To show part (c), first check that Λ𝑟
(⊕𝑟

𝑖=1 L𝑖
)
=

⊗𝑟

𝑖=1 L𝑖 which are line bundles. Their first
Chern class is

∑𝑟
𝑖=1 𝑐1(L𝑖), again because 𝑐1 : Pic(𝑋) → 𝐴1(𝑋) is a group homomorphism. The

first Chern class of 𝐸 is also
∑𝑟
𝑖=1 𝑐1(L𝑖), since the elementary symmetric polynomial of degree

1 is the sum of all variables. �

Another useful application of the splitting principle is to tensor products. Let us first take
the tensor product of any vector bundle with a line bundle.

5.3.3 Proposition. Let 𝐸 be a vector bundle of rank 𝑟 on a smooth and irreducible variety 𝑋 . Let
L be a line bundle on 𝑋 . The 𝑘th Chern class 𝑐𝑘(𝐸 ⊗ L) of 𝐸 ⊗ L is given by the formula

𝑐𝑘(𝐸 ⊗ L) =
𝑘∑︁
𝑗=0

(
𝑟 − 𝑗
𝑘 − 𝑗

)
𝑐1(L)𝑘−𝑗𝑐 𝑗(𝐸) =

𝑘∑︁
𝑖=0

(
𝑟 − 𝑘 + 𝑖

𝑖

)
𝑐1(L) 𝑖𝑐𝑘−𝑖(𝐸).

Proof. We assume that 𝐸 =
⊕𝑟

𝑖=1M𝑖 is a direct sum of line bundles. For simplicity, let’s write
𝛼𝑖 = 𝑐1(M𝑖) and 𝛽 = 𝑐1(L). With this notation, 𝑐(𝐸) = ∏𝑟

𝑖=1(1 + 𝛼𝑖) so that the evaluation
𝑒𝑘(𝛼1, . . . , 𝛼𝑟) = 𝑐𝑘(𝐸) of the elementary symmetric polynomial 𝑒𝑘 of degree 𝑘 in 𝑟 variables is
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exactly the 𝑘th Chern class of 𝐸. Whitney’s formula applied for 𝐸 ⊗ L =
⊕
(M𝑖 ⊗ L) gives

𝑐(𝐸 ⊗ L) =
𝑟∏
𝑖=1

(1 + 𝛼𝑖 + 𝛽).

The claim now follows from collecting terms of degree 𝑘 on the right hand side which we can
also write as

𝑟∏
𝑖=1

(1 + 𝛼𝑖 + 𝛽) =
𝑟∑︁
𝑗=0

∑︁
1≤𝑖1<𝑖2<...<𝑖 𝑗≤𝑟

(1 + 𝛽)𝑟−𝑗𝛼𝑖1 . . . 𝛼𝑖 𝑗 =
𝑟∑︁
𝑗=0

(1 + 𝛽)𝑟−𝑗𝑐 𝑗(𝐸).

This directly implies the first formula for 𝑐𝑘(𝐸 ⊗ L). The second is a simple shift in indexing
setting 𝑖 = 𝑘 − 𝑗. �

The tensor product of two bundles is a more involved computation. The first Chern class is
simple to write down.

5.3.4 Proposition. Let 𝐸 and 𝐹 be vector bundles of rank 𝑒 and 𝑓 , respectively, on an irreducible
and smooth variety 𝑋 . The first Chern class of 𝐸 ⊗ 𝐹 is

𝑐1(𝐸 ⊗ 𝐹) = 𝑓 𝑐1(𝐸) + 𝑒𝑐1(𝐹).

Proof. If both 𝐸 =
⊕
L𝑖 and 𝐹 =

⊕
M 𝑗 are direct sums of line bundles, then 𝐸⊗𝐹 is

⊕
𝑖,𝑗 L𝑖⊗

M 𝑗. Whitney’s formula strikes again and gives

𝑐(𝐸 ⊗ 𝐹) =
𝑒∏
𝑖=1

𝑓∏
𝑗=1

(1 + 𝑐1(L𝑖) + 𝑐1(M 𝑗)).

This formula can, in principle, be stared at to compute 𝑐𝑘(𝐸 ⊗ 𝐹). We just read off the terms of
degree 1 to get

𝑐1(𝐸 ⊗ 𝐹) =
𝑒∑︁
𝑖=1

𝑓∑︁
𝑗=1

(𝑐1(L𝑖) + 𝑐1(M 𝑗)) = 𝑓 𝑐1(𝐸) + 𝑒𝑐1(𝐹).

�

Exercise 5.3.5. Let 𝐸 be a vector bundle of rank 3 on a smooth and irreducible variety 𝑋 . Express the
Chern class of Λ2𝐸 in terms of the Chern class of 𝐸 (using the splitting principle and Whitney’s formula).

5.4. Examples: Chern classes of some bundles

5.4.1 Projective space
5.4.1 Example. Since the first Chern class of a line bundle is the associatedWeil divisor, we have
𝑐1(Oℙ𝑛 (𝑑)) = 𝑑𝜁 ∈ 𝐴(ℙ𝑛) for any positive integer 𝑑, where 𝜁 = [𝐻] is the rational equivalence
class of a hyperplane.
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Using Whitney’s formula, this implies the following.

5.4.2 Proposition. The Chern class of the universal quotient bundle Q on ℙ𝑛 is

𝑐(Q) = 1 + 𝜁 + 𝜁 2 + . . . + 𝜁 𝑛 ∈ ℤ[𝜁 ]/(𝜁 𝑛+1) � 𝐴(ℙ𝑛).

Proof. The universal quotient bundle Q fits in the exact sequence

0→ Oℙ𝑛 (−1) → 𝑉 ⊗ Oℙ𝑛 → Q → 0,

where we write 𝑉 = 𝐾𝑛+1 so that ℙ𝑛 = ℙ(𝑉 ). Whitney’s Formula Theorem 5.2.3(c) gives 𝑐(𝑉 ⊗
Oℙ𝑛) = 𝑐(Oℙ𝑛 (−1))𝑐(Q). Since Oℙ𝑛 (−1) = O∨

ℙ𝑛
, we have that 𝑐(Oℙ𝑛 (−1)) = 1 − 𝜁 . The

Chern class of the trivial bundle 𝑉 ⊗Oℙ𝑛 is 1. Using the geometric sum formula, we get (abusing
notation by formal division)

𝑐(Q) = 1
𝑐(Oℙ𝑛 (−1))

=
1

1 − 𝜁 = 1 + 𝜁 + 𝜁 2 + . . . + 𝜁 𝑛.

�

Exercise 5.4.3. Give an alternative proof of Proposition 5.4.2 by considering any element 𝑣 ∈ 𝑉 as a
global section of Q. Determine the degeneracy locus of sections 𝜎1, . . . , 𝜎𝑘 determined by a collection
𝑣1, . . . , 𝑣𝑘 ∈ 𝑉 of linearly independent vectors (which is 𝑐𝑛−𝑘+1(Q)).

Similarly, we can also compute the Chern class of the tangent bundle Tℙ𝑛 of ℙ𝑛.

5.4.4 Proposition. The Chern class of the tangent bundle Tℙ𝑛 of projective 𝑛-space is

𝑐(Tℙ𝑛) = (1 + 𝜁 )𝑛+1 ∈ ℤ[𝜁 ]/(𝜁 𝑛+1) � 𝐴(ℙ𝑛).

Proof. The tangent bundle fits in the Euler sequence (compare Example 4.1.11)

0→ Oℙ𝑛 → Oℙ𝑛 (1) ⊗ 𝑉 → Tℙ𝑛 → 0

which implies (by Whitney’s Formula again) that 𝑐(Tℙ𝑛) · 𝑐(Oℙ𝑛) = 𝑐(Oℙ𝑛 (1) ⊗𝑉 ). This implies
the claim because 𝑐(Oℙ𝑛) = 1 and 𝑐(Oℙ𝑛 (1)𝑛+1) = (1 + 𝜁 )𝑛+1. �

Exercise 5.4.5. What is the Chern class of the tangent bundle of ℙ𝑚 × ℙ𝑛?

With a bit more technique, we can also compute the tangent bundle of a hypersurface (or
more generally, a complete intersection) 𝑋 ⊂ ℙ𝑛.

5.4.6 Proposition. Let 𝑋 = V+(𝑓 ) ⊂ ℙ𝑛 be a smooth hypersurface of degree 𝑑 in ℙ𝑛. The Chern
class of the tangent bundle of 𝑋 in 𝐴(𝑋) is

𝑐(T𝑋 ) =
(
1 + (𝑛 + 1)𝜁 +

(
𝑛 + 1
2

)
𝜁 2 + . . .

(
𝑛 + 1
2

)
𝜁 𝑛−1

)
(1− 𝑑𝜁 + 𝑑2𝜁 2−+ . . .+ (−1)𝑛−1𝑑𝑛−1𝜁 𝑛−1),

where 𝜁 is the class of a hyperplane section of 𝑋 .
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Proof. Again we apply Whitney’s formula but this time to the exact sequence

0→ T𝑋 → Tℙ𝑛 |𝑋 → N𝑋/ℙ𝑛 → 0.

The normal bundle N𝑋/ℙ𝑛 of 𝑋 ⊂ ℙ𝑛 is isomorphic to Oℙ𝑛 (𝑋) |𝑋 = O𝑋 (𝑑), which is part of a
proof of the adjunction formula. Taking this for granted at themoment, this implies the claim:

(1 + 𝜁 )𝑛+1 = 𝑐(Tℙ𝑛 |𝑋 ) = 𝑐(T𝑋 )𝑐(O𝑋 (𝑑)) = 𝑐(T𝑋 ) (1 + 𝑑𝜁 )

Since 𝑋 has dimension 𝑛 − 1, the expansions become 0 in degree 𝑛 and higher. �

5.4.2 Grassmannian
Again, we will compute the Chern classes of the universal sub- and quotient bundles as well as
(at least the first) Chern class of the tangent bundle, this time for Grassmannians.

5.4.7 Proposition. The Chern class of the universal quotient bundle Q on Gr(𝑘, 𝑛) is

𝑐(Q) = 1 + 𝜎1 + 𝜎2 + . . . + 𝜎𝑛−𝑘 ∈ 𝐴(Gr(𝑘, 𝑛)).

The Chern class of the universal subbundle S on Gr(𝑘, 𝑛) is

𝑐(S) = 1 − 𝜎1 + 𝜎1,1 − + . . . + (−1)𝑘𝜎1𝑘 .

In particular, the Chern class of S∗ is 𝑐(S∗) = 1 +∑𝑘
𝑖=1 𝜎1𝑖 .

Proof. The universal quotient bundle Q is globally generated: a vector 𝑣 ∈ 𝑉 gives a global
section 𝜎𝑣 of Q by setting 𝜎𝑣(Λ) = (𝑣 + Λ) ∈ 𝑉/Λ. Now take linearly independent vectors
𝑣1, . . . , 𝑣𝑚 ∈ 𝑉 . The degeneracy locus V(𝜎𝑣1 ∧ 𝜎𝑣2 ∧ . . . ∧ 𝜎𝑣𝑚) of the corresponding sections
consists of those 𝑘-planesΛ ⊂ 𝑉 such that the intersectionΛ∩span{𝑣1, . . . , 𝑣𝑚} is nontrivial. This
is the Schubert cycle Σ𝑛−𝑘+1−𝑚(span{𝑣1, . . . , 𝑣𝑚}). This degeneracy locus is the 𝑗th Chern class of
Q for 𝑗 = rank(Q)+1−𝑚 and rank(Q) = 𝑛−𝑘. So 𝑐 𝑗(Q) = 𝜎 𝑗 showing that 𝑐(Q) = 1+∑𝑛−𝑘

𝑖=1 𝜎𝑖 as
claimed. We can now compute 𝑐(S) by Whitney’s formula because we have the exact sequence

0→ S → O𝑛Gr(𝑘,𝑛) → Q → 0.

The Chern class of O𝑛Gr(𝑘,𝑛) is 1 so that Pieri’s formula in the form Corollary 4.5.2 implies the
claim. Since 𝑐𝑖(𝐸∗) = (−1) 𝑖𝑐𝑖(𝐸), we get the Chern class of S∗ from this as well. �

Exercise 5.4.8. Compute the Chern class of the dual S∗ of the universal subbundle using degeneracy
loci as follows. A linear form � ∈ 𝑉 ∗ defines a global section 𝜎� of S∗ by setting 𝜎� (Λ) = � |Λ ∈ Λ∗. The
rational equivalence class of the degeneracy locusV(𝜎�1 ∧ 𝜎�2 ∧ . . . ∧ 𝜎�𝑚) is 𝜎1𝑘−𝑚+1 .

These results determine the first Chern class of the tangent bundle of Gr(𝑘, 𝑛) by Proposi-
tion 5.3.4 because TGr(𝑘,𝑛) = Hom(S,Q) � S∗ ⊗ Q.

5.4.9 Proposition. The first Chern class of the tangent bundle TGr(𝑘,𝑛) is

𝑐1(TGr(𝑘,𝑛)) = 𝑛𝜎1.

Algebraische Geometrie II / Rainer Sinn / Uni Leipzig (2023)



62 5. Chern classes

Proof.

𝑐1(TGr(𝑘,𝑛)) = rank(Q)𝑐1(S∗) + rank(S∗)𝑐1(Q) = (𝑛 − 𝑘)𝜎1 + 𝑘𝜎1 = 𝑛𝜎1

�

Exercise 5.4.10. Determine the Chern class of the tangent bundle of Gr(2, 4).

Withmore commutative algebra, it is possible to show that the Chern classes of the universal
subbundle generate the Chow ring as a (graded) ℤ-algebra in the following sense.

5.4.11 Theorem. The Chow ring of the Grassmannian Gr(𝑘, 𝑛) is

𝐴(Gr(𝑘, 𝑛)) = ℤ[𝑐1, . . . , 𝑐𝑘]/𝐼,

where 𝑐𝑖 ∈ 𝐴𝑖(Gr(𝑘, 𝑛)) is the 𝑖th Chern class of the universal subbundle S (i.e. 𝑐𝑖 = (−1) 𝑖𝜎1𝑖 ). The
ideal 𝐼 is generated by the terms of total degree 𝑗 ∈ {𝑛 − 𝑘 + 1, . . . , 𝑛} in the power series expansion
(geometric series)

1
1 + 𝑐1 + . . . + 𝑐𝑘

= 1 − (𝑐1 + . . . + 𝑐𝑘) + (𝑐1 + . . . + 𝑐𝑘)2 − + . . . ∈ ℤ[[𝑐1, . . . , 𝑐𝑘]].

This graded ℤ-algebra is a complete intersection.

5.4.3 Chern class and Euler characteristic

The topological Euler characteristic of a manifold (or simplicial complex) generalizes the Euler
Formula 𝐸 − 𝐾 + 𝐹 = 2 for 3-dimensional polytopes. We write it as 𝜒𝑡𝑜𝑝(𝑀) for a manifold 𝑀
and use it for smooth projective varieties 𝑋 ⊂ ℙ(ℂ𝑛+1). An alternative definition in terms of
Chern classes is the following result.

5.4.12 Theorem (essentially Poincaré-Hopf Theorem). For a smooth 𝑚-dimensional projective
variety 𝑋 ⊂ ℙ𝑛 (over ℂ), the topological Euler characteristic is determined by the tangent bundle of
𝑋 by the formula

𝜒𝑡𝑜𝑝(𝑋) = deg(𝑐𝑚(T𝑋 )).

With the above computations of tangent bundles, this gives a tool to compute the Euler char-
acteristic in some cases.

5.4.13 Example. The Chern class 𝑐(Tℙ𝑛) of the tangent bundle of ℙ𝑛 is (1 + 𝜁 )𝑛+1 ∈ 𝐴(ℙ𝑛) so
that 𝜒𝑡𝑜𝑝(ℙ𝑛) = 𝑛 + 1.

5.4.14 Example. The computation of the Euler characteristic of a hypersurface of degree 𝑑 in
ℙ𝑛 is a little more involved but it only depends on the degree! Above, we saw for a hypersurface
𝑋 ⊂ ℙ𝑛 of degree 𝑑 that

𝑐(T𝑋 ) =
(1 + 𝜁 )𝑛+1
(1 + 𝑑𝜁 )
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and we need to find the part of degree 𝑛 − 1 of the exapnsion by the geometric sum formula.
This gives

𝑐𝑛−1(T𝑋 ) =
𝑛−1∑︁
𝑖=0

(−1) 𝑖
(
𝑛 + 1

𝑛 − 1 − 𝑖

)
𝑑𝑖𝜁 𝑛−1.

The degree of 𝜁 𝑛−1 is 𝑑 = deg(𝑋) so that the topological Euler characteristic is

𝜒𝑡𝑜𝑝(𝑋) = deg(𝑐𝑛−1(T𝑋 )) =
𝑛−1∑︁
𝑖=0

(−1) 𝑖
(
𝑛 + 1

𝑛 − 1 − 𝑖

)
𝑑𝑖+1.

5.5. Fano schemes and enumerative problems

We will use the formalism of Chern classes to show that a smooth cubic surface in ℙ3 contains
27 lines. For this, we compute the class of the Fano scheme of lines on a cubic surface as the
Chern class of a bundle derived from the universal subbundle ofGr(2, 4). The final equation for
this example will look like this

deg(𝑐4(Sym3 S∗)) = 27.

More generally, the Fano scheme 𝐹𝑘(𝑋) for a projective variety 𝑋 ⊂ ℙ𝑛 is the set of 𝑘-planes
in ℙ𝑛 that are contained in 𝑋 as a subset of 𝔾(𝑘, 𝑛) = Gr(𝑘 + 1, 𝑛 + 1). Let us first focus on set
theoretic questions and later worry about scheme structures and transversality of intersections.

Definition. Fix positive integers 𝑛, 𝑑, and 𝑘with 𝑘 ≤ 𝑛 and define the universal Fano scheme
of 𝑘-planes on hypersurfaces of degree 𝑑 in ℙ𝑛 as

Φ(𝑛, 𝑑, 𝑘) =
{
(𝑋, [Λ]) ∈ ℙ𝑁 × 𝔾(𝑘, 𝑛) : Λ ⊂ 𝑋

}
,

where ℙ𝑁 = ℙ(𝐾 [𝑥0, . . . , 𝑥𝑛]𝑑) for 𝑁 =
(𝑛+𝑑
𝑑

)
− 1 is the projective space of hypersurfaces

𝑋 = V+(𝑓 ) ⊂ ℙ𝑛 of degree 𝑑.

5.5.1 Proposition. The universal Fano scheme Φ(𝑛, 𝑑, 𝑘) is a closed subset of ℙ𝑁 ×𝔾(𝑘, 𝑛). It is a
smooth and irreducible variety of dimension

dim(Φ(𝑛, 𝑑, 𝑘)) =
((
𝑛 + 𝑑
𝑑

)
− 1

)
+ (𝑘 + 1) (𝑛 − 𝑘) −

(
𝑘 + 𝑑
𝑑

)
.

Proof. The point is to consider the projection to the second factor and its fibers. If we fix the 𝑘-
plane Λ ⊂ ℙ𝑛, the space of hypersurfaces of degree 𝑑 that contain Λ is a projective space, namely
the projective space of all homogeneous polynomials 𝑓 ∈ 𝐾 [𝑥0, . . . , 𝑥𝑛] of degree 𝑑 that vanish
identically when restricted to Λ ⊂ ℙ𝑛.

To see that Φ(𝑛, 𝑑, 𝑘) is closed in ℙ𝑁 × 𝔾(𝑘, 𝑛), we cover 𝔾(𝑘, 𝑛) with the standard open
affine charts 𝑈Γ. The argument is the same for all covers so let us assume for simplicity that a
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subspace Λ ∈ 𝑈Γ is the rowspace of a unique matrix of the form

𝐴 =

©«
1 0 . . . 0 𝑎0,𝑘+1 𝑎0,𝑘+1 . . . 𝑎0,𝑛+1
0 1 0 𝑎1,𝑘+1 𝑎1,𝑘+1 . . . 𝑎1,𝑛+1
...

. . .
...

...
...

0 0 1 𝑎𝑘,𝑘+1 𝑎𝑘,𝑘+1 . . . 𝑎𝑘,𝑛+1

ª®®®®¬
.

We can write any point 𝑥 ∈ Λ as (𝑠0, 𝑠1, . . . , 𝑠𝑘)𝐴 for a unique point 𝑠 = (𝑠0, 𝑠1, . . . , 𝑠𝑘) ∈ ℙ𝑘.
So a hypersurface 𝑋 ⊂ ℙ𝑛 defined by 𝑓 ∈ 𝐾 [𝑥0, 𝑥1, . . . , 𝑥𝑛]𝑑 contains Λ if and only if every
coefficient of the polynomial 𝑓Λ ∈ 𝐾 [𝑠0, 𝑠1, . . . , 𝑠𝑘] obtained from 𝑓 by substituting 𝑥𝑖 by the
𝑖th entry of (𝑠0, 𝑠1, . . . , 𝑠𝑘)𝐴 in 𝑓 is the zero polynomial. (Concretely, we substitute 𝑥𝑖 by 𝑠𝑖 for
𝑖 < 𝑘 + 1 and by∑

𝑠𝑗𝑎𝑗,𝑖 for 𝑖 ≥ 𝑘 + 1.) The coefficients of 𝑓Λ are bihomogeneous polynomials in
the coefficients of 𝑓 and the Plücker coordinates 𝑎𝑖,𝑗 of Λ and define the universal Fano scheme
in ℙ𝑁 × 𝔾(𝑘, 𝑛).

For the other claims, let us rewrite the restriction map in line bundle notation. The re-
striction map 𝐻0(ℙ𝑛,Oℙ𝑛 (𝑑)) → 𝐻0(Λ, 𝑂Λ(𝑑)) is a surjection (of 𝐾-vector spaces) and the
hypersurfaces containing Λ are in one-to-one correspondence with the elements in the projec-
tive space over the kernel of the restriction map. This kernel has dimension

(𝑛+𝑑
𝑑

)
−

(𝑘+𝑑
𝑑

)
by

the dimension formula in linear algebra. This shows that the variety Φ(𝑛, 𝑑, 𝑘) is irreducible
of dimension dim(𝔾(𝑘, 𝑛)) +

(𝑛+𝑑
𝑑

)
−

(𝑘+𝑑
𝑑

)
− 1, which is the same as the claimed one because

dim(𝔾(𝑘, 𝑛)) = (𝑘 + 1) (𝑛 − 𝑘). By Cramer’s rule, Φ(𝑛, 𝑘, 𝑑) is the projectivization of a vector
bundle over 𝔾(𝑘, 𝑛) (exercise) and so it is smooth. �

The dimension of the universal Fano scheme gives bounds on the dimension of the variety
(rather the Fano scheme) of 𝑘-planes contained in a general hypersurface of degree 𝑑 in ℙ𝑛.

5.5.2 Corollary. Fix positive integers 𝑛 ,𝑑, and 𝑘 with 𝑘 ≤ 𝑛 and set

𝜑(𝑛, 𝑑, 𝑘) = (𝑘 + 1) (𝑛 − 𝑘) −
(
𝑘 + 𝑑
𝑑

)
.

(a) If 𝜑(𝑛, 𝑑, 𝑘) < 0, then a general hypersurface of degree 𝑑 in ℙ𝑛 does not contain any 𝑘-plane.
(b) If 𝜑(𝑛, 𝑑, 𝑘) ≥ 0 and a general hypersurface of degree 𝑑 in ℙ𝑛 contains a 𝑘-plane, then ev-

ery hypersurface of degree 𝑑 contains 𝑘-planes. Moreover, every irreducible component of the
family of 𝑘-planes on a general hypersurface of degree 𝑑 has dimension exactly 𝜑(𝑛, 𝑑, 𝑘).

Proof. The main point is that 𝜑(𝑛, 𝑑, 𝑘) = dim(Φ(𝑛, 𝑑, 𝑘)) − 𝑁 , where 𝑁 is the dimension of
the projective space of hypersurfaces of degree 𝑑 in ℙ𝑛. So part (a) is immediate because the
projection to the first factor ℙ𝑁 of Φ(𝑛, 𝑑, 𝑘) cannot be dominant. The assumption in part (b)
that a general hypersurface contains a 𝑘-plane implies that the projection to the second factor
is dominant. Since the universal Fano scheme is projective, the image of the projection is closed
showing that every hypersurface contains a 𝑘-plane. The claim about the dimension of the fiber
is a theorem that holds for general fibers of a dominant morphism. �

Definition. For a hypersurface 𝑋 ⊂ ℙ𝑛 of degree 𝑑, the Fano scheme 𝐹𝑘(𝑋) of 𝑘-planes in 𝑋
is the fiber over 𝑋 of the projection of Φ(𝑛, 𝑑, 𝑘) to the first factor ℙ𝑁 .
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Exercise 5.5.3. Show that the Fano scheme of lines on a generat quadratic hypersurface in ℙ3 is the dis-
joint union of two curves (each of degree 2 in the Plücker embedding). (It suffices to do this computation
forV+(𝑥0𝑥3 − 𝑥1𝑥2).) Then show that the Fano scheme 𝐹1(V+(𝑥20 − 𝑥21 − 𝑥22)) ⊂ 𝔾(1, 3) of lines on a
quadratic cone in ℙ3 is everywhere nonreduced.

We now rewrite the restriction map 𝐻0(ℙ𝑛,Oℙ𝑛 (𝑑)) → 𝐻0(Λ,OΛ(𝑑)) in terms of the uni-
versal subbundle of 𝔾(𝑘, 𝑛) which allows us to express the class [𝐹𝑘(𝑥)] ∈ 𝐴(𝔾(𝑘, 𝑛)) of the
Fano variety of 𝑋 in terms of Chern classes.

5.5.4 Proposition. Fix positive integers 𝑛, 𝑑, and 𝑘 with 𝑘 ≤ 𝑛. Let S be the universal subbundle
of 𝔾(𝑘, 𝑛) = Gr(𝑘 + 1, 𝑛 + 1). A form 𝑓 of degree 𝑑 on ℙ𝑛 gives rise to a global section 𝜎𝑓 of the
bundle Sym𝑑 S∗ whose zero locus is the Fano scheme 𝐹𝑘(V+(𝑓 )).

If the Fano scheme 𝐹𝑘(𝑋) has the expected codimension 𝑟 =
(𝑘+𝑑
𝑑

)
in 𝔾(𝑘, 𝑛) for a hypersurface

𝑋 ⊂ ℙ𝑛 of degree 𝑑, then

[𝐹𝑘(𝑋)] = 𝑐𝑟
(
Sym𝑑 S∗

)
∈ 𝐴𝑟 (𝔾(𝑘, 𝑛)).

Proof. This is essentially the same trick that we have used before to compute the Chern classes
of the universal sub- and quotient-bundles of𝔾(𝑘, 𝑛). A polynomial 𝑓 of degree 𝑑 onℙ𝑛 is an el-
ement of Sym𝑑 𝑉 ∗, where𝑉 = 𝐾𝑛+1. Given [Λ] ∈ 𝔾(𝑘, 𝑛), we can restrict such a polynomial 𝑓 to
Λ ⊂ ℙ𝑛, which defines the restriction map 𝐻0(ℙ𝑛,Oℙ𝑛 (𝑑)) → 𝐻0(Λ,OΛ(𝑑)). The target vector
space 𝐻0(Λ,OΛ(𝑑)) is Sym𝑑 Λ∗. (In fact, the restriction map Sym𝑑 𝑉 ∗ → Sym𝑑 Λ∗ is the map in-
duced on symmetric powers by the linearmap on dual spaces coming from the inclusion Λ ⊂ 𝑉 .)
With this point-wise definition, we globally get themap Sym𝑑 𝑉 ∗ → 𝐻0(𝔾(𝑘, 𝑛), Sym𝑑 S∗). De-
note by 𝜎𝑓 the image of 𝑓 ∈ Sym𝑑 𝑉 ∗ under this map. We can check that this global section 𝜎𝑓
of Sym𝑑 S∗ defines the Fano scheme 𝐹𝑘(V+(𝑓 )) locally on an open cover of 𝔾(𝑘, 𝑛). But on an
affine open 𝑈Γ, the section 𝜎𝑓 defines 𝐹𝑘(V+(𝑓 )) by construction (see the computation above
showing that 𝐹𝑘(𝑋) is closed in the proof of Proposition 5.5.1).

If we know that the codimension is correct, then the appropriate Chern class is the degen-
eracy locus of the section (see Theorem 5.2.3(b)), which is the Fano scheme. �

With this result, we can compute the number of lines on a general cubic surface in ℙ3.

5.5.5 Corollary. The number of lines on a general cubic surface in ℙ3 is 27.

Proof. Let us first do the Chern class computation. By the above result, we need to compute
𝑐𝑟 (Sym3 S∗) ∈ 𝐴𝑟 (𝔾(1, 3)), where 𝑟 is the expected codimension

(4
3
)
= 4 of the Fano scheme of

lines on a cubic. The Chern class of S∗ on 𝔾(1, 3) is 𝑐(S∗) = 1 + 𝜎1 + 𝜎1,1 by Proposition 5.4.7.
To compute 𝑐4(Sym3 S∗), we use the splitting principle to compute 𝑐4(Sym3(L ⊕ M)). Write
𝑐(L) = 1 + 𝛼 and 𝑐(M) = 1 + 𝛽. Since we want 𝑐(L ⊕ M) = 1 + 𝜎1 + 𝜎1,1, Whitney’s formula
implies 𝛼 + 𝛽 = 𝜎1 and 𝛼 · 𝛽 = 𝜎1,1.

The fourth Chern class of Sym3(L ⊕ M) is determined by the splitting

Sym3(L ⊕ M) = L3 ⊕ (L2 ⊗M) ⊕ (L ⊗M2) ⊕ M3,

which implies by Whitney’s formula

𝑐(Sym3(L ⊕ M)) = (1 + 3𝛼) · (1 + 2𝛼 + 𝛽) · (1 + 𝛼 + 2𝛽) · (1 + 3𝛽).
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So the top Chern class of this vector bundle is given by

𝑐4(Sym3(L ⊕ M)) = 3𝛼 · (2𝛼 + 𝛽) · (𝛼 + 2𝛽) · 3𝛽.

Simplifying this equation and using 𝛼 + 𝛽 = 𝜎1 and 𝛼 · 𝛽 = 𝜎1,1, we get

𝑐4(Sym3(L ⊕ M)) = 9 · 𝜎1,1 · (2𝜎 21 + 𝜎1,1) = 27𝜎2,2.

By the splitting principle, the same identity applies to S∗ so that we get

deg(𝑐4(Sym3 S∗)) = deg(27𝜎2,2) = 27.

This computation shows that every cubic surface must contain some lines, simply because
this class is non-zero. Indeed, otherwise, a general cubic would not contain any lines and the
degeneracy locus of a general section 𝜎𝑔 would be empty. �

So far, to be precise, this method of proof only shows that a general cubic surface inℙ3 con-
tains finitely many lines and that their number is 27 if counted with multiplicity. The question
of whether there are actually 27 distinct lines on such a surface is related to the reducedness of
the degeneracy locus which is to say the Fano scheme 𝐹1(V+(𝑓 )). With a little more theory, it
follows that the Fano scheme 𝐹1(𝑆) for a smooth cubic surface 𝑆 ⊂ ℙ3 is always 0-dimensional
and reduced so that every such surface contains precisely 27 distinct lines.

The main result in this direction is the following.

5.5.6 Theorem. Let Λ ⊂ 𝑋 ⊂ ℙ𝑛 be a 𝑘-plane in a smooth variety 𝑋 ⊂ ℙ𝑛 and write [Λ] for the
corresponding point in 𝐹𝑘(𝑋) ⊂ 𝔾(𝑘, 𝑛). The Zariski tangent space of 𝐹𝑘(𝑋) at [Λ] is isomorphic
to 𝐻0(𝐿,N𝐿/𝑋 ).

We will not give a proof of this statement. The proof in 3264 uses deformation theory. For
cubic surfaces, we can do a direct computation to show that 𝐹1(𝑋) is reduced for a smooth cubic
surface 𝑋 ⊂ ℙ3.

5.5.7 Proposition. Let 𝑋 be a smooth cubic surface in ℙ3 and let Λ ⊂ 𝑋 be a line in ℙ3 so that
(𝑋, [Λ]) ∈ Φ(3, 3, 1). Then the differential 𝑑𝜋 : 𝑇(𝑋,[Λ])Φ(3, 3, 1) → 𝑇𝑋ℙ

19 is surjective. In par-
ticular, the fiber 𝜋−1(𝑋) intersects Φ(3, 3, 1) transversely at (𝑋, [Λ]) which implies that 𝐹1(𝑋) is
reduced at (𝑋, [Λ]).

Proof. After a change of coordinates, we assume that Λ is the rowspan of

𝑀 =

(
1 0 0 0
0 1 0 0

)
,

which is the origin in the affine chart𝑈Γ ⊂ 𝔾(1, 3) for Γ = span{𝑒2, 𝑒3}, the coordinate subspace
spanned by the last two coordinate vectors in 𝐾4. Every point of𝑈Γ is the rowspan of a unique
matrix of the form (

1 0 𝑎1 𝑎2
0 1 𝑏1 𝑏2

)
.

Let 𝐹𝑐 =
∑
𝑐𝛼𝑥

𝛼 ∈ 𝐾 [𝑥0, 𝑥1, 𝑥2, 𝑥3]3 be the cubic equation given by the coefficient vector 𝑐 ∈
ℙ19. On 𝑈Γ � 𝔸4 the condition that the subspace with coordinates (𝑎1, 𝑎2, 𝑏1, 𝑏2) is contained
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in V+(𝐹𝑐) simply means that the restriction of 𝐹𝑐 to it is 0. Concretely, these are 4 algebraic
constraints obtained by expanding

𝐹𝑐 (𝑠0, 𝑠1, 𝑠0𝑎1 + 𝑠1𝑏1, 𝑠0𝑎2 + 𝑠1𝑏2) = 𝑔0(𝑎, 𝑏, 𝑐)𝑠30 + 𝑔1(𝑎, 𝑏, 𝑐)𝑠20𝑠1 + 𝑔2(𝑎, 𝑏, 𝑐)𝑠0𝑠21 + 𝑔3(𝑎, 𝑏, 𝑐)𝑠31

is the zero polynomial. The polynomials 𝑔𝑖 dependon 𝑐 and the Plücker coordinates (𝑎1, 𝑎2, 𝑏1, 𝑏2)
and they are the defining equations of Φ(3, 3, 1) ∩ (ℙ19 ×𝑈Γ). So the tangent space to Φ(3, 3, 1)
at (𝑋, [Λ]) is the kernel of the Jacobian

𝐽 =

(
𝜕𝑔𝑖

𝜕𝑧 𝑗

)
𝑖=1,2,3,4;𝑗=0,...,23

where 𝑧 𝑗 = 𝑐𝛼𝑖 for 𝑖 = 0, . . . , 19 and some monomial order 𝛼0, . . . , 𝛼19 on the cubic monomials
in variables 𝑥0, 𝑥1, 𝑥2, 𝑥4 and 𝑧20 = 𝑎1, 𝑧21 = 𝑎2, 𝑧22 = 𝑏1, and 𝑧23 = 𝑏2. Let (𝑋, [Λ]) be a pair of
a smooth cubic surface 𝑋 = V+(𝑓 ) ⊂ ℙ3 and the line Λ ⊂ 𝑋 , Λ = span{𝑒0, 𝑒1} corresponding
to the origin in 𝑈Γ. In the Jacobian 𝐽 (𝑋, [Λ]) evaluated at this pair, the last 4 × 4 block has full
rank (which implies the claim). Let’s compute the entries of 𝐽 (𝑋, [Λ]) in this 4 × 4 block. Write
𝐺 for the vector (𝑔0, 𝑔1, 𝑔2, 𝑔3)>.

𝜕𝑎1𝐺(𝑐, [Λ]) = 𝜕𝑎1𝐹𝑐 (𝑠0, 𝑠1, 𝑠0𝑎1 + 𝑠1𝑏1, 𝑠0𝑎2 + 𝑠1𝑏2) (𝑐, [Λ])

= 𝑠0
𝜕𝐹

𝜕𝑥2
(𝑠0, 𝑠1, 𝑠0𝑎1 + 𝑠1𝑏1, 𝑠0𝑎2 + 𝑠1𝑏2) (𝑐, [Λ])

An analogous computation for the other three variables shows that the 4×4 block 𝐽(𝑎1,𝑎2,𝑏1,𝑏2) (𝑋, [Λ])
corresponding to the Grassmannian is(

𝑠0
𝜕𝑓

𝜕𝑥2
(𝑠0, 𝑠1, 0, 0) 𝑠0

𝜕𝑓

𝜕𝑥3
(𝑠0, 𝑠1, 0, 0) 𝑠1

𝜕𝑓

𝜕𝑥2
(𝑠0, 𝑠1, 0, 0) 𝑠1

𝜕𝑓

𝜕𝑥3
(𝑠0, 𝑠1, 0, 0)

)
If this block did not have full rank therewould be a nontrivial linear relation among the columns,
say

(𝜆1𝑠0 + 𝜆3𝑠1)
𝜕𝑓

𝜕𝑥2
(𝑠0, 𝑠1, 0, 0) + (𝜆2𝑠0 + 𝜆4𝑠1)

𝜕𝑓

𝜕𝑥3
(𝑠0, 𝑠1, 0, 0) = 0.

This is an identity of cubic forms in 𝐾 [𝑠0, 𝑠1]. By factoring each summand into linear factors,
we see that the two quadratic forms 𝜕𝑥𝑖𝑓 (𝑠0, 𝑠1, 0, 0) must have a common linear factor. This
corresponds to a point 𝑝 = (𝑝0, 𝑝1, 0, 0) ∈ Λ where both derivatives of 𝑓 vanish: 𝜕𝑥2𝑓 (𝑝) = 0 =

𝜕𝑥3𝑓 (𝑝). Since Λ ⊂ 𝑋 , we also have 𝑓 (𝑥0, 𝑥1, 0, 0) = 0, which implies 𝜕𝑥1𝑓 (𝑝) = 0 and 𝜕𝑥2𝑓 (𝑝) = 0.
So overall, we have found that the gradient of 𝑓 is 0 at 𝑝, which contradicts our assumption that
𝑋 = V+(𝑓 ) is smooth.

Since this block has full rank, the intersection of 𝑇(𝑋,[Λ])Φ(3, 3, 1) with {0} × 𝐾4 is trivial
showing that the differential 𝑑𝜋 is surjective as claimed. �

Let us take a look at when we expect 𝐹1(𝑋) to be 0-dimensional for a hypersurface 𝑋 ⊂ ℙ𝑛.
Heuristically, a defining equation 𝑔 ∈ 𝐾 [𝑥0, 𝑥1, . . . , 𝑥𝑛] of a hypersurface 𝑋 ⊂ ℙ𝑛 gives a global
section 𝜎𝑔 of Sym𝑑 S∗ on 𝔾(1, 𝑛) as in Proposition 5.5.4 that defines the Fano scheme 𝐹1(𝑋) if
it has the expected codimension (𝑑 + 1). If we want this to be dimension 0 in 𝔾(1, 𝑛), which
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has dimension 2(𝑛 − 1), then we need 𝑑 = 2𝑛 − 3. For 𝑛 = 3, this is the case of a cubic surface
in ℙ3. The next case is a quintic threefold in ℙ4 (then a fourfold of degree 7 in ℙ5 and so on).
The same approach as for cubic surfaces works again to count the number of lines on these
hypersurfaces. However, the question of transversality is more complicated. The Fano scheme
𝐹1(𝑋) is not necessarily reduced anymore if the hypersurface is smooth. To show how the count
for cubic surfaces can be generalized, we do the quintic threefold case explicitly. For this, we
compute 𝑐𝑑+1(Sym𝑑 S∗) as before, using the splitting principle. For this, we need to knowhow to
intersect Schubert classes on 𝔾(1, 𝑛). The intersection product in this case follows from Pieri’s
formula.

OnGr(2, 𝑛+1), Schubert varieties are indexed by sequences (𝑎1, 𝑎2) of nonnegative integers
of length 2 with 𝑛 − 1 ≥ 𝑎1 ≥ 𝑎2 ≥ 0. The Schubert variety Σ𝑎1,𝑎2 is

Σ𝑎1,𝑎2 (V) = {[Λ] ∈ Gr(2, 𝑛 + 1) : Λ ∩ 𝑉𝑛−𝑎1 ≠ {0} and Λ ⊂ 𝑉𝑛+1−𝑎2}.

5.5.8 Proposition. Let (𝑎1, 𝑎2) and (𝑏1, 𝑏2) be two Schubert indices for Gr(2, 𝑛 + 1). Assume that
𝑎1 − 𝑎2 ≥ 𝑏1 − 𝑏2. Then the following identity holds.

𝜎𝑎1,𝑎2 · 𝜎𝑏1,𝑏2 =
∑︁

|𝑐 |=|𝑎|+|𝑏|,𝑎1+𝑏1≥𝑐1≥𝑎1+𝑏2

𝜎𝑐1,𝑐2

𝜎𝑎1+𝑏+1,𝑎2+𝑏2 + 𝜎𝑎1+𝑏1−1,𝑎2+𝑏2+1 + . . . + 𝜎𝑎1+𝑏2,𝑎2+𝑏1

If the index 𝑐1 is larger than 𝑛 + 1 − 2 = 𝑛 − 1, the class 𝜎𝑐1,𝑐2 is 0.

Proof. First, set 𝑏1 = 𝑏2 = 𝑏. Since the indices are equal, the jumps in dimension in the induced
flag on Λ are consecutive for all [Λ] ∈ Σ𝑏,𝑏 so that this really means Λ ⊂ 𝑉𝑛+1−𝑏. Let us intersect
the two Schubert varieties Σ𝑎1,𝑎2 (V) and Σ𝑏,𝑏(W) with respect to general flags V andW in
𝐾𝑛+1: this intersection contains all [Λ] such that Λ ∩ 𝑉𝑛−𝑎1 ≠ {0}, Λ ⊂ 𝑉𝑛+1−𝑎2 and Λ ⊂ 𝑊𝑛+1−𝑏.
These conditions are equivalent to Λ ∩ (𝑉𝑛−𝑎1 ∩𝑊𝑛+1−𝑏) ≠ {0} and Λ ⊂ (𝑉𝑛+1−𝑎2 ∩𝑊𝑛+1−𝑏).
Since the flags are transversal, the intersections 𝑉𝑖 ∩𝑊𝑗 have the expected dimension meaning
codim(𝑉𝑛−𝑎1 ∩ 𝑊𝑛+1−𝑏) = 𝑎1 + 𝑏 + 1 and codim(𝑉𝑛+1−𝑎2 ∩ 𝑊𝑛+1−𝑏) = 𝑎2 + 𝑏. Set 𝑈𝑛−𝑎1−𝑏 =

𝑉𝑛−𝑎1 ∩𝑊𝑛+1−𝑏 and𝑈𝑛+1−𝑎2−𝑏 = 𝑉𝑛+1−𝑎2 ∩𝑊𝑛+1−𝑏. These conditions show that the intersection
Σ𝑎1,𝑎2 (V) ∩ Σ𝑏,𝑏(W) is the Schubert variety Σ𝑎1+𝑏,𝑎2+𝑏(𝑈𝑛−𝑎1−𝑏, 𝑈𝑛+1−𝑎2−𝑏). By transversality in
the Grassmannian (say characteristic 0 and Kleiman’s Theorem), we get the desired identity

𝜎𝑎1,𝑎2 · 𝜎𝑏,𝑏 = 𝜎𝑎1+𝑏,𝑎2+𝑏

in 𝐴(𝔾(1, 𝑛)). From this case, we derive the general case by Pieri’s rule using the following trick.
With what we have just shown, we can write

𝜎𝑎1,𝑎2 · 𝜎𝑏1,𝑏2 = (𝜎𝑎1−𝑎2,0 · 𝜎𝑎2,𝑎2) · (𝜎𝑏1−𝑏2,0 · 𝜎𝑏2,𝑏2)
= 𝜎𝑎1−𝑎2,0 · 𝜎𝑏1−𝑏2,0 · 𝜎𝑎2+𝑏2,𝑎2+𝑏2

using associativity and commutativity and the abovemultiplication rule. The product of the first
two terms is given by Pieri’s rule Proposition 4.5.1 as

𝜎𝑐 · 𝜎𝑑 = 𝜎𝑐+𝑑,0 + 𝜎𝑐+𝑑−1,1 + . . . + 𝜎𝑐,𝑑
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for any positive integers 𝑐 ≥ 𝑑. This implies the claim using the above multiplication rule one
more time. �

5.5.9 Proposition. A general quintic threefold 𝑋 = V+(𝑔) ⊂ ℙ4 (meaning that 𝑔 ∈ 𝐾 [𝑥0, 𝑥1, . . . , 𝑥4]5
is a general polynomial) contains exactly 2875 distinct lines.

Proof. We approach this the same way as for cubic surfaces in Corollary 5.5.5: we first compute
𝑐6(Sym5 S∗), where S is the universal subbundle of 𝔾(1, 4), by the splitting principle. So let
E = L⊕M be a direct sumof two line bundleswithChern classes 𝑐(L) = 1+𝛼 and 𝑐(M) = 1+𝛽.
Then Sym5(E) decomposes as before

Sym5(L ⊕ M) = L5 ⊕ (L4 ⊗M) ⊕ (L3 ⊗M2) ⊕ (L2 ⊗M3) ⊕ (L ⊗M4) ⊕ M5.

This implies that the Chern class of Sym5(E) is

𝑐(Sym5(L ⊕ M)) = (1 + 5𝛼) (1 + 4𝛼 + 𝛽) (1 + 3𝛼 + 2𝛽) (1 + 2𝛼 + 3𝛽) (1 + 𝛼 + 4𝛽) (1 + 5𝛽).

We are interested in the term of degree 6 expressed in terms of the elementary symmetric poly-
nomials 𝛼 + 𝛽 and 𝛼𝛽 (because, as before, we want to apply the resulting formula to S∗ instead
of E by the splitting principle, which corresponds to the substitutions 𝛼 + 𝛽 = 𝜎1 and 𝛼𝛽 = 𝜎1,1).
To multiply this out, we use the two formulas

(4𝛼 + 𝛽) (𝛼 + 4𝛽) = 4(𝛼 + 𝛽)2 + 9𝛼𝛽
(3𝛼 + 2𝛽) (2𝛼 + 3𝛽) = 6(𝛼 + 𝛽)2 + 𝛼𝛽

These computations show the following formula for the desired Chern class:

𝑐6(Sym5 S∗) = 25𝜎1,1 · (4𝜎 21 + 9𝜎1,1) · (6𝜎 21 + 𝜎1,1)
= 225 · 𝜎 31,1 + 1450 · 𝜎 21,1 · 𝜎 21 + 600 · 𝜎1,1 · 𝜎 41 .

To finish, we have to see how many points each of the three monomials in Schubert classes
contribute. We know that 𝜎 31,1 is the class of a point (see Corollary 4.3.8). To evaluate 𝜎

2
1 𝜎

2
1,1, we

apply the abovemultiplication rule in 𝐴(𝔾(1, 𝑛)) (or Pieri’s formula) first to 𝜎 21 = 𝜎1,1+𝜎2 so that
𝜎 21 𝜎

2
1,1 = 𝜎

3
1,1 + 𝜎 21,1𝜎2. Then we compute 𝜎 21,1𝜎2, which turns out to be 0. So the monomial 𝜎 21 𝜎

2
1,1

has degree 1 (meaning it is the class of one point). The monomial 𝜎1,1𝜎 41 , however, has degree
2: with the computation of 𝜎 21 , this monomial is equal to 𝜎1,1(𝜎 21,1 + 2𝜎1,1𝜎2 + 𝜎 22 ). The mixed
term 𝜎1,1𝜎2 becomes 0whenmultiplied with 𝜎1,1. The first term becomes the class 𝜎 31,1 of a point.
The last term is 𝜎1,1𝜎 22 , which is equal to 𝜎1,1(𝜎3,1 + 𝜎2,2). Here, the first term 𝜎1,1𝜎3,1 is 0 and the
second term 𝜎1,1𝜎2,2 = 𝜎3,3 is the class of a point (again, see Corollary 4.3.8). To summarize, this
computation shows

deg(𝑐6(Sym5 S∗)) = 225 + 1450 + 2 · 600 = 2875.

Since this class is non-zero, this implies that a general quintic threefold contains only finitely
many lines. If counted with multiplicity, the number of lines is 2875. To show that 𝐹1(𝑋) is
reduced for a general quintic threefold requires some additional work (or the computation of
an explicit example). �
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70 5. Chern classes

This computation of the degree of the appropriate Chern class is a little involved but can be
done with a computer. The next few numbers are 698 005 lines on a hypersurface of degree 7
in ℙ5, 305 093 061 lines in degree 9 in ℙ6, 210 480 374 951 in degree 11 in ℙ7 and so on.
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Chapter 6

Parameter Spaces: Five Conics Prob-
lem

Wewant to exemplify the problem of choosing/finding a good parameter space on which to use
the techniques of intersection theory to solve an enumerative problem. Our example problem is
as follows. We are given five general, smooth conics𝐶1, . . . , 𝐶5 ⊂ ℙ2 defined by quadratic forms
𝑄𝑖 ∈ 𝐾 [𝑥0, 𝑥1, 𝑥2]2 of rank 3. We want to count the number of conics defined by 𝑞 such that
V(𝑞) is tangent to each𝐶𝑖 at some point. Let us begin naively: each𝐶𝑖 is defined by a quadratic
form so that 𝑄𝑖 ∈ ℙ5 = ℙ(𝐾 [𝑥0, 𝑥1, 𝑥2]2). We are looking for an element 𝑞 ∈ ℙ5 as well. Fix
one of the conics 𝐶𝑖 and consider the incidence

Σ𝑖 = {(𝑞, 𝑝) ∈ ℙ5 × 𝐶𝑖 : 𝑞(𝑝) = 0 and 𝑇𝑝V+(𝑞) ⊃ 𝑇𝑝𝐶𝑖}.

Let 𝜋2 be the projection to the second factor. Then the fiber over any point 𝑝 ∈ 𝐶𝑖 is a linear
space in ℙ5 of codimension 2. For example, it is defined by the 2 × 2minors of the 2 × 3matrix

𝑀𝑖 =

(
𝜕𝑥0𝑞(𝑝) 𝜕𝑥1𝑞(𝑝) 𝜕𝑥2𝑞(𝑝)
𝜕𝑥0𝑄𝑖(𝑝) 𝜕𝑥1𝑄𝑖(𝑝) 𝜕𝑥2𝑄𝑖(𝑝)

)
which are linear in the coefficients of 𝑞. So Σ𝑖 has dimension 4 and we expect 𝑍𝑖 = 𝜋1(Σ𝑖), the
projection to the parameter space ℙ5 for our conic 𝑞 to be a hypersurface. We computed above
(using the Riemann-Hurwitz formula for morphisms of algebraic curves) that the degree of 𝑍𝑖
is 6. This is the reason that people have arrived at the number 65 = 7776 for the solution of our
enumerative five conics problem. However, this number is incorrect due to excess intersection:
every square of a linear form �2 for � ∈ 𝐾 [𝑥0, 𝑥1, 𝑥2]1 lies on every 𝑍𝑖. Indeed, every lineV+(�)
intersects 𝐶𝑖 in two points. Let 𝑝 be one of them. Then (�2, 𝑝) ∈ Σ𝑖 and therefore � ∈ 𝑍𝑖. It
turns out that 𝑍1 ∩ 𝑍2 ∩ . . .∩ 𝑍5 = 𝜈2(ℙ2) ∪ 𝑆, where 𝜈2(ℙ2) is the Veronese surface of squares
in ℙ5 and 𝑆 is a finite set (a reduced 0-dimensional scheme) with 3264 elements.

One way to compute the length of 𝑆 is to use the excess intersection formula that we will
take a look at later. Another approach is to change the parameter space for 𝑞 to make the excess
intersection go away. Our naive parameter space ℙ5, the space of coefficients of 𝑞, does not
distinguish if the defined conic is smooth (so 𝑞 has rank 3) or not. Other approaches keep more
careful track of this and succeed at eliminating the above excess intersection.

The new problem that we get ourselves into by doing this is that we have to find the in-
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72 6. Parameter Spaces: Five Conics Problem

tersection ring on this new parameter space (or at least characterize a subring containing the
classes that we want to intersect). In detail, we discuss the approach using projective duality
where we construct the space of complete conics (or more generally, the space of complete
quadrics). Other options are Kontsevich space, which is another approach to keep track of
tangency essentially by considering maps 𝑓 : 𝐶 → ℙ2 instead of equations 𝑞 ∈ ℙ5. A general
purpose approach is via blow ups: we can always blow up the parameter space along the excess
intersection and hope to improve the situation. In our example, it turns out that the blow up of
ℙ5 along the Veronese surface 𝜈2(ℙ2) of squares is isomorphic to the space of complete conics.

6.1. The space of complete conics

Let us assume that the characteristic of our algebraically closed field 𝐾 is not 2. We start with an
informal discussion and then supply details later. The idea is based on projective duality: for a
curve 𝐶 ⊂ ℙ2, we construct the dual curve 𝐶∗ as the Zariski closure as the set of tangent lines
[𝑇𝑝𝐶] ⊂ (ℙ2)∗ to smooth points 𝑝 ∈ 𝐶. Generically, this is again a curve. In particular, we saw
that 𝐶∗ is again a conic if 𝐶 is a conic of rank 3, namely the one defined by the inverse of the
Gram matrix of a defining equation of 𝐶 (see Example 1.3.1). However, if the conicV+(𝑄) has
rank 2, then it is the union of two lines so that V+(𝑄)∗ is 0-dimensional and consists of two
points. The above definition of a dual curve does not make sense ofV+(�2), a conic of rank 1,
because this 1-dimensional scheme does not have any smooth point (it is nowhere reduced). It
turns out that it is not clear how to uniquely assign a dual conic to a double lineV+(�2). It turns
out that we don’t need to though.

To construct the space of complete conics, we start with

𝑈 = {(𝐶,𝐶∗) ∈ ℙ5 × (ℙ5)∗ : 𝐶 ⊂ ℙ2 is a smooth conic, 𝐶∗ its dual}

and define the space of complete conics 𝑋 as the closure

𝑋 = 𝑈 ⊂ ℙ5 × (ℙ5)∗.

We will show below that 𝑋 is a smooth and irreducible variety of dimension 5.
On this space, a smooth conic 𝐶𝑖 defines again a divisor 𝑍𝐶𝑖 , this time as the closure of the

set of conics (𝐶,𝐶∗) ∈ 𝑈 such that 𝐶 is tangent to 𝐶𝑖 at some point 𝑝 ∈ 𝐶𝑖. It turns out that the
divisors 𝑍𝐶𝑖 intersect transversely on 𝑋 in 3264 distinct points, solving our problem.

6.1.1 Heuristics

To get a feeling for the space 𝑋 ⊂ ℙ5 × (ℙ5)∗ of complete conics, let us look closely at 𝑈
and at a few points in the boundary by naive degeneration. On 𝑈 , the pair (𝐶,𝐶∗) is uniquely
determined by 𝐶 or 𝐶∗ because the dual curve of a smooth conic is given by the inverse of its
Gram matrix. In particular, this implies that (𝐶∗)∗ = 𝐶 and that 𝐶 is smooth if and only if 𝐶∗

is smooth. The second point shows that the set 𝑈 is invariant under exchanging ℙ5 and (ℙ5)∗,
that is (𝐶,𝐶∗) ↦→ (𝐶∗, 𝐶).

The boundary of 𝑋 (in the context of parameter spaces) is defined as 𝑋 \ 𝑈 and therefore
not a topological boundary in any sense: it consists of the points that are added by taking the
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6.1. The space of complete conics 73

closure of the “nice” set 𝑈 to get a complete parameter space. Any point on the boundary is a
limit of points in𝑈 (in the sense of a degeneration). We will do this part naively.

Let us begin with a family of smooth conics𝐶𝑡 approaching a conic𝐶0 of rank 2 in the limit.
Explicitly, set

C = {(𝑡; 𝑥0 : 𝑥1 : 𝑥2) ∈ 𝐵 × ℙ2 : 𝑥20 − 𝑥21 − 𝑡𝑥22 = 0},
where 𝐵 = 𝔸1. (In deformation theory, we would usually take the base 𝐵 to be a discrete val-
uation ring like the local ring of the origin in 𝔸1.) For 𝑡 = 0, this conic is a union of lines
V+((𝑥0 + 𝑥1) (𝑥0 − 𝑥1)) through the point 𝑝 = (0 : 0 : 1). Any collection of lines {𝐿𝑡} tangent
to 𝐶𝑡 for 𝑡 ≠ 0 approaches a line through 𝑝. Conversely, it is also true that any line through 𝑝 is
such a limit. The dual of 𝐶0 in the sense of the space of complete conics is then, because it must
be a conic, the double line in (ℙ2)∗ of lines through 𝑝: (V+(𝑥20 − 𝑥21),V+((𝑝⊥)2)) ∈ 𝑋 .

This picture becomes more interesting if the limit has rank 1. To study this case, we write
our family of conics 𝐶𝑡 as rational curves that is the image of morphisms 𝜑𝑡 : ℙ1 → ℙ2 given
by three homogeneous polynomials (𝑓𝑡 , 𝑔𝑡 , ℎ𝑡) of degree 2 on ℙ1. If the conic 𝐶𝑡 is smooth the
three polynomials 𝑓𝑡 , 𝑔𝑡 , and ℎ𝑡 are linearly independent. In the limit, they parametrize a line
so they are linearly dependent and span a 2-dimensional subspace𝑊 of 𝐻0(Oℙ1 (2)). Assume
for now that this subspace𝑊 has no basepoints (which means that for every 𝑝 ∈ ℙ1 there is a
polynomial 𝑓 ∈ 𝑊 with 𝑓 (𝑝) ≠ 0). Then we have a morphism 𝜑𝑊 : ℙ1 → ℙ1 = ℙ𝑊∗ sending
𝑥 to (𝑓 ↦→ 𝑓 (𝑥)) ∈ 𝑊∗. Riemann-Hurwitz (or, in this special case, the quadratic discriminant)
shows that this map is ramified at two points, say 𝑢 and 𝑣. Let 𝑝 = 𝜑0(𝑢) and 𝑞 = 𝜑0(𝑣) be their
images in ℙ2. The “dual conic” is then 𝑝⊥ ∪ 𝑞⊥ ⊂ (ℙ2)∗, the set of lines through 𝑝 and the lines
through 𝑞. The heuristic is based on the observation that the linear system𝑊𝑡 ⊂ 𝐻0(Oℙ1 (2))
obtained from 𝐶𝑡 by a general projection with center 𝑟 ∈ ℙ2 approaches𝑊 = 𝑊0 so that any
tangent line to𝐶𝑡 through 𝑟 approaches a line through 𝑝 (and 𝑟) or a line through 𝑞 (and again 𝑟).

In case that the two ramification points 𝑢 and 𝑣 of 𝜑𝑊 are the same, the dual 𝐶′ is a double
line.

This geometric heuristic suggests that there are four types of complete conics (𝐶,𝐶′) ∈ 𝑋 .

(a) (𝐶,𝐶′) ∈ 𝑈 : those are the complete conics where both𝐶 and𝐶′ are smooth and𝐶′ = 𝐶∗,
(b) 𝐶 = 𝐿1 ∪ 𝐿2 has rank 2 and 𝐶′ = 2𝑝∗ is the double line dual to the point 𝑝 = 𝐿1 ∩ 𝐿2,
(c) 𝐶 = 2𝐿 has rank 1 and 𝐶′ = 𝑝∗ ∪ 𝑞∗ is the union of lines dual to two points 𝑝 and 𝑞 on 𝐿,
(d) 𝐶 = 2𝐿 has rank 1 and 𝐶′ = 2𝑝∗ is the double line dual to a point 𝑝 on 𝐿.

The cases (b) and (c) are interchanged by the symmetry of 𝑋 switching 𝐶 and 𝐶′.

6.1.2 Rigorous approach

For the proofs in this section, we identify a quadratic form 𝑄 on a finite-dimensional 𝐾-vector
space 𝑉 with its representing Gram matrix in a coordinate free way. Since char(𝐾) ≠ 2, the
following three 𝐾-vector spaces are isomorphic.

𝐵𝐹 = {𝜑 : 𝑉 → 𝑉 ∗ : (𝜑(𝑣)) (𝑤) = (𝜑(𝑤)) (𝑣) for all 𝑣, 𝑤 ∈ 𝑉 }
𝑄𝐹 = {𝑞 : 𝑉 → 𝐾 : 𝑞(𝜆𝑥) = 𝜆2𝑥 for all 𝜆 ∈ 𝐾 and 𝑥 ∈ 𝑉 and 𝑏(𝑥, 𝑦) is bilinear}

Sym2 𝑉 ∗ = span{� ⊗ � : � ∈ 𝑉 ∗} ⊂ 𝑉 ∗ ⊗ 𝑉 ∗
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where 𝑏(𝑥, 𝑦) = 𝑞(𝑥 + 𝑦) − 𝑞(𝑥) − 𝑞( 𝑦) is defined by polarization. The isomorphism 𝐵𝐹 →
𝑄𝐹 takes 𝜑 to the quadratic form 𝑥 ↦→ (𝜑(𝑥)) (𝑥). Conversely, a quadratic form 𝑞 gives the
symmetric linear map 𝑣 ↦→ (𝑤 ↦→ 𝑏(𝑣, 𝑤)) (sometimes written as 𝑣 ↦→ 𝑏(𝑣,−)). Since we
assume that the characteristic of 𝐾 is not 2, the space 𝑄𝐹 of quadratic forms is isomorphic to
the space Sym2 𝑉 ∗ of quadratic polynomials on 𝑉 . Concretely, � ⊗ � gives the quadratic form
𝑥 ↦→ � (𝑥)2 on 𝑉 .

The quadratic hypersurface defined by a quadratic form𝑄 identifiedwith a symmetric linear
map 𝜑 : 𝑉 → 𝑉 ∗ is

V+(𝑄) = {𝑣 ∈ ℙ𝑉 : 𝑄(𝑣) = 0} = {𝑣 ∈ ℙ𝑉 : (𝜑(𝑣)) (𝑣) = 0}.

We give a description of the dual variety in terms of the cofactor map 𝜑𝑐 : 𝑊 → 𝑉 defined by
a linear map 𝜑 : 𝑉 → 𝑊 between vector spaces of the same dimension 𝑛. In fixed bases of 𝑉
and𝑊 , the cofactor map is represented by the cofactor matrix. The cofactor matrix of 𝐴 is the
transpose of the adjugate matrix det(𝐴)𝐴−1. Abstractly, it therefore satisfies 𝜑 ◦ 𝜑𝑐 = det(𝜑)id𝑊
and 𝜑𝑐 ◦ 𝜑 = det(𝜑)id𝑉 . It is the map

𝑊 � Λ𝑛−1𝑊∗ → Λ𝑛−1𝑉 ∗ � 𝑉

given by Λ𝑛𝜑∗, where the identification of𝑊 with Λ𝑛−1𝑊∗ depends on the choice of a vector in
Λ𝑛𝑊∗. This is the usual identification: for an 𝑛-dimensional 𝐾-vector space 𝑈 and a choice of
𝑑 ∈ Λ𝑛𝑈 , we get an isomorphism of Λ𝑛𝑈 with 𝐾 by sending 𝜆 ∈ 𝐾 to 𝜆𝑑. An element 𝐿 ∈ Λ𝑛−1𝑈
then gives a linear form on𝑈 by sending 𝑢 ∈ 𝑈 to 𝑢∧ 𝐿 ∈ Λ𝑛𝑈 � 𝐾 . So after choosing 𝑑 ∈ Λ𝑛𝑈 ,
we get an isomorphism Λ𝑛−1𝑈 → 𝑈∗. In coordinates, with respect to a basis (𝑒1, 𝑒2, . . . , 𝑒𝑛) of𝑈 ,
choosing 𝑑 = 𝑒1 ∧ 𝑒2 ∧ . . . ∧ 𝑒𝑛 corresponds to the normalization det(𝐼𝑛) = 1 that the identity
matrix has determinant 1.

Using this notation and approach by abstract multilinear algebra, we can describe the duality
of quadratic hypersurfaces as follows.

6.1.1 Proposition. Let 𝑉 be an (𝑛 + 1)-dimensional 𝐾-vector space and 𝑄 ⊂ ℙ(𝑉 ) a quadratic
hypersurface corresponding to the symmetric linear map 𝜑 : 𝑉 → 𝑉 ∗. The tangent hyperplane to 𝑄
at a point [𝑣] ∈ 𝑄 is

ℙ𝑇[𝑣]𝑄 = {𝑤 ∈ ℙ(𝑉 ) : (𝜑(𝑣)) (𝑤) = 0}.
So the dual of 𝑄 is

𝑄∗ = {𝜑(𝑣) ∈ ℙ(𝑉 ∗) : [𝑣] ∈ 𝑄 and 𝜑(𝑣) ≠ 0}.
In particular, if𝑄 is nonsingular (so that 𝜑 is an isomorphism), then𝑄∗ is the image 𝜑(𝑄) of𝑄 under
the map 𝜑 : ℙ(𝑉 ) → ℙ(𝑉 ∗) induced on projective spaces by 𝜑 and 𝑄∗ is the quadratic hypersurface
corresponding to the cofactor map 𝜑𝑐. If the rank of 𝜑 is 𝑛 (so that 𝜑 has a 1-dimensional kernel), then
the quadratic hypersurface 𝑄𝑐 corresponding to the cofactor map 𝜑𝑐 is the unique double hyperplane
containing 𝑄∗.

Proof. For any 𝑤 ∈ 𝑉 \ {0}, the line span 𝑣, 𝑤 ⊂ ℙ(𝑉 ) spanned by 𝑣 and 𝑤 is tangent to 𝑄 at 𝑣
if and only if the restriction of 𝑄 to it has (at least) a double zero at 𝑣 meaning that

𝑄(𝑣 + 𝜀𝑤) = (𝜑(𝑣 + 𝜀𝑤)) (𝑣 + 𝜀𝑤) = 0mod (𝜀2).
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Using (𝜑(𝑣)) (𝑣) = 0 as well as symmetric of 𝜑 and char(𝐾) ≠ 2, this simplifies to

(𝜑(𝑣)) (𝑤) = 0.

This implies the description of the tangent space in the claim as well as the fact that 𝑄∗ = 𝜑(𝑄).
From now on, we assume that dim(ker(𝜑)) ≤ 1 which is equivalent to the cofactor map 𝜑𝑐

not being the zero map. The quadric 𝑄𝑐 defined by the cofactor map is the set of all 𝑤 ∈ ℙ(𝑉 ∗)
such that (𝜑𝑐 (𝑤)) (𝑤) = 0. Using 𝜑𝑐 ◦ 𝜑 = det(𝜑)id𝑉 , this implies 𝜑(𝑄) ⊂ 𝑄𝑐 because

(𝜑𝑐 (𝜑(𝑣))) (𝜑(𝑣)) = det(𝜑) (𝜑(𝑣), 𝑣) = 0.

Now suppose that the rank of 𝜑 is equal to the dimension of 𝑉 so that 𝜑 is an isomorphism.
Then 𝜑(𝑄) ⊂ ℙ(𝑉 ∗) is again a quadratic hypersurface and the containment 𝜑(𝑄) ⊂ 𝑄𝑐 implies
𝜑(𝑄) = 𝑄𝑐 as claimed. If dim(ker(𝜑)) = 1, then 𝜑𝑐 ◦ 𝜑 = 0 but 𝜑𝑐 is not the zero map. So 𝜑𝑐

is a linear map of rank 1. In terms of the associated quadratic hypersurface, this means that 𝑄𝑐

is a double hyperplane. The variety 𝑄∗ is a quadratic hypersurface contained in a hyperplane
in ℙ(𝑉 ∗), namely the hyperplane dual to the unique singular point of 𝑄, its cone point. Since
𝜑(𝑄) ⊂ 𝑄𝑐, we get the claim in this case as well. �

6.1.2 Corollary. Two smooth quadratic hypersurfaces𝑄1 and𝑄2 have the same tangent hyperplane
V+(�) ⊂ ℙ(𝑉 ) at a point of intersection [𝑣] ∈ 𝑄1 ∩ 𝑄2 if and only if the dual hypersurfaces 𝑄∗1
and 𝑄∗2 have the common tangent hyperplaneV+(𝑝) ⊂ ℙ(𝑉 ∗) at the point [�] ∈ 𝑄∗1 ∩ 𝑄∗2.

Proof. Let 𝜑𝑖 be the symmetric linear map corresponding to 𝑄𝑖. The above proposition then
shows that [�] = [𝜑𝑖(𝑣)] ∈ ℙ(𝑉 ∗). Using that 𝜑𝑖 has full rank, we get [𝜑𝑐𝑖 (�)] = [𝜑𝑐𝑖 (𝜑𝑖(𝑣))] =
[det(𝜑𝑖)𝑣] = [𝑣] ∈ ℙ(𝑉 ). The description of tangent spaces now implies the claim. �

From now on, we are back in the projective plan (meaning that dim(𝑉 ) = 3).

6.1.3 Proposition. Let dim(𝑉 ) = 3. The variety of complete conics

𝑋 ⊂ ℙ(Sym2 𝑉 ∗) × ℙ(Sym2 𝑉 ) � ℙ5 × (ℙ5)∗

is smooth and irreducible. Its vanishing ideal 𝐼 in the coordinates (𝜑, 𝜓) of pairs of symmetric matrices
𝜑 : 𝑉 → 𝑉 ∗ and 𝜓 : 𝑉 ∗ → 𝑉 is generated by the eight bilinear equations specifying that the product
𝜓 ◦ 𝜑 has diagonal entries equal to one another and off-diagonal entries equal to 0.

Proof. Using any computer algebra system, it is straightforward to check that the ideal 𝐼 in the
claim is prime and defines a 5-dimensional variety 𝑌 = V+(𝐼) in ℙ5 × (ℙ5)∗.

We next show 𝑋 ⊂ 𝑌 : 𝑋 is by definition the closure of the set𝑈 of pairs (𝜑, 𝜓) ∈ ℙ5× (ℙ5)∗
where 𝜑 has rank 3 and, using Proposition 6.1.1, 𝜓 = 𝜑−1, at least up to scaling. Each such pair
satisfies the equations generating 𝐼 so that we get 𝑋 ⊂ 𝑌 .

Since the set 𝑈 has dimension 5 as well, the chain of inclusion 𝑈 ⊂ 𝑋 ⊂ 𝑌 combined with
the irreducibility of 𝑌 also gives the other inclusion 𝑌 ⊂ 𝑋 .

Let us now discuss smoothness of 𝑌 . The tangent space to 𝑌 at a point (𝜑, 𝜓) is the set of
pairs (𝛼, 𝛽) such that the matrix

(𝜓 + 𝜀𝛽) ◦ (𝜑 + 𝜀𝛼) mod (𝜀2)
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has equal diagonal entries and off diagonal entries equal to 0. If (𝜑, 𝜓) ∈ 𝑈 so that both 𝜑 and
𝜓 have rank 3, then the linear part of this equation says that 𝜓 ◦ 𝛼 + 𝛽 ◦ 𝜑 had to be a diagonal
matrix with equal diagonal entries, say 𝜆𝐼3. Then we can solve for 𝛼 and get

𝛼 = 𝜆𝜑−1 + 𝜓−1 ◦ 𝛽 ◦ 𝜑.

Since 𝛽 is chosen from a 5-dimensional tangent space and 𝛼 is only determined up to scaling,
the set of pairs (𝛼, 𝛽) satisfying these equations is 5-dimensional so that 𝑌 is smooth along𝑈 .

We discuss the case that 𝜑 has rank 2. The equations in 𝐼 then imply that 𝜓 is, up to scaling,
equal to the cofactor map 𝜑𝑐. Up to an orthogonal change of coordinates and rescaling, we can
assume that

𝜑 =
©«
1 0 0
0 1 0
0 0 0

ª®¬ so that 𝜑𝑐 = ©«
0 0 0
0 0 0
0 0 1

ª®¬ .
In this case, the matrix 𝜑𝑐 ◦ 𝛼 + 𝛽 ◦ 𝜑must again be diagonal with equal diagonal entries, say 𝜆𝐼3.
Computing with the above matrices (as well as 𝛼 = (𝛼𝑖,𝑗) and 𝛽 = (𝛽𝑖,𝑗)) results in

©«
𝛽1,1 𝛽1,2 0
𝛽2,1 𝛽2,2 0

𝛼3,1 + 𝛽3,1 𝛼3,2 + 𝛽3,2 𝛼3,3

ª®¬ = 𝜆𝐼3.

The diagonal imposes 2 conditions up to recaling of 𝛼 and 𝛽 and we have three linear conditions
in the off-diagonal, namely 𝛽1,2 = 0 (which, by symmetry of 𝛽 implies 𝛽2,1 = 0), 𝛼3,1 + 𝛽3,1 = 0,
and 𝛼3,2 + 𝛽3,2 = 0. Since these five linear conditions are linearly indepenndent, they cut out a
5-dimensional space that contains the tangent space to 𝑋 at (𝜑, 𝜓), meaning that 𝑋 is smooth at
such points.

If both 𝜑 and 𝜑 have rank 1, the linear term 𝜓 ◦ 𝛼 + 𝛽 ◦ 𝜑 has rank at most 2. Since the
off-diagonal entries of this matrix must be 0, the diagonal entries must also be 0 for the above
condition to hold (modulo 𝜀2), which means that the equation

𝜓 ◦ 𝛼 + 𝛽 ◦ 𝜑 = 0

holds for every (𝛼, 𝛽) in the tangent space to 𝑌 at (𝜑, 𝜓). Up to an orthogonal change of coordi-
nates on 𝑉 followed by rescaling, we can assume

𝜑 =
©«
1 0 0
0 0 0
0 0 0

ª®¬ and 𝜓 =
©«
0 0 0
0 1 0
0 0 0

ª®¬ .
Writing 𝛼 = (𝛼𝑖,𝑗)1≤𝑖,𝑗≤3 and 𝛽 = (𝛽𝑖,𝑗)1≤𝑖,𝑗≤3, the above condition becomes

0 = 𝜓 ◦ 𝛼 + 𝛽 ◦ 𝜑 =
©«

𝛽1,1 0 0
𝛽2,1 + 𝛼2,1 𝛼2,2 𝛼2,3
𝛽3,1 0 0

ª®¬ .
which imposes 5 linearly independent linear conditions 𝛽1,1 = 0, 𝛽2,1 + 𝛼2,1 = 0, 𝛼2,2 = 0,
𝛼2,3 = 0, and 𝛽3,1 = 0 on the entries of the pair (𝛼, 𝛽) of matrices. So the tangent space of 𝑌 has
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codimension 5 at such a pair (𝜑, 𝜓). Since 𝑋 has dimension 5, this implies smoothness at such a
point where both 𝜑 and 𝜓 have rank 1. �

Exercise 6.1.4. Complete the corresponding proof in Eisenbud, Harris: 3264 and all that (Proposition
8.3).

This proposition gives a complete characterization of the points in the space of complete
quadrics for dim(𝑉 ) = 3.

6.1.5 Corollary. If (𝜑, 𝜓) ∈ 𝑋 , then one of the following holds.

(a) If 𝜑 has rank 3, the 𝜓 is the inverse of 𝜑 up to scaling.
(b) If 𝜑 has rank 2, then 𝜓 is the cofactor map up to scaling, which can be characterized as the

unique linear map from 𝑉 ∗ to 𝑉 whose kernel is the image of 𝜑 and whose image is the kernel
of 𝜑.

(c) If 𝜑 has rank 1, then 𝜓 can have rank 1 or rank 2; in the latter case, 𝜓 has rank 2 and 𝜑 = 𝜓𝑐

up to scaling.
(d) If both 𝜑 and 𝜓 have rank 1, then the kernel of 𝜑 contains the image of 𝜓 and vice versa.

Proof. We distinguish now by rank: If 𝜑 has rank 3, then the defining equations of 𝑌 imply that
𝜓 = 𝜑−1 up to scaling (because 𝜓 = 0 is not allowed in projective space). So (𝜑, 𝜓) is a pair of
a smooth conic in ℙ2 and its dual and hence in 𝑋 . A symmetric argument applies if 𝜓 has rank
3. If 𝜑 has rank 2, then the equations in 𝐼 imply 𝜓 ◦ 𝜑 = 0. This implies that 𝜓 has rank 1 and
is therefore 𝜑𝑐 up to scaling. Symmetrically, we can argue if 𝜓 has rank 2. If both 𝜑 and 𝜓 have
rank 1, then again 𝜓 ◦ 𝜑 = 0 and 𝜑 ◦ 𝜓 = 0, which is case (d). (Here, we use that the space of
complete conics 𝑋 is invariant under switching 𝜑 and 𝜓.) �

We now go through the following steps to compute the number of conics tangent to five
general conics. Let 𝑍𝑖 ⊂ 𝑋 be the set of complete conics (𝐶,𝐶′) ∈ 𝑋 such that 𝐶 is tangent to a
general conic 𝐷𝑖 for 𝑖 = 1, . . . , 5.

(1) First, we show that for any (𝐶,𝐶′) ∈ ⋂5
𝑖=1 𝑍𝑖, the conic𝐶 ⊂ ℙ2 is smooth (so that𝐶′ = 𝐶∗)

(see Proposition 6.1.6).
(2) Second, we show in Proposition 6.1.10 that the intersection of the 𝑍𝑖 is transverse at every

intersection point.
(3) Third, we compute the class 𝜉 of 𝑍𝑖 in the Chow ring of 𝑋 and compute the intersection

𝜉5 ∈ 𝐴(𝑋) in Theorem 6.1.13.

The degree of this class 𝜉5 then is our answer 3264.

6.1.6 Proposition. Let 𝐷𝑖 ⊂ ℙ2 be five general conics and let 𝑍𝑖 ⊂ 𝑋 be the set of complete conics
(𝐶,𝐶′) such that 𝐶 is tangent to 𝐷𝑖 at some point. For any complete conic (𝐶,𝐶′) ∈

⋂5
𝑖=1 𝑍𝑖, the

conic 𝐶 is smooth and 𝐶′ = 𝐶∗.

Proof. We distinguish the cases of complete conics described in Corollary 6.1.5. If 𝐶 = 𝐿 ∪ 𝑀 is
a conic of rank 2 tangent to 𝐷𝑖, then either one of the lines 𝐿 or 𝑀 is tangent to 𝐷𝑖 or the point
𝑝 ∈ 𝐿 ∩ 𝑀 lies on 𝐷𝑖. Since the conics 𝐷𝑖 are general, the point 𝑝 ∈ 𝐿 ∩ 𝑀 can lie on at most 2
out of the five (no three of the 𝐷𝑖 intersect in a point). We distinguish now three cases.
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(a) 𝑝 does not lie on any of the 𝐷𝑖: Since the 𝐷𝑖 are general, the dual conics 𝐷∗𝑖 are also general.
Concretely what we need here is that no three of the 𝐷∗

𝑖
meet in a point, meaning that no

line in ℙ2 is tangent to three of the 𝐷𝑖. So the conic 𝐶 = 𝐿 ∪𝑀 can be tangent to at most
4 of the 𝐷𝑖, not all of 5.

(b) 𝑝 lies on exactly one of the conics 𝐷𝑖, say 𝐷1: Since the other conics 𝐷2, . . . , 𝐷5 are general,
𝐷1 does not contain any of the intersection points of two lines tangent to two of the conics
𝐷2, . . . , 𝐷5. So the lines 𝐿 and 𝑀 through 𝑝 can each only be tangent to one of the other
conics so that 𝐶 is, in total, tangent to at most 3 and not all 5.

(c) 𝑝 lies on two of the conics 𝐷𝑖, say 𝐷1 and 𝐷2: In this case, we use that none of the finitely
many lines that are tangent to two conics out of 𝐷3, 𝐷4, and 𝐷5 passes through any of the
intersection point of 𝐷1 and 𝐷2. This implies that the lines 𝐿 and𝑀 through 𝑝 ∈ 𝐷1∩𝐷2
can each only be tangent to at most one of the conics 𝐷3, 𝐷4, 𝐷5 so that 𝐶 is, in total,
tangent to at most 4 of the conics, not all 5.

Since 𝑋 is symmetric under switching coordinates (𝐶,𝐶′) ↦→ (𝐶′, 𝐶), there is no complete conic
(𝐶,𝐶′) ∈ ⋂

𝑍𝑖 where 𝐶′ has rank 2.
We now have to check the last case where both conics (𝐶,𝐶′) have rank 1, say 𝐶 = 2𝐿 and

𝐶′ = 2𝑞⊥ with 𝑞 ∈ 𝐿. Such a point lies on a divisor 𝑍𝑖 if and only if 𝑞 ∈ 𝐷𝑖 or 𝐿 ∈ 𝐷∗𝑖 . We
see this via a limit argument: let (𝐶𝑡 , 𝐶∗𝑡 ) ⊂ 𝑈 ∩ 𝑍𝑖 be a family of smooth conics 𝐶𝑡 such that
lim𝑡→0𝐶𝑡 = 2𝐿 and lim𝑡→0𝐶

∗
𝑡 = 2𝑞⊥. Let 𝑝𝑡 be a point where 𝐶𝑡 is tangent to 𝐷𝑖 at 𝑝𝑡 so that

𝑇𝑝𝑡𝐶𝑡 = 𝑇𝑝𝑡𝐷𝑖. Set 𝑝 = lim𝑡→0 𝑝𝑡 . The family of tangent lines 𝑇𝑝𝑡𝐷𝑖 = 𝑇𝑝𝑡𝐶𝑡 ∈ 𝐶∗𝑡 converges to
a line 𝑀 in 𝑞⊥ so that we have 𝑞 ∈ 𝑀. We also have 𝑝 ∈ 𝑀 because 𝑝𝑡 converges to 𝑝. Since
𝑝 ∈ lim𝑡→0𝐶𝑡 = 2𝐿, we also have 𝑝 ∈ 𝐿 so that by assumption we have 𝑝, 𝑞 ∈ 𝐿. If 𝑝 ≠ 𝑞, then it
follows that 𝐿 = 𝑀. If 𝑝 = 𝑞 then 𝑞 ∈ 𝐷𝑖. This proves one implication of the claimed equivalence.
The other implication follows by taking the complete conic as the appropriate tangent line to
𝐷𝑖 (or 𝐷∗𝑖 ).

Both cases, 𝑞 ∈ 𝐷𝑖 and 𝐿 ∈ 𝐷∗𝑖 , can occur at most two times by the generality of the conics
𝐷𝑖 and so such a complete conic cannot lie in the intersection of all 5 divisors 𝑍𝑖. �

To work towards transversality, we first aim to describe the tangent space of the divisor
𝑍𝐷 ⊂ 𝑋 defined by a smooth conic 𝐷 ⊂ ℙ2.

6.1.7 Proposition. Let ℙ𝑑 = ℙ𝐻0(ℙ1,Oℙ1 (𝑑)) be the projective space over homogeneous poly-
nomials in 2 variables of degree 𝑑. Let D be the discriminant hypersurface, which is the set of all
polynomials with a multiple root on ℙ1. A polynomial 𝐹 ∈ 𝐻0(Oℙ1 (𝑑)) with one double root at 𝑝
and 𝑑 − 2 simple roots is a smooth point of D and the tangent space 𝑇[𝐹]D is the hyperplane of all
polynomials vanishing at 𝑝.

Proof. Consider the incidence correspondence

Φ = {(𝐹, 𝑝) ∈ ℙ𝑑 × ℙ1 : ord𝑝(𝐹) ≥ 2}.

In local coordinates (𝑎, 𝑡) ∈ ℙ𝑑 × ℙ1, it is defined by the equations

𝑅(𝑎, 𝑡) = 𝑎𝑑𝑡𝑑 + 𝑎𝑑−1𝑡𝑑−1 + . . . + 𝑎1𝑡 + 𝑎0 and
𝑆(𝑎, 𝑡) = 𝑑𝑎𝑑𝑡𝑑−1 + (𝑑 − 1)𝑡𝑑−1 + . . . 𝑎1.

Algebraische Geometrie II / Rainer Sinn / Uni Leipzig (2023)



6.1. The space of complete conics 79

Without loss of generality, we can consider the point 𝑡 = 0 so that 𝑎0 = 𝑎1 = 0 are the local
equations coming from 𝑅 and 𝑆. It suffices to look at the following submatrix of the Jacobian of
𝑅 and 𝑆 at this point to prove the claim. The matrix(

𝜕𝑅
𝜕𝑎1

𝜕𝑅
𝜕𝑎0

𝜕𝑅
𝜕𝑡

𝜕𝑆
𝜕𝑎1

𝜕𝑆
𝜕𝑎0

𝜕𝑆
𝜕𝑡

)
=

(
0 1 0
1 0 2𝑎2

)
has full rank 2 so that Φ is smooth at that point. Assuming char(𝐾) ≠ 2, we see that the differ-
ential 𝑑𝜋 : 𝑇(𝑎,0)Φ→ 𝑇𝑎ℙ

𝑑 of the projection 𝜋 : ℙ𝑑 ×ℙ1 → ℙ𝑑 to the first factor is injective. The
image is the hyperplane 𝑎0 = 0. The map 𝜋 is one-to-one locally at a point as in the assumptions
so that the imageD = 𝜋 (Φ) is smooth with tangent hyperplane as claimed. �

6.1.8 Lemma. Let 𝐷 ⊂ ℙ2 be a smooth conic. Let 𝑍𝑜
𝐷
⊂ ℙ5 be the quasi-projective variety of

smooth plane conics 𝐶 tangent to 𝐷. If 𝐶 ∩ 𝐷 consists of three points, one with multiplicity 2, then
𝑍𝑜
𝐷
is smooth at [𝐶]. In this case, the tangent space 𝑇[𝐶]𝑍𝑜𝐷 is the hyperplane 𝐻𝑝 ⊂ ℙ5 of conics

containing the point 𝑝 of tangency between 𝐶 and 𝐷.

Proof. First, write 𝐷 as a rational curve ℙ1 → 𝐷 ⊂ ℙ2 and consider the restriction map

𝐻0(ℙ2,Oℙ2 (2)) → 𝐻0(𝐷,O𝐷 (2)) = 𝐻0(ℙ1,Oℙ1 (4)).

This map is surjective. In terms of projective spaces, this gives a rational map

𝜋𝐷 : ℙ5 = ℙ𝐻0(Oℙ2 (2)) d ℙ𝐻0(O𝐷 (2)) = ℙ4,

the linear projection of ℙ5 from the point 𝐷 ∈ ℙ5. Since a conic 𝐶 is tangent to 𝐷 if and only
if the corresponding quartic polynomial on ℙ1 has a double root, the closure of 𝑍𝑜

𝐷
in ℙ5 is

the cone with vertex 𝐷 ∈ ℙ5 over the discriminantal hypersurface D ⊂ ℙ4. The previous
Proposition 6.1.7 implies that D is smooth at a point 𝐶 that is tangent to 𝐷 at one point and
intersects it transversely at 2 other points. The tangent space is the hyperplane of all quartic
polynomials vanishing at the double root which correspond to conics inℙ2 passing through the
point of tangency of 𝐶 and 𝐷, as claimed. �

6.1.9 Lemma. Let 𝐷1, . . . , 𝐷5 be five general conics in ℙ2 and let 𝐶 ⊂ ℙ2 be a smooth conic that is
tangent to all five. Then each conic 𝐷𝑖 is simply tangent to 𝐶 at a point 𝑝𝑖 (meaning the intersection
multiplicity is 2) and is otherwise transverse to 𝐶𝑖; the five points 𝑝𝑖 are distinct.

Proof. We prove this by dimension count. Let𝑈 ⊂ ℙ5 be the set of smooth conics in ℙ2 (so that
𝑈 = ℙ5 \ V+(det)). Consider the incidence correspondence

Φ =
{
(𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5;𝐶) ∈ 𝑈5 ×𝑈 : each 𝐷𝑖 is tangent to 𝐶

}
⊂ Φ′ =

{
(𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5;𝐶) ∈ (ℙ5)5 ×𝑈 : each 𝐷𝑖 is tangent to 𝐶

}
.

The set Φ is an open subset of Φ′. Since𝑈 is irreducible of dimension 5 and the projection map
Φ′ → 𝑈 to the last factor has irreducible fibers (𝑍𝐶)5 of dimension 20, it follows that Φ′ is
irreducible of dimension 25. The conditions in the claim are open conditions (the intersection
is as transverse as possible given that 𝐶 is tangent to each 𝐷𝑖) and the set of such conics is in
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fact non-empty: indeed, fix 𝐶 first and pick five general points 𝑝𝑖 on 𝐶 and a general conic 𝐷𝑖
tangent to𝐶 at 𝑝𝑖 with multiplicity 2, otherwise transverse. The set of conics in Φ for which the
assumptions are not satisfied are therefore contained in a proper closed subset of Φ, which has
dimension at most 24. The projection to 𝑈5 restricted this set in Φ cannot be dominant, which
proves the claim. �

6.1.10 Proposition. Let 𝐷1, . . . , 𝐷5 ⊂ ℙ2 be five general conics. The divisors 𝑍𝑖 in 𝑋 intersect
transversely on 𝑋 and every intersection point (𝐶,𝐶′) ∈ ⋂5

𝑖=1 𝑍𝑖 ⊂ 𝑋 is a pair of a smooth conic 𝐶
and its dual 𝐶′ = 𝐶∗.

Proof. This follows directly from putting the above results together. First, Proposition 6.1.6 tells
us that (𝐶,𝐶′) ∈ ⋂

𝑍𝑖 is a pair of a smooth conic 𝐶 ⊂ ℙ2 and its dual 𝐶′ = 𝐶∗. Second,
Lemma 6.1.9 shows that we can apply Lemma 6.1.8 so that we have a description of the tangent
space to each divisor 𝑍𝑖. This description shows that

5⋂
𝑖=1

𝑇(𝐶,𝐶′)𝑍𝑖 =
5⋂
𝑖=1

𝐻𝑝𝑖 = {[𝐶]}

where 𝐻𝑝𝑖 is the hyperplane of conics through 𝑝𝑖 and 𝑝𝑖 is the point of tangency of 𝐶 with 𝐷𝑖.
The conic 𝐶 is the unique conic through these five points, giving the last equation in the above
chain. So the five tangent spaces intersect in one point, a 0-dimensional set, whichmeans exactly
that the intersection is transverse. �

We have now established that the divisors 𝑍𝑖 on the space 𝑋 of complete conics intersect in
exactly the points that we want to count and transversely at each of the points. It remains to
determine their number, which we now can do using the intersection product in 𝐴(𝑋) by the
defining property.

To do this, it is enough to consider the pullbacks of the hyperplane classes in ℙ5 and (ℙ5)∗
to 𝑋 ⊂ ℙ5 × (ℙ5)∗. We set

𝛼 = [{(𝐶,𝐶′) ∈ 𝑋 : 𝑝 ∈ 𝐶}] and 𝛽 = [{(𝐶,𝐶′) ∈ 𝑋 : [𝐿] ∈ 𝐶′}]

for any point 𝑝 ∈ ℙ2 and any line 𝐿 ⊂ ℙ2. So the class 𝛼 is the class of the pullback of the
hyperplane of all conics through 𝑝 to 𝑋 and 𝛽 is the class of the pullback of the hyperplane of all
conics in the dual projective plane containing the point corresponding to the line 𝐿 ⊂ ℙ2.

The class 𝛼4 can be represented by the set of points (𝐶,𝐶′) ∈ 𝑋 such that 𝐶 contains four
general points in ℙ2. This means that 𝛼4 is the pullback of the line in ℙ5 determined by four
general points. We write 𝛾 for 𝛼4. Dually, we write 𝛽4 = 𝜑 for the class represented by the
set of points (𝐶,𝐶′), where 𝐶′ contains four general points in (ℙ2)∗. Let us compute some
intersections.

6.1.11 Lemma. The Picard group 𝐴1(𝑋) of the space of complete conics has rank 2 and is generated
over ℚ by the classes 𝛼 and 𝛽. We have deg(𝛼5) = deg(𝛽5) = 1 and deg(𝛼4𝛽) = deg(𝛼𝛽4) = 2.

Proof. The open set 𝑈 ⊂ 𝑋 of complete conics (𝐶,𝐶′) where 𝐶 is smooth and 𝐶′ = 𝐶∗ is
isomorphic to the complement of a hypersurface in ℙ5. This implies that its Picard group is
torsion by excision (as in Proposition 3.2.4, see Corollary 3.2.9). This implies that for any line

Algebraische Geometrie II / Rainer Sinn / Uni Leipzig (2023)



6.1. The space of complete conics 81

bundle on 𝑋 , a suitable power of 𝐿 is trivial on 𝑈 and hence supported on the complement
𝑋 \ 𝑈 . This complement of 𝑈 has two irreducible components, namely the complete conics of
type (b) and (c) (meaning one of the two conics in (𝐶,𝐶′) has rank 2). So any divisor class on 𝑋
is a rational linear combination of these two divisors: the dimension of Pic(𝑋) ⊗ ℚ is at most
2, which means that the rank of Pic(𝑋) is at most 2.

That the dimension of Pic(𝑋) ⊗ℚ is in fact 2 follows from the degrees of intersection in the
claim because the corresponding 2 × 2matrix has rank 2.

We compute the degrees of intersection geometrically, case by case. The first, deg(𝛼5) = 1
just means that there is a unique conic through 5 general points inℙ2. The equation deg(𝛽5) = 1
is dual to it. The remaining two deg(𝛼4𝛽) = 2 and deg(𝛼𝛽4) = 2 are also dual and it suffices to
prove one of them. The class 𝛼4 is represented by a pencil𝑀 of conics inℙ2 determined by four
general points in the plane. Representing the class 𝛽 by

{(𝐶,𝐶′) ∈ 𝑋 : [𝐿] ∈ 𝐶′}

as above shows that 𝛼4𝛽 is the number of conics in the pencil𝑀whose restriction to 𝐿 is singular.
This number is 2 because a conic in ℙ2 is tangent to a line 𝐿 ⊂ ℙ2 if and only if the restriction
of the conic to 𝐿 has a double root, which boils down to the vanishing of the determinant of a
2 × 2matrix. �

This information about the Chow ring of 𝑋 is in fact enough to compute the class 𝜉 of the
divisor 𝑍𝐷 by the method of undetermined coefficients.

6.1.12 Proposition. The class 𝜉 of the divisor 𝑍𝐷 ⊂ 𝑋 determined by a smooth conic 𝐷 ⊂ ℙ2 is

𝜉 = 2𝛼 + 2𝛽 ∈ 𝐴(𝑋).

Proof. By the above Lemma 6.1.11, we can write 𝜉 = 𝑎𝛼 + 𝑏𝛽 ∈ 𝐴1(𝑋) ⊗ ℚ for some 𝑎, 𝑏 ∈ ℚ.
We again use the fact that the open subset 𝑈 ⊂ 𝑋 of pairs (𝐶,𝐶′) where 𝐶 ⊂ ℙ2 is smooth
and 𝐶′ = 𝐶∗ is isomorphic to its projection to the first factor. The image of 𝑍𝐷 ∩ 𝑈 under
this isomorphism is a sextic hypersurface. This implies that deg(𝜉𝛼4) = 6; indeed, the pencil of
conics through 4 general points in ℙ2 contains three conics of rank 2 and those are generically
not tangent to 𝐷 because the four points determine only 6 lines contained in the three conics of
rank 2 in the pencil. Dually, it also follows that deg(𝜉𝛽4) = 6. By the above rules for intersection,
this gives the equations

6 = deg(𝜉𝛼4) = 𝑎 deg(𝛼5) + 𝑏 deg(𝛼4𝛽) = 𝑎 + 2𝑏
6 = deg(𝜉𝛽4) = 𝑎 deg(𝛼𝛽4) + 𝑏 deg(𝛽5) = 2𝑎 + 𝑏.

The unique solution to these equations is the claimed 𝜉 = 2𝛼 + 2𝛽. �

6.1.13 Theorem. There are 3264 conics in the plane that are tangent to five general conics.

Proof. We have to compute the degree of the class 𝜉5 = 32(𝛼+ 𝛽)5 ∈ 𝐴(𝑋), by Proposition 6.1.12.
By the binomial theorem and the linearity of deg, we only need to compute the degrees of the
monomials 𝛼5−𝑖𝛽𝑖 for 𝑖 = 0, . . . , 5. The cases 𝑖 = 0, 1, 4, 5 are already done in Lemma 6.1.11. So
we only need to do the case 𝑖 = 2 (the case 𝑖 = 3 is, again, dual so that a symmetric argument

Algebraische Geometrie II / Rainer Sinn / Uni Leipzig (2023)



82 6. Parameter Spaces: Five Conics Problem

gives the same degree as for 𝑖 = 2). We use the same geometric approach as before: deg(𝛼3𝛽2) is
the number of conics in the plane through 3 general points that are tangent to two general lines.
The conics passing through 3 general points in ℙ2 form a projective plane in ℙ5. In this plane,
the set of conics being tangent to a general line is again a conic. Indeed, a conic in ℙ2 is tangent
to a line if and only if its restriction to the line has a double root. Since we want the conics
tangent to two general lines, we intersect two conics in the plane of conics through 3 points in
ℙ5, which gives 4 points by Bézout’s Theorem. (We can apply Bézout’s Theorem here because
of the following exercise.) So overall, we know have

(𝛼 + 𝛽)5 =
(
5
0

)
· 1 +

(
5
1

)
· 2 +

(
5
2

)
· 4 +

(
5
3

)
· 4 +

(
5
4

)
· 2 +

(
5
5

)
· 1

= 1 + 10 + 40 + 40 + 10 + 1
= 102.

Overall, the answer to our five conics problem is deg(𝜉5) = 32(𝛼 + 𝛽)5 = 32 · 102 = 3264. �

Exercise 6.1.14. Find three points 𝑝1, 𝑝2, and 𝑝3 as well as two lines 𝐿1, 𝐿2 in ℙ2 such that there exists a
conic through the points 𝑝𝑖 tangent to 𝐿1 but not 𝐿2.
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Chapter 7

Excess Intersection

The goal of this chapter is to give a definition of Segre classes from Chern classes. Fulton’s book
uses the reverse approach: he defines Segre classes first and then usem them to define Chern
classes. We go through this so that we can state the excess intersection formula in terms of Segre
classes. We will not give a proof but apply it in examples to see it in action.

7.1. Pushforward

In this section, we need to assume properness of our maps and we finally introduce this notion.

Definition. A morphism 𝑓 : 𝑋 → 𝑌 of algebraic varieties is closed if the image of any closed
subset of 𝑋 is closed in 𝑌 . It is universally closed if it is closed and for any morphism 𝑍 → 𝑌

the corresponding morphism 𝑋 ×𝑌 𝑍 → 𝑍 obtained by base extension is closed. A morphism
is proper if it is universally closed.

In general, for schemes, we also require 𝑓 to be of finite type which is built into our notion
of varieties because their coordinate rings are finitely generated algebras over fields. It means
that for every open affine subset 𝑈 ⊂ 𝑌 the preimage 𝑓−1(𝑈) is quasi-compact and O𝑋 |𝑈 (𝑉 ) is
finitely generated over O𝑌 |𝑈 (𝑈) for every affine open subset 𝑉 ⊂ 𝑓−1(𝑈). Moreover, we also
get for free that 𝑓 is separated which means that 𝑋 → 𝑋 ×𝑌 𝑋 is a closed immersion.

7.1.1 Example. The structure morphism 𝔸1 → Spec(𝐾) coming from the ring homomor-
phism 𝐾 → 𝐾 [𝑥] is not proper. It is clearly closed because it is constant. However, it is not
universally closed: 𝔸1 ×𝐾 𝔸1 → 𝔸1 is the coordinate projection𝔸2 → 𝔸1 which is not closed.

Inmost cases that we are encountering here, ourmaps are proper, essentially due to theMain
Theorem of Elimination Theory.

7.1.2 Theorem. A projective morphism is proper.

7.1.3 Remark. In topology, a continuous map 𝑓 : 𝑋 → 𝑌 between topological spaces is called proper if
the preimage of any compact set in 𝑌 is compact in 𝑋 . On reasonable topological spaces (it suffices that
𝑌 is Hausdorff and locally compact), this is equivalent to 𝑓 being closed with compact fibers. If 𝑋 is also
Hausdorff (and 𝑌 Hausdorff and locally compact) it is also equivalent to being universally closed. This
latter definition is the one used in algebraic geometry.
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Let 𝑓 : 𝑋 → 𝑌 be a proper map of schemes and let 𝐴 ⊂ 𝑋 be an irreducible subvariety. Since
𝑓 is proper, the image 𝑓 (𝐴) ⊂ 𝑌 is closed (and irreducible). The pull back of regular functions
𝑓 ∗ : O𝑌 |𝑓 (𝐴) → O𝑋 |𝐴 induces a field homomorphism 𝐾 (𝑓 (𝐴)) → 𝐾 (𝐴) from the function field
of 𝑓 (𝐴) to the function field of 𝐴. This means that 𝐾 (𝐴) is a field extension of 𝐾 (𝑓 (𝐴)). If
𝑓 |𝐴 : 𝐴→ 𝑓 (𝐴) is generically finite (which happens if and only if dim(𝐴) = dim(𝑓 (𝐴)), then
these fields have the same transcendence degree over 𝐾 and this extension is algebraic. In fact, it
is finite and deg(𝑓 ) = [𝐾 (𝐴) : 𝐾 (𝑓 (𝐴))] is the number of elements in a generic fiber 𝑓−1(𝑥) for
a general 𝑥 ∈ 𝑓 (𝐴). We use this number to define the pushforward map on Chow rings coming
from a porper map of schemes.

Definition. Let 𝑓 : 𝑋 → 𝑌 be a proper map of schemes. The pushforward 𝑓∗ : 𝐴(𝑋) → 𝐴(𝑌 )
is defined on the classes of irreducible subvarieties 𝐴 ⊂ 𝑋 by the following conditions.

� If dim(𝑓 (𝐴)) < dim(𝐴), then 𝑓∗( [𝐴]) = 0.
� If dim(𝑓 (𝐴)) = dim(𝐴), then 𝑓∗( [𝐴]) = [𝐾 (𝐴) : 𝐾 (𝑓 (𝐴))] · [𝑓 (𝐴)].

We get 𝑓∗ : 𝐴(𝑋) → 𝐴(𝑌 ) by linearly extending the above definition to ℤ-linear combinations
of classes of irreducible subvarieties of 𝑋 .

The point of the definition 𝑓∗( [𝐴]) = deg(𝑓 ) [𝑓 (𝐴)] is to preserve rational equivalence of
cycles. One can show (with this definition) the following result.

7.1.4 Theorem. If 𝑓 : 𝑋 → 𝑌 is a proper map of schemes, then the map 𝑓∗ : 𝑍(𝑋) → 𝑍(𝑌 ) defined
above preserves rational equivalence so that it induces a map 𝑓∗ : 𝐴𝑘(𝑋) → 𝐴𝑘(𝑌 ) on Chow groups
for each 𝑘.

7.1.5 Example. To see that themodification 𝑓∗( [𝐴]) = deg(𝑓 ) [𝑓 (𝐴)] by the degree of 𝑓 is neces-
sary in order for this map to preserve rational equivalence of cycles, we consider the following
example the projection of a plane curve. Let 𝐶 ⊂ 𝔸2 be the curve defined by the equation
𝑥 − ( 𝑦 − 2) 𝑦( 𝑦 + 2), which is the graph of a cubic polynomial rotated by 90 degrees. As a
map, we take the projection to the 𝑥-axis 𝑓 : 𝐶 → 𝔸1. The fiber over 0 consists of the three
points (0, 2), (0, 0), and (0,−2). However, over a branch point (𝑥 = ±2/

√
3), the fiber has only

two points. On 𝔸1, the two points are rationally equivalent but a set of two points cannot be
rationally equivalent to a set of three points without assigning multiplicities.

This result on pushforwards shows the existence of a degree map on 0-dimensional cycles
for a proper scheme (in particular for smooth projective varieties, which is a case where we used
such a map, see Grassmannians).

7.1.6 Corollary. Let 𝑋 be a proper scheme over an algebraically closed field. There is a unique map
deg : 𝐴(𝑋) → ℤ taking the class [𝑝] of a closed point 𝑝 ∈ 𝑋 to 1 and vanishing on the class of any
cycle of pure dimension greater than 0.

Proof. That 𝑋 is a proper scheme over an algebraically closed field 𝐾 means, by definition, that
the map 𝑋 → Spec(𝐾) is proper. The dimension of Spec(𝐾) is 0 and its Chow ring isℤ so that
the claim follows directly from the previous Theorem 7.1.4. �

In particular, we have used the fact that if 𝐴 ⊂ 𝑋 is an irreducible, 𝑘-dimensional subvariety
of a smooth projective variety 𝑋 and 𝐵 ⊂ 𝑋 is irreducible of codimension 𝑘 such that 𝐴 ∩ 𝐵 is
finite and non-empty, then the map deg : 𝐴𝑘(𝑋) → ℤ, [𝑍] → deg( [𝑍] · [𝐵]) sends the class of
𝐴 to a non-zero integer. This implies that no multiple of [𝐴] can be 0 in 𝐴(𝑋).
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7.2. Pullback 85

7.2. Pullback
A pullback on Chow rings exists for smooth quasi-projective varieties and it is geometric in the
following sense. If 𝑓 : 𝑋 → 𝑌 is a morphism of smooth quasi-projective varieties and 𝐴 ⊂ 𝑌 is
an irreducible subvariety of codimension 𝑐 in 𝑌 , then 𝑓 ∗( [𝐴]) = [𝑓−1(𝐴)] under the additional
assumption that the preimage 𝑓−1(𝐴) ⊂ 𝑋 is generically reduced of the expected codimension 𝑐
in 𝑋 . This is also a result that requires work (in particular when it comes to preserving rational
equivalence classes). We briefly summarize the main results.

Definition. Let 𝑓 : 𝑋 → 𝑌 be a morphism of smooth varieties. We call an irreducible subva-
riety 𝐴 ⊂ 𝑌 generically transverse to 𝑓 if the preimage 𝑓−1(𝐴) is generically reduced and the
codimension of 𝑓−1(𝐴) in 𝑋 is equal to the codimension of 𝐴 in 𝑌 .

7.2.1 Theorem. Let 𝑓 : 𝑋 → 𝑌 be a morphism of smooth and quasi-projective varieties.

(a) There is a unique map of groups 𝑓 ∗ : 𝐴𝑐 (𝑌 ) → 𝐴𝑐 (𝑋) such that 𝑓 ∗( [𝐴]) = [𝑓−1(𝐴)] for
every generically transverse irreducible subvariety 𝐴 ⊂ 𝑌 . Moreover, the map 𝑓 ∗ is a ring
homomorphism and a contravariant functor from the category of smooth projective varieties to
the category of graded rings.

(b) (Push-pull formula) For all 𝛽 ∈ 𝐴𝑘(𝑌 ) and all 𝛼 ∈ 𝐴� (𝑋) we have

𝑓∗(𝑓 ∗𝛽 · 𝛼) = 𝛽 · 𝑓∗𝛼 ∈ 𝐴�−𝑘(𝑌 ).

In fact, the identity 𝑓 ∗( [𝐴]) = [𝑓−1(𝐴)] more generally holds for subvarieties 𝐴 ⊂ 𝑌 that are
Cohen-Macaulay (as long as codim𝑋 (𝑓−1(𝐴)) = codim𝑌 (𝐴)). Another nice case of morphisms
are flat morphisms between schemes. In that case, 𝑓 ∗( [𝐴]) = [𝑓−1(𝐴)] holds very generally.

7.3. Segre Classes
It turns out that Segre classes are, in a very concrete sense, inverse to Chern classes. For globally
generated vector bundles, we can compute the Chern class by the degeneracy locus of the ap-
propriate number of general global sections. This answers the question on what locus sections
become linearly dependent. Segre classes ask the opposite question in linear algebra in this case:
when do general sections fail to span the fiber?

Let E be a line bundle on a smooth projective variety 𝑋 that is globally generated. The
locus where one general global section of E fails to generate E locally is the same as the locus
where this section is linearly dependent (aka 0), namely the associated divisor 𝑐1(E) ∈ 𝐴(𝑋).
However, we can also ask when 𝑖 general global sections fail to generate E locally (at least for
any 𝑖 ≤ dim(𝐻0(𝑋,E))). Since E is a line bundle, the locus where they fail to generate E locally
is exactly the locus where they all vanish. Generally, this locus has the expected codimension 𝑖
and is of class 𝑐1(E) 𝑖 ∈ 𝐴(𝑋).

Suppose that E has rank 𝑟 > 1 and is globally generated. Naively, we expect that 𝑟 general
global sections 𝜏1, 𝜏2, . . . , 𝜏𝑟 generate E away from a subset of codimension 1. Let 𝑋 ′ be the set
of points where they fail to generate E . At a general point 𝑝 ∈ 𝑋 ′, we might expect exactly
one linear relation among the 𝑟 vectors 𝜏𝑖(𝑝) ∈ 𝐾𝑟 . If that is true for one point, then there is
an non-empty open subset 𝑈 ⊂ 𝑋 ′ on which this is true. On 𝑈 , the sections 𝜏𝑖 then generate
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86 7. Excess Intersection

a subbundle E′ of E of rank 𝑟 − 1 so that the quotient bundle E/E′ is a line bundle. Adding
another section 𝜏𝑟+1, we expect that the induced sections 𝜏𝑖 of E/E′ (𝑖 = 1, 2, . . . , 𝑟 + 1) generate
this line bundle away from a codimension 1 subset of𝑈 , which means that they generate E away
from a codimension 2 subset of 𝑋 . By induction, the heuristic is that 𝑟 + 𝑖 − 1 general sections
of E generate E away from a locus of codimension 𝑖 in 𝑋 . In particular, the expectation is that
𝑟 + dim(𝑋) general sections generate E globally.

If this heuristic is correct, then the Segre class is (up to sign) the rational equivalence class of
the locus where the sections fail to generate E , as we will see below.

To contrast Chern and Segre classes from the point of view of linear algebra, we can sum-
marize the above discussion as follows (at least for globally generated vector bundles).

� The 𝑖th Chern class 𝑐𝑖(E) of E is the set of points where a suitably general map

𝑟−𝑖+1⊕
𝑖=1

O𝑋 → E

of vector bundles fails to be injective.
� The 𝑖th Segre class 𝑠𝑖(E) is (−1) 𝑖 times the set of points where a suitably general map

𝑟+𝑖−1⊕
𝑖=1

O𝑋 → E

of vector bundles fails to be surjective.

Let us give a definition of Segre classes.

Definition. Let 𝑋 be a smooth projective variety. Let E be a vector bundle of rank 𝑟 on 𝑋 and
write 𝜋 : ℙE → 𝑋 be its projectivization. Set 𝜁 = 𝑐1(OℙE (1)) (see Section 5.3). The 𝑖th Segre
class of E is the class

𝑠𝑖(E) = 𝜋∗(𝜁 𝑟+𝑖−1) ∈ 𝐴𝑖(𝑋).
The (total) Segre class of E is the sum

𝑠(E) = 1 + 𝑠1(E) + 𝑠2(E) + . . . ∈ 𝐴(𝑋).

Segre classes are inverse to Chern classes in the following formal sense.

7.3.1 Proposition. Let 𝑋 be a smooth projective variety and E a vector bundle on 𝑋 . Then the
following equation holds in the Chow ring of 𝑋

𝑐(E) · 𝑠(E) = 1 ∈ 𝐴(𝑋).

Sketch of proof. Let 𝜋 : ℙE → 𝑋 be the projectivization of E . Let S and Q be the universal
subbundle and the universal quotient bundle of ℙE so that we have the exact sequence

0→ S = OℙE (−1) → 𝜋∗(E) → Q → 0.
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Then Whitney’s formula for Chern classes implies that

𝑐(Q) = 𝑐(𝜋∗(E))
𝑐(S) = 𝑐(𝜋∗(E))(1 + 𝜁 + 𝜁 2 + . . .) ∈ 𝐴(ℙE),

where we write 𝑐(S) = 1 − 𝜁 and 𝜁 = 𝑐1(OℙE (1)). We now pushforward this equation to 𝑋 .
The dimension ofℙE is dim(𝑋) + rank(E) −1. So for 𝑖 < 𝑟−1, the Chern class 𝑐𝑖(Q) ∈ 𝐴(ℙE)
is represented by cycles of dimension larger than dim(𝑋). So by definition, their pushforward
is 0. The top Chern class 𝑐𝑟−1(Q) maps to a multiple 𝑚[𝑋] of the fundamental class of 𝑋 . In
fact, this multiple 𝑚 is equal to 1 (which can be computed using a push-pull formula).

On the right hand side, using the push-pull formula, we get

𝜋∗
(
𝑐(𝜋∗(E))(1 + 𝜁 + 𝜁 2 + . . .)

)
= 𝑐(E)𝜋∗(1 + 𝜁 + 𝜁 2 + . . .) = 𝑐(E)𝑠(E).

Overall, the computations on both sides show the claim. �

The identity 𝑐(E) · 𝑠(E) = 1 ∈ 𝐴(𝑋) implies the following relations for Segre classes from
the analogues of the case of Chern classes.

7.3.2 Corollary. Let 𝑋 be a smooth projective variety and E a vector bundle on 𝑋 .

(1) (Duality) 𝑠𝑖(E∗) = (−1) 𝑖𝑠𝑖(E)
(2) (Whitney’s Formula) For any exact sequence

0→ E → F → G → 0

of vector bundles on 𝑋 we have

𝑠(F ) = 𝑠(E) · 𝑠(G).

Using this relation between Chern and Segre classes, we can make sense of the above heuris-
tic discussion for globally generated vector bundles. To see this in full detail requires Porteous’s
Formula. We only sketch part of the proof for the following statement.

7.3.3 Proposition. Let E be a vector bundle of rank 𝑟 on a smooth projective variety 𝑋 that is
globally generated. Let 𝜏1, 𝜏2, . . . , 𝜏𝑟+𝑖−1 be general global sections of E and set 𝑋𝑖 to be the sub-
scheme where they fail to generate E. Then 𝑋𝑖 has pure codimension 𝑖 and the class [𝑋𝑖] is equal to
(−1) 𝑖𝑠𝑖(E).
Proof. Let 𝑉 = 𝐻0(𝑋, E) and 𝑛 = dim(𝑉 ). The assumption that E is globally generated implies
that we have a well defined morphism 𝜑 : 𝑋 → Gr(𝑛 − 𝑟, 𝑉 ) sending each point 𝑝 ∈ 𝑋 to the
kernel of the map 𝑉 → E𝑝 which is the same as the subspace of global sections vanishing at
𝑝. Via this map, the vector bundle E on 𝑋 is isomorphic to the pullback 𝜑∗(Q) of the universal
quotient bundle on Gr(𝑛 − 𝑟, 𝑉 ). We saw in Proposition 5.2.6 that this gives one way to define
the Chern classes of the globally generated bundle E as

𝑐𝑖(E) = 𝜑∗(𝑐𝑖(Q)) = 𝜑∗(𝜎𝑖).

Let us proceed similarly: take general global sections 𝜏1, 𝜏2, . . . , 𝜏𝑟+𝑖−1 ∈ 𝑉 of E and let 𝑋𝑖
be the variety of points 𝑝 where they fail to span E𝑝. Then 𝑋𝑖 = 𝜑∗(Σ1𝑖 (𝑊 )) whose class is
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𝜑∗(𝜎1𝑖), where 𝑊 = span(𝜏1, 𝜏2, . . . , 𝜏𝑟+𝑖−1) ⊂ 𝑉 . Indeed, Σ1𝑖 (𝑊 ) is the Schubert variety of all
(𝑛 − 𝑟)-planes in 𝑉 that intersect𝑊 in dimension at least 𝑖.

Now we combine this computation with the identity in Corollary 4.5.2 saying that

1 = (1 + 𝜎1 + 𝜎2 + . . . + 𝜎𝑟) (1 − 𝜎1 + 𝜎1,1 − +(−1)𝑛−𝑟𝜎1𝑛−𝑟 )

to see that 𝑠(E) = 1/𝑐(E) evaluates, as desired, to

𝑛−𝑟∑︁
𝑖=0

(−1) 𝑖 [𝑋𝑖] = 𝜑∗
(
𝑛−𝑟∑︁
𝑖=0

𝜎1𝑖

)
= 𝜑∗

1∑𝑟
𝑖=0 𝜎𝑖

=
1

𝑐(E) = 𝑠(E).

�

7.3.4 Example. Let us compute the Segre classes of the tangent bundle Tℙ𝑛 on ℙ𝑛. We have
seen in Proposition 5.4.4 that 𝑐(Tℙ𝑛) = (1 + 𝜁 )𝑛+1, where 𝜁 = [𝐻] is the class of a hyperplane in
ℙ𝑛. We compute the Segre classes by formally inverting this

𝑠(Tℙ𝑛) =
1

(1 + 𝜁 )𝑛+1 = 1 − (𝑛 + 1)𝜁 +
(
𝑛 + 2
2

)
𝜁 2 − + . . . =

𝑛∑︁
𝑖=0

(−1) 𝑖
(
𝑛 + 𝑖
𝑖

)
𝜁 𝑖.

(For example, one can compute the Taylor expansion of the function 1
(1−𝑡)𝑛+1 to compute the

above series expansion inductively.)

7.3.1 Secant Varieties
Secant varieties are a special case of varieties “swept out” by linear spaces. Generally, such va-
rieties are defined in the following way. Let 𝐵 ⊂ 𝔾(𝑘, 𝑛) be an irreducible algebraic variety of
𝑘-planes in an 𝑛-dimensional projective space. We can then define

𝑋𝐵 =
⋃
[Λ]∈𝐵

Λ ⊂ ℙ𝑛,

a variety swept out by the family of 𝑘-planes in 𝐵. To study such varieties, it is often useful to
consider an associated incidence correspondence (which is the universal subbundle of 𝔾(𝑘, 𝑛)
pulled back to 𝐵). Concretely, we define

Φ𝐵 = {([Λ] , 𝑥) ∈ 𝔾(𝑘, 𝑛) × ℙ𝑛 : [Λ] ∈ 𝐵, 𝑥 ∈ Λ}

so that 𝑋𝐵 is the projection 𝜋2(Φ𝐵) of Φ𝐵 to the second factor. (Eisenbud and Harris define Φ𝐵 as
the fiber product of 𝐵with the universal 𝑘-planeΦ, which is the projectivization of the universal
subbundle of 𝔾(𝑘, 𝑛), see Section 10.2.)

As usual, the advantage of the incidence correspondence is that it is easy to compute its di-
mension and it is a smooth projective variety (at least if 𝐵 is smooth). Its dimension is dim(Φ𝐵) =
dim(𝐵) +𝑘. So we naively expect the dimension of 𝑋𝐵 to be dim(𝐵) +𝑘 as well (and this is true if
and only if the projection 𝜋2 : Φ𝐵 → 𝑋𝐵 is generically finite). If this is the case, we can compute
the degree of 𝑋𝐵 in terms of Segre classes and the degree of 𝜋2 : Φ𝐵 → 𝑋𝐵 as follows.
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7.3.5 Proposition. Let 𝐵 ⊂ 𝔾(𝑘, 𝑛) be a smooth and irreducible projective variety of dimension
𝑚. Assume that the projection 𝜋2 : Φ𝐵 → 𝑋𝐵 is generically finite of degree 𝑑. Then the degree of
𝑋𝐵 ⊂ ℙ𝑛 is given by the 𝑚th Segre class of the restriction E = 𝜄∗(S) of the universal subbundle S
on 𝔾(𝑘, 𝑛) to 𝜄 : 𝐵→ 𝔾(𝑘, 𝑛) by

deg(𝑋𝐵) = deg(𝑠𝑚(E))/𝑑.

Proof. Themain point of the proof here is that 𝜋1 : Φ𝐵 → 𝐵 is actually 𝜋 : ℙE → 𝐵whichmakes
Segre classes relevant for this discussion by their very definition of 𝑠𝑖(E) = 𝜋∗(𝜁 𝑘+𝑖−1).

The degree of 𝑋𝐵 is by definition the degree of the intersection 𝑋 ∩ 𝐻1 ∩ . . . ∩ 𝐻dim(𝑋)
for general hyperplanes 𝐻𝑖 ⊂ ℙ𝑛. We can compute this number via the pullback to Φ𝐵 as the
degree of [𝜋∗2 (𝐻)]𝑚+𝑘 ∈ 𝐴(Φ𝐵) up to a factor 𝑑 for the degree of the map 𝜋2. To compute this
class [𝜋∗2 (𝐻)] , let 𝐿 ∈ 𝐻0(ℙ𝑛,Oℙ𝑛 (1)) be a linear form which induces a global section 𝜎𝐿 of S∗
by evaluation: 𝜎𝐿( [Λ]) : Λ → 𝐾 , 𝑥 ↦→ 𝐿(𝑥). We also write 𝜎𝐿 for the induced section on the
pullback E∗. The pullback 𝜋∗2 (𝐻) of the hyperplane 𝐻 = V+(𝐿) ⊂ ℙ𝑛 to Φ𝐵 is the zero locus
of the section 𝜎𝐿 of E∗. This means simply that 𝜎𝐿 is a global section of OℙE (1) so that we have
[𝜋∗2 (𝐻)] = 𝑐1(OℙE (1)) = 𝜁 . By definition of Segre classes, this implies the desired formula

𝑑 · deg(𝑋𝐵) = deg(𝜁𝑚+𝑘) = deg(𝑠𝑚(E)).

�

An alternative proof using the relation of Segre classeswith theChern classes of the universal
quotient bundle of the Grassmannian 𝑠(S) = 1/𝑐(S) = 𝑐(Q) goes as follows. The degree of 𝑋 is
the degree of the intersection 𝑋𝐵∩Γ for a general linear subspace Γ ⊂ ℙ𝑛 of dimension 𝑛−𝑚−𝑘.
We can compute this number as the intersection of 𝐵 ⊂ 𝔾(𝑘, 𝑛) with the Schubert variety Σ𝑚(Γ)
of all 𝑘-planes in ℙ𝑛 that intersect Γ (again up to a factor of deg(𝜋2)). Using Proposition 5.4.7,
this approach gives the formula

𝑑 · deg(𝑋𝐵) = deg( 𝜄∗𝜎𝑚) = deg(𝑐𝑚( 𝜄∗(Q))) = deg(𝑠𝑚(E)).

This formula can be used in the case of secant varieties (as stated of smooth curves). Gen-
erally, the 𝑘th secant variety of a projective variety 𝑋 ⊂ ℙ𝑛 is the closure of the union of all
𝑘-planes in ℙ𝑛 spanned by 𝑘 + 1 points on 𝑋 . The 0th secant variety of 𝑋 is 𝑋 itself, the first the
closure of the union of all secant lines, and so on. In the above setup, the 𝑘th secant variety of
𝑋 corresponds to the subvariety 𝐵𝑋 ⊂ 𝔾(𝑘, 𝑛) obtained as the closure of all 𝑘-planes spanned
by points on 𝑋 . This variety can be identified with the (𝑘 + 1)st symmetric product of 𝑋 , which
is the quotient of the (𝑘 + 1)-fold direct product modulo the action of 𝑆𝑘+1 by permutation. It
turns out that this variety 𝑋 (𝑘+1) for 𝑘 > 1 is smooth if and only if 𝑋 is smooth and of dimension
at most 1.

7.3.6 Example. The 𝑘th symmetric product of ℙ1 is isomorphic to ℙ𝑘. The isomorphism can
be described as follows. Let (𝑎𝑖 : 𝑏𝑖) be homogeneous coordinates on the 𝑖th copy ofℙ1 in (ℙ1)𝑘.
To the 𝑘-tuple of points (𝑎1 : 𝑏1, 𝑎2; 𝑏2, . . . , 𝑎𝑘 : 𝑏𝑘), we associate the coefficients of the binary
form 𝑓 = (𝑠𝑏1 − 𝑡𝑎1) · (𝑠𝑏2 − 𝑡𝑎2) · . . . · (𝑠𝑏𝑘 − 𝑡𝑎𝑘) ∈ 𝐾 [𝑠, 𝑡] of degree 𝑘 with roots (𝑎𝑖 : 𝑏𝑖) ∈ ℙ1.
Clearly, the polynomial 𝑓 is invariant under permutation of its roots and its 𝑘 + 1 coefficients
(essentially the elementary symmetric polynomials in the roots) are coordinates on ℙ𝑘. This is
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clearly a bijection between the 𝑘th symmetric power (ℙ1) (𝑘) of ℙ1 and ℙ𝑘. In fact this is also an
isomorphism of projective varieties.

Using the isomorphism (ℙ1) (𝑘) � ℙ𝑘 and the formula for the degree of secant varieties
Proposition 7.3.5 (in case of expected dimension), one can compute the degree of secant varieties
of any rational normal curve inℙ𝑛. The result of this computation is the following (see Theorem
10.16 in Eisenbud, Harris).

7.3.7 Proposition. Let𝐶 ⊂ ℙ𝑑 be a rational normal curve and𝑚 a positive integer with 2𝑚+1 ≤ 𝑑.
Then the degree of the 𝑚th secant variety of 𝐶 is(

𝑑 − 𝑚
𝑚 + 1

)
.

7.4. Excess Intersection Formula

The goal of this section is to make sense of the excess intersection formula (developed in this
form mostly in work by Fulton and MacPherson) and try some computations of examples. In
its full glory, the formula can be stated as follows.

7.4.1 Theorem. Let 𝑋 be a smooth and irreducible projective variety. Let 𝑆 and 𝑇 be irreducible
subvarieties and assume that 𝑇 is locally a complete intersection (which is implied by 𝑇 being smooth,
for example). Then the intersection product [𝑆] · [𝑇] is equal to the sum∑︁

𝐶

( 𝜄𝐶)∗(𝛾𝐶)

taken over all connected componenta 𝐶 of 𝑆 ∩ 𝑇 where 𝜄𝐶 : 𝐶 → 𝑋 is the inclusion morphism
and 𝛾𝐶 is the homogeneous part of degree 𝑑 = dim(𝑋) − codim(𝑆) − codim(𝑇) of the product
𝑠(𝐶, 𝑆) · 𝑐(N𝑇/𝑋 |𝐶) ∈ 𝐴(𝐶). If 𝑆 is also a locally complete intersection, then we can write 𝛾𝐶
symmetrically as the degree 𝑑 part of 𝑠(𝐶, 𝑋) · 𝑐(N𝑆/𝑋 |𝐶) · 𝑐(N𝑇/𝑋 |𝐶) ∈ 𝐴(𝐶).

This formula clearly needs some digesting. The part we already understand are the Chern
classes of the normal bundles N𝑇/𝑋 (and N𝑆/𝑋 ) pulled back to the connected component 𝐶 (at
least more or less: the trouble being that connected components of 𝑆 ∩ 𝑇 can, of course, be
singular). The main point of using Segre classes in this formula is the term 𝑠(𝐶, 𝑋), which is the
Segre class of the subvariety 𝐶 of 𝑋 . This is defined as follows. For a subvariety 𝐶 of 𝑋 (more
precisely a proper subscheme𝐶 ⊂ 𝑋 ), setS =

⊕
𝑛∈ℕ I𝑛𝐶/𝑋/I

𝑛+1
𝐶/𝑋 and set 𝐸 = Proj(S). Then we

have a map 𝜋 : 𝐸→ 𝑋 (which is the restriction of the blow up 𝜋 : Bl𝐶 (𝑋) → 𝑋 of 𝑋 along 𝐶 to
the exceptional divisor 𝐸). We then define similarly to the case 𝐸 = ℙE from before the Segre
class of 𝐶 in 𝑋 to be

𝑠(𝐶, 𝑋) = 𝜋∗

(∑︁
𝑘≥0

𝑐1(O𝐸 (1))𝑘
)
∈ 𝐴(𝐶).

The intersection 𝑐1(O𝐸 (1))𝑘 are taken in the Chow ring 𝐴(𝐸) of 𝐸. This definition generalizes
the case where 𝑋 is smooth and 𝐶 is locally a complete intersection which is more geometric.
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Under these assumptions we have

I𝑛
𝐶/𝑋/I

𝑛+1
𝐶/𝑋 � Sym𝑛(I𝐶/𝑋/I2𝐶/𝑋 ) = Sym𝑛(N∗

𝐶/𝑋 )

which implies that the Segre class 𝑠(𝐶, 𝑋) is, in this case, the Segre class 𝑠(N𝐶/𝑋 ) of the normal
bundle of 𝐶 in 𝑋 , because Proj(

⊕
𝑛 I𝑛𝐶/𝑋/I

𝑛+1
𝐶/𝑋 ) = ℙN𝐶/𝑋 . Concretely, this means

𝑠(𝐶, 𝑋) = 𝑠(N𝐶/𝑋 ) =
1

𝑐(N𝐶/𝑋 )
.

We will now attempt to apply this formula in special cases.

7.4.1 Two curves in the plane

Bézout’s Theorem tells us that the intersection of a curve𝐶1 of degree 𝑑1 with a curve of degree
𝑑2 inℙ2 is a scheme of length 𝑑1·𝑑2 if the two curves have no irreducible components in common.
From this, we directly get an expectation for the contribution of excess intersection in case that
the two curves have a common component 𝐷 of degree 𝑘: then the 0-dimensional part is the
intersection of a curve𝐶1 \𝐷 of degree 𝑑1 − 𝑘 with a curve𝐶2 \𝐷 of degree 𝑑2 − 𝑘, which gives
a 0-dimensional intersection of degree (𝑑1 − 𝑘) (𝑑2 − 𝑘) = 𝑑1𝑑2 − (𝑑1 + 𝑑2 − 𝑘)𝑘 – the common
component 𝐷 of degree 𝑘must therefore account for the (𝑑1 + 𝑑2 − 𝑘)𝑘 points that are missing
compared to the case of a generic intersection of two curves of degree 𝑑1 and 𝑑2, respectively.
Indeed, the intersection [𝐶1] · [𝐶2] has degree 𝑑1 · 𝑑2 but is concretely written in the excess
intersection formula as a sumof 𝑑1𝑑2−(𝑑1+𝑑2−𝑘)𝑘 points and the class ( 𝜄𝐷)∗(𝛾𝐷) corresponding
to the common component𝐷 of degree 𝑘 (because every irreducible curve inℙ2 is connected and
any two curves intersect so that the common component 𝐷 is always connected). Let us see how
the excess intersection formula confirms this expectation, that is deg(( 𝜄𝐷)∗(𝛾𝐷)) = (𝑑1+𝑑2−𝑘)𝑘.

For this, we have to compute the classes 𝑠(𝐷,ℙ2), 𝑠(N𝐶1/𝑋 |𝐷), and 𝑠(N𝐶2/𝑋 |𝐷) on the com-
mon component𝐷 of degree 𝑘. Here, we assume that𝐶1,𝐶2, and therefore𝐷 are reduced, which
just says that the defining polynomials are squarefree. Every hypersurface is locally a complete
intersection, which implies that we can use the symmetric formula in Theorem 7.4.1. The normal
bundle of a reduced curve 𝐶 ⊂ ℙ2 is N𝐶/ℙ2 is isomorphic to Oℙ𝑛 (𝐶) |𝐶 = O𝐶 (deg(𝐶)) (by ad-
junction, compare the proof of Proposition 5.4.6). From this formula, we know that 𝑐(N𝐶/ℙ2) =
(1+deg(𝐶)𝜁𝐶) ∈ 𝐴(𝐶), where 𝜁𝐶 is the restriction of the hyperplane class to𝐶 (which therefore
has degree deg(𝐶) as well). Since 𝑠(𝐷,ℙ2) = 1/𝑐(N𝐷/ℙ2) in this case, we have everything we
need to get

( 𝜄𝐷)∗(𝛾𝐷) = ( 𝜄𝐷)∗
{
𝑐(N𝐶𝑖/ℙ2 |𝐷) · 𝑐(N𝐶2/ℙ2 |𝐷)

𝑐(N𝐷/ℙ2)

}
0

= ( 𝜄𝐷)∗
{
(1 + 𝑑1𝜁𝐷) · (1 + 𝑑2𝜁𝐷)

(1 + 𝑘𝜁𝐷)

}
0

= ( 𝜄𝐷)∗ {1 + (𝑑1 + 𝑑2 − 𝑘)𝜁𝐷}0
= ( 𝜄𝐷)∗ ((𝑑1 + 𝑑2 − 𝑘)𝜁𝐷)
= (𝑑1 + 𝑑2 − 𝑘) · ( 𝜄𝐷)∗(𝜁𝐷) = (𝑑1 + 𝑑2 − 𝑘) · (𝑘𝜁 2)
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And indeed, as expected from Bézout’s Theorem, the degree of this class coming from the excess
intersection in the common component 𝐷 of degree 𝑑 is (𝑑1 + 𝑑2 − 𝑘)𝑘.

7.4.2 Three surfaces in 3-space

We saw a heuristic discussion of excess intersection for surfaces in ℙ3 in Section 1.3. With the
warm up in the case of plane curves, let us now apply the formalism of excess intersection to
determine some degrees in this case as well.

The setup is the following: Let 𝑆1, 𝑆2, and 𝑆3 be surface in ℙ3 of degree 𝑠1, 𝑠2, and 𝑠3, respec-
tively. Suppose that the intersection 𝑆1 ∩ 𝑆2 ∩ 𝑆3 is a 0-dimensional scheme and an irreducible
curve of degree 𝑑 and genus 𝑔. In case that we are computing the degree of the dual projec-
tive surface for a smooth surface 𝑆1, the surfaces 𝑆2 and 𝑆3 are general polar hypersurfaces to
𝑆1 and we discussed how a line as excess intersection reduces the degree of the dual surface in
Section 1.3: If 𝑆 has degree 𝑑, then a line diminishes the degree of the dual surface by 3𝑑 − 4.

Let us begin with a heuristic for a slightly more general case that we have three surfaces
𝑆𝑖 with excess intersection equal to a line 𝐿 ⊂ 𝑆1 ∩ 𝑆2 ∩ 𝑆3 along which the intersection is
smooth, arguing essentially along the lines of the 19th century, well before the development of
intersection theory as the field it is today. For simplicity, we assume that 𝑆1 is smooth (which can
be shown not to be a restriction). Then 𝑆1∩𝑆2 = 𝐿+𝐷 for a divisor 𝐷 on 𝑆1 and 𝑆1∩𝑆3 = 𝐿+ 𝐸
for another divisor 𝐸 on 𝑆2. By the smoothness assumption on 𝐿, it follows that 𝑆1∩𝑆2∩𝑆3 is the
union of 𝐿 and Γ = 𝐷∩𝐸. So we can reduce our computation of the degree of the 0-dimensional
part of the intersection to the computation of deg( [𝐷] · [𝐸]) in 𝐴(𝑆1). (This idea of splitting off
the excess intersection byworking in the Chow ring of the complete intersection 𝑆1 is developed
in Vogel’s approach to excess intersection of hypersurfaces, compare section 13.3.6 in Eisenbud,
Harris: 3264).

Since𝐷 = 𝑆1∩𝑆2\𝐿, we have [𝐷] = deg(𝑆2) [𝐻]−[𝐿] , where [𝐻] is the class of a hyperplane
section of 𝑆1 so that [𝐷] = 𝑠2 [𝐻] − [𝐿] and symmetrically [𝐸] = 𝑠3 [𝐻] − [𝐿] in 𝐴1(𝑆1). So we
get

[𝐷] · [𝐸] = (𝑠2 [𝐻] − [𝐿]) · (𝑠3 [𝐻] − [𝐿]) = 𝑠2𝑠3 [𝐻]2 − (𝑠2 + 𝑠3) [𝐻] · [𝐿] + [𝐿]2.

Since 𝑆1 has degree 𝑠1, the product [𝐻]2 has degree 𝑠1. The intersection [𝐻] · [𝐿] has degree 1,
because [𝐻] is the class of a hyperplane in ℙ3 and [𝐿] the class of a line. So the main point is to
compute the degree of [𝐿]2. It can be shown that deg( [𝐿]2) = deg(𝑐1(N𝐿/𝑆1)), which is related
to the canonical divisor of 𝐿 and hence can be computed with the adjunction formula. This
formula states that the canonical divisor of a divisor𝐶 ⊂ 𝑆 inside a variety 𝑆 is 𝐾𝐶 = (𝐾𝑆 +𝐶) |𝐶 ,
which is the sum of the canonical divisor 𝐾𝑆 of 𝑆 with the divisor class of 𝐶 restricted back to
𝐶. In our case, it determines the canonical divisor of the hypersurface 𝑆1 ⊂ ℙ3 to be 𝐾𝑆1 =

O𝑆1 (𝑠1 − 4). For 𝐿 ⊂ 𝑆1, it says
𝐾𝐿 = [𝐿] |𝐿 + [𝐾𝑆1] |𝐿.

By assumption, 𝐿 is a line so that the canonical divisor of 𝐿 has degree −2. The divisor [𝐾𝑆1] |𝐿
on 𝐿 has degree deg( [𝐾𝑆1] · [𝐿]) = 𝑠1 − 4. Since deg(𝐾𝐿) = deg( [𝐿] · [𝐾𝐿]) by the adjunction
formula 2𝑔 − 2 = deg( [𝐶] · ( [𝐶 + 𝐾])) for a nonsingular curve 𝐶 inside a smooth, it follows
that −2 = deg( [𝐿]2) + 𝑠1 − 4, which determines deg( [𝐿]2) to be 2 − 𝑠1.

To summarize, this computation shows that the degree deg(Γ) of the 0-dimensional inter-
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section of the surfaces 𝑆1 is

deg(Γ) = 𝑠1𝑠2𝑠3 − (𝑠2 + 𝑠3) + 2 − 𝑠1 = 𝑠1𝑠2𝑠3 − (𝑠1 + 𝑠2 + 𝑠3 − 2)

The excess intersection along the line 𝐿 accounts for 𝑠1 + 𝑠2 + 𝑠3 − 2 intersection points (which
recovers the special case that 𝑠2 = 𝑠3 = 𝑠1 − 1 that we considered for projective duality in the
introduction).

Essentially the same computation can be applied if 𝑆1 ∩ 𝑆2 ∩ 𝑆3 have an excess intersection
along a smooth curve 𝐶 of degree 𝑑 and genus 𝑔 (instead of the line 𝐿 of degree 1 and genus 0).
In this case, the degree of [𝐻] · [𝐶] is 𝑑 and the canonical divisor has degree 2𝑔 − 2, which by
adjunction gives deg( [𝐶]2) = 2𝑔 − 2 − 𝑑(𝑠1 − 4). The summary then becomes

deg(Γ) = 𝑠1𝑠2𝑠3 − (𝑠2 + 𝑠3)𝑑 + 2𝑔 − 2 − 𝑑(𝑠1 − 4) = 𝑠1𝑠2𝑠3 − (𝑠1 + 𝑠2 + 𝑠3)𝑑 + 4𝑑 + 2𝑔 − 2.

The curve in the intersection accounts in this sense for quite a lot of points, namely the difference
𝑑(𝑠1 + 𝑠2 + 𝑠3) − 4𝑑 − 2𝑔 + 2 from the Bézout bound 𝑠1𝑠2𝑠3.

Our next goal is to check this number with the help of the excess intersection formula.
In this case, we apply a triple intersection version in 𝑋 = ℙ3 out of the box which is

[𝑆1] · [𝑆2] · [𝑆3] =
∑︁
𝐶

( 𝜄𝐶)∗(𝛾𝐶),

where the sum is taken over all connected components 𝐶 ⊂ 𝑆1 ∩ 𝑆2 ∩ 𝑆3 and 𝛾𝐶 is the 0-
dimensional part of the product 𝑠(𝐶,ℙ3) ·∏3

𝑖=1 𝑐(N𝑆𝑖/ℙ3 |𝐶). We compute the excess intersection
along a smooth curve 𝐷 ⊂ ℙ3 of degree 𝑑 and genus 𝑔. Our task is to check

deg(( 𝜄𝐷)∗(𝛾𝐷)) = 𝑑(𝑠1 + 𝑠2 + 𝑠3) − 4𝑑 − 2𝑔 + 2.

Since we assumed 𝐷 to be smooth, it is locally a complete intersection and we have

𝑠(𝐷,ℙ3) = 1
𝑐(N𝐶/ℙ3) .

We can compute this class by the exact sequence

0→ N𝐷/𝑆1 → N𝐷/ℙ3 → N𝑆1/ℙ3 |𝐷 → 0

of relative normal bundles on 𝐷 using Whitney’s formula, which implies

𝑐(N𝐷/ℙ3) = 𝑐(N𝐷/𝑆1) · 𝑐(N𝑆1/ℙ3 |𝐷).

Above, we computed deg(𝑐1(N𝐷/𝑆1)) = 2𝑔−2−𝑑(𝑠1−4) using the adjunction formula. The first
Chern class ofN𝑆1/ℙ3 has degree 𝑠1 and so its restriction to the curve 𝐷 of degree 𝑑 has degree
𝑑 · 𝑠1. In total, we get deg(𝑐1(N𝐷/ℙ3)) = deg(𝑐1(N𝐷/𝑆1)) + deg(𝑐1(N𝑆1/ℙ3 |𝐷)), which is

deg(𝑐1(N𝐷/ℙ3)) = 2𝑔 − 2 − 𝑑(𝑠1 − 4) + 𝑑𝑠1 = 4𝑑 + 2𝑔 − 2.

This leaves the three terms in the numerator. The degree of the first Chern class ofN𝑆𝑖/ℙ3 |𝐷 is
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𝑑𝑠𝑖 by the same argument as above. So the degree of the 0-dimensional part of

𝑠(𝐶,ℙ3) ·
3∏
𝑖=1

𝑐(N𝑆𝑖/ℙ3 |𝐶)

is 𝑑(𝑠1 + 𝑠2 + 𝑠3) − 4𝑑 − 2𝑔 + 2, as claimed.

7.4.3 Five Conics: 3264

As before, let 𝐷1, 𝐷2, . . . , 𝐷5 be general conics in ℙ2 and let 𝑍𝑖 be the (closure of the) set of all
(smooth) conics 𝐶 that are tangent to 𝐷𝑖. The divisor 𝑍𝑖 ⊂ ℙ5 in the space of equations of
conics up to scaling is a hypersurface of degree 6. The (scheme theoretic) intersection of the five
divisors 𝑍𝑖 is

5⋂
𝑖=1

𝑍𝑖 = 𝑇 ∪ Γ,

where Γ is a reduced, 0-dimensional scheme (a set of points – namely 3264, as we know) and the
variety underlying the scheme 𝑇 is the Veronese surface 𝑆 = 𝜈2(ℙ2) of conics of rank 1. Here,
we have 𝑇 ≠ 𝑆, because the scheme 𝑇 carries a non-reduced structure, which we won’t get into
in much detail. So we sketch how to compute |Γ| = 3264 by the excess intersection formula,
partially relying on computations that we made in Section 6.1.2.

For the connected component 𝑆 ⊂ ⋂
𝑍𝑖, we use the fivefold intersection formula

deg

{
𝑠(𝑇,ℙ5) ·

5∏
𝑖=1

𝑐(N𝑍𝑖/ℙ5 |𝑆)
}
0

to compute the contribution of th excess intersection scheme 𝑇 . So let’s go.
(a) Chern class 𝑐(N𝑍𝑖/ℙ5 |𝑆): The Veronese embedding 𝜈2 : ℙ2 → ℙ5 is an embedding, so it is an
isomorphism 𝑆 � ℙ2. Write 𝜁 for the class of a line in ℙ2 in 𝐴(𝑆) and 𝜂 for the hyperplane
class in 𝐴(ℙ5). Since pulling back a hyperplane in ℙ5 to ℙ2 via 𝜈2 gives a conic in ℙ2, we have
𝜈∗2 (𝜂) = 2𝜁 . We already know that 𝑍𝑖 ⊂ ℙ5 is a hypersurface of degree 6, which implies (by
adjunction) thatN𝑍𝑖/ℙ5 = O𝑍𝑖 (6) and pulling this line bundle back to 𝑆 then gives

𝑐(N𝑍𝑖/ℙ5 |𝑆) = 1 + 𝜈∗2 (6𝜂) = 1 + 12𝜁 .

Our next goal is to compute 𝑠(𝑇,ℙ5) which we will reduce to the computation 𝑠(N𝑆/ℙ5).
This is possible in this case because the multiplicity structure of 𝑇 turns out to be nice.
(b) Multiplicity of 𝑍𝑖 along 𝑆: The goal is to determine how singular 𝑍𝑖 is along 𝑆, which can
be done by Riemann-Hurwitz again by intersecting 𝑍𝑖 with a general pencil 𝑃 of conics among
those that contains a double line 2𝐿 ∈ 𝑆. We want to compute the ramification points of a
quadratic map 𝜑𝑃 : ℙ1 → 𝐷𝑖 → ℙ1, (𝑠 : 𝑡) ↦→ (𝑞0(𝑑𝑖(𝑠, 𝑡)) : 𝑞1(𝑑𝑖(𝑠, 𝑡))) where 𝑞0, 𝑞1 is a basis
of 𝑃 and 𝑑𝑖 : ℙ1 → ℙ2 a parametrization of the rational curve 𝐷𝑖. In total, this is a (generically)
finite map of degree 4 and has 6 ramification points by the Riemann-Hurwitz formula (compare
Section 1.4). The double line 2𝐿 in 𝑃 counts for two intersection points in the Riemann-Hurwitz
formula because it is a higher order ramification point. This shows that 𝑍𝑖 has multiplicity 2
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along 𝑆 ⊂ 𝑍𝑖.

(c) Chern class ofN𝑆/ℙ5 : We use the exact sequence

0→ T𝑆 → Tℙ5 |𝑆 → N𝑆/ℙ5 → 0

of vector bundles on 𝑆 defining the relative normal bundle and Whitney’s formula. We know
the tangent bundle of 𝑆 because 𝑆 � ℙ2, which implies that 𝑐(T𝑆) = (1+ 𝜁 )3 ∈ 𝐴(𝑆). The Chern
class of Tℙ5 is (1 + 𝜂)6 so that

𝑐(Tℙ5 |𝑆) = (1 + 2𝜁 )6 = 1 + 2 · 6 · 𝜁 + 4 · 15 · 𝜁 2.

Applying Whitney’s formula gives the Chern class ofN𝑆/ℙ5 as

𝑐(N𝑆/ℙ5) = 1 + 12𝜁 + 60𝜁 2
1 + 3𝜁 + 3𝜁 2 = 1 + 9𝜁 + 30𝜁 2.

We get the Segre class 𝑠(N𝑆/ℙ5) as the reciprocal of the Chern class in 𝐴(𝑆), which gives

𝑠(N𝑆/ℙ5) = 1 − 9𝜁 + 51𝜁 2.

Since 𝑆 is smooth in ℙ5, it is locally a complete intersection, which implies that

𝑠(𝑆,ℙ5) = 𝑠(N𝑆/ℙ5) = 1 − 9𝜁 + 51𝜁 2.

(d) Segre class 𝑠(𝑇,ℙ5): It can be shown that𝑇 = V+(𝐼2𝑆/ℙ5). Believing this and going back to the
definition of the Segre class 𝑠(𝑇,ℙ5) as

𝜋∗

(
5∑︁
𝑘=3

𝑐1(O𝐸 (1)𝑘)
)

with 𝐸 = Proj(S) and S =
⊕

𝑛∈ℕ I𝑛𝑇/ℙ5/I𝑛+1𝑇/ℙ5 (because the dimension of 𝐸 is 5), we get

𝑠𝑘(𝑇,ℙ5) = 2𝑘+3 · 𝑠𝑘(𝑆,ℙ5).

This formula gives us the last ingredient for our computation as

𝑠(𝑇,ℙ5) = 8 − 16 · 9 · 𝜁 + 32 · 51 · 𝜁 2 = 8 − 144𝜁 + 1632𝜁 2.

(e) Putting it all together: The contribution of 𝑇 to the intersection
⋂5
𝑖=1 𝑍𝑖 is the degree of the

0-dimensional part of

𝑠(𝑇,ℙ5) ·
5∏
𝑖=1

𝑐(N𝑍𝑖/ℙ5 |𝑆) ∈ 𝐴(𝑆)
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which we can now compute as the coefficient of 𝜁 2 in

coeff
(
(8 − 144𝜁 + 1632𝜁 2) (1 + 12𝜁 )5, 𝜁 2

)
=

coeff
(
(8 − 144𝜁 + 1632𝜁 2) (1 + 12 · 5𝜁 + 122 · 10𝜁 2)𝜁 2

)
=

8 · 1440 − 144 · 60 + 1632 = 4512.

That gives the cardinality of the 0-dimensional part Γ as before as 65−4512 = 3264. Comparing
this result with the formula

3264 = 25 · (1 + 10 + 40 + 40 + 10 + 1)

that we found in Section 6.1.2 using the space of complete conics, they appear very different.
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