| 10:30-11:15 Uhr | Dietmar Gallistl (U Jena) | Minimal residual discretization of a class of fully nonlinear elliptic PDE |
| Pause | ||
| 11:45-12:30 Uhr | Mira Schedensack (U Leipzig) | Discrete Helmholtz Decompositions |
| 13:30-14:20 Uhr | Mira Schedensack (U Leipzig) | Two Discretisations of the Time-Dependent Bingham Problem |
| 14:20-14:45 Uhr | Denise Tumiotto (U Halle) | Half-Explicit Runge-Kutta Lie Group Integrators for Flexible Multibody System |
| 14:45-15:10 Uhr | Katarina Tutic (U Halle) | Numerical analysis of the bouncing ball on the elastic beam |
| 15:10-15:35 Uhr | Johannes Storn (U Leipzig) | Exact Integration for Rational Finite Elements |
| 09:45-10:30 Uhr | Lukas Gehring (U Jena) | A conically weighted Aleksandrov maximum principle |
| Pause | ||
| 11:15-12:00 Uhr | Johannes Storn (U Leipzig) | A quasi-optimal space-time finite element method for parabolic problems |
| 10:15-11:00 Uhr | Christos Pervolianakis (U Jena) | Error analysis of a positive preserving scheme for a Chemotaxis system |
| Pause | ||
| 11:30-12:15 Uhr | Axel Kröner (U Halle) | Boundary control of fluid-structure interactions of linear elasticity with Navier-Stokes equations with mixed boundary conditions in a channel |
| 14:15-15:00 Uhr | Martin Redmann (U Halle) | Solving stochastic and rough differential equations efficiently |
| Pause | ||
| 15:30-16:15 Uhr | N. Tien Tran (U Jena) | A regularized scheme for the Monge-Ampere equation |
| 10:15-11:00 Uhr | Mira Schedensack (U Leipzig) | Robust discretization of the Reissner-Mindlin plate with Taylor-Hood FEM |
| Pause | ||
| 11:15-12:00 Uhr | Roland Maier (U Jena) | Neural network approximation of coarse-scale surrogates in numerical homogenization |
| 09:30-10:00 Uhr | Felix Krumbiegel (U Jena) | High-order multiscale methods for the heterogeneous wave equation |
| 10:00-10:30 Uhr | Shudan Tian (U Jena) | Nonconforming finite elements satisfying a strong discrete Miranda-Talenti inequality |
| 10:30-10:45 Uhr | Pause | |
| 10:45-11:45 Uhr | Jonas Ketteler (U Leipzig) | Mixed FEM for Biharmonic Equation and Gradient Elasticity |