11:00-11:45 | Johannes Storn (U Leipzig) | Exact integration for rational finite elements including singular Zienkiewicz and Guzman-Neilan |
11:45-13:15 | Carsten Carstensen (HU Berlin) | Adaptive Least-Squares Methods |
13:15-13:45 | lunch break | |
13:45-15:15 | Mira Schedensack (U Leipzig) | Robust discretizations of the Reissner-Mindlin plate |
15:15-16:00 | Rekha Khot (INRIA Paris) | Conforming VEM for Poissone Forward and Inverse Source Problems with Rough Data |
16:00-16:30 | coffee break | |
16:30-17:15 | Jonas Ketteler (U Leipzig) | Mixed FEM for the fourth order equation |
17:15-18:00 | Benedikt Gräßle (HU Berlin) | A posteriori nonconforming finite element error analysis for fourth-order problems with quadratic semilinearity |
18:00-18:30 | Tim Stiebert (HU Berlin) | Guaranteed lower eigenvalue bounds for the Schrödinger eigenvalue problem |
Thursday, 06. July | (in room A314) | |
15:00-16:30 | Mira Schedensack (U Leipzig) | Discrete Helmholtz decompositions |
16:30-18:00 | Lara Théallier (HU Berlin) | HHO for linear elasticity |
Friday, 07. July | (in room A520) | |
09:00-10:30 | Benedikt Gräßle (HU Berlin) | Stabilization-free a posteriori error analysis for hybrid-high order methods |
10:30-12:00 | Jonas Ketteler (U Leipzig) | Some ideas for the quasi-orthogonality for the Fortin-Soulie FEM |
12:00-13:30 | Carsten Carstensen (HU Berlin) | Lower eigenvalue bounds of the Laplacian |
11:00-12:30 | Ornela Mulita (HU Berlin) | Optimal convergence rates for adaptive lowest-order nonconforming FEM for m-harmonic problems and m=1,2 |
12:30-14:00 | Mira Schedensack (U Leipzig) | A discrete Helmholtz decomposition of piecewise affine functions |
14:00-14:45 | lunch break | |
14:45-16:15 | Ngoc Tien Tran (U Jena) | Convergent adaptive hybrid higher-order schemes for convex minimization |
16:15-16:45 | coffee break | |
16:45-18:15 | Jonas Ketteler (U Leipzig) | Mixed FEM for Biharmonic Equation and Gradient Elasticity |
18:15-19:45 | Philipp Bringmann (HU Berlin) | Discontinuous least-squares finite element method - A priori error analysis |