Exercise Sheet 1

Discussion on 27.10.23

Exercise 1

Prove theorem 2.3 from the lecture:

If $f \in \mathcal{C}^m([0,T] \times \mathbb{R}^n)$, then $y \in \mathcal{C}^{m+1}([0,T])$. If $m \geq 1$, the solutions of the corresponding initial value problems are unique.

Exercise 2 (Discrete Gronwall-Lemma)

Let $(u_k)_{k=0,...,K}$ be a sequence of non negative, real numbers and $\alpha, \beta \in \mathbb{R}$ with $\beta \geq 0$. Furthermore let

$$u_{\ell} \le \alpha + \tau \sum_{k=0}^{\ell-1} \beta u_k$$
 for all $\ell = 0, \dots, K$.

Show that for all $\ell = 0, \dots, K$

$$u_{\ell} < \alpha e^{\ell \tau \beta}$$

holds. (Hint: Use $(1 + \tau \beta) \le e^{\tau \beta}$ inductively.)

Exercise 3 (Gerschgorin circle theorem)

Let $A \in \mathbb{R}^{n \times n}$ and let $\lambda \in \mathbb{C}$ be an eigenvalue of A. For $i \in \{1, ..., n\}$ define the i-th Gerschgorin disc

$$D_i := \left\{ z \in \mathbb{C} : |z - a_{ii}| \le \sum_{\substack{j=1,\dots,n\\j \ne i}} |a_{ij}| \right\}.$$

Show that

$$\lambda \in \bigcup_{i=1}^{n} D_i$$
.

Exercise 4

Let $D_1 = 1\frac{N}{m}$, $D_2 = 1.0201\frac{N}{m}$ be the spring constants of two spring pendulums with the same mass m = 1kg. The two pendulums are described by the following ODEs and their initial values

$$y_i''(t) = -\frac{D_i}{m} y_i(t)$$
 $i \in \{1, 2\} \text{ and } t \in [0, T]$
 $y_i(0) = 1$ $i \in \{1, 2\}$
 $y_i'(0) = 0$ $i \in \{1, 2\}$

Compute the unique solutions for y_1 and y_2 and their difference at time $T=100\pi s\approx 314s$.