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Exercise Sheet 1

Discussion on 24.10.22

Exercise 1 (Errors of difference quotients)
Let J€N, Ax:=1/] and x; := jAx for j =0,...,J. Furthermore, let u € C*([0,1]). Show that
forall j €1{0,..., ]} it holds
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Exercise 2 (Error estimate for implicit Euler scheme)

Additionally to the notation of Exercise 1.1, let T >0, K € N, At := T/K and ¢, := kAt for
k=0,...,K. Prove that for u € C*([0, T] x [0,1]) and k =0,..., K, the (U]’.C)j/C from the implicit
Euler scheme satisfy

sup Iu(tk,x])—Uk|<—(At+(Ax) ) (103 wll co, 71x 10,11 + 105 Ull ct0,T1 % 10,11 ) -
J=0,....J

Exercise 3 (Integration by parts)
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b) Let Q cR",n =1,2,3 be a bounded domaln with piecewise smooth boundary 9Q2, with
outward normal v along Q. For n =1, letdiv=V. For v € C}(Q), g € C}(Q;R™), show

that
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Hint: You may assume that Gauss’s divergence theorem holds for bounded domains with
piecewise smooth boundary.

Exercise 4 (Discrete inverse inequality)
a) Let Ax>0and (V})j=,.j€ R/+1 with Vy = V; = 0. Prove that
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(b) Let p € Pi([a, b]) be a polynomial of degree k on the interval [a, b] with a,b € R and
b > a. Prove that for a constant C > 0 it holds
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