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Abstract

This article proves that the on-off renewal process with Weibull sojourn times satisfies
the large deviation principle on a non-linear scale. Unusually, its rate function is not
convex. Apart from on a compact set, the rate function is infinite, which enables us to
construct natural processes that satisfy the LDP with non-trivial rate functions on more
than one time scale.

1 Introduction

Let v(·) : R → R be a non-decreasing function that diverges to infinity. A real-valued process
{Zt, t ∈ T} (where T is N or R) satisfies the Large Deviation Principle (LDP) on the scale
v(·) with rate function I : R → [0,∞] if I is lower semi-continuous and for all Borel sets
B ⊂ R

− inf
x∈B◦

I(x) ≤ lim inf
t→∞

1

v(t)
log P(Zt ∈ B) ≤ lim sup

t→∞

1

v(t)
log P(Zt ∈ B) ≤ − inf

x∈B̄
I(x),

where B◦ denotes the interior of B and B̄ denotes the closure of B. A rate function is good

if its level sets {x : I(x) ≤ β} are compact for all β < ∞.

The averages {n−1Sn = n−1
∑n

i=1 Yi} of many real-valued processes are known to satisfy the
LDP, including {Yi} being i.i.d. random variables or satisfying mixing conditions that are
broad enough to encompass Doeblin recurrent Markov chains (e.g. Bryc and Dembo [1]).
If the tail of the distribution of Y1 decays no slower than an exponential, then the scale for
the LDP is the number of summands, n, and, typically, the rate function is convex. If the
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summands have a semi-exponential (Weibull) tail P(Y1 > y) = exp(−yα), where α ∈ (0, 1),
then they satisfy the LDP on the scale nα with the concave rate function given in Theorem
1 (e.g. Nagaev [4]) that is finite for all arguments greater than or equal to the mean∗. Rate
functions that are not convex are interesting as one of the main tools in the theory of large
deviations, the duality between the rate function and its Legendre-Fenchel transform, the
scaled cumulant generating function, does not hold.

Here we prove the LDP for the on-off renewal process with Weibull sojourn times on the
scale tα. Its rate function is not convex and, moreover, is only finite on a compact set.
This provides a new example of a natural process whose properties cannot be deduced from
Gartner-Ellis style theorems. Moreover, as its rate function is infinite off a compact set we
can readily construct simple processes that have non-trivial rate functions on more than one
scale.

2 Main result

Let {ξi} denote i.i.d. on times and {τi} denote i.i.d. off times, where an on time follows an off
time which follows an on time. Assume that for x > 0, P(ξ1 > x) = P(τ1 > x) = exp(−xα),
where α ∈ (0, 1), and denote µ := E(ξ1) = α

∫

∞

0 xα−1 exp(−xα)dx = Γ(1 + α−1). For each
n ∈ N, t ∈ R+ define

Sτ
n :=

n
∑

i=1

τi, Sξ
n :=

n
∑

i=1

ξi, Tn := Sτ
n + Sξ

n, Nt := sup{n : Tn ≤ t}

The following theorem is a well known result for the partial sums of semi-exponential dis-
tributed random variables (see, for example, Nagaev [4] or Gantert [3]).

Theorem 1 The process
{

Sξ
n/n

}

satisfies the LDP on the scale nα with rate function

I(x) =

{

(x − µ)α if x ≥ µ
+∞ if x < µ.

(1)

Here we are interested in an on/off process whose sojourn times are independent and iden-
tically distributed with semi-exponential distribution. Define the on time set A := {s : s ∈
[Tn + τn+1, Tn+1) for some n}. The process of interest is the cumulative on time prior to time
t:

Xt :=

∫ t

0
1A(s) ds, 1A(s) =

{

1 if s ∈ A
0 if s /∈ A.

The following theorem is the main result.

∗Fractional Brownian motion is an example of a process that satisfies the LDP on a non-linear scale, but
with a rate function that is convex and finite everywhere.
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Figure 1: Rate function for α = 1/2.

Theorem 2 (LDP for Weibull sojourn source) The process {Xt/t} satisfies the LDP

in R on the scale tα with good rate function

J(x) =







(1 − 2x)α if x ∈ [0, 1/2]
(2x − 1)α if x ∈ [1/2, 1]
+∞ if x /∈ [0, 1].

(2)

The rate function defined in equation (2) is not convex; for example, Figure 1 plots J(x) vs.
x for α = 1/2. As Gartner-Ellis theorems rely on convexity of the rate-function, Theorem 2
cannot be deduced by that methodology.

Proof: Theorem 2. Let Bε(x) is the open ball of radius ε around x. Our approach to proving
Theorem 2 is to show that the lower deviation function

lim
ε→0

lim inf
t→∞

1

tα
log P

(

Xt

t
∈ Bε(x)

)

and the upper deviation function

lim
ε→0

lim sup
t→∞

1

tα
log P

(

Xt

t
∈ Bε(x)

)

coincide for all x. Once the lower and upper deviation functions are shown to be equal, as
Xt/t takes values in the compact set [0, 1], the LDP follows from, for example, Theorem 4.1.11
of Dembo and Zeitouni [2]. That the upper and lower deviation functions coincide follows
from the following two theorems whose proofs can be found in sections 3 and 4 respectively.
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Theorem 3 For all x ∈ R,

lim
ε→0

lim inf
t→∞

1

tα
log P

(

Xt

t
∈ Bε(x)

)

≥ −J(x). (3)

Theorem 4 For all x ∈ R,

lim
ε→0

lim sup
t→∞

1

tα
log P

(

Xt

t
∈ Bε(x)

)

≤ −J(x). (4)

�

Remark 1, Concave rate functions. Although J is concave (where finite) on either side of its
mean the sum of two independent copies of {Xt} satisfies the LDP with a rate function that
is not concave on either side of its mean.

Remark 2, Non-trivial large deviations on more than one scale. We say that a rate function
I is non-trivial if: (i) it is finite at more than a single point; and (ii) it is not zero everywhere
where it is finite. A rate function that is not non-trivial is called trivial.

As we have constructed a process that satisfies the LDP on a sub-linear scale, tα, with a rate
function that is finite only on a compact interval, we can now construct natural processes
that satisfy the LDP with non-trivial rate functions on more than one scale. This leads to
the emergence of multiple fundamental time scales for the exponential decay of probability
for this process.

We demonstrate this by considering an example constructed by the sum of the Weibull sojourn
process with an independent Bernoulli process. First note that from Theorem 2 it is easy to
show that {Xt/t} also satisfies the LDP on the scale t, but with the trivial good rate function
J1(x) = 0 if x ∈ [0, 1],

J1(x) =

{

0 if x ∈ [0, 1]

+∞ if x /∈ [0, 1].

Next consider a Bernoulli process: let {Zn} be an i.i.d. sequence of random variables taking
the values 0 and 1, with P(Zn = 0) = 1 − p and P(Zn = 1) = p, for some p ∈ (0, 1). With

Yt =
∑[t]

i=1 Zi, it is well known that {Yt/t} satisfies the LDP on the scale t with the non-trivial
good rate function

H1(x) =

{

x log(x/p) + (1 − x) log((1 − x)/(1 − p)) if x ∈ [0, 1]

+∞ if x /∈ [0, 1].

On the scale tα, {Yt/t} satisfies the LDP with the trivial good rate function

H(x) =

{

0 if x = p

+∞ if x 6= p.
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As the rate functions J and H are both good and addition is continuous, by the contraction
principle (e.g. Theorem 4.2.1 of [2]) {(Xt + Yt)/t} satisfies the LDP on the scale tα with the
non-trivial good rate function

K(x) = inf
y
{J(y) + H(x − y)} = J(x − p).

However, J1 and H1 are also both good rate functions, so that, by the contraction principle,
{(Xt + Yt)/t} also satisfies the LDP on the scale t with the non-trivial good rate function

K1(x) = inf
y
{J1(y) + H1(x − y)} =















H1(x) if x ∈ [0, p]
0 if x ∈ [p, 1 + p]
H1(x − 1) if x ∈ [1 + p, 2]
+∞ otherwise.

Figure 2 gives a example of both rate functions with p = α = 1/2. Outside [p, 1 + p] large
deviations occur on the scale t, but inside [p, 1 + p] they occur non-trivially on the scale tα.
Thus for the sum of the Weibull sojourn process and an independent Bernoulli process, we
have the following large deviation approximations for large t: if x ∈ [p, 1 + p]

P(Xt + Yt ≈ xt) ≈ exp(−tαK(x))

and if x ∈ [0, p) ∪ [1 + p, 2]

P(Xt + Yt ≈ xt) ≈ exp(−tK1(x)).

That is {(Xt + Yt)/t} satisfies two non-trivial LDPs, with probability decaying on a faster
time scale outside [p, 1 + p].

3 Proof of Theorem 3

Recall the statement of theorem 3: for all x ∈ R,

lim
ε→0

lim inf
t→∞

1

tα
log P

(

Xt

t
∈ Bε(x)

)

≥ −J(x). (5)

Proof: There are three cases to consider: x = 1/2, x ∈ [0, 1/2) and x ∈ (1/2, 1]. If x = 1/2
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Figure 2: Rate functions for {(Xt + Yt)/t} with α = p = 1/2. K(x) is on the scale tα and is
infinite outside [0.5,1.5]. K1(x) is on the scale t, is infinite outside [0, 2], zero in [0.5, 1.5] and
infinite outside [0, 2].

let ε′ = ε and if x 6= 1/2 let ε′ = min(ε, |x − 1/2|). For any n we have:

{

Xt

t
∈ Bε(x)

}

⊃

{

Xt

t
∈ Bε′(x)

}

⊃

{

Nt = n,
Xt

t
∈ Bε′(x)

}

⊃

{

Tn < t, Tn + τn+1 > t,
Xt

t
∈ Bε′(x)

}

⊃

{

x −
ε′

2
<

Sξ
n

t
< x +

ε′

2
, 1 − x − ε′ <

Sτ
n

t
≤ 1 − x −

ε′

2
, τn+1 > 2ε′t + µ

}

.

(6)

The final line is an inclusion as members of the set imply that Tn = Sξ
n+Sτ

n < t, Tn+τn+1 > t
and Xt/t = Sξ

n/t ∈ Bε′(x). As the three conditions in (6) correspond to independent events,
we have that for any non-decreasing sequence {nt}

lim inf
t→∞

1

tα
log P

(

Xt

t
∈ Bε(x)

)

≥ lim inf
t→∞

1

tα
log P

(

Sξ
nt

t
∈ B ε′

2

(x)

)

+ lim inf
t→∞

1

tα
log P

(

Sτ
nt

t
∈ B ε′

4

(

1 − x −
3ε′

4

))

+ lim inf
t→∞

1

tα
log P (τnt > 2ε′t + µ). (7)
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For x = 1/2 we choose n = nt = bt/µc, for x ∈ [0, 1/2) we choose n = nt = bt(x − ε′)/µc
and for x ∈ (1/2, 1] we choose n = nt = bt(1 − x − ε′)/µc. As near-identical arguments apply
for all three cases, we shall only write out the proof for x ∈ (1/2, 1]. We apply the result of
Theorem 1 to lower bound the first term on the right hand side in (7), which gives:

lim inf
t→∞

1

tα
log P

(

Sξ
nt

t
∈ B ε′

2

(x)

)

=
(1 − x − ε′)α

µα
lim inf
n→∞

1

nα
log P

(

Sξ
n

n
∈ B ε′µ

2(1−x−ε′)

(

µx

1 − x − ε′

)

)

≥ −

(

2x − 1 +
1

2
ε′
)α

.

For the second term in (6) we again apply Theorem 1:

lim inf
t→∞

1

tα
log P

(

Sτ
nt

t
∈ B ε′

4

(

1 − x −
3ε′

4

))

=
(1 − x − ε′)α

µα
lim inf
n→∞

1

nα
log P

(

Sτ
n

n
∈ B µε

4(1−x−ε′)

(

µ(1 − x − 3ε/4)

1 − x − ε′

))

≥ −
(1 − x − ε)α

µα
inf
{

I(a) : a ∈
(

µ, µ(1 − x − ε′/2)/(1 − x − ε′)
)}

= 0,

as I(µ) = 0. Finally, for the third term, from the Weibull distribution of τ , lim inf t→∞ t−α log P(τ >
2ε′t + µ) = −(2ε′)α. Hence, from the bound in equation (7) we have

lim inf
t→∞

1

tα
log P

(

Xt

t
∈ Bε(x)

)

≥ −

(

2x − 1 +
1

2
ε′
)α

− (2ε′)α.

The result follows taking ε (and thus ε′) to zero.

�

4 Proof of Theorem 4

Recall the statement of Theorem 4: For all x ∈ R,

lim
ε→0

lim sup
t→∞

1

tα
log P

(

Xt

t
∈ Bε(x)

)

≤ −J(x).

Proof: In order to prove this theorem we need the following proposition, which will be
deduced from two lemmas that appear later in this section.

Proposition 5 With J defined in equation (2), both {Sξ
Nt

/t} and {Sτ
Nt

/t} satisfy the LDP

with good rate function J(·).



8

Once Proposition 5 is established, the upper bound on the upper deviation function for {Xt/t}
can be deduced from the following argument. First note that as Xt is non-decreasing,

Sξ
Nt

≤ Xt ≤ t − Sτ
Nt

. (8)

so that we have

P

(

Xt

t
∈ Bε(x)

)

≤ P

(

Xt

t
> x − ε

)

≤ P

(

Sτ
Nt

t
< 1 − x + ε

)

and P

(

Xt

t
∈ Bε(x)

)

≤ P

(

Xt

t
< x + ε

)

≤ P

(

Sξ
Nt

t
< x + ε

)

.

Using these inequalities we get that

lim
ε→0

lim sup
t→∞

1

tα
log P

(

Xt

t
∈ Bε(x)

)

≤ min

[

lim sup
t→∞

1

tα
log P

(

Sξ
Nt

t
< x + ε

)

,

lim sup
t→∞

1

tα
log P

(

Sτ
Nt

t
< 1 − x + ε

)]

.

Employing the LDP upper bounds for {Sξ
Nt

/t} and {Sτ
Nt

/t} from Proposition 5, we see in the
limit ε → 0 that if x < 1/2 the first term dominates and we get an upper bound of −J(x).
If x > 1/2, the second term dominates and we get an upper bound of −J(1 − x) = −J(x),
which proves the result.

�

All that remains to do is to prove Proposition 5. As {Sξ
Nt
} and {Sτ

Nt
} are equal in distribution,

we shall prove the result only for the former. To do this, we employ the same approach as
described for Theorem 2. We will show that the lower and upper deviations functions coincide:

lim
ε→0

lim inf
t→∞

1

tα
log P

(

Sξ
Nt

t
∈ Bε(x)

)

= lim
ε→0

lim sup
t→∞

1

tα
log P

(

Sξ
Nt

t
∈ Bε(x)

)

.

By replacing Xt with Sξ
Nt

in the set inclusion (6), it can be seen that the arguments in the
proof of Theorem 5 also show that

−J(x) ≤ lim
ε→0

lim inf
t→∞

1

tα
log P

(

Sξ
Nt

t
∈ Bε(x)

)

Thus it suffices to prove that

lim
ε→0

lim sup
t→∞

1

tα
log P

(

Sξ
Nt

t
∈ Bε(x)

)

≤ −J(x).
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Note that when x = 1/2, the upper bound is obtained trivially by using 1 in place of the
probability. We deduce the upper bound for x 6= 1/2 from the following two lemmas and by
appealing to the principle of the largest term (e.g. Lemma 1.2.15 of [2]).

Lemma 6 (large n) For x ∈ (0, 1), define x̄ := max(x, 1 − x). If x ∈ (0, 1), for any

0 < ε′ < µ = E(τ1) we have

lim
ε→0

lim sup
t→∞

1

tα
log P

(

Sξ
Nt

t
∈ Bε(x),

Nt

t
>

1 − x̄

µ − ε′

)

= −∞.

If x = 0 or x = 1, then for any 0 < ε′ < µ we have

lim
ε→0

lim sup
t→∞

1

tα
log P

(

Sξ
Nt

t
∈ Bε(x),

Nt

t
>

ε

µ − ε′

)

= −∞.

Proof: There are four cases to consider: x = 0, x = 1, x ∈ (0, 1/2) and x ∈ (1/2, 1). We

start with x = 0. As Sξ
n is increasing in n we have that

{

Sξ
Nt

t
∈ Bε(0),

Nt

t
>

ε

µ − ε′

}

=

{

Sξ
Nt

t
< ε,

Nt

t
>

ε

µ − ε′

}

⊂

{

Sξ
l

tε

µ−ε′

m < εt

}

.

Applying the large deviations upper bound from Theorem 1 for this final sequence of sets,
with I being defined in equation (1), we get

lim sup
t→∞

1

tα
log P

(

Sξ
l

tε

µ−ε′

m < εt

)

=
εα

(µ − ε′)α
lim sup

n→∞

1

nα
log P

(

Sξ
n

n
< µ − ε′

)

≤ −
εα

(µ − ε′)α
inf
{

I(a) : a < µ − ε′
}

= −∞

as I(a) = ∞ for all a < µ.

If x ∈ (0, 1/2), then x̄ = 1 − x and we have apply a similar argument as for the x = 0 case,
but starting with the following set inclusions
{

Sξ
Nt

t
∈ Bε(x),

Nt

t
>

x

µ − ε′

}

⊂

{

Sξ
Nt

t
< x + ε,

Nt

t
>

x

µ − ε′

}

⊂

{

Sξ
l

tx

µ−ε′

m < (x + ε)t

}

.

Applying the large deviations upper bound from theorem 1 for this final sequence of sets, we
have

lim sup
t→∞

1

tα
log P

(

Sξ
l

tx

µ−ε′

m < (x + ε)t

)

≤ −
xα

(µ − ε′)α
inf
{

I(a) : a < (µ − ε′)
(

1 +
ε

x

)}

= −
xα

(µ − ε′)α
I
(

(µ − ε′)
(

1 +
ε

x

))

.
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As ε → 0, the I argument is strictly less than µ and I(a) = ∞ for all a < µ. Thus for all
0 < ε′ < µ, in the limit as ε tends to zero, the right hand side is −∞.

When x ∈ (1/2, 1] we use the fact that TNt = Sξ
Nt

+ Sτ
Nt

≤ t to give us the set inequality

{

Sξ
Nt

t
> x − ε

}

⊂

{

Sτ
Nt

t
< 1 − x + ε

}

.

If x ∈ (1/2, 1), then x̄ = x and we have the set inclusions

{

Sξ
Nt

t
∈ Bε(x),

Nt

t
>

1 − x

µ − ε′

}

⊂

{

Sξ
Nt

t
> x − ε,

Nt

t
>

1 − x

µ − ε′

}

⊂

{

Sτ
Nt

t
< (1 − x + ε),

Nt

t
>

1 − x

µ − ε′

}

⊂

{

Sτ
l

t(1−x)

µ−ε′

m < (1 − x + ε)t

}

.

Again we apply the LDP upper bound from theorem 1 for this final sequence of sets and take
the limit ε → 0, which gives a rate of −∞. When x = 1, we have

{

Sξ
Nt

t
∈ Bε(1),

Nt

t
>

1 − x

µ − ε′

}

⊂

{

Sξ
Nt

t
> 1 − ε,

Nt

t
>

1 − x

µ − ε′

}

⊂

{

Sτ
Nt

t
< ε,

Nt

t
>

ε

µ − ε′

}

⊂

{

Sτ
l

tε

µ−ε′

m < εt

}

.

and the result follows as in the x = 0 case.

�

Lemma 7 (small n) For x ∈ (0, 1) define x̄ := max(x, 1 − x). For any x ∈ (0, 1) we have

that

lim
ε→0

lim
ε′→0

lim sup
t→∞

1

tα
log P

(

Sξ
Nt

t
∈ Bε(x),

Nt

t
≤

1 − x̄

µ − ε′

)

≤ −J(x).

If x = 0 or x = 1, we have

lim
ε→0

lim
ε′→0

lim sup
t→∞

1

tα
log P

(

Sξ
Nt

t
∈ Bε(x),

Nt

t
≤

ε

µ − ε′

)

≤ −J(x).
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Proof: Throughout let 0 < ε′ < µ. Consider x = 1. As Sξ
n is increasing in n,

{

Sξ
Nt

t
∈ Bε(1),

Nt

t
≤

ε

µ − ε′

}

=

{

Sξ
Nt

t
> 1 − ε,

Nt

t
≤

ε

µ − ε′

}

⊂

{

Sξ
l

εt

µ−ε′

m > (1 − ε)t

}

.

Using the large deviations upper bound from Theorem 1 on this final sequence of sets, we get

lim sup
t→∞

1

tα
log P

(

Sξ
l

εt

µ−ε′

m > (1 − ε)t

)

=
εα

(µ − ε′)α
lim sup

n→∞

1

nα
log P

(

Sξ
n

n
> (1 − ε)

µ − ε′

ε

)

≤ −
εα

(µ − ε′)α
I

(

(1 − ε)(µ − ε′)

ε

)

= −

(

1 − ε

(

1 +
µ

µ − ε′

))α

and the result follows taking ε′ → 0 and then ε → 0.

Next consider x ∈ (1/2, 1), so that x̄ = x. With nt := dt(1 − x̄)/(µ − ε′)e, we have
{

Sξ
Nt

t
∈ Bε(x),

Nt

t
≤

1 − x̄

µ − ε′

}

⊂

{

Sξ
Nt

t
> x − ε,

Nt

t
≤

1 − x̄

µ − ε′

}

⊂

{

Sξ
nt

t
> x − ε

}

.

Now using the LDP upper bound from Theorem 1 we have

lim sup
t→∞

1

tα
log P

(

Sξ
nt

t
> x − ε

)

=
(1 − x)α

(µ − ε′)α
lim sup

n→∞

1

nα
log P

(

Sξ
n

n
>

(x − ε)(µ − ε′)

1 − x

)

≤ −
(1 − x)α

(µ − ε′)α
inf

{

I(a) : a >
(x − ε)(µ − ε′)

1 − x

}

= −
(1 − x)α

(µ − ε′)α
I

(

(x − ε)(µ − ε′)

1 − x

)

= −

(

x − ε + (x − 1)
µ

µ − ε′

)α

.

Thus the upper bound follows taking the limit ε′ → 0 followed by ε → 0.

The results for x ∈ [0, 1/2) follow analogously using the corresponding constraints on S τ
Nt

:
for x = 0:

{

Sξ
Nt

t
∈ Bε(0),

Nt

t
≤

ε

µ − ε′

}

⊂

{

Sτ
l

εt

µ−ε′

m > (1 − ε)t

}

,

and for x ∈ (0, 1/2):
{

Sξ
Nt

t
∈ Bε(0),

Nt

t
≤

ε

µ − ε′

}

⊂

{

Sτ
nt

t
> x − ε

}

.
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With x ∈ (0, 1), for any 0 < ε′ < µ, by the principle of the largest term (e.g. Lemma 1.2.15
of [2])

lim sup
t→∞

1

tα
log P

(

Sξ
Nt

t
∈ Bε(x)

)

= max

[

lim sup
t→∞

1

tα
log P

(

Sξ
Nt

t
∈ Bε(x),

Nt

t
>

1 − x̄

µ − ε′

)

,

lim sup
t→∞

1

tα
log P

(

Sξ
Nt

t
∈ Bε(x),

Nt

t
≤

1 − x̄

µ − ε′

)]

= lim sup
t→∞

1

tα
log P

(

Sξ
Nt

t
∈ Bε(x),

Nt

t
≤

1 − x̄

µ − ε′

)

,

where the last line follows as and Lemma 6 proves that the first term in the max is −∞. As
this is true for all 0 < ε′ < µ, the following upper bound follows from Lemma 7 after taking
ε′ → 0 and then ε → 0:

lim
ε→0

lim sup
t→∞

1

tα
log P

(

Sξ
Nt

t
∈ Bε(x)

)

≤ −J(x)

A near identical application of the lemmas suffices for x = 0 and x = 1. Thus, as the lower
and upper deviation functions for {Sξ

Nt
/t} coincide with −J(·), Proposition 5 is proved.
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