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Abstract

This paper presents the analysis of three revision algorithms for 2-variable Constraint Satisfaction
Problems (CSPs). The revision algorithms under consideration are called L, L′, and L′′. For 2-
variable CSPs L models an optimal arc consistency algorithm which exploits multi-directionality.
However, L′ and L′′ do not exploit multi-directionality. For 2-variable CSPs L′ is equivalent to the
arc consistency algorithm AC-3. The expected number and the variance of the checks are presented
for L, L′, and L′′. Writing A ≺ B if the expected number of checks for A is less than for B,
we have L ≺ L′ ≺ L′′. The results are parametrised over the probability p that a random check
succeeds and probability q = 1−p that it fails. It is proved that the difference between the expected
number of checks of any two algorithms is bounded by min(b, 1 + d ln(a)/ ln(1/q) e)/p. Using a
variance analysis, it is proved that, as the domain sizes a and b become large, the number of checks
which are required by the revision algorithms is sharply concentrated about their expected number
of checks. Finally, our analysis allows us to find an upper bound of 2ed/p + (2e− n)d(d− 1)/2p
for the expected time complexity of AC-3, where e is the number of constraints, n is the umber of
variables, and d is the maximum domain size. These results are novel and encouraging. First they
provide the first non-trivial upper bound on the expected time complexity of AC-3. Second, they
demonstrate that on average there is a small margin separating L, L′, and L′′. Finally, they present
the first results about the variance of the checks required by revision algorithms.
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1. Introduction

Arc consistency algorithms (Mackworth, 1977) are a major component of many industrial and
academic Constraint Satisfaction Problem (CSP) solvers. These algorithms ensure that each value in
the domain of each variable is supported by some value in the domain of each variable by which it is
constrained. Sitting at the heart of a CSP solver, arc consistency algorithms consume a large portion
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of the time which is required to solve the input CSP. For these reasons arc consistency algorithms
and their time complexity always has been a heavily researched area.

In this paper we restrict our attention to binary CSPs. For historical reasons the theoretical time
complexity of arc consistency algorithms is usually measured in the number of consistency checks
which are required by the algorithms. Each check consists of a “lookup operation” to find if a
pair of values are allowed by a constraint. The theoretical worst-case time complexity of binary
arc consistency algorithms is O

(
ed2
)

(Mohr and Henderson, 1986), where e is the number of
constraints and d is the maximum domain size. This is optimal in the worst-case. From now on we
write (non-)optimal for worst-case (non-)optimal.

Some researchers have noticed discrepancies between the optimal time complexity and the av-
erage observed running time of arc consistency algorithms. Wallace (1993) was the first to point
out that the optimal algorithm AC-4 (Mohr and Henderson, 1986) has a worse average observed
running time than the non-optimal algorithm AC-3 (Mackworth, 1977). Similarly, Van Dongen
(2004) experimentally compared the optimal algorithm AC-2001 (Bessière and Régin, 2001) and
several non-optimal AC-3 (Mackworth, 1977) style algorithms. His results also indicate that the
non-optimal algorithms have a better average observed running time.

Since the introduction of the optimal algorithm AC-4 (Mohr and Henderson, 1986) there has
been a thrust of work on the design of optimal arc consistency algorithms which have a better the-
oretical and observed average running time than the bound O

(
ed2
)

(Bessière and Cordier, 1993;
Bessière and Régin, 1994; Bessière et al., 1995; Bessière and Régin, 2001; Zhang and Yap, 2001;
Lecoutre et al., 2003; Lecoutre and Hemery, 2007). The main mechanism for improvements are
avoiding repeated checks, postponing checks until they are really needed, and exploiting that checks
are bi-directional or multi-directional (Bessière et al., 1995; Lecoutre et al., 2003). Each improve-
ment results in a better theoretical and observed average running time.

These findings suggests that the theoretical and observed average running time is important. To
date the theoretical average time complexity of any arc consistency algorithm remains unknown.
However, more is known for the case of 2-variable CSPs. Here a 2-variable CSP is a CSP having
two variables and a single binary constraint. For 2-variable CSPs the theoretical average time com-
plexity of two optimal revision (Mackworth, 1977) algorithms is studied by Van Dongen (2002).
Here a revision algorithm is an algorithm which enforces arc consistency in both domains of a 2-
variable CSP. The tightness is the percentage of disallowed tuples in the Cartesian product of the
domains. Lecoutre and Hemery (2007) notice that AC-3 equipped with residues requires two checks
(asymptotically) if the tightness is 0.5.

Studying the average time complexity of 2-variable CSPs is important since an improved bound
which is obtained for the average complexity for the 2-variable CSP may be used to obtain improved
upper bound for the average time complexity of AC-3. This is demonstrated in Section 6. AC-
3 never spends fewer checks than the optimal algorithm AC-2001/AC-3.1. Therefore, the bounds
from Section 6 are also upper bounds for the average time complexity of AC-2001/AC-3.1.

This paper proposes a new approach to the problem of determining the average time complexity
of arc consistency algorithms for 2-variable CSPs. We compute probability generating functions
(PGFs), which enable us to compute the expected number of checks required by three revision
algorithms which are called L, L′, and L′′. L models an arc consistency algorithm which exploits
bi-directionality. L′ and L′′ do not exploit bi-directionality. For two variables L is equivalent to
AC-3.3 (Lecoutre et al., 2003) and L′ is equivalent to AC-3 (Mackworth, 1977). L′′ is the least
efficient of all algorithms. The main reason for studying it is that it allows us to compare L′ and
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L. L is also studied by Van Dongen (2002). The PGFs are parametrised: they assume Bernoulli
distribution with parameter p that a given pair of values is allowed by a constraint and probability
q = 1 − p that the pair is disallowed. This assumption corresponds to random CSPs which are
generated according to Model A or D (Gent et al., 2001). This paper is a continuation of the
work presented in (Van Dongen, 2002) in the following sense. First, we generalise the implicit
assumption from Van Dongen (2002) that p = 1/2. Second, we present generating functions and
variances of the checks. Third, we analyse the algorithms L′ and L′′. Here L′ corresponds to two
consecutive applications of the revise algorithm (Mackworth, 1977). Finally, we compare L, L′,
and L′′.

Using a generating function approach in the analysis of consistency algorithms is new and in-
teresting. For example, given the generating functions of the algorithms we can obtain not only
their expected time complexities but also any higher moment. In our case this allows us, for the first
time, to obtain the variance of the three algorithms under consideration. In addition we prove that
the variances are low. Intuitively this demonstrate that all algorithms are robust, in the sense that
the number of checks which is required for a random constraint does not deviate “much” from the
expected number of checks.

We now summarise our results on average time complexity for the revision algorithms. Let a
and b be the domain sizes of the variables. Furthermore, let NA be the number of checks which are
required by revision algorithm A for a random a× b constraint. Finally, let E (NA) be the expected
value of NA. Writing A ≺ B if E (NA) < E (NB) we have NL ≺ NL′ ≺ NL′′ . We prove that
E (NL′′) = [ a(1−qb)+b(1−qa) ]/p and that E (NL) = [ a(1−qb−bpqb)−bqa+

∑b−1
`=0(1−pq`)a ]/p.

The expression for E (NL′) is not presented in this section. It is proved that E (NL′′) − E (NL) =∑b−1
`=0[ 1 − (1 − pq`)a ]/p ≤ Ua,b = min(b, 1 + d ln(a)/ ln(1/q) e)/p. Since L ≺ L′ ≺ L′′ it

follows that 0 ≤ E (NL′) − E (NL) ≤ Ua,b. It is recalled that L is the best algorithm and that it
exploits multi-directionality. The worst algorithm, L′′, carries out two independent revisions. In
the second revision it forgets all the checks from the first revision. Our findings suggest that for
the two-variable random CSP the difference between the checks which are required by L′′ and L is
small on the average.

Variances are not presented in this section. However, we are able to demonstrate that, as the
domain sizes a and b become large, the number of checks required by the algorithms is sharply
concentrated about their expected values. Finally, our analysis allows us to find the upper bound
2ed/p + (2e− n)d(d− 1)/2p for the expected time complexity of AC-3 for the general n-variable
CSP.

Most derivations for the PGFs are presented in the main text. Much of the remaining deriva-
tions and proofs are presented in the appendix. The remainder of the paper is as follows. Section 2
presents a description of the algorithms. Section 3 presents the derivation of two probability gener-
ating functions. The first PGF is for the checks required to locate the first 1 in a sequence of zeros
and ones. The second PGF is for the checks required by L. This is followed by Section 4, which
presents the expected number of checks and the variance of the checks of the three revision algo-
rithms. Section 5 compares their expected running time and their variance. The upper bound for the
expected time complexity of AC-3 is provided in Section 6. Conclusions are presented in Section 7.
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2. Description of the Algorithms

This section describes the arc consistency algorithm AC-3 and the revision algorithms L, L′, and
L′′. To make the paper accessible to a wider audience, a constraint is a Boolean matrix. This allows
us to view the problem of making a 2-variable CSP arc consistent as that of finding the non-zero
rows and columns in a given matrix. Before presenting the algorithms, we remind the reader of
some basic definitions about CSPs and arc consistency.

Formally, a binary CSP is a tuple ( X, D,C ), where X is a set of n variables, D(x) is the
domain of variable x, and C is a set of 2e directed constraints between pairs of variables. If
con ∈ C is the constraint between two variables v and w then C also contains the constraint
conT between w and v, where ·T denotes transposition. D(v) is arc consistent with respect to w
if 1 ∈ { con[ i, j ] : j ∈ D(w) }, for each i ∈ D(v). D(v) is arc consistent if it is arc consistent
with respect to all variables by which v is constrained. A CSP is arc consistent if its domains are arc
consistent.

Pseudo-code for the revision algorithms is depicted in Figures 3–5. They all have the same
parameters: the domain A of a variable, the domain B of another variable, and the constraint con
between the variables. All algorithms remove i ∈ A from A if and only if con[ i, j ] = 0 for all
j ∈ B. Likewise they remove j ∈ B from B if and only if con[ i, j ] = 0 for all i ∈ A.

All revision algorithms use Algorithm initialise, which is depicted in Figure 1. All algorithms
also use Algorithm revise , which is depicted in Figure 2. This algorithm uses the constants failure ,
success , and unchecked , which are all different. The time complexity of arc consistency algorithms
is measured by the number of consistency checks which are required by the algorithms. This is
exactly the number of times the algorithms index a constraint or its transpose. Constraints are
indexed only in revise . All checks for L are cached in the 2-dimensional array checked . L′ and L′′
also cache their checks but they do not exploit this.

Algorithm L starts by computing its row support, which is the set consisting of the indices of
the non-zero rows, i.e. all i ∈ A such that con[ i, j ] = 1 for some j ∈ B. L continues by computing
its column support, which is the set consisting of the indices of the non-zero columns, i.e. all j ∈ B
such that con[ i, j ] = 1 for some i ∈ A. Next L terminates. The checks required for computing the
row (column) support are called the row (column) support checks.

The algorithmsL′ andL′′ are similar toL but they sometimes repeat their checks. For 2-variable
CSPs L carries out the same amount of work as is required by the optimal arc consistency algorithm
AC-3.3 (Lecoutre et al., 2003). In terms of the number of consistency checks it is the most efficient
of the three revision algorithms. L′ always spends more checks than L. The checks which L′ may
repeat are checks of the form con[ i, j ], where i is a non-empty row and con[ i′, j ] = 0, for all
i′ ∈ A such that i′ < i. For example, it always repeats the check con[min(A),min(B) ] if the row
min(A) is non-zero. For 2-variable CSPs the work which is required by L′ is the same as that which
is required by the algorithm AC-3 (Mackworth, 1977). The algorithm L′′ is less efficient than L′
because it always carries out the same checks as L′ but sometimes carries out more checks. For
example, it may repeat checks of the form con[ i, j ], where con[ i′, j ] = 0 for all i′ ∈ B, which is
never done by L′. It follows that qualitatively we have L ≺ L′ ≺ L′′.

Pseudo-code for Algorithm AC-3 (Mackworth, 1977) is depicted in Figure 6. Its single argument
is the directed constraint graph, G. This is a digraph having 2e arcs. For each constraint between
a pair of variables v and w it has the arcs ( v, w ) and ( w, v ). The algorithm starts by initialising
the set Q, which is known as the queue in the literature. After this initialisation the queue consists
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procedure initialise( set of int rsup, set of int csup,
set of int A, set of int B,
int checked [ , ] ): begin

rsup := ∅;
csup := ∅;
forall i ∈ A do

forall j ∈ B do
checked [ i, j ] := unchecked ;

end;

Figure 1: Pseudo-code for Algorithm initialise.

procedure revise( set of int rsup, set of int csup,
set of int A, set of int B,
int checked [ , ], int con[ , ] ): begin

forall i ∈ A do
forall j ∈ B do begin

if i ∈ rsup then break;
if checked [ i, j ] = unchecked then begin

if con[ i, j ] = 0 then
checked [ i, j ] := failure;

else begin
found := true;
checked [ i, j ] := success;
rsup := rsup ∪ { i };
csup := csup ∪ { j };

end;
end;

end;
end;

Figure 2: Pseudo-code for Algorithm revise .

procedure L( set of int A, set of int B, int con[ , ] ): begin
initialise(rsup, csup, A, B, checked);
revise(rsup, csup, A, B, checked , con);
A := rsup;
revise(csup, rsup, B, A, checkedT , conT );
B := csup;

end;

Figure 3: Pseudo-code for Algorithm L.

procedure L′( set of int A, set of int B, int con[ , ] ): begin
initialise(rsup, csup, A, B, checked);
revise(rsup, csup, A, B, checked , con);
A := rsup;
initialise(rsup, csup, A, B, checked ′);
revise(csup, rsup, B, A, checked ′T , conT );
B := csup;

end;

Figure 4: Pseudo-code for Algorithm L′.

procedure L′′( set of int A, set of int B, int con[ , ] ): begin
initialise(rsup, csup, A, B, checked);
initialise(rsup′, csup′, A, B, checked ′);
revise(rsup, csup, A, B, checked , con);
revise(csup′, rsup′, B, A, checked ′T , conT );
A := rsup;
B := csup;

end;

Figure 5: Pseudo-code for Algorithm L′′.

function AC-3( directed graph G ): begin
Q := G;
while Q 6= ∅ do begin

select and remove any arc ( v, w ) from Q;
initialise(rsup, csup, D(v), D(w), checked);
con := the (directed) constraint between v and w;
revise(rsup, csup, D(v), D(w), checked , con)
if rsup = ∅ then

return false;
else if D(v) 6= rsup then begin

D(v) := rsup;
Q := Q ∪ { ( w′, v ) ∈ G : w 6= w′ };

end;
end;
return true;

end;

Figure 6: Pseudo-code for Algorithm AC-3.
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of 2e arcs — one for each directed constraint. The algorithm continues by selecting and removing
any arc, ( v, w ), from the queue and revising the domain of v against that of w. If the domain of
v becomes empty then this proves that the arc consistent equivalent of the input CSP has empty
domains and the algorithm will immediately terminate. Otherwise, if one or more values have been
removed from D(v) then the algorithm propagates the consequences of this change by adding arcs
to the queue. It is noted that it follows that if the domain of v is revised for the i-th time against the
domain of w then at least i− 1 values have been removed from the (input) domain of w.

It should be noted that all algorithms are presented so as to facilitate ease of comparison in terms
of the number of checks which they require. They are not intended to be efficient.

3. The Probability Generating Functions of ξ(`) and NL

This section presents the main derivation of two probability generating functions (PGFs). The first
one is the PGF of the number of checks which are required to locate the first 1 in a sequence of zeros
and ones. The second is the PGF of the number of checks which are required by Algorithm L. Basic
facts about PGFs are presented in Section 3.1. Section 3.2 defines the random variable ξ(`) which
measures the required effort for locating the first one in a random sequence consisting of ` zeros and
ones. Section 3.2 also computes the probability generating function of ξ(`), its first two moments,
and its variance. Section 3.3 proceeds by studying the patterns arising in the checks that are carried
out by L and by defining the random variable NL which measures the number of checks which are
required by L for a random a × b constraint. Section 3.4 presents the derivation of the probability
generating function of NL.

3.1 Basic Facts

This section presents notation and some facts about probability generating functions.
Let X be a random variable. We shall write P (X = k) for the probability that X equals k,

E (X) for the expected value of X , and Var (X) = E
(
X2
)
− (E (X))2 for the variance of X .

The probability generating function (PGF) of a random nonnegative integer variable X is defined
as
∑∞

n=0 P (X = n) zn. We shall write EzX for the probability generating function of X . The
generating function of X provides all information about the expected value of X and any higher
moment. For example, the following two equivalences describe how to obtain the expected value of
X and that of X2 from the PGF of X (Graham et al., 1989, Equations 8.28 and 8.29).

E (X) =
d

dz
EzX

∣∣∣∣
z=1

, (1)

E
(
X2
)

=
d

dz
EzX

∣∣∣∣
z=1

+
d2

dz2
EzX

∣∣∣∣
z=1

. (2)

More information about generating functions may be found in (Graham et al., 1989; Sedgewick
and Flajolet, 1996; Wilf, 1994).

3.2 The Distribution of ξ(`)

Let ` be a nonnegative integer. Consider a random sequence consisting of ` zeros and ones. We
wish to measure the average effort (accumulated cost) which is required to locate the first one in
the sequence (or deciding that the row consists of zeros only). Here locating the first one in the
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sequence means looking from start to end in the sequence, checking each member at most once, and
stopping as soon as we have located the first one. Each time we carry out a check, our accumulated
cost increases by one. We start with an accumulated costs of zero.

Clearly, the average number of checks depends on the distribution of the zeros and ones in
the sequence. In the following, we shall assume a Bernoulli distribution for the members in the
sequence. We shall assume that the distribution of each member is independent and that a member
equals 1 with probability p and equals 0 with probability q = 1− p.

We define ξ(`) the number of checks which are required to find the first 1 in a random sequence
consisting of ` zeros and ones. Using ξ(`) the average number of checks may now be expressed as
the expected value of ξ(`). Notice that by definition we have ξ(1) = 1, since the number of required
checks for any sequence of length one equals 1. Likewise, we have ξ(0) = 0.

It immediately follows that the distribution of ξ(`) is given by

P
(
ξ(`) = m

)
=


qm−1p if 1 ≤ m < ` ,

q`−1 if 1 ≤ m = ` ,

1 if 0 = m = ` ,

0 otherwise .

With this we readily calculate the PGF of the distribution of ξ(`): for z ∈ [0 : 1), we have

Ezξ(`)
=
∑̀
m=0

P
(
ξ(`) = m

)
zm = q`−1z` +

`−1∑
m=1

qm−1pzm =
1− z

1− qz
(qz)` +

pz

1− qz
.

Using Equations (1) and (2) we readily compute the first two moments and the variance of ξ(`).

E
(
ξ(`)
)

=
1− q`

p
, (3)

E
((

ξ(`)
)2
)

=
2− p + q`(p− 2− 2p`)

p2
, (4)

Var
(
ξ(`)
)

=
q + q`(p− 2p`− q`)

p2
. (5)

3.3 The General Pattern

Before starting with the derivation of the PGF of NL, it is instructive to study the general pattern of
the checks which are carried out by L. The computation of the row support gives rise to a unique
pattern which is a matrix consisting of zeros, ones, asterisks (∗) and minuses (−). The zeros and
the ones are all entries of the matrix which are revealed by the computation of the row support. The
asterisks are all unchecked locations that are possible candidates for the column support checks.
The remaining unchecked locations contain a minus. They are never checked by L.

Figure 7 depicts a possible pattern for a = b = 5. The number of ones and zeros in the pattern
is exactly equal to the number of row support checks required by L.

The number of row support checks of the pattern does not change if we permute the rows of
our pattern. Sorting the rows in reverse lexicographic order we obtain a pattern which we call the
standard form of the pattern. Figure 8 depicts the standard form of the pattern which is depicted
in Figure 7. The expected number of checks of any pattern and its standard form are the same.
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
1 ∗ ∗ − ∗
0 0 0 1 ∗
0 0 0 0 0
0 0 0 1 ∗
0 0 0 0 0


Figure 7: Pattern of a 5× 5 matrix.


1 ∗ ∗ − ∗
0 0 0 1 ∗
0 0 0 1 ∗
0 0 0 0 0
0 0 0 0 0


Figure 8: Standard form of pattern.

The standard form of a pattern makes it very easy to read off the expected number of column
support checks of that pattern. To see how this works, let mj denote the number of non-zero rows
having their first 1 in column j. The number mj is called the multiplicity of column j. For our
example we have m1 = 1, m4 = 2 and m2 = m3 = m5 = 0. The first stage of the algorithm
consists of the computation of the row support checks. After this stage we know the number of
non-zero rows, c, and the multiplicity, mj , of column j. We also know the number kj of unchecked
elements in column j for which mj = 0. These unchecked elements are the asterisks in Figures 7
and 8. We define kj = 0 if mj 6= 0. Using this notation, the expected number of column support
checks is equal to

∑b
j=1 E

(
ξ(kj)

)
, where E

(
ξ(kj)

)
is the expected number of checks which are

required to find the first one in a random length-kj sequence of zeros and ones. In our example, the
expected number of checks required for the matrices having the pattern from Figure 8 is equal to
2× E

(
ξ(0)
)

+ 2× E
(
ξ(1)
)

+ E
(
ξ(3)
)
.

Given the number of non-zero rows, c, the definition of mj gives rise to an order-c multiplicity
sequence, which is a sequence 〈m1, . . . ,mb 〉 ∈ Nb such that

∑b
j=1 mj = c. Each standard form

has a unique multiplicity sequence, which allows us to compute the number of forms having the
same standard from. Fixing an order-c multiplicity sequence 〈m1, . . . ,mb 〉, the number of patterns
having the same multiplicity sequence is equal to the number of partitions of a set of a elements into
b+1 subsets of size a−c, m1, m2, . . . , mb. There are exactly

(
a
c

)
×
(

c
m1,...,mb

)
such partitions, where(

c
m1,...,mb

)
= c!

(m1!)×...×(mb!)
is the multinomial coefficient of c and m1, . . . , mb. This facilitates the

computation of our PGF. Notice that in the definition of the multinomial coefficient
(

c
m1,...,mb

)
it is

assumed, as it is in our case, that c =
∑b

j=1 mj .

3.4 The Derivation of the PGF of NL

Having studied the general pattern which is revealed by the computation of the row support, it is now
relatively easy to derive the PGF of NL. Throughout we write

∑
m1+...+mb=c f(m1, . . . ,mb) for the

sum of f(m1, . . . ,mb) over all possible nonnegative integers m1, . . . mb satisfying the constraint
m1 + . . . + mb = c.

Our general PGF is of the form EzNL =
∑

n∈N P (NL = n) zn, but we shall compute it by
summing over multiplicity sequences. This gives rise to an expression of the form

EzNL =
a∑

c=0

∑
m1+...+mb=c

p(〈m1, . . . ,mb 〉)× C〈m1,...,mb 〉 (z) , (6)

where p(m) is the probability that a random matrix has multiplicity sequence m and Cm (z) is the
PGF of the row support checks which are spent using a random a × b matrix having multiplicity
sequence m. Here Cm (z) naturally can be written Lm (z) × Rm (z), where Lm (z) is the PGF for
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the row support checks and Rm (z) is the PGF for the column support checks. We note that

p(〈m1, . . . ,mb 〉) =
(

a

c

)(
c

m1, . . . ,mb

)
pcqb×(a−c)−c+

Pb
j=1 jmj .

Select any number, c, of rows, any order-c multiplicity sequence, m, and any matrix M having c
non-zero rows and having multiplicity sequence m. Then L requires exactly b×(a−c)+

∑b
j=1 jmj

row support checks for M . Therefore, Lm (z) is given by

Lm (z) = zb×(a−c)
b∏

j=1

zjmj .

The expected number of column support checks which are required for the j-th column of M is

equal to the expected value of ξ

“Pj
k=1 mk1{mj=0}

”
. Here 1{P} is the indicator function of the predi-

cate P : it is 1 if P is true and 0 otherwise. The PGF, Rm (z), of the column support checks is given
by

Rm (z) =
b∏

j=1

Ezξ

„Pj
k=1

mk1{mj=0}

«
.

Having computed Lm (z) and Rm (z) it follows that

EzNL =
a∑

c=0

(
a

c

)
(qz)b(a−c)(p/q)cfz (b, c) , (7)

where

fz (b, c) =
∑

m1+...+mb=c

(
c

m1, . . . ,mb

) b∏
j=1

Ezξ

„Pj
k=1

mk1{mj=0}

«
b∏

j=1

(qz)jmj .

We conclude this section by showing how fz (b, c) may be computed recursively. First, we have

fz (b, c) =
∑

m1+...+mb=c

(
c

m1, . . . ,mb

) b∏
j=1

(
Ezξ(

Pj
k=1

mk)
1{mj=0} + (qz)jmj1{mj 6=0}

)
. (8)

By separately considering mb = 0 and mb > 0, this may be computed efficiently as follows

fz (b, c) = Ezξ(c)
fz (b− 1, c) +

c∑
k=1

(
c

k

)
(qz)bkfz (b− 1, c− k) . (9)

4. The Expected Value and the Variance of the Algorithms

This section presents the expected value and the variance of the checks which are required by L, L′,
and L′′. It is recalled that the random variable NA counts the number of checks which are required
by A so as to find the non-zero rows and columns in a random a× b matrix. The expected number
of checks of A may then be expressed as E (NA) and the variance of the running time as Var (NA).
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4.1 Algorithm L

This section presents the complexity results for L. We start with the expected number of checks.
We define F (0, b) = 0 for b ≥ 1 and for a, b ≥ 1, we set

F (a, b) =
a(1− qb − bpqb)− bqa

p
+

1
p

b−1∑
`=0

(1− pq`)a . (10)

The following propositions are our main results for L. Proof may be found in Appendix A.

Proposition 1 (Expected Value of NL) For a, b ≥ 1, we have

E (NL) = abqb + F (a, b) = a
1− qb

p
+ b

1− qa

p
+

1
p

b−1∑
`=0

(
(1− pq`)a − 1

)
.

Proposition 2 (Variance of NL) For a, b ≥ 1, we have

Var (NL) = E
(
N2
L
)
−
(
abqb + F (a, b)

)2
,

with

E
(
N2
L
)

= a(a− 1)
[
b2q2b + p2

]
+ ab2qb + F (a, b) + 2abqbF (a− 1, b) +

b∑
`=2

h(`) ,

where for ` ≥ 2,

h(`) = 2a`pq`−1F (a− 1, `− 1) + a(a− 1)`2p2q2`−2 + a`(`− 1)pq`−1

+ 2a
1− q`−1 − (`− 1)pq`−1

p2
(1− pq`−1)a−1 +

2
p2

`−2∑
k=0

(1− pq`−1 − pqk)a

− 2(`− 1)
(q − pq`−1)a

p2
− 2qaF (a, `− 1)

p
+

2q(1− pq`−1)a

p2

− 2qa+1

p2
− 2a(1− q`−1)qa

p
.

4.2 Algorithm L′

This section presents the complexity results for L′. As with L we express our results in terms of a
random variable, NL′ , which counts the number of checks which are required by Algorithm L′ so
as to find the non-zero rows and columns in a random a × b matrix. The key observation is that
NL′ = N

(1)
L′ + N

(2)
L′ , with

N
(1)
L′ = γ

(b)
1 + . . . + γ(b)

a , N
(2)
L′ = η

(a)
1 + . . . + η

(a)
b , (11)

where the γ correspond to the row support checks and the η correspond to the column support
checks. All the γ(b) are mutually independent and identically distributed as ξ(b), and the η(a) are
identically distributed. For 1 ≤ k ≤ a we have

P
(
η

(a)
j = k

)
=
(

a

k

)
qb(a−k)(q − qb)k +

a−k∑
c=0

(
c + k − 1

c

)
qcb(q − qb)k−1p . (12)
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It is noted that it is possible for η
(a)
j to be zero. The first term corresponds to column j containing

only zeros. The key observation is that L′ does not carry out checks in rows with only zeros.
Therefore, if there is no zero in column j, we must have a − k zero-rows (the probability of such
a row is qb) and k rows with at least one 1 but not in column j (the probability of such a row is
q − qb). The zero-rows can be arbitrarily placed, whence the binomial term. Next consider the case
where there is a 1 in the j-th column. The sum of Equation (12) is taken over the number c ≤ a− k
zero-rows before the first 1 in this column. We remark that this sum can be rewritten in terms of
hypergeometric functions, but we prefer a finite-sum representation.

The following two propositions are our main results for L′. For presentational purposes, we
restrict ourselves to a bound on the variance. We refer to Appendix B for proofs.

Proposition 3 (Expected Value of NL′) For a, b ≥ 1, we have

E (NL′) = E
(
N

(1)
L′
)

+ E
(
N

(2)
L′
)

= aE
(
ξ(b)
)

+ bE
(
η(a)

)
= a

1− qb

p
+ ab(q − qb)qa−1 + b

a∑
k=1

a−k∑
c=0

k

(
c + k − 1

c

)
qcb(q − qb)k−1p .

Proposition 4 (Variance of NL′) For a, b ≥ 1, we have

Var (NL′) ≤

√aVar
(
ξ(b)
)

+

√
H(a, b)−

(
E (NL′)− a

1− qb

p

)2
2

,

where Var
(
ξ(b)
)

is provided in Equation (5), and H(a, b) equals

a(a− 1)b(q − qb)2qa−2 + ab(q − qb)qa−1 + a(a− 1)b(q2 − qb)(q2 − qb + 2pq)q2(a−2)

+ ab(q2 − qb + 2pq)q2(a−1) + 2ab(b− 1)p−1(1− qb−1)2qa

− 2ab(b− 1)q2(a−2)(q − qb)
[
qb + a(q2 − qb) + (q2 − qb)qp−1

]
+ 2b(b− 1)

a∑
k=2

[
k(q − qb)k − k(q2 − qb)k − k2pq(q2 − qb)k−1

] a−k∑
c=0

(
c + k − 2

c

)
qcb−1

+ b

a∑
k=1

k2
[
(q2 − qb)k−1p2 + (q − qb)k−1p

] a−k∑
c=0

(
c + k − 1

c

)
qcb .

4.3 Algorithm L′′

This section presents the complexity results for L′′. Again we use the representation NL′′ = N
(1)
L′′ +

N
(2)
L′′ , where each component can be written as a sum of random variables as in Equation (11).

The analysis is simpler than for L′, since now all the γ(b) are mutually independent and identically
distributed as ξ(b), and the η(a) are mutually independent and identically distributed as ξ(a). This
observation allows to immediately write down the expected number of checks for L′′.

Proposition 5 (Expected Value of NL′′)

E (NL′′) = E
(
N

(1)
L′′
)

+ E
(
N

(2)
L′′
)

= aE
(
ξ(b)
)

+ bE
(
ξ(a)
)

= a
1− qb

p
+ b

1− qa

p
.
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Figure 9: E (NL) and E (NL′′) against a = b, for p ∈ { 1/4, 1/2, 3/4 }, and 1 ≤ a = b ≤ 100.

Calculating the variance of NL′′ is more difficult as N
(1)
L′′ and N

(2)
L′′ are dependent. The proof of

the following proposition may be found in Appendix C.

Proposition 6 (Variance of NL′′) For a, b ≥ 1, we have

Var (NL′′) = aVar
(
ξ(b)
)

+ bVar
(
ξ(a)
)

+ 2J(a, b) ,

where Var
(
ξ(`)
)

is provided in Equation (5), and where

J(a, b) = ab
qa+b−1

p
− aqa 1− qb

p2
− bqb 1− qa

p2
+

q(1− qa)(1− qb)
p3

.

5. Analysis of the Expectation and Variance of the Number of Checks

The aim of this section is twofold. The first is to quantitatively compare the expected running time
of the three algorithms. This is done in Section 5.1. The second is to show that the distribution
of the number of checks is, typically, sharply concentrated about its mean value. This is done in
Section 5.2, relying on an analysis of the variances.

Before we start with our quantitative comparison it is useful to consider Figure 9, which depicts
the expected values of the checks for L and L′′. The expected checks for L′ are not shown since it
is almost impossible to see the difference between E (NL′) and E (NL′′). The expected values are
plotted for 1 ≤ a = b ≤ 100 and p ∈ { 1/4, 1/2, 3/4 }. The graphs of E (NL) are plotted with
crosses. The graphs of E (NL′′) are plotted with stars. It is almost impossible to spot the difference
between the graphs of E (NL) and E (NL′′) for p = 3/4. The trends of the graphs clearly indicate
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Figure 10: E (NL′′ −NL) against a = b, for p ∈ { 1/4, 1/2, 3/4 }, and 1 ≤ a = b ≤ 100. The
function 1+d log(a)/ log(1/q) e

p is plotted for reference purposes. The two black graphs at
the top are for p = 1/4, the two blue graphs in the middle are for p = 1/2, and the two
red graphs at the bottom are for p = 3/4.

that E (NL) < E (NL′′). In the remainder of this section we shall provide a better understanding of
this difference as well as how the underlying random quantities fluctuate for large a and b.

5.1 The Expected Number of Checks

In order to compare the expected number of checks for the three algorithms, we exploit that L ≺
L′ ≺ L′′. It is thus of interest to derive lower and upper bounds for the difference E (NL′′)−E (NL).
A straightforward computation shows that

0 ≤ E (NL′′)− E (NL) =
1
p

b−1∑
`=0

(
1− (1− pq`)a

)
≤ b

p
. (13)

The inequalities are easy since the summand is nonnegative and less than or equal to 1. The
following presents a better upper bound on the difference of the expected values.

Proposition 7 (Upper Bound) We have

E (NL′′)− E (NL) ≤ min(1 + d ln(a)/ ln(1/q) e , b)
p

. (14)

Proof Set `0 = d ln(a)/ ln(1/q) e. In view of Equation (13), it suffices to show that E (NL′′) −
E (NL) ≤ (1 + `0)/p. For this, we use the fact that ` ≥ `0 implies aq` ≤ 1. This suggests using the
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Bernoulli Inequality, which implies that

(1 + x)r ≥ 1 + rx , for r ≥ 1 and x ≥ −1 .

Using this inequality we note that
b−1∑
`=0

(1− pq`)a ≥
b−1∑
`=`0

(1− pq`)a ≥
b−1∑
`=`0

(
1− apq`

)
= b− `0 − a(q`0 − qb) ≥ b− `0 − 1 ,

where the last inequality follows the fact that aq`0 ≤ 1. This lower bound can be used in conjunc-
tion with the equality in Equation (13) to prove the desired upper bound.

Figure 10 plots the graph of E (NL′′ −NL) against a = b for p ∈ { 1/4, 1/2, 3/4 }. For
reference purposes the graphs of the function (1 + d log(a)/ log(1/q) e) /p are also shown to allow
comparison with Equation (14). The graphs of E (NL′′ −NL) are plotted with crosses. The graphs
of the reference functions are plotted with dashes. It may be deduced from Figure 10 that the bound
from Equation (14) is pretty accurate.

5.2 The Variance of the Number of Checks

This section shows that, by analysing the variances, the number of checks is likely to be close to its
expected value for large a and b.

This is formalised by setting b = bβac for some constant β > 0, and by studying the expected
values and variances as a → ∞. Proposition 7 shows that the expected values are of order a + b,
which is of order a. Knowledge about the order of the variances leads to powerful statements, since
for any A ∈ {L,L′,L′′ } and for large x it is highly likely that NA lies in the interval[

E (NA)− x
√

Var (NA), E (NA) + x
√

Var (NA)
]
,

To see this, note that by the Chebyshev Inequality, for x > 0,

P
(
|NA − E (NA)| > x

√
Var (NA)

)
≤ 1

x2
.

Our expressions for the variances thus give intervals in which NA lies with probability of at least
1− x−2.

Let us start with the order of the variance for Algorithm L′′. For this we use Proposition 6. With
the above definitions of a and b, it is easy to see that J(a, b) tends to a constant as a → ∞, and
with Equation (4) we see that Var

(
ξ(a)
)

and Var
(
ξ(b)
)

tend to qp−2. Conclude that, as a → ∞,
Var (NL′′) behaves like q(a + b)/p2, which is of the order a. Therefore, the distribution of NL′′ is
mostly concentrated on an interval of length O (

√
a).

We next discuss the Algorithms L and L′. Since these algorithms never carry out more checks
than L′′, it follows that for A ∈ {L,L′} we have:

Var (NA) ≤ E
(
N2
L′′
)
− (E (NA))2

≤ E
(
N2
L′′
)
−
(

E (NL′′)−
1 + bln(a)/ ln(1/q)c

p

)2

≤ Var (NL′′) + 2E (NL′′)
1 + bln(a)/ ln(1/q)c

p
,
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where the second inequality follows from Proposition 7. The first term is of order a, as shown
already. The second term is of order a ln a. For L and L′ the expected value is thus of order a while
the distribution is mostly concentrated on an interval of length O

(√
a ln a

)
about the mean.

6. An Upper Bound on the Expected Time Complexity of AC-3

In this section we shall use two key observations, which allow us to derive an upper bound for the
expected time complexity of AC-3. We shall assume that the arcs are selected from the queue in
first-in-first-out order.

Let NR denote the number of checks which are required by revise (Mackworth, 1977) for a
random a × b constraint. It follows from Proposition 3 that E (NR) = a(1 − qb)/p. During the
execution of AC-3 the algorithm revise is applied several times. Our assumption that a random
check succeeds with a uniform probability of p is correct if the pair of variables which are involved
in a revision are involved in a revision together for the first time. In all other cases we may assume
that if the maximum domain size is d then d(1− qd)/p is an upper bound for the expected number
of checks which are required by revise for any revision. This is the first key observation.

The second key observation is that if D(v) is revised against D(w) for the i-th time then 1 ≤
|D(w) | ≤ d + 1− i, where d is its initial domain size.

These are the keys to the following proposition, which is our final result.

Proposition 8 (Expected Time Complexity of AC-3 with Maximal Revisions) Let NA3 denote the
checks which are required by AC-3 when applied to a random CSP which has no unconstrained vari-
ables. Assuming that the arcs are taken in a first-in-first-out order from the queue, then

E (NA3) ≤
4ed + (2e− n)d(d− 1)

2p
.

Proof It follows from the analysis by Mackworth and Freuder (1985) that the worst possible time
complexity for AC-3 occurs if the domains of each of the variables are revised d times against the
domains of each of the variables by which they are constrained. This gives rise to an initial cycle
consisting of 2e revisions and d− 1 remaining cycles each of which consisting of 2e− n revisions.
Let 1 ≤ i ≤ d and let ` = d + 1 − i. In the i-th cycle the size of a domain is in { `− 1, ` }.
Therefore, the cost of any revision in the i-th cycle cannot exceed `(1 − q`)/p. As a consequence
we have

E (NA3) ≤ 2ed
1− qd

p
+

d−1∑
`=1

(2e− n)`
1− q`

p
≤ 4ed + (2e− n)d(d− 1)

2p
,

which completes the proof.

It is interesting to notice that (for constant p) the upper bound on the expected time complexity of
the non-optimal algorithm AC-3 is O

(
ed2
)
, which is the best possible worst-case time complexity.

7. Conclusions

This paper analyses three revision algorithms for 2-variable Constraint Satisfaction Problems (CSPs).
The algorithms are called L, L′, and L′′. For 2-variable CSPs Lmodels an arc consistency algorithm
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which exploits multi-directionality. However, L′ and L′′ do not exploit multi-directionality. For 2-
variable CSPs L′ models AC-3. The results are parametrised over the probability p that a random
check succeeds and probability q = 1 − p that it fails. Our results demonstrate that the average
time complexity of L′′ is given by [a − aqb + b − bqa]/p, where a and b are the domain sizes of
the variables. The expected time complexity of L is

∑b−1
`=0[ 1− (1− pq`)a ]/p below that of L′′. It

is proved that 0 ≤
∑b−1

`=0[ 1 − (1 − pq`)a ]/p ≤ min(b, 1 + d ln(a)/ ln(1/q) e)/p. It is shown that
E (NL) < E (NL′) < E (NL′′). It is proved that, as the domain sizes a and b become large, the
number of checks which are required by the algorithms is sharply concentrated about their expected
number of checks. An upper bound of 2ed/p + (2e− n)d(d− 1)/2p is presented for the expected
time complexity of AC-3 for the general binary CSP.
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Appendix A. Proofs for Algorithm L

In this appendix we shall prove Propositions 1 and 2.

A.1 The First Moment of NL

In this part of the appendix we shall derive the expected value of of NL, which is stated in Proposi-
tion 1. To prove the proposition we evaluate the derivative of the generating function in z = 1. We
stress that E (NL) depends on a and b.

In terms of the derivative ∂f1 of fz in z = 1, Equation (7) yields

E (NL) =
a∑

c=0

(
a

c

)
qb(a−c)

(
p

q

)c

[ b(a− c)f1(b, c) + ∂f1(b, c) ] .

Applying the multinomial theorem to Equation (8) for z = 1, one sees that

f1(b, c) =

(
b∑

`=1

q`

)c

=
(

q − qb+1

p

)c

. (15)

Using the identity
a∑

c=0

c

(
a

c

)
xcya−c = ax(x + y)a−1, (16)

we see that the proposition is proved once we show that
a∑

c=0

(
a

c

)
qb(a−c)

(
p

q

)c

∂f1(b, c) = F (a, b). (17)

For this, we use the following lemma; it is also a key ingredient in the next section.
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Lemma 9 We have ∂f1(1, c) = cqc for c ≥ 0, and for b > 1, c ≥ 0 we have

∂f1(b, c) = c

(
q

p

)c (
1− qb

)c−1 1− qb − bpqb

p

+
1
p

(
q

p

)c b−1∑
`=0

(
1− qb − pq`

)c
− b

p

(
q

p

)c (
q − qb

)c
. (18)

Proof The formula for ∂f1(1, c) follows from the observation that fz(1, c) = (qz)c, so we may
focus on b > 1. The recursion Equation (9) for fz yields for b > 1, c ≥ 0,

∂f1(b, c) = g(b, c) +
c∑

`=0

(
c

`

)
qb`∂f1(b− 1, c− `), (19)

where, using Equation (3),

g(b, c) =
1− qc

p

(
q − qb

p

)c

+ b

c∑
`=1

`

(
c

`

)
qb`

(
q − qb

p

)c−`

=
1− qc

p

(
q − qb

p

)c

+ bcqb

(
q − qb+1

p

)c−1

.

A mathematical induction argument shows that it suffices to calculate the right-hand side with Equa-
tion (18) for b − 1, and then observe that this yields the above expression for Equation (18) for b.
This is readily verified using Newton’s Binomial Theorem and Equation (16).

To prove Equation (17), we apply the preceding lemma to rewrite the left-hand side. We find
with Equation (16) that

a∑
c=0

(
a

c

)
cqb(a−c)(1− qb)c−1 1− qb − bpqb

p
= a

1− qb − bpqb

p
.

On the other hand, Newton’s Binomial Theorem yields

a∑
c=0

(
a

c

)
qb(a−c) 1

p

b−1∑
`=0

(
1− qb − pq`

)c
=

1
p

b−1∑
`=0

(1− pq`)a

and
a∑

c=0

(
a

c

)
qb(a−c) b

p
(q − qb)c =

bqa

p
.

This proves Equation (17) and thus the proposition.

A.2 The Second Moment of L

In this part of the appendix we shall derive the expected value of N2
L, which is needed for the

derivation of Var (NL). Using Equation (2) and proceeding in a similar way as in the previous
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section, this yields

E
(
N2
L
)

= E (NL) +
a∑

c=0

(
a

c

)
b(a− c)[b(a− c)− 1]qb(a−c)(1− qb)c

+ 2
a∑

c=0

(
a

c

)
b(a− c)qb(a−c)

(
p

q

)c

∂f1(b, c)

+
a∑

c=0

(
a

c

)
qb(a−c)

(
p

q

)c

∂2f1(b, c) . (20)

The expected value of NL has already been determined in the previous section, and the first sum
equals a(a− 1)b2q2b + ab(b− 1)qb as readily verified with the identity

a∑
c=0

c2

(
a

c

)
xcya−c = a(a− 1)x2(x + y)a−2 + ax(x + y)a−1. (21)

To calculate the second sum, we note that
a∑

c=0

(
a

c

)
(a− c)qb(a−c)

(
p

q

)c

∂f1(b, c)

=
a∑

c=1

(
a

c

)
cqbc

(
p

q

)a−c

∂f1(b, a− c)

= aqb
a−1∑
c=0

(
a− 1

c

)
qbc

(
p

q

)a−1−c

∂f1(b, a− 1− c)

= aqb
a−1∑
c=0

(
a− 1

c

)
qb(a−1−c)

(
p

q

)c

∂f1(b, c)

= aqbF (a− 1, b) , (22)

and F (a − 1, b) has already been found in Equation (10). To make this expression also valid for
a = 1, we need to interpret F (0, b) as zero.

Let us write

G(a, b) =
a∑

c=0

(
a

c

)
qb(a−c)

(
p

q

)c

∂2f1(b, c) ,

so that

E
(
N2
L
)

= a(a− 1)b2q2b + ab2qb + F (a, b) + 2abqbF (a− 1, b) + G(a, b) .

Since ∂2f1(1, c) = c(c − 1)qc, we see with Equation (21) that G(a, 1) = a(a − 1)p2. We next
derive a recursion for the last sum in Equation (20), which allows us to find G(a, b) explicitly.

For this, we use the following consequence of Equation (9): for b > 1, ∂2f1(b, c) is given by
c∑

`=0

(
c

`

)
qb`
[
∂2f1(b− 1, c− `) + 2b`∂f1(b− 1, c− `) + b` (b`− 1) f1(b− 1, c− `)

]
+ 2E

(
ξ(c)
)

∂f1(b− 1, c) + E
(
ξ(c)

[
ξ(c) − 1

])
f1(b− 1, c) .
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Note that, by definition, to find G we need to sum this appropriately over c. For easy reference, let
us refer to each of the five terms by a roman letter, i.e., ∂2f1(b, c) = I+ II+ III+ IV +V. We start
by calculating the sum over c for I:

a∑
c=0

(
a

c

)
qb(a−c)

(
p

q

)c c∑
`=0

(
c

`

)
qb(c−`)∂2f1(b− 1, `) .

Using
∑a

c=0

∑c
`=0 =

∑a
`=0

∑a
c=`, we next rewrite the double sum by shifting the index c over `,

yielding
a∑

`=0

a−∑̀
c=0

(
a

c + `

)(
c + `

`

)
qb(a−`)

(
p

q

)c+`

∂2f1(b− 1, `) .

After noting that
(

a
c+`

)(
c+`
`

)
=
(
a−`

c

)(
a
`

)
, we can calculate the sum over c with the binomial theo-

rem. This shows that the sum over I equals

a∑
`=0

(
a

`

)
q(b−1)(a−`)

(
p

q

)`

∂2f1(b− 1, `) = G(a, b− 1) .

A similar argument allows for finding the sum over II:

2
a∑

c=0

(
a

c

)
qb(a−c)

(
p

q

)c c∑
`=0

(
c

`

)
qb`b`∂f1(b− 1, c− `)

= 2p

a∑
`=0

(
a

`

)
q(b−1)(a−`)

(
p

q

)`

b(a− `)∂f1(b− 1, `)

= 2abpqb−1F (a− 1, b− 1) ,

where the last equality follows from Equation (22).
We next consider the sum over III. With formula Equation (15) for f1, we obtain

c∑
`=0

(
c

`

)
qb`b`(b`− 1)f1(b− 1, c− `)

= b2c(c− 1)
(

p

q

)2−c

q2b(1− qb)c−2 + b(b− 1)c
(

p

q

)1−c

qb(1− qb)c−1 ,

so that

a∑
c=0

(
a

c

)
qb(a−c)

(
p

q

)c c∑
`=0

(
c

`

)
qb`b`(b`− 1)f1(b− 1, c− `)

= a(a− 1)b2p2q2b−2 + ab(b− 1)pqb−1 .
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As for the sum over IV, we conclude with Lemma 9 and some calculations that

2
a∑

c=0

(
a

c

)
qb(a−c)

(
p

q

)c

E
(
ξ(c)
)

∂f1(b− 1, c)

= 2a
1− qb−1 − (b− 1)pqb−1

p2
(1− pqb−1)a−1 +

2
p2

b−2∑
`=0

(1− pqb−1 − pq`)a

− 2
b− 1
p2

(q − pqb−1)a − 2qaF (a, b− 1)
p

.

Finally, for V we use Equation (15), Equation (3) and Equation (4) to obtain that

a∑
c=0

(
a

c

)
qb(a−c)

(
p

q

)c

E
(
ξ(c)

[
ξ(c) − 1

])
f1(b− 1, c)

=
2q

p2
(1− pqb−1)a − 2qa+1

p2
− 2

p
a(1− qb−1)qa .

Clearly, we have for a, b ≥ 1,

G(a, b) = G(a, 1) +
b∑

`=2

[G(a, `)−G(a, `− 1) ] .

The summand is II + III + IV + V with b = `, which is exactly h(`).

Appendix B. Proofs for Algorithm L′

In this appendix we shall prove Propositions 3 and 4. For Proposition 3, it suffices to compute
E
(
η(a)

)
with (12) and (16).

The inequality stated in Proposition 4 is derived from the Cauchy-Schwarz inequality

Var (NL′) ≤

(√
Var

(
N

(1)
L′
)

+
√

Var
(
N

(2)
L′
))2

.

Since the γ(b) are independent and identically distributed according to the distribution of ξ(b), we

have Var
(
N

(1)
L′
)

= aVar
(
ξ(b)
)
. To finish the proof, we need to find H(a, b) = E

((
N

(2)
L′
)2
)

.

The main tool is the identity (for any i 6= j)

E
((

N
(2)
L′
)2
)

= b(b− 1)E
(
η

(a)
i η

(a)
j

)
+ bE

((
η

(a)
i

)2
)

.

In view of (12), the last term is readily found to be

a(a− 1)b(q − qb)2qa−2 + ab(q − qb)qa−1 + b

a∑
k=1

a−k∑
c=0

k2

(
c + k − 1

c

)
qcb(q − qb)k−1p,
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and we next focus on the calculation of E
(
η

(a)
i η

(a)
j

)
for i 6= j. First observe that

E
(
η

(a)
i η

(a)
j

)
= 2

a∑
`,k=1

k<`

k`P
(
η

(a)
i = k, η

(a)
j = `

)
+

a∑
`=1

`2P
(
η

(a)
i = `, η

(a)
j = `

)
. (23)

We use similar arguments as those leading to (12) to see that for i 6= j, k < `,

P
(
η

(a)
i = k, η

(a)
j = `

)
=
(

a

`

)
qb(a−`)(q − qb)`−kpq(q2 − qb)k−1

+ (q2 − qb)k−1(q − qb)`−k−1p2q

a−∑̀
c=0

(
c + `− 2

c

)
qcb,

while

P
(
η

(a)
i = `, η

(a)
j = `

)
=
(

a

`

)
qb(a−`)(q2−qb)`−1(q2−qb+2pq)+(q2−qb)`−1p2

a−∑̀
c=0

(
c + `− 1

c

)
qcb.

Let us next study the first term in (23). After first calculating the sum over k, we find after some
tedious computations that

a∑
`,k=1

k<`

k`P
(
η

(a)
i = k, η

(a)
j = `

)

=
a∑

`=2

[
`(q − qb)` − `2pq(q2 − qb)`−1 − `(q2 − qb)`

] a−∑̀
c=0

(
c + `− 2

c

)
qcb−1

+ ap−1(1− qb−1)2qa − aq2a−4(q − qb)
[
a(q2 − qb) + qb + (q2 − qb)qp−1

]
.

Similarly, we find

a∑
`=1

`2P
(
η

(a)
i = `, η

(a)
j = `

)
= a(a− 1)(q2 − qb)(q2 − qb + 2pq)q2(a−2) + a(q2 − qb + 2pq)q2(a−1)

+
a∑

`=1

`2(q2 − qb)`−1p2
a−∑̀
c=0

(
c + `− 1

c

)
qcb.

Appendix C. Proofs for Algorithm L′′

In this appendix we shall prove Proposition 6 only, as Proposition 5 has already been proven.
In order to prove Proposition 6, it suffices to show that

E
(
N

(1)
L′′ N

(2)
L′′
)

= J(a, b) + ab
(1− qa)(1− qb)

p2
, (24)
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To this end, we first write

E
(
N

(1)
L′′ N

(2)
L′′
)

=
a∑

i=1

b∑
j=1

E
(
γ

(b)
i η

(a)
j

)
.

We calculate the summand by writing, for i < a and j < b,

E
(
γ

(b)
i η

(a)
j

)
= E

(
γ

(b)
i η

(a)
j

{
1{γ(b)

i <j} + 1{γ(b)
i =j} + 1{γ(b)

i >j}

})
.

Next note that

E
(
γ

(b)
i η

(a)
j 1{γ(b)

i <j}

)
= E

(
γ

(b)
i 1{γ(b)

i <j}

)
E
(
η

(a)
j

)
=

1− qa

p

(
1− qj−1

p
− (j − 1)qj−1

)
,

while

E
(
γ

(b)
i η

(a)
j 1{γ(b)

i =j}

)
= jpqj−1

[
E
(

η
(a)
j 1{η(a)

j <i}

)
+ iP

(
η

(a)
j = i

)]
= jqj−1(1− qi)

and

E
(
γ

(b)
i η

(a)
j 1{γ(b)

i >j}

)
= E

(
γ

(b)
i 1{γ(b)

i >j}

) [
E
(
γ(a−1)1{γ(a−1)<i}

)
+ E

(
(1 + γ(a−1))1{γ(a−1)≥i}

) ]
=
(

qj − qb

p
+ jqj

)(
1− qa−1

p
+ qi−1

)
.

We have thus derived an expression for E
(
γ

(b)
i η

(a)
j

)
which is valid for i < a and j < b. It can

be seen that this expression also gives the correct answer in the complementary case, i.e., if either
i = a or j = b. We obtain Equation (24) by calculating the sum over 1 ≤ i ≤ a and 1 ≤ j ≤ b.
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