Univ. Leipzig, Prof. Dr. M. v. Renesse Wahrscheinlichkeitstheorie I im SoSe 2013

13. Übung

- 1. Bestimmen Sie die mittleren Trefferzeiten des Bankrottzustands 0 im einfachen Ruinmodell (Beisp. 5.2 aus der Vorlesung).
- 2. a) Zeigen Sie: Die Anzahl der Versuche beim Wurf einer Münze mit Erfolgswahrscheinlichkeit $p \in [0, 1]$ bis zum ersten Misserfolg ist geometrisch verteilt mit Parameter $\rho = p$.
 - b) Zeigen Sie, dass die geometrische Verteilung auf $\mathbb N$ charakterisiert ist über die Eigenschaft, dass $P(Z>r)=\rho^r$ mit $\rho\in[0,1]$.
 - c) Zeigen Sie für eine geometrisch vert. Zufallsvariable $Z < \infty$ f.s. $\Leftrightarrow \rho < 1 \Leftrightarrow E(Z) < \infty$.
- 3. Es (X_k) eine homog. Markov-Kette auf einem abzählbaren Zustandsraum (E,\mathcal{E}) und $i,j\in E$, so dass $p_{ij}^k>0$ und $p_{ji}^l>0$ für geeignete $k,l\in\mathbb{N}$. Zeigen Sie, dass i rekurrent ist genau dann, wenn j rekurrent ist.
- 4. Zeigen Sie, dass $X_k := \sum_{i=1}^k \xi_i$ mit einer unabhängigen Folge (ξ_i) von binären Zufallsvariablen der Form $\xi = +1$ mit Wahrscheinlichkeit p bzw. $\xi = -1$ mit Wahrscheinlichkeit q = 1 p eine Markovkette auf $\mathcal Z$ definiert, und zeigen Sie mit dem starken Gesetz der großen Zahlen, dass es im Fall $p \neq q$ keinen rekurrenten Zustand geben kann. Zeigen Sie auch die Rekurrenz im symmetrischen Fall z.B. mit dem Satz vom iterierten Logarithmus.