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Abstract

For a non-reversible Finsler metric F on a compact smooth manifold M
we introduce the reversibility λ = max{F (−X)|F (X) = 1} ≥ 1. Then we
show the following generalization of the classical sphere theorem in Riemannian
geometry: A simply-connected and compact Finsler manifold of dimension n ≥
2 with reversibility λ and with flag curvature

(
1− 1

1+λ

)2
< K ≤ 1 is homotopy

equivalent to the n-sphere.
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1 Introduction

The classical sphere theorem states that a simply-connected and compact mani-
fold of dimension n with a Riemannian metric whose sectional curvature K satisfies
1/4 < K ≤ 1 is homeomorphic to the n-sphere, cf. [Kl2], [AM]. In the proof the
homeomorphism is constructed using the estimate for the injectivity radius inj ≥ π
and the Toponogov comparison theorem. In [Kl1] W. Klingenberg shows that one
can give a different proof without using the Toponogov comparison theorem: The
injectivity radius estimate gives as lower bound for the length of a closed geodesic
the value 2π. Then a Rauch comparison argument shows that the Morse index of a
closed geodesic is at least n− 1. From the Morse theory of the energy functional on
the free loop space one can conclude, that the free loop space is (n− 2)-connected.
This implies that the manifold is homotopy equivalent to the n-sphere. P. Dazord
remarked that this proof extends to the case of a reversible Finsler metric, i. e. a
Finsler metric F for which F (−X) = F (X) for all tangent vectors, cf. [Da1], [Da2].
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2 A sphere theorem for non-reversible Finsler metric

The flag curvature, which depends on a flag (V, σ) consisting of a non-zero tangent
vector V and a 2-plane σ in which V lies, generalizes the sectional curvature.
In this paper we consider also non-reversible Finsler metrics, we introduce the re-
versibility λ = λ(M,F ) of a Finsler metric F on a compact manifold M :

λ := max{F (−X)|X ∈ T∗M,F (X) = 1}.

Obviously λ ≥ 1 and λ = 1 if and only if F is reversible. The reversibility enters
in the following generalization of the injectivity radius estimate for Riemannian
metrics:

Theorem 1 Let (M,F ) be a simply-connected, compact Finsler manifold of dimen-

sion n ≥ 2 with reversibility λ and flag curvature
(
1− 1

1+λ

)2
< K ≤ 1. Then the

length of a closed geodesic is at least π
(
1 + 1

λ

)
.

Using a hamiltonian description A. Katok defined in [Ka] a 1-parameter family
Fϵ; ϵ ∈ [0, 1) of Finsler metrics on the 2-sphere. For ϵ = 0 this is the standard
Riemannian metric, for ϵ ∈ (0, 1) these metrics are non-reversible and for irrational
parameter ϵ these metrics have exactly two geometrically distinct closed geodesics,
cf. [Zi], [Ra1]. These two geodesics differ by orientation. We remark in Section 4
using the Legendre transformation that these Katok examples coincide with the
Finsler metrics of constant flag curvature 1, constructed by Z. Shen in [Sh1]. These
examples show that the estimate for the length of a closed geodesic in Theorem 1 is
sharp.
Using a Rauch comparison argument and the Morse theory of the energy functional
on the free loop space one concludes from Theorem 1 the following Sphere Theorem:

Theorem 2 A simply-connected and compact Finsler manifold of dimension n ≥
3 with reversibility λ and with flag curvature

(
1− 1

1+λ

)2
< K ≤ 1 is homotopy

equivalent to the n-sphere.

2 Finsler geometry

On a manifold M with C∞ differentiable structure and with tangent bundle TM a
Finsler metric is a continuous mapping F : TM → R≥0, which is smooth outside
the zero section T 0M of the tangent bundle and satisfies the following conditions:

1. F is positively homogeneous, i.e. F (µX) = µF (X) for all µ > 0 and X ∈ TM.

2. F (X) = 0 if and only if X ∈ T 0M.
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3. The second derivative D2
fibreF

2(q) in fibre direction is positive definite in every
point q ∈ M.

The last condition is called Legendre condition. Let

gV (X,Y ) :=
1

2
D2

fibreF
2
V (X,Y ) =

1

2

∂2

∂s∂t

∣∣∣∣
(s,t)=(0,0)

F 2(V + sX + tY ).

For every tangent vector V ∈ TqM we obtain an inner product gV on TqM with
gV =< ., . >V = D2

fibreF
2
V , resp. a Riemannian metric on the induced bundle

τ∗M (TM).
In coordinates the Legendre condition has the following form: If (q1, . . . , qn) are
coordinates on an open subset U of M, and (q1, . . . , qn, q̇1, . . . , q̇n) are the induced
coordinates on TU ⊂ TM, then the matrix

D2
fibreF

2
(q,q̇) =

1

2

(
∂2F 2

∂q̇i∂q̇j
(q, q̇)

)
1≤i,j≤n

is positive definite at every point (q, q̇) ∈ TU.
We define a trilinear form

< X1, X2, X3 >V :=
1

4

∂3

∂s1∂s2∂s3

∣∣∣∣
(s1,s2,s3)=(0,0,0)

F 2

(
V +

3∑
i=1

siXi

)

for a tangent vector V ̸= 0, X ∈ TqM and vector fields X1, X2, X3 defined nearby
q. It is a symmetric tensor on the bundle τ∗M (TM), this Cartan tensor vanishes, if
the Finsler metric comes from a Riemannian metric, i. e. F (X) =

√
g(X,X) for a

Riemannian metric g. If V is a non-vanishing vector field on an open subset U ⊂ M
of a Finsler manifold one can introduce a connection ∇V on the tangent bundle over
U as follows:

1. ∇V is an affine connection

2. ∇V is torsionfree, i.e.
∇V

XY −∇V
Y X = [X,Y ]

for all vector fields X,Y defined over U.

3. For all vector fields X,Y, Z over U :

2 < ∇V
XY,Z >V = Y. < X,Z >V +X. < Y,Z >V −Z. < X, Y >V

+ < [X,Y ], Z >V + < [Z, Y ], X >V + < [Z,X], Y >V

−2 < Y,Z,∇V
XV >V −2 < X,Z,∇V

XV >V +2 < X,Y,∇V
XV >V (1)
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One can show, that these conditions determine the connection ∇V uniquely. In
the Riemannian case the Cartan tensor vanishes, then this formula is the so-called
Koszul formula determining the Levi-Civita connection, which does not depend on
V. By adding Equation 1 twice we obtain:

X. < Y,Z >V =< ∇V
XY,Z >V + < Y,∇V

XZ >V +2 < Y,Z,∇V
XV >V . (2)

This connection is the Chern-connection, it can be viewed as a linear connection on
the pull-back bundle τ∗M (TM), cf. [BCS, ch. 2.4]. Let V be a non-zero vector field
on the open subset U ⊂ M, then the Chern curvature RV (X,Y )Z for vector fields
X,Y, Z defined on U is defined by the equation:

RV (X,Y )Z := ∇V
X∇V

Y Z −∇V
Y ∇V

XZ −∇V
[X,Y ]Z.

In the Riemannian case this curvature does not depend on V and coincides with
the Riemannian curvature tensor. For a flag (V ;σ) consisting of a non-zero tangent
vector V ∈ TqM and a 2-plane σ with V ∈ σ the flag curvature K(V ;σ) is defined
as follows:

K(V ;σ) =
< RV (V,W )W,V >V

< V, V >V < W,W >V − < V,W >2
V

.

Here W is a tangent vector, such that V,W span the 2-plane σ. In the Riemannian
case the flag curvature is the sectional curvature of the 2-plane σ and does not depend
on V. In the literature there are several connections used in Finsler geometry. This
is due to the fact, that there is no connection which is torsionfree and metric. The
Chern connection is torsionfree and almost metric (cf. Equation 2), the Cartan
connection is metric but has torsion. But for the definition of the flag curvature it
does not make a difference whether one uses the Chern, the Cartan or the Berwald
connection. If c : I → M is a smooth curve with ċ ̸= 0, we can define the covariant
derivative ∇

dt of vector fields along this curve using the Chern connection: Extend
the tangent vector field ċ onto an open neighborhood U ⊂ M and extend the vector
fields X,Y along c to vector fields X,Y on U. Then let

∇
dt
X(t) := ∇ċ

ċX(t) .

A smooth curve c : I → M is a geodesic, if ∇
dt ċ(t) = 0.

One can give the following geometric interpretation of the flag curvature in terms
of a Riemannian metric, cf. [Sh, 6.2]: Assume that V is a non-vanishing geodesic
vector field in an open subset U ⊂ M.. Then using the Finsler metric we obtain a
Riemannian metric g := gV on U. Then the covariant derivative of the Riemannian
metric in direction of V coincides with the covariant derivative ∇V of the Finsler
metric in direction of the geodesic field. In particular V is also a geodesic field for
the Riemannian metric g. In addition the flag curvature KV (V,W ) of the Finsler
metric coincides with the sectional curvature Kg(V,W ) of the Riemannian metric.
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As in the Riemannian case geodesics are critical points of the energy functional E.
For a smooth curve c : [a, b] → M the energy functional is defined by

E(c) =
1

2

∫ b

a
F 2(ċ(t))dt.

Then we obtain the first variation formula:

Lemma 1 ([Sh, ch.5.1]) If cs : t ∈ [a, b] → cs(t) ∈ M, s ∈ (−ϵ, ϵ) is a smooth
variation of the curve c = c0 with variation vector field V (t) = ∂

∂s

∣∣
s=0

cs(t) then

d

ds

∣∣∣∣
s=0

E(cs) = ⟨ċ(b), V (b)⟩ċ(b) − ⟨ċ(a), V (a)⟩ċ(a) +
∫ b

a

⟨
∇
dt
ċ, V

⟩
ċ

dt.

One can conclude that geodesics between two fixed points are the critical points of
the energy functional on the space of piecewise smooth curves between these fixed
points.
Now we consider the following two cases, c : [0, 1] → M is a geodesic which is either
closed (periodic), i. e. ċ(0) = ċ(1) or it is a geodesic loop, i. e. c(0) = c(1). The first
case we consider is the case of a closed geodesic c : S1 = [0, 1]/{0, 1} → M. Let Vc

be the vector space of continuous and piecewise smooth periodic vector fields X(t)
along c(t). Then we define

V⊥
c := {X ∈ Vc | gċ(ċ, X) = 0}.

We define the index form Ic of c as the following quadratic form on the space V⊥
c :

Ic(X,Y ) =

∫ 1

0

{
gċ

(
∇
dt
X,

∇
dt
Y

)
(t)− gċ

(
Rċ(ċ, X)X,X

)
(t)

}
dt .

Then the the index ind(c) is defined as the maximal dimension of a subspace of V⊥
c

on which the index form is negative definite. One can show that this number is
always finite. The second variation formula shows, how one can interpret this index
form geometrically: Let cs : S1 → be a variation of c0 = c by piecewise smooth
curves with piecewise smooth variation vector field X = X(t) = ∂

∂s

∣∣
s=0

cs(t). Then
it is a consequence of the second variation formula, that

d2

ds2

∣∣∣∣
s=0

E(cs) = Ic(X,X),

compare [Sh, 10.2]. The index ind(c) is also a Morse index, since the index form can
be seen as (restriction of) the hessian d2E(c) of the energy functional

E : ΛM → R;E(σ) =
1

2

∫ 1

0
F 2(ċ(t))dt.
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Here ΛM is the free loop space Λ = ΛM :

Λ = ΛM =
{
σ : S1 → M |σ absolutely continuous , E(σ) < ∞

}
.

Now let c : ([0, 1], {0, 1}) → (M, {p}) be a geodesic loop and let Wc be the vector
space of continuous and piecewise smooth vector fields X along c with X(0) =
X(1) = 0. We set W⊥

c := {X ∈ Wc | gċ(ċ, X) = 0} then the above defined index form
defines a quadratic form Ic,Ω on W⊥

c , which by the second variation formula can be
seen as the restriction of hessian d2E(c) the energy functional E : Ωp(M) → R. Here

Ωp(M) := {σ ∈ ΛM |σ(0) = p}

The index of the quadratic form Ic,Ω is the Ω-index indΩ(c) of the geodesic loop c.
From the Morse theory of the energy functional E : Λ → R one obtains the following:

Lemma 2 [Ra1], [Sh, Thm. 17.4.3] Let (M,F ) be a compact Finsler manifold
of dimension n ≥ 2. If all closed geodesics on M satisfy: indc ≥ n − 1 then the
manifold is homotopy equivalent to the n-dimensional sphere, i. e. for n ̸= 3 it is
homeomorphic to the n-sphere.

As in the case of a Riemannian metric one obtains comparison results for the index
of a closed geodesic:

Lemma 3 Let (M,F ) be a compact Finsler manifold of dimension n with flag cur-
vature δ < K ≤ 1 for a positive δ ∈ R+. If the length of c satisfies L(c) ≥ π/

√
δ

(resp. L(c) ≤ π), then the indices indc; indΩc satisfy: ind(c) ≥ indΩ(c) ≥ n − 1
(resp. indΩ(c) ≤ ind(c) ≤ n− 1).

As in the Riemannian case one obtains as a consequence of the second variation
formula the following result, which implies Synge’s theorem: An even-dimensional,
compact and oriented Finsler manifold of positive flag curvature is simply-connected:

Lemma 4 ([Sh, ch. 10.3]) Let (M,F ) be an even-dimensional and oriented Finsler
manifold with positive flag curvature K > 0 and let c be a closed geodesic. Then
there is a periodic, smooth and parallel unit vector field W along c.

3 The length of a shortest closed geodesic

An important step in the proof of the sphere theorem in Riemannian geometry is the
injectivity radius estimate for manifolds of positive sectional curvature in the case
of an even-dimensional manifold resp. for manifolds which are quaterly pinched for
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an odd-dimensional manifold, i.e. the sectional curvature K satisfies 1/4 < K ≤ 1.
We show for non-reversible Finsler metrics with pinched positive flag curvature an
estimate for the length of a shortest non-trivial closed geodesic resp. a shortest
geodesic loop. Here the pinching constant depends on the reversibility λ of the
Finsler metric.

If λ is the reversibility, we conclude that for all X ∈ TM :

1

λ
F (X) ≤ F (−X) ≤ λF (X). (3)

We denote by
θ : M ×M → R

the pseudo-distance induced by F, i.e.

θ(p, q) = inf{L(c) | c : [0, 1] → M smooth, c(0) = p, c(1) = q}.

Then θ(p, q) = 0 if and only if p = q and the triangle inequality

θ(p, q) ≤ θ(p, r) + θ(r, q)

holds for all p, q, r ∈ M. But in general θ(p, q) ̸= θ(q, p). For a reversible Finsler
metric this pseudo-distance is actually a distance. Estimate ( 3) implies that for all
p, q ∈ M :

1

λ
θ(p, q) ≤ θ(q, p) ≤ λθ(p, q). (4)

We introduce the symmetrized metric

d(p, q) :=
1

2
(θ(p, q) + θ(q, p)) . (5)

For λ = 1 it coincides with the metric induced by the reversible Finlser metric.

We call a (geodesic) biangle c with corners p, q ∈ M a continuous closed curve
c : [0, b] → M with a point a ∈ (0, b), such that c(0) = p = c(b); c(a) = q and such
that the restrictions c|[0, a] and c|[a, b] are geodesics. We call this biangle minimal, if
the two geodesics c|[0, a]; c|[a, b] are minimal, i.e. L (c|[0, a]) = θ(c(0), c(a)) = θ(p, q)
and L (c|[a, b]) = θ(c(a), c(b)) = θ(q, p). Hence the length L = L(c) of a minimal
geodesic biangle with corners p, q equals 2d(p, q).

For X ∈ TqM we denote by cX : R → M the geodesic with c′X(0) = X; then the
exponential map expq : TqM → M is given by expq(X) = cX(1). For a unit tangent
vector X ∈ T 1

q M, i.e. a tangent vector X with F (X) = 1 we denote by t(X) > 0
the positive number

t(X) := sup {s > 0 | θ(expq(sX), q) = s
}
.
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Then we call expq(t(X)X) a cut point. The cut locus

Cut(q) := {expq(t(X)X) |F (X) = 1}

is the union of the cut points on geodesics emanating from q. For a non-reversible
Finsler metric in general r ∈ Cut(q) does not imply q ∈ Cut(r). For a compact
Finsler manifold (M,F ) and a point q ∈ M we denote by d(q) := inf{d(r, q); r ∈
Cut(q)} the distance (with respect to the symmetrized metric) of the cut locus
Cut(q) and the point q. The injectivity radius inj(q) is given by inj(q) := inf{θ(r, q); r ∈
Cut(q)}. If the flag curvature satisfies K ≤ 1 and if q is a point conjugate to p along
a geodesic c, then it follows that θ(p, q) ≥ π, resp. d(p, q) ≥ (π/2)(1 + λ−1). If
d(p) < (π/2)(1 + λ−1) then there is a cut point q ∈ Cut(p) with d(p, q) = d(p) and
there is no conjugate point to p along any minimal geodesic segment starting from
p and ending in q. As an immediate consequence of the first variation formula 1 we
obtain for the variation of a geodesic biangle:

Lemma 5 Let (M,F ) be a Finsler manifold and let cs : [0, b] → M ; s ∈ (−ϵ, ϵ) be a
variation with fixed endpoints cs(0) = c0(0); cs(b) = c0(b) of the geodesic biangle c =
c0 with corners p = c(0) = c(b); q = c(a); a ∈ (0, b). Denote V := ∂cs

∂s (a)
∣∣
s=0

∈ TqM.

Then we obtain for the energy E(cs) = 1/2
∫ b
a F 2(c′s(t))dt :

dE(c).V =
d

ds

∣∣∣∣
s=0

E(cs) = gc′(a+)

(
V, c′(a+)

)
− gc′(a−)

(
V, c′(a−)

)
Here gW (W, .) = LF (W ) is the Legendre transformation LF : TM → T ∗M de-
fined by the Finsler metric F applied to the tangent vector W. If follows from
the definition of the Finsler metric, that for distinct U,W ∈ TpM the difference
gU (U, .) − gW (W, .) = LF (U) − LF (W ) does not vanish, since LF is a diffeomor-
phism.

Lemma 6 Let (M,F ) be a compact Finsler manifold with reversibility λ and with
flag curvature K ≤ 1. If there is a point p ∈ M with d(p) < (π/2)(1 + λ−1) then
there is a cut point q ∈ Cut(p) and a minimal geodesic biangle c with corners p, q
being smooth at q, i.e. c forms a geodesic loop starting from p. The length L(c) of
this geodesic loop equals 2d(p) = 2d(p, q).

Proof. Let (qk)k ⊂ Cut(p) be a minimal sequence, i.e.

d(p) = inf{d(p, q)|q ∈ Cut(p)} = lim
k→∞

d(p, qk) <
π

2

(
1 +

1

λ

)
.

Since the cut locus Cut(p) is a compact subset of M the sequence (qk)k has a
convergent subsequence with limit point q ∈ Cut(p). As already remarked above, q
is not conjugate to p along any minimal geodesic from p to q. Therefore there are
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two distinct minimal geodesics c1, c2 : [0, d(p, q)] → M parametrized by arc length
with c1(0) = c2(0) = p, c1(θ(p, q)) = c2(θ(p, q)) = q and c′1(0) ̸= c′2(0). We choose
a minimal geodesic c3 : [0, θ(q, p)] → M parametrized by arc length with c3(0) = q
and c3(θ(q, p)) = p.
We want to prove that one of the minimal geodesic biangles formed by c1, c3 and
c2, c3 is smooth at q, i.e. is a geodesic loop starting from p. We assume that our
claim does not hold, i.e. we assume that c′1(θ(p, q)) ̸= c′3(0) and c′2(θ(p, q)) ̸= c′3(0).
Since q is not conjugate to p along cj , j = 1, 2 we can choose an open neighborhood
U ⊂ M of q and open disjoint neighborhoods Uj ⊂ TpM, j = 1, 2 of c′j(0) ∈ TpM
such that the restrictions

expp |Uj : Uj → U, j = 1, 2

of the exponential mapping expp : TpM → M are diffeomorphisms. We define two
functions

fj : U → R; fj(v) = F
(
(expp |Uj)

−1(v)
)
; j = 1, 2.

Then fj is differentiable and of maximal rank with

(expp |Uj)
−1(q) = θ(p, q)c′j(0); fj(q) = θ(p, q)

and gradfj(q) = c′j(θ(p, q)) resp. dfj(q).X =< c′j(θ(p, q)), X >c′j(θ(p,q))
for all X,

which follows from the Gauß lemma [Sh, 11.2.1]. Since

gradf1(q) = c′1(θ(p, q)) ̸= c′2(θ(p, q)) = gradf2(q)

it follows that the function

f := f1 − f2 : U → R; v 7→ f1(v)− f2(v)

has maximal rank in an open neighborhood of q which we again denote by U, i. e.
V = f−1(0) is a smooth hypersurface with q ∈ V. Since by assumption the tangent
vectors c′1(θ(p, q)); c

′
2(θ(p, q)); c

′
3(0) ∈ TqM are pairwise disjoint there is a tangent

vector v ∈ TqV ⊂ TqM with

gc′1(θ(p,q))(c
′
1(θ(p, q), v)− gc′2(θ(p,q))(c

′
2(θ(p, q)), v) ̸= 0.

This implies that we can assume without loss of generality that for the geodesic
biangle c formed by c1, c3 we have with the notation from Lemma 5:

dE(c)(v) ̸= 0.

Hence by eventually using −v instead of v we conclude: For a sufficiently small open
neighborhood V ′ of q in V there are three pairwise distinct geodesics γv,j : [0, lv] →
M, j = 1, 2; γv,3 : [0, l′v] → M parametrized by arc length with γv,1(0) = γv,2(0) =
γv,3(l

′
v) = p; γ′v,j(0) ∈ Uj ; j = 1, 2;L(γv,1) = L(γv,2); lv = f1(v) = f2(v) : γv,1(lv) =

γv,2(lv) = γv,3(0) and

L(γv,1) + L(γv,3) = L(γv,2) + L(γv,3) = lv + l′v < L(c).
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Since γv,1, γv,2 are not minimal on any interval [0, lv+ϵ] for ϵ > 0, there is tv ∈ (0, lv],
such that γv,1(tv) = qv is the first cut point on γv,1|[0,∞). Since

2d(p, qv) < lv + l′v < L(c) = 2d(p, q)

we obtain a contradiction to the definition of q.Hence there is j ∈ {1, 2} : c′j(θ(p, q)) =
c′3(0), which means that the geodesic biangle formed by cj and c3 is a geodesic loop
starting from p.

Lemma 7 Let (M,F ) be a compact Finsler manifold with reversibilty λ and flag
curvature K ≤ 1. We define the positive number d := d(M,F ) = inf{d(p) | p ∈
M} = inf{d(p, q)|p ∈ M ; q ∈ Cut(p)}. If d < π(1 + λ−1)/2 then there is a shortest
geodesic loop c with initial point p and a point q ∈ Cut(p) on this loop with L(c) =
2d = 2d(p, q).

Proof. Let q ∈ Cut(p) be a point with d = d(p, q). By the preceding Lemma there
is a geodesic loop c with c(0) = p and L(c) = 2d. It remains to show that this
curve is a shortest geodesic loop. Let γ be a shortest geodesic loop with initial point
γ(0) = p. Then denote by q = c(t0) the cut point, i. e. c|[0, t0] is minimal and
L(γ) ≥ 2d(p, q). The preceding Lemma implies that there is a geodesic loop c from
p with L(c) = d = d(p), hence L(γ) = d.

Remark 1 Guided by the Riemannian case one could expect, that d is the length
of a shortest closed geodesic. But if one uses the same arguments as in the Proof of
Lemma 6 one can only show the following: There are two minimal geodesics c1, c2
from p to q ∈ Cut(p) and a minimal geodesic c3 from q to p, such that c1 and c3 form
a geodesic loop from p and such that either c3 and c1 or c3 and c2 form a geodesic
loop from q. Only in the first case one would obtain a closed geodesic. Therefore at
least this Proof does not show whether a shortest closed geodesic has length d. But
in any case we obtain a lower bound for the length of a shortest closed geodesic.

Lemma 8 Let (M,F ) be a compact Finsler manifold with reversibility λ and flag
curvature K ≤ 1. Assume that cs : [0, 1] → M, , s ∈ [0, 1] is a homotopy of closed
curves (i.e. cs(1) = cs(0) for all s ∈ [0, 1]) between a point curve c0, i.e. c0(t) = p
for all t and some p ∈ M and the geodesic loop c = c1. Then

max
s∈[0,1]

L(cs) ≥ π

(
1 +

1

λ

)
.

Proof. We use the following notation: Let

c : (s, t) ∈ [0, 1]× [0, 1] 7→ c(s, t) = cs(t) ∈ M,
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by assumption p = c(0, t) = c0(t) for all t ∈ [0, 1], c(s, 1) = c(s, 0) for all s ∈ [0, 1]
and c1 is a geodesic loop. Assume that for all s ∈ [0, 1] we have: L(cs) < π

(
1 + 1

λ

)
.

It follows that there is a δ > 0 such that for all s ∈ [0, 1] we have L(cs) ≤ (π −
δ)
(
1 + 1

λ

)
. Let ps := cs(0), if for some t, s ∈ [0, 1] : θ(ps, cs(t)) > π − δ, then

L(cs) ≥ θ(ps, cs(t))+θ(cs(t), ps) > (π−δ)
(
1 + 1

λ

)
in contradiction to our assumption.

Hence we have for all s, t ∈ [0, 1] : cs(t) ∈ Bπ−δ(M) = exp(Bπ−δ(TpsM)), here
Bπ−δ(TM) = {X ∈ TM |F (X) ≤ π − δ}. The mapping

F := τM × exp : Bπ−δ(TM) → {(x1, x2) ∈ M ×M |θ(x1, x2) ≤ π − δ} ⊂ M ×M,

with F (X) = (p, exp(X)), X ∈ TpM has everywhere maximal rank, since the flag
curvature satisfies K ≤ 1. Therefore there is a uniquely determined lift

c̃ : (s, t) ∈ [0, 1]× [0, 1] 7→ c̃(s, t) = c̃s(t) ∈ Bπ−δ(TM)

with cs(t) = expps(c̃s(t)) for all s, t ∈ [0, 1]. Since c̃(0, t) = c̃0(t) = p for all t ∈ [0, 1]
one concludes that c̃s(1) = c̃s(0) for all s ∈ [0, 1]. Since c1 is geodesic loop with
c1(0) = p1 we conclude c̃1(t) = tc′1(0) for all t ∈ [0, π/L(c1)) which contradicts
c̃1([0, 1]) ⊂ Bπ−δ(Tc1(0)M).

Theorem 3 Let (M,F ) be a simply-connected compact Finsler manifold of even
dimension n ≥ 2 with reversibilty λ and with flag curvature 0 < K ≤ 1. Then every
non-constant closed geodesic c has length L(c) ≥ π

(
1 + 1

λ

)
.

Proof. Let c : S1 = [0, 1]/{0, 1} → M be a shortest closed geodesic with 0 <
L(c) < π

(
1 + 1

λ

)
. There exists a parallel unit vector field W along c, (cf. Lemma 4),

it follows that the index form Ic on the vector space V ⊥
c satisfies: Ic(W,W ) < 0. Let

cs, s ∈ (−ϵ, ϵ) be a variation of c = c0 with variation vector field W. Then it follows
from the second variation formula that E(cs) < E(c0) for all s ∈ (−ϵ, 0) ∪ (0, ϵ).
Since there are no critical values of E in the interval (0, E(c0)) there is a mapping
hs : S

1 → M ; s ∈ [−1, 1] with c = h0;L(h1) = L(h−1) = 0 and L(hs) < L(c) = L(h0)
for all s ∈ (−1, 1), s ̸= 0. But this contradicts the Long Homotopy Lemma 8.

Theorem 4 Let (M,F ) be a simply-connected and compact Finsler manifold of

dimension n ≥ 3 with reversibilty λ and with flag curvature
(
1− 1

1+λ

)2
< K ≤

1. Then every non-constant geodesic loop c has length L(c) ≥ π
(
1 + 1

λ

)
and the

injectivity radius satisfies inj ≥ π/λ.

Proof. For every geodesic loop c∗ with L(c∗) ≥ π
(
1 + 1

λ

)
we obtain from Lemma 3

that indΩc
∗ ≥ n− 1 ≥ 2. By a standard argument in Morse theory this implies that

the relative homotopy group

π1((ΩpM,Ωκ−
p M) = 0. (6)
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vanishes, here Ωκ−
p M := {γ ∈ ΩpM |E(γ) < κ} and κ := π2(1 + λ−1)2/2.

We assume that there is a shortest geodesic loop c of length L = L(c) <
(
1 + 1

λ

)
π,

hence then L(c) = 2d, cf. Lemma 7. Since the manifold is simply-connected there is
a path s ∈ [0, 1] 7→ cs ∈ Ωp(M) such that c0 = p is the point curve and c1 = c. Then
it follows from Equation 6 that there is a homotopy s ∈ [0, 1] 7→ c̃s ∈ Ωκ−

p (M) with
c̃0 = p, c̃1 = c. But this contradicts the Long Homotopy Lemma 8. The estimate for
the injectivity radius follows since inj ≥ 2d/(1 + λ). With these estimates we can
prove the Sphere Theorem 2 stated in the Introduction:

Proof. of Theorem 2: We conclude from Theorem 4 that the length of a non-trivial

closed geodesic c satisfies L(c) ≥ π
(
1 + 1

λ

)
. Since K >

(
1− 1

1+λ

)2
it follows from

Lemma 3 that the index indc is bounded from below by n− 1, i. e. ind(c) ≥ n− 1
for every non-constant closed geodesic. Then Lemma 2 implies that M is homotopy-
equivalent to the n-sphere.

4 Example

We consider the following Finsler metric on S2 : Let V be the Killing field which
belongs to the 1-parameter subgroup t ∈ R 7→ R(2πt) ∈ SO(3) of rotations R(2πt)
around the axis through the north and south pole with angle 2πt and let g be the
standard Riemannian metric on S2 resp. the tangent bundle TS2. Denote by g∗ the
dual metric on the cotangent bundle T ∗M. For every ϵ ∈ (0, 1) the function

Hϵ : T
∗S2 → R;Hϵ(y) :=

√
g∗(y, y) + ϵy(V )

defines a quadratic Hamiltonian 1
2H

2
ϵ , whose corresponding Finsler metric we denote

by Fϵ. These Finsler metrics were introduced by A. Katok (cf. [Ka]), their geometry
was investigated by W. Ziller [Zi]. In the following Theorem we add the observation,
that these Katok examples coincide with the examples of constant flag curvature
given by Z. Shen in [Sh1]. They provide metrics which show that our estimates for
the length of a shortest closed geodesic is sharp.

Theorem 5 For every ϵ ∈ (0, 1) the Finsler metric Fϵ is a non-reversible Finsler
metric on S2 with constant flag curvature K ≡ 1. The reversibility is λ = (1 +
ϵ)/(1 − ϵ). If ϵ is irrational then there are exactly two geometrically distinct closed
geodesics c± of length L(c±) = 2π(1± ϵ)−1. In particular the shortest closed geodesic
c+ satisfies L(c+) = 2π(1 + λ−1) = π/(1 + ϵ). The injectivity radius equals π.

Proof. In geodesic polar coordinates (r, ϕ) ∈ (0, π) × [0, 2π] the standard metric
on the sphere is of the form g = dr2 + sin2(r)dϕ2. It is shown in [Sh1, Rem. 3.1]
that the Finsler metric

Fϵ =

√
(1− ϵ2 sin2 r)dr2 + sin2(r)dϕ2 − ϵ sin2 rdϕ

1− ϵ2 sin2 r
(7)
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for every ϵ ∈ [0, 1) has constant flag curvature 1. For ϵ = 0 it is the standard
Riemannian metric. The Finsler metric Fϵ is a Randers metric, i.e. there is a
Riemannian metric γ and a 1-form β with F (Y ) =

√
γ(Y, Y ) + β(Y ). We denote

the coefficents aij of the metric γ with respect to the coordinates y1 = r, y2 = ϕ,
i.e. γ = aijy

iyj and we denote the coefficents of the 1-form β with bi, i.e. β = biy
i.

Then also the corresponding Hamilton function is of Randers type, which follows by
direct computation or from the result [HS, Theorem 5.8], [Sh, Example 3.1.1]. By
this result

H(x, p) =
1

2

(√
aijpipj ± b

i
pi

)2

provided ∥β∥2 = γijb
jbj ̸= 1. Here we used the following expressions:

aij =
1

1− ∥b∥2
aij +

1

(1− ∥b∥2)2
bibj ; b

i
=

1

1− ∥b∥2
bi

and pi = 1/2(∂F 2/∂yi). For the Finsler metric Fϵ given in Equation 7 we obtain:

a11 =
1

1− ϵ2 sin2 r
; a12 = 0; a22 =

sin2 r

1− ϵ2 sin2 r
; b1 = 0; b2 = − ϵ sin2 r

1− ϵ2 sin2 r

and therefore we obtain the corresponding Hamilton function 1
2H

2
ϵ with

Hϵ(y, p) =

√
p21 +

1

sin2 r
p22 + ϵp2 . (8)

These coincide with the Katok example.
The statements about the closed geodesics are explained in [Zi] and [Ra1], the closed
geodesics c±(t) = c(±t) are the equator in both directions, which is invariant under
the rotation.

Remark 2 (a) This examples show that the estimate for the length of a shortest
closed geodesic given in Theorem 1 is sharp. But we do not know whether there is a
non-reversible Finsler metric with flag curvature 1/4 < K ≤ 1 on a manifold which
is not homotopy equivalent to the n-sphere.

(b) In a forthcoming paper we will show how one can obtain existence result for
closed geodesis on Finsler manifolds with positive flag curvature using the results of
this paper.
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