
Banach space-valued ergodic theorems
and spectral approximation

DISSERTATION

zur Erlangung des akademischen Grades

doctor rerum naturalium

vorgelegt dem Rat

der Fakultät für Mathematik und Informatik

der Friedrich-Schiller-Universität Jena

von Felix Pogorzelski

geboren am 20.05.1984 in Erlenbach am Main



ii

1. Gutachter: Prof. Dr. Daniel Lenz
(Promotionsbetreuer, Friedrich-Schiller-Universiät Jena, Ernst-Abbe-Platz 2,
07743 Jena)

2. Gutatcher: Prof. Dr. Tatjana Eisner
(Universität Leipzig, Augustusplatz 10, 04109 Leipzig)

3. Gutachter: Prof. Dr. Amos Nevo
(Israel Institute of Technology (Technion), Technion Campus, 32000 Haifa, Israel)

Datum der Abgabe: 18.08.2014
Datum der Verteidigung: 17.10.2014



Zusammenfassung in deutscher Sprache

Die vorliegende Dissertationsschrift behandelt banachraumwertige, fast-additive Abbildun-
gen. Diese sind von der Form

F : F(G)→ Z,

wobei F(G) eine Menge von messbaren Teilmengen eines lokalkompakten Maßraumes G
darstellt und Z für einen beliebigen Banachraum steht. Eine solche Funktion F nennt man
fast-additiv, falls sie gewisse Beschränktheits- und Invarianzkriterien erfüllt und falls für jede
endliche Vereinigung Q =

⊔
kQk paarweiser disjunkter Mengen Qk ∈ F(G) die Differenz

der Vektoren F (Q) und
∑
k F (Qk) durch einen sogenannten ’Randterm’ (’boundary term’)

kontrolliert werden kann. In gewissen solchen Räumen G mit Maß m findet man Aus-
schöpfungen (Uj)j∈N von G mittels kompakter Mengen Uj , deren normalisierter Randwert
asymptotisch verschwindet. In diesen Situationen lässt sich die Existenz der Grenzwertes

F ∗ := lim
j→∞

F (Uj)
m(Uj)

in der Topologie des Banachraumes Z beweisen. Der Hauptgegenstand der Arbeit ist
der Nachweis solcher Konvergenzsätze (banachraumwertiger Ergodensätze) für eine große
Klasse von Geometrien. Diese Resultate werden in einem zweiten Schritt auf Fragen spek-
traler Konvergenz angewendet. Dabei wird die gleichmäßige Existenz der integrierten Zu-
standsdichte von selbstadjungierten Operatoren mit endlicher Reichweite in verschiedenen
diskreten Geometrien gezeigt. Zudem wird die Ihara Zetafunktion für sofische Graphings
definiert und in der Topologie der gleichmäßigen Konvergenz auf kompakten Mengen durch
normalisierte Zetafunktionen von endlichen Graphen approximiert. Die originalen Ergeb-
nisse dieser Arbeit finden sich in den Aufsätzen [Pog13a, Pog13b, PS14, LPS14].

Der Text ist wie folgt gegliedert. Das Kapitel 2 behandelt eine Einführung in die Theorie von
lokalkompakten, mittelbaren, hausdorffschen Gruppen, welche das zweite Abzählbarkeits-
axiom erfüllen. Für unimodulare Gruppen wird gezeigt, dass sich (bezüglich der Grup-
penmultiplikation) genügend invariante Teilmengen gut durch Translate von bestimmten
kompakten, kleineren Mengen überdecken lassen. Dies erweitert Ergebnisse aus [OW87].
Im folgenden Kapitel 3 werden Familien von Überdeckungen von genügend invarianten
Teilmengen in G konstruiert, welche im Durchschnitt wünschenswerte Uniformitätseigen-
schaften aufweisen. Diese Resultate bilden die Grundlage zum Beweis zweier fast-additiver,
banachraumwertiger Ergodensätze in Kapitel 4. Das Theorem für abzählbare mittelbare
Gruppen (Theorem 4.4) verallgemeinert das Hauptresultat in [LSV11]. Für stetige Gruppen
erhält man mit Theorem 4.15 einen fast-additiven, banachraumwertigen Mittelergodensatz,
welcher den klassischen Fall [Gre73] erweitert. Das Kapitel 5 behandelt die Konvergenz
von beschränkten, additiven Prozessen. Es wird gezeigt, dass Prozesse, welche sich durch
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iv Zusammenfassung in deutscher Sprache

L∞-Prozesse approximieren lassen, entlang von Tempelman-Følnerfolgen fast überall kon-
vergieren, siehe Theorem 5.17. Dies ist eine fundamentale Erweiterung des geometrischen
Rahmens der Ergebnisse in [Sat99, Sat03]. Die Anwendung der Konvergenzsätze für Grup-
pen auf Fragestellungen von spektraler Approximation erfolgt im Kapitel 6. Hier werden die
Approximationsresultate für die integrierte Zustandsdichte aus den Arbeiten [LV09, LSV11]
erweitert und ergänzt. Im Kapitel 7 werden Folgen von endlichen Graphen eingeführt,
die gegen Graphings konvergieren. Diese Folgen heißen schwach konvergent oder auch
Benjamini-Schramm-konvergent, cf. [BS01]. Besonderes Augenmerk liegt auf den hyper-
endlichen Graphenfolgen. In Theorem 7.10 wird gezeigt, dass schwach konvergente, hyper-
endliche Graphenfolgen eine Cauchyfolge bezüglich einer bestimmten Pseudometrik bilden.
In diesem Fall spricht man von starker Konvergenz. Für stark konvergente Graphenfolgen
lassen sich banachraumwertige fast-additive, sowie subadditive Konvergenzsätze beweisen.
Dies ist Gegenstand der Theoreme 8.2 und 8.4 im Kapitel 8. Die Ergebnisse erweitern den
geometrischen Rahmen bisheriger Resultate für endlich erzeugte Gruppen (siehe oben) und
Halbgruppen [CSKC12]. Im Kapitel 9 wird die gleichmäßige Approximation der integrierten
Zustandsdichte von selbstadjungierten, musterinvarianten Operatoren endlicher Reichweite
auf Graphings entlang von hyperendlichen, schwach konvergenten Graphenfolgen bewiesen
(Theorem 9.12). Ferner werden Verbindungen zur Lück-Approximation [Lüc94, ATV13]
für Graphenfolgen gezogen. Das Kapitel 10 behandelt die Approximation der in [LPS14]
eingeführten Ihara Zetafunktion für Graphings entlang normalisierter, endlicher Versionen
zu schwach konvergenten Graphenfolgen. Für sofische Graphings wird in Theorem 10.5 die
Konvergenz in der Topologie der gleichmäßigen Konvergenz auf kompakten Mengen gezeigt.
Für periodische Graphen mit sofischer Gruppenwirkung werden entsprechende Folgen ex-
plizit konstruiert, siehe Theorem 10.8. Diese Ausführungen verallgemeinern die Konvergenz-
resultate in [CMS02, GŻ04, GIL08, GIL09]. Im Kapitel 11 werden zwei offene, sich direkt
an diese Dissertation anschließende Fragen skizziert.
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1 Introduction

In this thesis, we consider Banach space-valued, almost-additive mappings. Abstractly,
these functions are of the form

F : F(G)→ Z,

where F(G) is a collection of finite measure subsets of a locally compact measure space
(G,m) and Z is a Banach space with norm ‖ · ‖Z . We will call such a mapping F almost-
additive if it possesses certain boundedness and invariance conditions and if for a finite
union Q =

⊔
kQk ∈ F(G) of pairwise disjoint sets Qk ∈ F(G), the difference of the vectors

F (Q) and
∑
k F (Qk) can be controlled with respect to ‖ · ‖Z by a boundary term. Inspired

by elementary convergence theorems for subadditive sequences with values in Z = R (see
e.g. [Gro99], [LW00], [Kri10]), the question arises whether one can find (partial) exhaustions
of the space G by a sequence (Uj) of compact subsets such that the limit

F ∗ := lim
j→∞

F (Uj)
m(Uj)

exists in the topology of the Banach space Z. The goal of this dissertation is to give a pos-
itive answer to this question in a wide range of geometric situations. We will show results
ranging from locally compact amenable groups to the geometrically very general situation
of convergent graph sequences. All new assertions have appeared or will appear in one of
the papers [Pog13a, Pog13b, PS14, LPS14].
The existence of the above limit provides interesting applications. One such example was
given by Lenz in [Len02] for subshift dynamical systems. There, the author defines F on the
set of associated words and characterizes unique ergodicity of the subshift by the normal-
ized Banach space convergence of F along increasing boxes. It was observed in [LS05] that
Banach space-valued, almost-additive mappings are a valuable tool to prove the uniform ap-
proximation of spectral quantities for large classes of self-adjoint operators via spectral data
of their finite volume analogues. One such key quantity is given by the integrated density of
states (IDS) which is of fundamental importance in the world of mathematical physics. In
the context of amenable groups a considerable amount of uniform convergence results along
Følner sequences can be found in the literature, see e.g. [KLS03, LS05, LMV08, LSV11].
In the two latter works [LMV08, LSV11], the authors use an abstract Banach space-valued
ergodic theorem for their spectral approximation results along Følner sequences in countable
amenable groups. Information about the coefficients of the operators under consideration
are encoded in a colouring of the group by finitely many colours. As an ergodicity condition,
it is assumed there that for all coloured patterns, their occurrence frequencies must exist
along the Følner sequence. While the paper [LMV08] covers the case G = Zd, the con-
vergence statement in [LSV11] holds true for all countable amenable groups containing a
monotile Følner sequence with symmetric grid set. The situation of general amenable groups
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2 1 Introduction

remained open. One main result of this thesis closes the gap to the general case. Specifi-
cally, we show in Theorem 4.4 the Banach space convergence along Følner sequences in all
countable, amenable groups. The key ingredient in the proof are ε-quasi tiling techniques
developed by Ornstein and Weiss in [OW87] in order to ’approximate’ large compact sets
in the group by finite unions of nearly disjoint translates of ’smaller’ prototile sets. We make
use of constructions of Ornstein and Weiss, but we have to extend their results to obtain
effective covering estimates. This is done in Theorem 3.2. We prove there the existence
of families of ε-quasi tilings for all countable amenable groups such that on average, large
compact sets are covered evenly by the translates of prototiles at our disposal. Parts of the
covering theorems that we use here have been developed in cooperation with Schwarzen-
berger. In order to be clear with assigning originality we mention the cooperation at those
points. The mentioned results appear in [PS14].
Almost-additive functions on subsets of locally compact, amenable groups can also been
interpreted as a generalization of abstract averages appearing in classical ergodic theory.
Hence, it is worth raising the question if under some compactness criteria on the Banach
space Z (e.g. reflexivity), one can prove extensions of classical mean ergodic theorems. In
Theorem 4.15, we give a positive answer to this problem. In fact, we prove the convergence
along Følner sequences for almost-additive functions which are compatible with a weakly
measurable action of the group on the Banach space. This result is a generalization of
the classical ergodic theorems of von Neumann and Greenleaf [Gre73]. Like in the
countable case, a major ingredient in the proof are uniform families of ε-quasi tilings of
’large’ subsets of the group. Specifically, we show in Theorem 3.4 (which can be seen as
an analogue of Proposition I.3.6. [OW87]) that in all amenable, locally compact, second
countable unimodular Hausdorff groups, one can construct a family of ε-quasi tilings for
’highly invariant’ compact sets T such that on average, the covering densities of the various
prototile sets are constant in every part of T . In fact, for the proof of Theorem 4.15, we
need more. We will have to work with two families of ε-quasi tilings referring to coverings
of the same set and maintaining a certain independence from each other. This leads to
the concept of uniform decomposition towers. We prove in Theorem 3.6 that those latter
objects can always be constructed in all amenable groups under consideration.
Having the abstract mean ergodic theorem, Theorem 4.15, at hand, it is natural to ask
whether there is a concept of a pointwise almost-everywhere convergence theorem for almost-
additive functions defined on Bochner spaces Z. We give a positive answer to this question
for additive functions F which will be referred to as bounded, additive processes. In Theo-
rem 5.17, we prove the almost-everywhere convergence along increasing Tempelman Følner
sequences for approximable processes taking their values in a Bochner space. The quo-
tients in the ergodic theorem are more general than the integral averages appearing in the
Lindenstrauss ergodic theorem, cf. [Lin01]. As for integral averages, one can prove point-
wise convergence also along Shulman Følner sequences, our pointwise convergence theorem
is not a direct generalization of the Lindenstrauss ergodic theorem. However, it extends
the classical results in [Tem72, Eme74] and we show convergence for a larger class of er-
godic averages, such that Delone point processes, cf. Example 5.7. Moreover, a Banach
space-valued Lindenstrauss ergodic theorem can be shown to hold true, cf. Theorem 5.5.
We omit the proof in the text since it has essentially been given in the diploma thesis of
the author, cf. [Pog10]. The almost-sure convergence of bounded, additive processes has
been investigated before in restricted geometric settings. In [Sat99, Sat03], Sato proves a
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pointwise ergodic theorem for bounded, additive processes defined on G = Rd+, where the
semigroup action is dominated by a family of contraction majorants. We draw our attention
to special contractions, thus being in a slightly more specific situation from the viewpoint of
the underlying dynamics. Then, dealing with abstract amenable groups and with arbitrary
increasing Tempelman Følner sequences, we can extend the results in [Sat99, Sat03] to a far
more general geometric context. Note that the approximability condition is automatically
satisfied in the convergence statements proven in the latter papers. As in the classical case,
we prove the pointwise ergodic theorem by linking the mean ergodic theorem, Theorem 4.15,
with a dominated ergodic theorem, given in Theorem 5.14. For the proof of the latter the-
orem, we adapt a proof given in [Kre85] in order to show a weak (1, 1)-maximal inequality
for associated dominating processes. These objects are inspired by classical differentiation
theorems, see e.g. [AdJ81, Émi85, Sat98, Sat99, Sat03].
Most of the mentioned new results about uniform decomposition towers, the almost-additive
mean ergodic theorem, as well as about the pointwise almost-everywhere convergence the-
orem for bounded, additive processes are published in [Pog13a].
Both of our Banach space-valued ergodic theorems (Theorems 4.4 and 4.15) can be applied
in order to show the uniform existence of the integrated density of states for finite hopping
range operators. For countable groups, we stick close to the setting of [LSV11], but we
consider a random familiy of operators instead of one deterministic operator. Using The-
orem 4.4, we show the uniform IDS approximation for all countable amenable groups in
Theorem 6.5. While basic ingredients have already been known, in this form the result is
new. For continuous groups we consider the geometric situation of [LV09]. In this work, the
authors deal with discrete operators with their ground space being randomly chosen from a
metric space with some quasi-isometry to some (not necessarily countable) amenable group.
The coefficients of the operator are random as well. We use Corollary 4.16 to reproduce the
IDS approximation result of the latter paper. In our text this is stated in Theorem 6.9.
Starting from Chapter 7 we turn to graphs and graphings. In particular, we deal with
weakly convergent graph sequences of uniformly bounded vertex degree. This notion of
convergence has been introduced by Benjamini and Schramm in the seminal work [BS01].
In the literature one calls these sequences also ’Benjamini-Schramm-convergent’. Precisely,
this convergence means the asymptotic existence of the occurrence frequencies for all geo-
metric patterns. Convergent graph sequences might have one deterministic (infinite) graph
as a limit. This is for instance true in the case of sofic approximations of groups, see e.g.
[Ele06b, Ele08a, ScSc12, AGV14]. However, in general, the limit is not just one countably
infinite graph but rather a probability space of countable, bounded degree graphs with some
additional structure. Namely, there are finitely many measure preserving involutions which
induce a graph structure on the measure space of graphs (’graph of graphs’). This is cap-
tured in the notion of graphings, see Definition 7.3. Graphings have been constructed in
various kinds and settings, see e.g. [Ele07b, Lov12, LPS14]. In this thesis, we will focus on
hyperfinite graph sequences, cf. [Ele08a]. Roughly speaking, a family of graphs is hyperfi-
nite if for all elements in the family, there is a way to delete a uniformly small portion of
the edges in all elements in order to obtain (edge-)disjoint components with a uniformly
small number of vertices. In [Ele08a], Elek introduced a pseudometric δ which quantifies
geometric differences of finite graphs and defined strong convergence for graph sequences
as being Cauchy in δ. Further, he conjectured in the same paper that weakly convergent
and hyperfinite graph sequences are also strongly convergent. Using techniques of Elek in
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[Ele12], we give a detailed proof in Theorem 7.10. A variant of this statement can already
be found in Theorem 5 of [Ele12]. There, the author shows that two graphs with the same
number of vertices in a hyperfinite family are almost isomorphic, whenever they are sta-
tistically close to each other. The main ingredient is the so-called Equipartition Theorem
proven by Elek in Theorem 4 of the same paper. For the proof of Theorem 7.10, we base
our argumentation on Elek’s Equipartition Theorem as well. Another independent proof
via algorithmic techniques has recently been given by Newman and Sohler in Theorem 3.1
of [NS13]. These considerations partially solve Conjecture 1 in [Ele08a]. The full conjec-
ture refers to graphs with their vertices and edges coloured by finitely many colours. For
its verification, one would have to prove a coloured version of the Equipartition Theorem.
Hyperfiniteness is strongly linked with concepts of amenability, see e.g. [ES11].
Being inspired by Theorem 4.4, we then turn to the question whether one can prove Banach
space-valued, almost-additive convergence theorems along weakly convergent, hyperfinite
graph sequences. We give a positive answer in Theorem 8.2. Being the first assertion of its
kind in a geometric situation without group or semigroup structures at hand, this result is
a cornerstone in the theory of almost-additive convergence. In the setting of finitely gen-
erated amenable groups endowed with a trivial colouring (one colour), Theorem 8.2 is an
analogue of Theorem 4.4. Further, we are able to derive a subadditive convergence assertion
in Theorem 8.4. This result provides a generalization of a variant of the ’Ornstein-Weiss
Lemma’ which has been proven and used in the context of dynamical theory for countable
amenable groups, cf. [Gro99, LW00, Kri10]. Moreover, Theorem 8.4 extends the geometric
framework of Theorem 1.1 in [CSKC12], where the authors prove subadditive convergence
along Følner nets in left-cancellative semigroups. Here, we have to pay the price of an
additional monotonicity criterion. However, unlike in the latter work, we have to assume
subadditivity only for disjoint decompositions of graphs.
As an application, we address the question of approximation of the IDS along weakly con-
vergent graph sequences in Chapter 9. We do not claim originality for the results given in
this chapter, but present them in a structured way according to the context of this thesis.
In Theorem 9.9, we show the weak convergence of the normalized eigenvalue distributions of
finite volume analogues towards the IDS of decomposable, pattern-invariant, finite hopping
range operators on graphings. Here, weak convergence means convergence in the topology
of weak convergence of measures. This result is not new and proofs of this fact can for in-
stance be found in [Ele08a, Ele08b]. We give a direct and elementary proof which not only
shows convergence but also gives an explicit description of the limit distribution. In analogy
to Theorem 6.5, we also prove a uniform IDS approximation result for hyperfinite, weakly
convergent graph sequences. In this context, Theorem 9.12 upgrades the weak convergence
in Theorem 9.9 to uniform convergence of the spectral distribution functions. The fact
that strong convergence implies uniform spectral convergence has already been proven in
[Ele08a]. Using the Banach space-valued convergence theorem, Theorem 8.2, we provide a
different and more structural approach to this question of spectral approximation. Another
new ingredient is the fact that weakly convergent, hyperfinite graph sequences are strongly
convergent (cf. Theorem 7.10) and hence, they allow for the application of the Banach space-
valued convergence theorem. These results also imply the Lück conjecture for hyperfinite
graph sequences, see e.g. [Lüc94, DLM+03, Ele06b]. The validity of the conjecture for all
(not necessarily hyperfinite) weakly convergent graph sequences is an open problem. Partial
results for operators with algebraic integer coefficients can be found in [Tho08, ATV13].
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The new main results of the Chapters 7, 8 and 9 are contained in the work [Pog13b].
Chapter 10 of this thesis is devoted to the Ihara Zeta function for graphings. In recent years,
various methods have been used to define this function over infinite graphs via approxima-
tion. In cooperation with Lenz and Schmidt, the author of this thesis has developed a new
approach in [LPS14] which unifies and extends the examples in the literature. More specif-
ically, the authors define the Ihara Zeta function for so-called measure graphs. This latter
class contains graphings as a special case. Further, it is proven there that this notion of Zeta
function has a continuity property with respect to weak convergence of graphs. Precisely,
the normalized versions of Zeta functions for the finite graphs in a weakly convergent graph
sequence converge to the Zeta function of the corresponding limit graphing in the topology
of uniform convergence on compact sets. As only local quantities need to be considered,
hyperfiniteness is not needed. We give a direct and elementary proof of this continuity
result for graphings in Theorem 10.5. This result extends all the approximation statements
in [CMS02, GŻ04, GIL08, GIL09]. Moreover, our proof identifies the limit function as the
Ihara Zeta function of the limit graphing. Further, we show in Theorem 10.8 that every
countable graph coming along with a countable sofic subgroup of its automorphisms act-
ing freely and co-finitely on the graph can be approximated by a weakly convergent graph
sequence. Combined with Theorem 10.5, this implies the corresponding convergence theo-
rem for the Ihara Zeta function, cf. Theorem 10.7. This generalizes the works of [GIL08]
for amenable automorphism groups and of [CMS02] for residually finite groups acting on
regular graphs via automorphisms.

The text is organized as follows. In Chapter 2, we start with a brief introduction on
amenability of locally compact, second countable, unimodular Hausdorff groups (LCSCUH
groups for short). For amenable LCSCUH groups, we extend the ε-quasi tiling techniques
of [OW87] by precise covering estimates. Further, we show that ’large’ sets in the group
can be well approximated (ε-quasi tiled) by translates of compact sets taken from a Følner
sequence, cf. Theorem 2.16. In the subsequent Chapter 3, we extend the previous covering
results by showing the existence of families of ε-quasi tilings which on average have desirable
uniformity properties. To do this, we will deal with countable and with continuous groups
separately, cf. Theorems 3.2, 3.4 and 3.6. Using these uniform ε-quasi tilings, we prove
almost-additive ergodic theorems in Chapter 4. Again, we proceed separately for countable
groups and (possibly) continuous groups. In the countable situation, we prove the ergodic
theorem for almost-additive functions along coloured Følner sequences, cf. Theorem 4.4. For
continuous groups, we prove an abstract almost-additive mean ergodic theorem in Theo-
rem 4.15. This statement generalizes classical mean ergodic theorems. Chapter 5 is devoted
to Banach space-valued, bounded, additive processes on continuous amenable groups. We
prove the almost-everywhere convergence for approximable processes along increasing Tem-
pelman Følner sequences, cf. Theorem 5.17. In Chapter 6, we apply both ergodic theorems
to prove the uniform approximation of the integrated density of states along finite volume
analogues for a large class of random operators. This is done in the Theorems 6.5 and 6.9.
Next, we turn to the world of graphs with uniformly bounded vertex degree. In this con-
text, Chapter 7 deals with weak and strong convergence of graphs towards graphings. As
an analogue of amenability, we describe the concept of hyperfinite families of graphs at this
point. Moreover, we show that weakly convergent and hyperfinite graph sequences must
also converge strongly, cf. Theorem 7.10. We use this result to prove almost-additive and
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subadditive, Banach space-valued convergence theorems for hyperfinite, weakly convergent
graph sequences in the Theorems 8.2 and 8.4 of Chapter 8. As in the situation of finitely
generated, amenable groups, we show the uniform approximation of the integrated density
of states for finite hopping range operators on hyperfinite graphings in Theorem 9.12 of
Chapter 9. Chapter 10 is devoted to an investigation of the Ihara Zeta function for graph-
ings. We show the approximation of this function in the topology of uniform convergence
on compact sets along weakly convergent graph sequences, cf. Theorem 10.5. Moreover, we
construct graph sequences approximating graphs with periodicity induced by sofic automor-
phism groups in Theorem 10.8. This shows the compact approximation of the Ihara Zeta
function for all those graphs, cf. Theorem 10.7. We conclude the thesis in Chapter 11 with
a short outline of two open questions arising naturally from our elaborations.
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Throughout the whole thesis, we assume that Γ is a locally compact Hausdorff group. That
is to say that Γ is a topological group (with its topology making the group multiplication
and inversion continuous) with the property that each point possesses a compact neighbour-
hood and two different points can be separated by disjoint, open neighbourhoods. More
specifically, we are interested in groups of this kind which are in addition second countable,
i.e. there is a countable basis of the topology of Γ. The neutral element of Γ shall be denoted
by e. We write B(Γ) for the Borel σ-algebra generated by the open subsets in Γ. By stan-
dard abstract harmonic analysis, one finds (up to constants) exactly one regular measure
mL(·) on B(Γ), called the left Haar measure which is invariant under group multiplication
by elements from the left, i.e. mL(gA) = mL(A) for every g ∈ Γ and all A ∈ B(Γ). In
most of our considerations, we restrict ourselves to unimodular groups, i.e. groups for which
the unique Haar measure is both left- and right-invariant. In this case we simply write
|A| for the measure of some set A ∈ B(Γ). When integrating over sets in a unimodular
group, we will use the notation dg := dmL(g). Note that for instance, all discrete and all
abelian groups are unimodular. We shall write F(Γ) := {A ∈ B(Γ) | 0 < |A| < ∞} for the
collection of Borel sets in Γ with finite, positive measure. For the cardinality of some finite
set A ⊆ Γ, we will write #(A). For countable groups, we use the counting measure as Haar
measure, i.e. #(A) = |A| for all finite sets A ⊂ Γ. Most of the results in this thesis are
stated and proven for locally compact, second countable, unimodular Hausdorff groups. As
an abbreviation, we call those latter groups LCSCUH groups. We will always deal with
groups of infinite Haar measure, i.e. |Γ| =∞.

The following chapter is devoted to the presentation of general ε-quasi tiling results for
amenable LCSCUH groups. In a first section, we define amenable groups by the existence of
weak or strong Følner sequences. Next, we turn to the ε-quasi tiling techniques of Ornstein
and Weiss. The goal of these tools is to cover ’large’ (in the sense of invariant, see below)
compact sets in Γ by ’smaller’ tiling sets. Ideally, a large percentage of mass is covered
by translates with few overlappings. We extend the results in [OW87] by precise covering
and invariance estimates. Our essential idea to do so is to find upper bounds on covered
volumes. This leads to the key Lemma 2.13. The main Theorem 2.16 of this chapter is
proven in the last section. It is joint work with Schwarzenberger and appears in [PS14],
Theorem 4.4. Generalizing the Theorems I.2.6 and I.3.3 in [OW87], the assertion shows
that in every amenable LCSCUH group, one can construct ε-quasi tilings for sufficiently
invariant compact sets. The finitely generated version of our ε-quasi tiling theory is also
presented and used in the Ph.D. thesis of Schwarzenberger, cf. [Sch13].

7
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2.1 Amenable groups

The following section is devoted to a brief introduction of amenable LCSCUH groups. In
this context, we introduce a notion for a relative boundary (the K-boundary) of subsets
in a group Γ with respect to compact sets and we use this concept to define so-called
weak and strong Følner sequences. Those latter objects consist of non-empty, compact sets
Tn ⊆ Γ which are asymptotically invariant under left-translation by arbitrary compact sets.
The existence of weak Følner sequences is commonly referred to as a characterization of
amenability of the group. We will use their existence as the definition of amenability, cf.
Definition 2.6. In Lemma 2.8 we state that each strong Følner sequence is also a weak
Følner sequence and that the groups under consideration always possess a strong Følner
sequence, cf. [PS14], Lemma 2.6. Further, we introduce growth conditions on the sequences
in Definition 2.9. Assumptions of this kind will play a major role in the proofs of pointwise
ergodic theorems, cf. Chapter 5. Most of the results in this section are contained in the
papers [Pog13a, PS14].

Definition 2.1 (K-boundary).
Let Γ be a locally compact Hausdorff group. Assume that ∅ 6= K,T ⊆ Γ are subsets of Γ.
We call the set ∂K(T ), defined by

∂K(T ) := {g ∈ Γ |Kg ∩ T 6= ∅ and Kg ∩ (Γ \ T ) 6= ∅}

the K-boundary of the set T .

The next proposition is an immediate consequence of the above definition.

Proposition 2.2.
Let Γ be a locally compact Hausdorff group and assume K,T ⊆ Γ. Then

∂K(T ) = K−1T ∩K−1(Γ \ T ).
Proof.
Let g ∈ ∂K(T ). Then by definition of the K-boundary, there are k ∈ K and t ∈ T such that
kg = t. Hence g ∈ K−1T . Again by definition of the K-boundary one finds k′ ∈ K and
t′ ∈ Γ \T with k′g = t′. Hence g ∈ K−1(Γ \T ) and the first inclusion follows. The converse
inclusion is trivial. �

We collect some nice and useful properties of the relative boundary definition. For the proof
of the following lemma we essentially stick to the presentation in [PS14], Lemma 2.4.

Lemma 2.3 (cf. [PS14], Lemma 2.4).
Let T, S,K,L ⊆ Γ be given and assume g ∈ Γ. Then the following assertions hold true.

(i) ∂K(T ) = ∂K(Γ \ T ),

(ii) ∂K(S ∪ T ) ⊆ ∂K(S) ∪ ∂K(T ),

(iii) ∂K(S \ T ) ⊆ ∂K(S) ∪ ∂K(T ),
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(iv) ∂K(T ) ⊆ ∂L(T ) if K ⊆ L,

(v) ∂K(Tg) = ∂K(T )g,

(vi) ∂K(TS) ⊆ ∂K(T )S,

(vii) ∂K(T \ S) ⊆ ∂K(T ) ∪ (∂K(S) ∩ T ) if e ∈ K,

(viii) ∂L(∂K(T )) ⊆ ∂KL(T ).

Proof.
The statements (i) to (iv) follow from Definition 2.1. To see (v), note that

Kh ∩ S 6= ∅ ⇐⇒ Khg ∩ Sg 6= ∅

for every h ∈ Γ and all sets S ⊆ Γ. By Definition 2.1, one has h ∈ ∂K(T ) if and only if
hg ∈ ∂K(Tg). We obtain ∂K(T ) = ∂K(Tg)g−1. To prove (vi), take g ∈ ∂K(TS). Thus
Kg ∩ TS 6= ∅ and thus, there is some c ∈ S with Kg ∩ Tc 6= ∅. Since Kg ∩ (Γ \ TS) 6= ∅,
it follows that Kg ∩ (Γ \ Tc) 6= ∅. Hence, for every g ∈ ∂K(TS), we can find some c ∈ S
such that g ∈ ∂K(Tc). By (v), the latter set is equal to ∂K(T )c and since c ∈ S, we arrive
at g ∈ ∂K(T )S. We turn to the proof of the assertion (vii). So assume that g ∈ ∂K(T \ S),
but g /∈ ∂K(T ). Then the fact that Kg ∩ (T \ S) 6= ∅ leads to Kg ∩ T 6= ∅, as well as
to Kg ∩ (Γ \ S) 6= ∅. So if g /∈ ∂K(T ), this is only possible if Kg ⊆ T . Since e ∈ K, it
follows that g ∈ T . It remains to show that Kg ∩ S 6= ∅, since then g ∈ ∂K(S). Indeed,
since g ∈ ∂K(T \ S), we obtain Kg ∩ (Γ \ (T \ S)) 6= ∅ and from Kg ⊆ T , it follows that
Kg ∩ (S ∩ T ) 6= ∅.
For the statement (viii), note that

∂L(∂K(T )) ⊆ {g ∈ Γ | there is l ∈ L : lg ∈ ∂K(T )} ⊆
⋃
l∈L

∂Kl(T ).

Now the property (iv) shows the claim. �

In our elaborations, we will have to compute the (Haar) measure of boundaries ∂K(T ).
Therefore, we have to know that these sets are in fact measurable. In most cases, we will
have to deal with the situation where K is compact and T is an intersection of a closed set
with an open set. In the following, we will refer to sets T of the latter kind as locally closed
sets. The next proposition shows that for compact sets K and locally closed sets T in Γ,
the set ∂K(T ) indeed belongs to B(Γ).

Proposition 2.4.
Let Γ be a second countable, locally compact Hausdorff group. Then ∂K(S ∩ O) belongs to
B(Γ) whenever K ⊆ Γ is compact, S ⊆ Γ is closed and O ⊆ Γ is open.

Proof.
Note that by Proposition 2.2, we have ∂K(S ∩O) = K−1(S ∩O)∩K−1(Γ \ (S ∩O)). Since
the group multiplication is compatible with taking unions of sets, we can write

K−1(Γ \ (S ∩O)
)

= K−1((Γ \ S) ∪ (Γ \O)
)

= K−1(Γ \ S) ∪K−1(Γ \O).
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Since the inversion is continuous in topological groups, K−1 is a compact set as well. Hence
the set K−1(Γ \ (S ∩O)) is a union of an open and a closed set and therefore, it belongs to
B(Γ). It remains to show that the set K−1(S ∩ O) belongs to B(Γ). One can equivalently
check that K(S ∩ O) ∈ B(Γ) whenever K is compact, S is closed and O is open. Indeed,
as Γ is a locally compact Hausdorff space, hence a T3-space, which in addition is second
countable, Urysohn’s metrization theorem (cf. e.g. [How95], Theorem 1.4) tells us that Γ
is metrizable. In particular, each open set O can be written as a countable union ∪nVn of
closed sets Vn. It follows from this that

K(S ∩O) = K ·
( ∞⋃
n=1

S ∩ Vn
)

=
∞⋃
n=1

K · (S ∩ Vn).

Thus, the latter set is also a countable union of closed sets, and hence is Borel measurable.�

For a positive number 0 < δ < 1 and a precompact K ⊆ Γ (i.e. K has compact closure), we
say that T ⊆ Γ with |T | > 0 is (K, δ)-invariant if

|∂K(T )|
|T |

< δ.

We introduce the concept of Følner sequences in groups.

Definition 2.5.
Let (Tn) be a sequence of non-empty, compact subsets of a locally compact, second countable
Hausdorff group Γ. Assume further that |Tn| > 0 for all n ∈ N, i.e. Tn ∈ F(Γ). If

lim
n→∞

|Tn4KTn|
|Tn|

= 0

for all non-empty, compact K ⊆ Γ, then (Tn) is called weak Følner sequence. Here, A4B :=
(A \B) ∪ (B \A) for sets A,B ⊆ Γ. If

lim
n→∞

|∂K(Tn)|
|Tn|

= 0

for all non-empty, compact K ⊆ Γ, then (Tn) is called strong Følner sequence. We say that
a (weak or strong) Følner sequence (Tn) is nested if e ∈ T1 and Tn ⊆ Tn+1 for all n ≥ 1.
Each element Tn of a Følner sequence will be called Følner set.

Having the notion of weak Følner sequences at hand, we can define amenability for groups.

Definition 2.6 (Amenability of groups).
Let Γ be a locally compact, second countable Hausdorff group. We say that Γ is amenable if
there is a weak Følner sequence in Γ.

Let us give some examples for amenable groups.
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Examples 2.7.
• Every compact group Γ is amenable and unimodular. A Følner sequence is given by
Tn = Γ for all n ∈ N.

• Every abelian group is amenable. This can be shown using the Markov-Kakutani
fixed point theorem (cf. [DS88], Theorem V.10.6). Note that abelian groups are also
unimodular.

• Every locally compact, second countable, polynomially growing group is unimodular
and amenable, cf. [Gui73], Theorem 1.1 and Lemma 1.3.

• There are groups of exponential growth which are amenable as well. One example is
the Lamplighter group, which is defined as

Γ := Z + Z2 := {(m, a) |m ∈ Z, a ∈
⊕
i∈Z

Z2},

where Z2 is the cyclic group of order two. Thus, we have Γ = {(m, a) |m ∈ Z, a ∈
ZZ

2} as a set. With σ as the left shift on the space of all 0-1-sequences over Z (i.e.
σ((xn)n) = (xn+1)n), the group operation is

(m, a) · (n, b) := (m+ n, σna+ b).

A Følner sequence for this group is given by

Tn :=
{

(m, a) ∈ Γ | |m| ≤ n, a =
2n∑

k=−2n
αkek, αk ∈ {0, 1}

}
for n ∈ N, where ek = (δlk)l∈Z is the Kronecker symbol, cf. [Pog10], Example 3.7 (3).

• The free group Fr of rank r ∈ N, r ≥ 2, is not amenable, cf. [Gre69], Example 1.2.3.

• Since the matrix groups SL(2,R) and GL(2,R), endowed with discrete topology, con-
tain a subgroup which is isomorphic to the rank two group F2, they are not amenable,
see e.g. [Run01], Theorem 1.2.7.

In [OW87], the authors proved that in each amenable group Γ the following holds: given
a compact set K ⊆ Γ and some positive number δ > 0, there is a compact set T which is
(K, δ)-invariant. Therefore, in each amenable, unimodular and second countable group, one
always finds strong Følner sequences. Besides this, each strong Følner sequence is also a
weak Følner sequence. We collect these observations in the following Lemma. For the proof
we essentially stick to the presentation of Lemma 2.6 in [PS14].

Lemma 2.8 (cf. [PS14], Lemma 2.6).
Let Γ be an amenable LCSCUH group. Then the following statements hold true.

(i) There exists a strong Følner sequence in Γ.

(ii) Each strong Følner sequence is a weak Følner sequence.

(iii) If Γ is countable, then every weak Følner sequence is also a strong Følner sequence.
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(iv) There exists a nested strong Følner sequence in Γ.

Proof.
Let Γ be an amenable LCSCUH group. To prove (i), we first denote by {Vn} an enumeration
of the countable base of the topology of Γ. Since Γ is locally compact, we can choose the Vn
to have compact closure. We now set Kn := ∪nj=1V j . Then each Kn is compact and we have
Kn ⊆ Kn+1 for n ≥ 1, as well as ∪nKn = Γ. Let K ⊆ Γ be compact. We claim that there is
some M ∈ N such that K ⊆ KM . For the proof, note first that for any g ∈ Γ, there is some
n(g) ∈ N such that g ∈ Vn(g). Hence the union ∪g∈KVn(g) is an open cover of K. Since K
is compact there must be a finite subcover K ⊆ ∪mj=1Vn(gj) ⊆ ∪mj=1V n(gj). The latter union
denotes a compact set and by construction of theKn, we haveK ⊆ ∪mj=1V n(gj) ⊆ KM , where
M := max{n(gj) | j = 1, . . . ,m}. Take a sequence (εn) of positive numbers converging to
0. By the above mentioned statement in [OW87], we find for each n ∈ N a compact set Fn
such that

|∂Kn(Fn)|
|Fn|

< εn.

Using property (iv) of Lemma 2.3, we conclude that for all n ≥ M , one obtains with
K ⊆ KM ⊆ Kn that

|∂K(Fn)|
|Fn|

≤ |∂KM (Fn)|
|Fn|

≤ |∂Kn(Fn)|
|Fn|

< εn.

So, clearly limn→∞ |∂K(Fn)|/|Fn| = 0. This shows the assertion (i).

To prove statement (ii), it is sufficient to verify the inclusion

T4KT ⊆ ∂(
K∪K−1∪{e}

)(T )

for all compact sets K,T ⊆ Γ of positive measure. Indeed, the set LK := K ∪K−1 ∪ {e}
is compact (it is a finite union of compact sets) and hence the convergence to zero follows
from the convergence of strong Følner sequences to zero. To prove the inclusion, suppose
first that g ∈ KT \ T . Then we can write g = kt for some k ∈ K and some t ∈ T , but
kt /∈ T . Since k−1 ∈ LK and t ∈ T , we obtain LKg ∩ T 6= ∅. Since e ∈ LK and g /∈ T , we
have LKg∩ (Γ\T ) 6= ∅. Thus g ∈ ∂LK (T ). Now assume g ∈ T \KT . Then for all t ∈ T and
every k ∈ K, g 6= kt and therefore k−1g /∈ T for all k ∈ K. Since K−1 ⊆ LK , one observes
LKg ∩ (Γ \ T ) 6= ∅. As e ∈ LK and g ∈ T we also have LKg ∩ T 6= ∅. Hence g ∈ ∂LK (T ).
Let us turn to assertion (iii). Assume that Γ is countable with counting measure | · |. Let
K,T be arbitrary non-empty, finite subsets of Γ. As above we set LK := K ∪K−1 ∪ {e}.

To show statement (iii), it is sufficient to prove

∂K(T ) ⊆ ∂LK (T ) ⊆ LK
(
T4LKT

)
,

since then |∂K(T )| ≤ |LK | · |T4LKT |. Note that the first inclusion follows from Lemma 2.3
(iv). To see the second inclusion, take some g ∈ Γ such that LKg intersects non-trivially
both T and Γ \ T . By the symmetry of LK , we have g ∈ L−1

K T = LKT . If g /∈ T , then
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g ∈ LKT \ T and since e ∈ LK , we have proven the claim for this case. If g ∈ T , find some
k ∈ LK such that kg ∈ LKT \ T , which exists since LKg ∩ (Γ \ T ) is non-empty. Again by
the symmetry of LK , we have g ∈ LK(LKT \ T ). Now we have shown g ∈ LK(T4LKT ) in
both cases and this proves part (iii) of the Lemma.

Now we finally prove the claim (iv). Let (Fn) be a strong Følner sequence in Γ which exists by
the assertion (i). We choose some h ∈ F1 and set T1 := F1h

−1, then we proceed inductively.
If T1, . . . , Tk are chosen, then there is an n ∈ N such that Fn is (Tk, 1/2)-invariant. As e ∈ Tk
we have Fn \∂Tk(Fn) ⊆ {g ∈ Fn | Tkg ⊆ Fn} =: S. Using |Fn \∂Tk(Fn)| ≥ |Fn|−|∂Tk(Fn)| >
0, this yields that S has positive Haar measure. Hence S is non-empty and we find some
g ∈ S. Define Tk+1 := Fng

−1. Proceeding in this manner, we obtain a sequence (Tn) which
is nested by construction. Further (Tn) is a strong Følner sequence as it is up to shifts a
subsequence of (Fn). Note that here we used unimodularity of Γ and (v) of Lemma 2.3
stating that shifts via group multiplication do not change the measure of the K-boundary.�

Remark.
Lemma 2.8 shows that in an LCSCUH group, amenability is equivalent to both the existence
of a weak Følner sequence, as well as to the existence of a strong Følner sequence. In the case
of countable amenable groups we will only speak about Følner sequences as the specifications
’weak’ and ’strong’ are dispensable then.

It is a well-known fact that one cannot expect pointwise ergodic theorems for arbitrary
Følner sequences, cf. [Eme74]. Hence, it is important for our purposes to impose some
growth conditions on the Følner sequences under consideration.

Definition 2.9.
Let Γ be a second countable, unimodular, amenable group and assume that (Tn) is a weak
or strong Følner sequence in Γ.

• We say that (Tn) fulfills the Tempelman condition if there is a constant C > 0 such
that ∣∣∣ ⋃

i≤N
T−1
i TN

∣∣∣ ≤ C |TN |
for all N ∈ N.

• We say that (Tn) fulfills the Shulman condition if there is a constant C̃ > 0 such that∣∣∣ ⋃
i<N

T−1
i TN

∣∣∣ ≤ C̃ |TN |
for all N ∈ N. In this case, we say that (Tn) is a tempered Følner sequence.

Remark.
Note that the Tempelman condition is stronger than the Shulman condition. Moreover,
tempered weak Følner sequences always exist in second countable amenable groups, cf.
[Lin01]. However, there are second countable amenable groups without Tempelman Føl-
ner sequences. On the other hand, as the following Theorem shows, there are reasonable
sufficient conditions on the group for the existence of Tempelman Følner sequences.
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Theorem 2.10 ([Hoc07], Theorem 3.4).
If for a countable, abelian, amenable group Γ we have

r(Γ) := sup{n ∈ N | Γ contains a subgroup isomorphic to Zn} <∞,

then Γ possesses at least one Tempelman Følner sequence.

Remark.
The number r(Γ) is called the abelian rank of Γ.

2.2 Ornstein Weiss tiling lemmas

In the following, we use ε-quasi tiling techniques for amenable groups developed by Orn-
stein and Weiss in [OW87]. The goal of the subsequent subsection is to cover ’highly
invariant’, compact sets T ⊆ Γ (e.g. sets with large index in a Følner sequence) by Følner
set translates Tic, 1 ≤ i ≤ N , c ∈ Ci where N is an integer number, the Ci are finite subsets
of Γ and the Ti are taken from a Følner sequence in Γ. Further, one wants those Ti-translates
to have small overlaps and the union ∪i ∪c Tic shall cover most of T . The classical ε-quasi
tiling theory shows how this can be done in unimodular amenable groups. More precisely,
for small ε > 0 one obtains ε-disjoint (cf. Definition 2.12) translates that cover a portion
of (1 − 2ε) of the mass of T , cf. e.g. [OW87], Theorem I.3.3. For the construction, one
first proves covering results for one single level i ∈ {1, . . . , N}. This section is devoted to
an extension of the basic lemmas of the sections I.2 and I.3 in [OW87] to obtain precise
covering and invariance estimates for the tiling sets {Tic}c∈Ci , where 1 ≤ i ≤ N is fixed.

We start with a lemma that can be proven along the lines of [OW87], Section I.2.

Lemma 2.11.
Let Γ be a unimodular, amenable group with unit element e. Let some δ > 0 be given
and assume that K ⊆ Γ is compact. Further, suppose that there is a (K, δ)-invariant set
T ∈ F(Γ) such that the boundary ∂K(T ) belongs to B(Γ). Define the set

ÂK := {h ∈ T |Kh ⊆ T}.

Then the following assertions hold true.

(i) For all z ∈ Γ, ∫
Γ
1Kh(z) dh = |K|. (2.1)

(ii) If e ∈ K, then ÂK ∈ B(Γ) and |ÂK | ≥ (1− δ)|T |.

(iii) If e ∈ K, then for all S ∈ F(Γ), there is an element c ∈ ÂK with

|Kc ∩ S| ≤ |S| |K|
(1− δ)|T | . (2.2)
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Proof.
For the assertion (i), we compute using unimodularity∫

Γ
1Kh(z) dh =

∫
Γ
1z−1K(h−1) dh =

∫
Γ
1z−1K(h) dh = |z−1K| = |K|.

To show (ii), note first that as e ∈ K, we have for all h ∈ T that Kh ∩ T 6= ∅. Thus,
ÂK = T \ (T ∩ ∂K(T )) ∈ B(Γ) by the measurability assumption on ∂K(T ). Since T is
(K, δ)-invariant, we compute

|ÂK | ≥ |{h ∈ T |Kh ∩ T 6= ∅}| − |∂K(T )|
≥ |T | − δ|T | = (1− δ)|T |.

Let us turn to the proof of the statement (iii). Assume that there exists a set S ∈ F(Γ)
such that no c ∈ ÂK satisfies the inequality (2.2). By (ii), |ÂK | ≥ (1− δ)|T |, and hence∫

ÂK

|Kc ∩ S| dc >
∫
ÂK

|S||K|
|T |(1− δ) dc = |S||K||ÂK |

|T |(1− δ) ≥ |S||K|. (2.3)

However, on the other hand, it follows from Fubini’s theorem and equality (2.1) that∫
ÂK

|Kc ∩ S| dc =
∫
ÂK

∫
S
1Kc(h) dh dc =

∫
S

∫
ÂK

1Kc(h) dc dh ≤ |S||K|,

which clearly is a contradiction to the strict inequality (2.3). �

Next, we introduce the notion of ε-disjoint sets, as well as of finite, ε-disjoint families of
sets.
Definition 2.12 (ε-disjoint families).
Let 0 < ε < 1 be a positive number and assume N ∈ N. We say that a finite family {Ti}Ni=1
of sets in F(Γ) is ε-disjoint if for all 1 ≤ i ≤ N , there is a measurable set T̄i ⊆ Ti such that
|T̄i| ≥ (1− ε)|Ti| for all 1 ≤ i ≤ N and

N⋃
i=1

Ti =
N⊔
i=1

T̄i,

where the latter union consists of pairwise disjoint sets. For 0 < α < 1, we say that a set
T ∈ F(Γ) α-covers a set S ∈ F(Γ) if |T ∩ S| ≥ α|S|.

Remark.
In the literature, one often finds a slightly weaker notion for ε-disjointness. For instance in
[OW87], two finite measure subsets T1, T2 ⊆ Γ are defined as ε-disjoint if there are subsets
T̃i ⊆ Ti such that T̃1 ∩ T̃2 6= ∅ and |T̃i| ≥ (1 − ε)|Ti|, i ∈ {1, 2}. However, it is easy to
construct sets from those T̃1 and T̃2 which satisfy Definition 2.12 with N = 2.

The following assertion is the main result of this section. It extends Lemma I.3.2. in [OW87]
by two features. Firstly, we make sure that the ε-quasi tiles can even be made disjoint in a
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way such that they preserve certain invariance properties with respect to a fixed compact
set. The techniques needed in the proof have been developed in private communication
of the author with Weiss. Secondly, we do not only prove a lower bound for the mass
proportion of some set T covered by ε-disjoint translates of the Ti, but we also show an
upper bound. This is the essential step in order to compute precise covering densities in
Theorem 2.16. For the proof of Lemma 2.13, we essentially follow the presentation of the
proof of Lemma 3.2 in [PS14].

Lemma 2.13 (cf. [PS14], Lemma 3.2).
Let Γ be some unimodular, second countable Hausdorff group, 0 < ε, δ < 1/2 and 0 < ζ <
δ/2. Furthermore, let T ∈ F(Γ) and K,B ⊆ Γ be compact sets such that ∂K(T ), ∂KK−1(T ) ∈
B(Γ) and such that T is (KK−1, δ)-invariant, K is (B, ζ2)-invariant and let the sets K and
B contain the unit element e. Then we can find finitely many elements cj , j = 1, . . . , n in
T such that

(i) Kcj ⊆ T , j = 1, . . . , n,

(ii) {Kcj}nj=1 is an ε-disjoint family of sets,

(iii) for all j = 1, . . . , n, there is some measurable set Kj ⊆ K with |Kj | ≥ (1− ε)|K| such
that

• Kj is a locally closed set,

• ∂B(Kj) ∈ B(Γ),

• Kj is (B, 4ζ)-invariant,

• |∂B(Kj)| ≤ |∂B(K)|+ ζ|K|,

•
⋃l
j=1Kcj =

⊔l
j=1Kjcj for all 1 ≤ l ≤ n and the latter union consists of pairwise

disjoint sets,

(iv) (ε− δ)|T | ≤
∣∣ ⋃n

j=1Kcj
∣∣ ≤ (ε+ δ)|T |.

Remark.
We could have stated the lemma without regarding the additional invariance conditions of
K with respect to B. However, we will heavily use these properties in the main theorems
of this and the next chapter.

Proof.
We start the proof with a simple observation to estimate the ratio |K|/|T |. For each
g ∈ ∂K(T ) and t ∈ K we have tg ∈ ∂KK−1(T ), which immediately gives |K| ≤ |∂KK−1(T )|.
This implies

|K|
|T |
≤ |∂KK−1(T )|

|T |
< δ, (2.4)

as T is (KK−1, δ)-invariant.
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Now we formulate the following
Claim: if cj ∈ T , j = 1, . . . , n are elements which fulfill conditions (i)-(iii) and∣∣∣∣ n⋃

j=1
Kcj

∣∣∣∣ < ε(1− 2δ)|T |,

then there exists some cn+1 ∈ T such that (i)-(iii) still hold true for cj , j = 1, . . . , n+ 1.

We postpone the proof of the claim and we assume for the moment that it holds. In this
case, we start with some maximal disjoint family {Kcj}nj=1 of translates of K contained in
T with n|K| ≤ (ε + δ)|T | and set Kj := K, j = 1, . . . , n. Then obviously (i)-(iii) hold. It
remains to check condition (iv). If∣∣∣∣ n⋃

j=1
Kcj

∣∣∣∣ ≥ ε(1− 2δ)|T |,

then we are done with the proof since ε ≤ 1/2. Otherwise, we apply the claim and get some
cn+1 ∈ T such that conditions (i)-(iii) are still fulfilled for cj , j = 1, . . . , n+ 1. Moreover, it
follows from the inequality (2.4) that∣∣∣∣n+1⋃

j=1
Kcj

∣∣∣∣ ≤ ε(1− 2δ)|T |+ δ|T | ≤ (ε+ δ)|T |.

If also the lower bound in condition (iv) is satisfied for c1, . . . , cn+1, then we are done, if
not, then we apply the claim again. This procedure will end after finitely many steps since
T has finite measure and after each iteration we cover at least (1− ε)|K| more than before.
Thus, the only thing left to do is to prove the claim.

Let cj ∈ T , j = 1, . . . , n be such that (i)-(iii) hold with sets Kj , j = 1, . . . , n and |A| <
ε(1 − 2δ)|T |, where A :=

⋃n
j=1Kcj . We set S := {g ∈ T |Kg ⊆ T}. If we had stated the

lemma without the additional invariance properties of K with respect to B, we could apply
Lemma 2.11 right away in order to finish the proof. In order to obtain the desired invariance
conditions, we define the set

U :=
{
g ∈ S

∣∣∣ |Kg ∩ ∂B(A)|
|K|

≤ ζ
}

which depends on ζ and the set B. Note that K ⊆ KK−1. By Lemma 2.3 (iv) and
by the fact that T is (KK−1, δ)-invariant, we have that T is also (K, δ)-invariant. By
Lemma 2.11 (ii), S is Borel measurable and |S| ≥ (1− δ)|T |. Since the group multiplication
is continuous, it follows from the continuity of the Haar measure that U is Borel measurable
as well. Further, by the definition of U , it follows with T \ U ⊆ (T \ S) ∪ (S \ U) that

|T \ U |
|T |

≤ |T \ S|
|T |

+ |S \ U |
|T |

≤ δ +
∫
S

1S\U (g)
|T |

dg ≤ δ +
∫
S

|Kg ∩ ∂B(A)|
ζ|T | |K|

dg.

Here we used the definition of U which yields

1S\U (g) ≤ |Kg ∩ ∂B(A)|
ζ|K|

.



18 2 Amenable groups

By Fubini’s theorem and assertion (i) of Lemma 2.11, we arrive at∫
S

|Kg ∩ ∂B(A)|
ζ|T | |K|

dg = 1
ζ|T ||K|

∫
S

∫
∂B(A)

1Kg(h) dh dg

= 1
ζ|T ||K|

∫
∂B(A)

∫
S
1Kg(h) dg dh

(Lemma 2.11 (i)) ≤ |∂B(A)|
ζ|T |

.

By ε-disjointness, the maximal number n of translates of K that can belong to A is bounded
by |T |/[(1− ε)|K|] such that with Lemma 2.3 (ii), we arrive at

|T \ U |
|T |

≤
∣∣∂B(⋃nj=1Kcj

)∣∣
ζ|T |

L. 2.3 (ii)
≤ δ + n |∂B(K)|

ζ|T |
≤ δ + |∂B(K)|

ζ(1− ε)|K| ≤ δ + ζ

(1− ε) ≤ 2δ,

where the last inequality follows from ε, δ < 1/2, ζ < δ/2 and the fact that K was chosen
to be (B, ζ2)-invariant. This yields |U |/|T | ≥ 1− 2δ which allows us to apply Lemma 2.11
(iii) to find some cn+1 ∈ U such that

|Kcn+1 ∩A| ≤
|A||K|
|T |(1− 2δ) < ε|K|

and hence condition (ii) holds for cj , j = 1, . . . , n + 1. As cn+1 ∈ S, we have Kcn+1 ⊆ T ,
which gives (i). We set Kn+1 := (Kcn+1 \A) c−1

n+1. Clearly, Kn+1 ∈ B(Γ) and by the
above inequality we get |Kn+1| ≥ (1 − ε)|K|. Also, Kn+1 is a locally closed set, and by
Proposition 2.4, the set ∂B(Kn+1) is indeed measurable. Thus, with the statement (vii) of
Lemma 2.3 and with cn+1 ∈ U , we have

|∂B(Kn+1)| = |∂B(K \Ac−1
n+1)| ≤ |K ∩ ∂B(Ac−1

n+1)|+ |∂B(K)| ≤ ζ|K|+ |∂B(K)|

and using 0 < ε < 1/2, one obtains

|∂B(Kn+1)|
|Kn+1|

≤ ζ|K|
(1− ε)|K| + |∂B(K)|

(1− ε)|K| ≤ 2ζ + 2ζ2 ≤ 4ζ.

Thus (iii) holds as well and the claim is proven. �

In order to construct ε-quasi tilings for compact sets in the group Γ, we will use Lemma 2.13
inductively. The next lemma provides the necessary interfaces. This is joint work with
Schwarzenberger and is contained in [PS14], Lemma 3.3.

Lemma 2.14 (cf. [PS14], Lemma 3.3).
Let Γ be some unimodular, second countable locally compact Hausdorff group, 0 < ε, δ < 1/6,
0 < ζ < δ/4 and η > 0. Furthermore, let T ∈ F(Γ) be a locally closed set and assume that
K,L,B ⊆ Γ are compact sets with e ∈ L ⊆ K, e ∈ B. Moreover, let T be (KK−1, δ)-
invariant and K be (LL−1, η)-invariant, as well as (B, ζ2)-invariant. Then there is a finite
set C ∈ F(Γ) such that T \KC is (LL−1, 2δ+ η)-invariant and the properties (i) to (iv) of
Lemma 2.13 are satisfied: {Kc}c∈C is an ε-disjoint family, Kc ⊆ T for all c ∈ C and

ε− δ ≤ |KC|
|T |

≤ ε+ δ
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holds. Furthermore, for each cj ∈ C there is a measurable, locally closed set Kj ⊆ K
with ∂B(Kj) ∈ B(Γ) which is (B, 4ζ)-invariant, satisfies |Kj | ≥ (1− ε)|K| and |∂B(Kj)| ≤
|∂B(K)|+ ζ|K| and the sets Kjcj, cj ∈ C are pairwise disjoint with KC =

⊔n
j=1Kcjcj.

Proof.
Note that the sets ∂K(T ) and ∂KK−1(T ) are measurable by Proposition 2.4. Thus, the
assumptions of Lemma 2.13 are satisfied, and we get a set C = {c1, . . . , cn} such that the
properties (i) to (iv) therein are fulfilled. It remains to prove that T \KC is (LL−1, 2δ+η)-
invariant. To do so, note first that since T is a locally closed set, so is T \KC and it follows
from Proposition 2.4 that the sets ∂LL−1(T ) and ∂LL−1(T \KC) must be measurable. We
use the properties of the sets Kj , 1 ≤ j ≤ n to obtain

|T | ≥ |KC|
ε+ δ

=
∑n
j=1 |Kjcj |
ε+ δ

≥ 1− ε
ε+ δ

|K| · n.

Therefore, using the upper bounds on ε and δ, we can compute

n

|T | − |KC|
≤ n

|T | − |K|n
≤ n

(1−ε
ε+δ − 1)|K|n

= ε+ δ

(1− 2ε− δ)|K| ≤
1
|K|

. (2.5)

Now apply the statements (iii) and (vi) of Lemma 2.3 to obtain

|∂LL−1(T \KC)|
|T \KC|

≤ |∂LL−1(T )|
|T \KC|

+ |∂LL−1(KC)|
|T \KC|

≤ |∂LL−1(T )|
|T | − |KC|

+ n · |∂LL−1(K)|
|T | − |KC|

. (2.6)

It follows from Lemma 2.13 (iv) that |T | − |KC| ≥ (1 − (ε + δ))|T |. Combining this fact
with inequality (2.5), we deduce from (2.6) that

|∂LL−1(T \KC)|
|T \KC|

≤ |∂LL−1(T )|
(1− (ε+ δ)) |T | + |∂LL−1(K)|

|K|
≤ 2δ + η,

which shows our claim. Note that here, we used that T is (LL−1, δ)-invariant since L ⊆ K
and since T is (KK−1, δ)-invariant, cf. Lemma 2.3, (iv). �

2.3 The special tiling property

The results of the previous section put us in the position to obtain precise and effective
ε-quasi tiling results for amenable LCSCUH groups. We prove that sufficiently invariant,
compact sets T ⊆ Γ can be arbitrarily well ’approximated’ by finite, ’almost-disjoint’ unions
of Følner set translates Tic. We proceed as follows. We say that an LCSCUH group has
the special tiling property if highly invariant sets can be ’well approximated’ by translates of
Følner sets. This is made precise in Definition 2.15 which also enumerates all nice covering
and invariance properties that we need for our later purposes. Then, in Theorem 2.16, we
show that all amenable LCSCUH groups have the special tiling property. This generalizes in
part the Theorems I.2.6 and I.3.3 in [OW87]. One new feature here is the fact that for each
ε-prototile Ti we can precisely control the portion of mass of T covered by the collection
of the corresponding Ti-translates. Moreover, we give an explicit construction for tilings of
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T consisting of pairwise disjoint subsets of the Ti-translates preserving certain invariance
conditions which respect to a fixed finite-measure set. The achievements of this section are
joint work with Schwarzenberger and will appear in [PS14] (cf. Theorem 4.4).

In the sequel we will use the following notation. For a positive, real number w ∈ R, we
write

dwe := min{l ∈ N | l ≥ w}

for the smallest integer number l ∈ N greater or equal than w. We now define the special
tiling property for amenable LCSCUH groups.

Definition 2.15 (Special tiling property (STP)).
Let Γ be an amenable LCSCUH group with unit element e. Then we say that Γ has the
special tiling property if for all given β, ε > 0, 0 < β < ε ≤ 1/10 and every nested Følner
sequence (Sn)n in Γ, the following holds true: for N(ε) := dlog(ε)/ log(1− ε)e ∈ N, there is
a collection

{e} ⊆ T1 ⊆ · · · ⊆ TN(ε), Ti ∈ {Sn |n ≥ i} (1 ≤ i ≤ N(ε))

of N(ε) sets taken from (Sn), as well as some δ0 = δ(ε, β) > 0 such that for all 0 < δ < δ0
and for every (TN(ε)T

−1
N(ε), δ)-invariant compact set T ⊆ Γ, we can find finite center sets

CTi ⊆ T , 1 ≤ i ≤ N(ε) such that

(i)
⋃
c∈CTi

Tic ⊆ T for all 1 ≤ i ≤ N(ε),

(ii) {Tic}c∈CTi is an ε-disjoint family of sets for all 1 ≤ i ≤ N(ε),

(iii) the collection {TiCTi }
N(ε)
i=1 is a disjoint family of sets in Γ,

(iv)
∣∣∣∣ |TiCTi ||T | − ηi(ε)

∣∣∣∣ < β for all 1 ≤ i ≤ N(ε), where ηi(ε) := ε(1− ε)N(ε)−i.

In this situation, we say that {Ti}N(ε)
i=1 is a family of ε-prototiles for Γ and if for some

compact T ⊆ Γ, the properties (i)-(iv) hold, we say that T has the special tiling property
(STP) with respect to ({Ti}N(ε)

i=1 , (Sn)n, ε, β) and that T is ε-quasi tiled (with parameter β)
by the compact ε-prototiles Ti with finite center sets CTi .

Roughly speaking, the special tiling property of a group means the following: one fixes
arbitrary 0 < ε < 1/10. Then one computes N(ε) := dlog(ε)/ log(1 − ε)e and one finds
a finite sequence {Ti}N(ε)

i=1 of ε-prototiles. For every 1 ≤ i ≤ N(ε) we get the densities
ηi(ε) := ε(1 − ε)N(ε)−i. Now the special tiling property guarantees that for each β << ε
there is an invariance condition with respect to the {Ti} such that whenever a compact set
T ∈ F(Γ) satisfies this condition, it can be ε-quasi tiled by the ε-prototiles {Ti} in such a
way that for every 1 ≤ i ≤ N(ε), the mass proportion of T covered by the translates Tic is
β-close to the value ηi(ε).

A short computation shows that whenever some set T ⊆ Γ is ε-quasi tiled by sets {Ti} with
center sets CTi according to Definition 2.15, then we can choose β > 0 in such a way that T
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is (1− 2ε)-covered by the Ti-translates, i.e.

∣∣∣N(ε)⋃
i=1

TiC
T
i

∣∣∣ =
N(ε)∑
i=1

∣∣∣TiCTi ∣∣∣ ≥ (1− 2ε) |T |. (2.7)

Indeed, set β := ε(2N(ε))−1 to obtain
N(ε)∑
i=1

∣∣∣TiCTi ∣∣∣ ≥ N(ε)∑
i=1

(
ηi(ε)− β

)
|T |

≥
(N(ε)∑
i=1

ε(1− ε)N(ε)−i
)
|T | − ε |T | ≥ (1− ε)|T | − ε |T |,

cf. Remark 4.3 in [PS14].

In the main theorem of this section, we extend Theorem I.2.6 in [OW87]. It indicates that
all amenable LCSCUH groups have the special tiling property. It is taken from [PS14],
cf. Theorem 4.4. The proof contains ideas of boths authors. The idea to impose the
upper bound ε + δ in Lemma 2.13 (see assertion (iv)) is due to the author of this thesis.
This is the key ingredient for the precise computation of the covering densities being equal
to ηi(ε). For finitely generated groups, the proof of Theorem 2.16 has been depicted in
Schwarzenberger’s Ph.D. thesis, cf. [Sch13], proof of Theorem 5.20 in the appendix.
Before stating and proving the theorem, we compare the techniques of Ornstein and Weiss
with the present construction in two pictures. We start with a qualitative illustration of a
’typical’ Ornstein/Weiss ε-quasi tiling.

Figure 2.1: Ornstein/Weiss technique

Figure 2.1 shows a cutout of an ε-quasi tiling of some highly invariant compact set T .
This cutout is indicated by the dashed line. For practical reasons, we have only drawn the
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translates of the three smallest ε-prototiles T3 (blue), T2 (green) and T1 (yellow). (So one
can imagine a very small cutout in the set which has much less mass than the next bigger
ε-prototile T4.) Note that translates of the same kind (i.e. of the same colour) may intersect
each other in a small portion, while translates of different colours are pairwise disjoint. The
construction in [OW87] is based on the following procedure. In all parts of the original
set which have not yet been ’touched’ by translates of ε-prototiles, one covers as much as
possible with ε-disjoint translates of blue ε-prototiles. If it is not possible to include another
blue translate in this way, one turns to translates of the next smaller ε-prototile which are
marked green in the picture. Again, one finds a covering which is maximal in the sense
that one cannot include another green translate with no forbidden intersections with the
sets which have already been included. In the last step, one fills in the remaining gaps with
translates of the yellow ε-prototile. It is just due to this construction that the total mass
of all the translates of some bigger ε-prototile will in most cases be much bigger than the
total mass of all the translates of some smaller ε-prototile. In the above figure, this can be
seen clearly by comparing the total mass of the blue translates with the total mass covered
by the yellow translates. By imposing upper bounds on the covered portions (as described
above), we avoid this effect in ε-quasi tilings of the kind as described in Definition 2.15. In
particular, the total mass covered by blue, green and yellow translates will be the same up
to a very small factor of at most (1± 2ε). Consequently, one finds much more smaller than
bigger translates in these ε-quasi tilings. The qualitative picture then looks quite different,
see Figure 2.2.

Figure 2.2: ε-quasi tiling as in Definition 2.15

Note that this heuristic reasoning with qualitative pictures presumes that the small cutouts
are in fact representative (’typical’) for the whole ε-quasi tiling. In general, this is not the
case for every single cutout. However, there is a way to take care of this issue. Namely, in
Chapter 3, we construct families of ε-quasi tilings which their ’average cutout’ satisfying all
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the properties just explained through the above pictures.

We now turn to the announced theorem and show that every amenable LCSCUH group has
the special tiling property. Thus, highly invariant compact sets in the group can indeed
be ε-quasi tiled as illustrated above. Additionally, we show the validity of some technical
features which will be essential later in the construction of uniform families of ε-quasi tilings,
see Chapter 3. The theorem can also be found in [PS14], Theorem 4.4.

Theorem 2.16 (Amenable groups have the STP).
Let Γ be an amenable LCSCUH group. Let β, ε, N := N(ε) and (Sn) be given as in
Definition 2.15 and let B ⊆ Γ be compact with e ∈ B and 0 < ζ < ε. Then we can find
(B, ζ2)-invariant ε-prototiles Ti (1 ≤ i ≤ N(ε)) such that each locally closed, (TN(ε)T

−1
N(ε), δ)-

invariant (0 < δ < 6−N(ε)β/4) set T ∈ F(Γ) can be ε-quasi tiled by translates Tic, (1 ≤
i ≤ N(ε), c ∈ CTi ) such that the tiling sets can be made disjoint in a way such that for all
1 ≤ i ≤ N(ε) and all c ∈ CTi , there is some measurable set T (c)

i ⊆ Ti with the following
properties.

• T (c)
i is a locally closed set.

• |T (c)
i | ≥ (1− ε)|Ti|.

• ∂B(T (c)
i ) ∈ B(Γ).

• T (c)
i is (B, 4ζ)-invariant.

• |∂B(T (c)
i )| ≤ |∂B(Ti)|+ ζ |Ti|.

• TiCTi =
⊔
c∈CTi

T
(c)
i c, where the latter union consists of pairwise disjoint sets.

Here we essentially stick to the presentation of the proof of Theorem 4.4 in [PS14].

Proof.
Let ε and β with 0 < β < ε ≤ 1/10 and ζ > 0 be given and let (Sn) be some nested Følner
sequence. Choose some 0 < δ < β

4 6−N(ε). Without loss of generality, we assume that Sn
is (B, ζ2)-invariant for all n ∈ N and that ζ < δ/4 (If ζ is not chosen to be smaller than
δ/4, then we can take some ζ̃ < δ/4 and repeat all the steps of the proof again. Hence,
all claimed statements will hold for the original ζ as well.) As usual, we use the notation
N := N(ε).

We start choosing the sets Ti ∈ {Sn | n ∈ N}, 1 ≤ i ≤ N inductively in the following way:
set T1 := S1 and if Ti = Sk then take Ti+1 ∈ {Sn | n ≥ k + 1} which is (TiT−1

i , δ)-invariant.
Then obviously e ∈ Ti ⊆ Ti+1 and Ti ∈ {Sn | n ≥ i} for all 1 ≤ i ≤ N . Define D0 := T and
δ0 := δ. Furthermore, set δl := (2l+1−1)δ for 1 ≤ l ≤ N . Note that for every 1 ≤ l ≤ N−1,
we have δl ≤ δN−1 < ε < 1/10. This allows us to apply Lemma 2.14 inductively. If
for some 0 ≤ l ≤ N − 1, the set Dl ∈ B(Γ), which is an intersection of some open set
with the closed set T is chosen as a (TN−lT−1

N−l, δl)-invariant set, we apply the lemma with
T = Dl, K = TN−l, L = TN−l−1,B = B, δ = δl, η = δ and ζ = ζ. We obtain a finite set
CTN−l ∈ F(Γ) such that Dl+1 := Dl \ TN−lCTN−l is (TN−l−1T

−1
N−l−1, δl+1)-invariant, where
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δl+1 = 2δl + δ. Furthermore, there are (B, 4ζ)-invariant, measurable sets T (c)
N−l ⊆ TN−l with⋃

c∈CT
N−l

TN−lc =
⊔
c∈CT

N−l
T

(c)
N−lc, as well as

|T (c)
N−l| ≥ (1− ε)|TN−l| and |∂B(T (c)

N−l)| ≤ |∂B(TN−l)|+ ζ |TN−l| for all c ∈ CTN−l.

This will give the additional properties listed above. It remains to verify the assertions
(i)-(iv) of Definition 2.15. Note that Lemma 2.14 implies the inequalities

ε− δl ≤
|TN−lCTN−l|
|Dl|

≤ ε+ δl (2.8)

for all 0 ≤ l ≤ N − 1.
Claim: for all 0 ≤ l ≤ N − 1, there is some constant κl independent of the parameters ε, β
and δ such that ∣∣∣∣∣ |TN−lCTN−l||T |

− ε(1− ε)l
∣∣∣∣∣ ≤ κl · δl. (2.9)

In fact, we will see that κl := 3l, 0 ≤ l ≤ N − 1 is a good choice. For the proof of the claim,
we proceed by induction on l. Note that we have treated the case l = 0 in inequality (2.8)
with κ0 = 1. Now let l ∈ N≥1 and assume that (2.9) holds for all 0 ≤ k ≤ l − 1. By the
induction hypothesis, we can sum up the resulting inequalities and arrive at

ε ·
l−1∑
k=0

(1− ε)k −
l−1∑
k=0

κkδk ≤
|
⋃
k<l TN−kC

T
N−k|

|T |
≤ ε ·

l−1∑
k=0

(1− ε)k +
l−1∑
k=0

κkδk.

Note that here we used the pairwise disjointness of the sets TiCi for 1 ≤ i ≤ N . By the
definition of Dl we obtain T \Dl =

⋃
k<l TN−kC

T
N−k and hence

1− ε ·
l−1∑
k=0

(1− ε)k −
l−1∑
k=0

κkδk ≤
|Dl|
|T |
≤ 1− ε ·

l−1∑
k=0

(1− ε)k +
l−1∑
k=0

κkδk. (2.10)

Combining this inequality (2.10) with the estimate (2.8), we obtain

(ε− δl)
(

1− ε
l−1∑
k=0

(1− ε)k −
l−1∑
k=0

κkδk

)
≤
|TN−lCTN−l|
|T |

≤ (ε+ δl)
(

1− ε
l−1∑
k=0

(1− ε)k +
l−1∑
k=0

κkδk

)
.

Using 0 < ε < 1 we obtain

ε

(
1− ε

l−1∑
k=0

(1− ε)k
)
− δl

(
1 +

l−1∑
k=0

κkδk

)
−

l−1∑
k=0

κkδk ≤
|TN−lCTN−l|
|T |

≤ ε

(
1− ε

l−1∑
k=0

(1− ε)k
)

+ δl

(
1 +

l−1∑
k=0

κkδk

)
+

l−1∑
k=0

κkδk.
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By δk ≤ δl ≤ 1 and 1− ε
∑l−1
k=0(1− ε)k = (1− ε)l, this implies

∣∣∣∣ |TN−lCN−l||T |
− ε(1− ε)l

∣∣∣∣ ≤ δl
(

1 +
l−1∑
k=0

κkδk

)
+

l−1∑
k=0

κkδk ≤
(

1 + 2
l−1∑
k=0

κk

)
δl.

This shows the claim (2.9) with κl := 1 + 2
∑l−1
k=0 κk. Since κ0 = 1 we can compute the κl

recursively, namely κl = 3l for all l ≥ 0. In particular, we have for all 1 ≤ i ≤ N that∣∣∣∣∣ |TiCTi ||T |
− ε(1− ε)N−i

∣∣∣∣∣ ≤ 3N (2N+1 − 1)δ ≤ 2 · 6Nδ < β,

by the choice of δ. This proves (iv) of Definition 2.15. Properties (i), (ii) and (iii) follow
from the construction of the sets CTi , 1 ≤ i ≤ N . The additional properties concerning the
disjoint sets T (c)

i can immediately be deduced from Lemma 2.14. �

The following corollary is an immediate consequence of the preceding theorem.

Corollary 2.17.
Every amenable LCSCUH group satisfies the special tiling property.

Proof.
This follows from Theorem 2.16. �





3 Uniform tiling results

The goal of this chapter is to use Theorem 2.16 in order to prove the existence of uniform
ε-quasi tilings in amenable groups. Roughly speaking, we show that for highly invariant
compact sets T ⊆ Γ, we can find a family of ε-quasi tilings as in Definition 2.15 such that on
average (with respect to the family), almost all elements u ∈ T occur in the center sets CTi
with the same frequency. To do so, we significantly extend the ε-quasi tiling techniques in
[OW87]. In fact, we give effective estimates on the covering densities and on the uniformity
properties of ε-quasi tiling families. These results provide a major tool in the proofs of
convergence theorems for almost-additive functions over Γ, cf. Chapter 4. We will deal with
countable groups and general LCSCUH groups separately. In the latter situation, we do not
only construct uniform ε-quasi tilings, but certain pairs of ε-quasi tiling families. Those pairs
are called uniform decomposition towers, cf. Definition 3.5. They will become indispensable
later in the proof of the abstract mean ergodic theorem for almost-additive functions over
Γ, cf. Theorem 4.15. The decomposition theorem for countable amenable groups (cf. The-
orem 3.2) appears in [PS14]. The analoguous Theorem 3.4 for general amenable LCSCUH
groups, as well as the existence theorem for uniform decomposition towers (cf. Theorem 3.6)
are published in [Pog13a].

3.1 Countable groups

In this section, we construct certain finite families of ε-quasi tilings in countable, amenable
groups. We show that if a set T is ε-quasi tiled by the family, then on average, most
of the elements u ∈ T appear in the center sets Ci of the tiling with relative frequency
ε(1 − ε)N−i/|Ti|. Since the latter number only depends on ε and the element 1 ≤ i ≤ N ,
this is a remarkable result. The corresponding existence Theorem 3.2 is an analogue of
Proposition I.2.7 in [OW87]. We also use constructions of the proof of that proposition.
However, we compute different quantities. Moreover, we are able to give precise estimates for
tiling densities and occurrence frequencies of elements in the center sets. The corresponding
results can also be found in [PS14], Theorem 4.6.

Extending the special tiling property (cf. Definition 2.15), we now introduce the uniform
special tiling property for countable groups.

Definition 3.1 (Uniform special tiling property (USTP)).
Let Γ be a countable amenable group. Then we say that Γ satisfies the uniform special tiling
property (USTP) if the following statements hold true.

27
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• For arbitrary 0 < ε ≤ 1/10, N := N(ε) := dlog(ε)/ log(1 − ε)e, for every 0 < β <
2−Nε and for all nested Følner sequences (Sn), the group Γ satisfies the spectial tiling
property according to Definition 2.15 with ε- prototiles

{e} ⊆ T1 ⊆ T2 ⊆ · · · ⊆ TN ,

where Ti ∈ {Sn |n ≥ i} for 1 ≤ i ≤ N .

• For fixed numbers ε and β as above and for all Følner sequences (Un) in Γ, there is
a finite set Q(ε, β, Ti) =: Q ⊂ Γ with e ∈ Q depending on ε, β and the tiling sets Ti,
as well as a number R ∈ N such that for each k ≥ R, the set Uk is (Q, β)-invariant
and there is a finite set Λk ⊂ Γ, along with a family {Cλi ⊆ T |λ ∈ Λk, 1 ≤ i ≤ N} of
finite center sets for the Ti such that the following holds: for all λ ∈ Λk, the set Uk
is ε-quasi tiled with the properties (i) to (iii) of Definition 2.15 by the translates Tic,
c ∈ Cλi and additionally,

(I)

∣∣∣⋃N

i=1 TiC
λ
i

∣∣∣
|Uk| ≥ 1− 4ε for all λ ∈ Λk,

(II)
∣∣∣|Λk|−1∑

λ∈Λk 1Cλi
(u) − ηi(ε)

|Ti|

∣∣∣ < 3 β
|Ti| + 2 εγi for all 1 ≤ i ≤ N and every u ∈

Uk \ ∂Q(Uk), where ηi(ε) = ε(1− ε)N−i and the γi > 0 satisfy
∑N
i=1 γi|Ti| ≤ 2.

Remark.
The essential uniformity property is given by statement (II) of the second item. It states
that for a percentage of at least 1− β of the elements in the set Uk, a fixed element u ∈ Uk
serves as a center in the set Cλi in approximately ε(1 − ε)N−i/|Ti| percent of the ε-quasi
tilings in the family. In Proposition I.2.7 of [OW87], one finds a different uniformity result:
it states that for most u ∈ T , the number of center sets Ci containing u compared to the
total mass

∑
λ |Cλi | is approximately proportional to 1/|T |. However, it turns out that we

cannot apply this fact for our purposes, but we need assertion (II) of the second item of
Defintion 3.1.

The following theorem shows that uniform tilings as in Definition 3.1 exist in all countable,
amenable groups. It is taken from [PS14], Theorem 4.6 and it is due to the author of this
thesis. In agreement with the author of this thesis, Schwarzenberger presented the proof
in his Ph.D. thesis, see the proof of Theorem 5.22 in the appendix. The result can also be
found in cf. [PS14], Lemma 4.6.

Theorem 3.2 (Amenable groups have the USTP).
Every countable, amenable group Γ satisfies the uniform special tiling property.

Proof.
Let 0 < ε ≤ 1/10, set N := N(ε) := dlog(ε)/ log(1− ε)e and choose 0 < β < 2−Nε. Further,
let (Un) be a Følner sequence of Γ and assume that 0 < δ0 < 6−Nβ/20.

Note that by Theorem 2.16, Γ is ε-quasi tiled by a finite sequence

{e} ⊆ T1 · · · ⊆ TN
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of finite ε-prototiles sets taken from a nested Følner sequence (Sn).

Let 0 < δ < δ0. At various steps of the proof, we will have to make this parameter smaller.
For the sake of the reader, we prefer doing this in a successive manner instead of imposing
many technical conditions on δ right now. This is possible since the restrictions will only
depend on ε, β and the basis sets Ti, 1 ≤ i ≤ N , but not on things developed in the proof.
One can then think of starting the proof all over again with a new condition on the param-
eter δ. We proceed in nine steps.

(1) We letM := dlog(δ)/ log(1−δ)e and following Theorem 2.16, we find finite sets T l ⊇ TN ,
1 ≤ l ≤ M , taken from the nested Følner sequence (Sn), such that {T l}Ml=1 is a family
of δ-prototiles in Γ. In addition to this, we make sure that T l is (TNT−1

N , δ2
0)-invariant

for all 1 ≤ l ≤ M (we can do so because further invariance properties can be chosen
without changing the fact that the {T l} δ-quasi tile Γ).

Then we find some integer K ∈ N such that for each k ≥ K, the set T := Uk is
(T lT

−1
l , 2−lδ)-invariant for all 1 ≤ l ≤M . Since δ will depend on ε, β and the basis sets

Ti, so does the integer number K. Further, we choose T̂ to be a (TT−1, δ)-invariant
finite set T̂ which is also (T lT

−1
l , 2−lδ)-invariant for all 1 ≤ l ≤ M . Using Theo-

rem 2.16, we can also make sure that T̂ has the special tiling property with respect to
({T l}Ml=1, (Sn), δ, β1), where 0 < β1 < 2−Mδ. For instance, take T̂ := UR̃ for R̃ ∈ N
large enough.

Define A := {h ∈ Γ |Th ⊆ T̂}. Since T̂ is (TT−1, δ)-invariant, we have by the
Lemma 2.11 and the unimodularity of the counting measure on Γ that |A| ≥ (1− δ)|T̂ |.

(2) Since T̂ has the special tiling property with respect to ({T l}Ml=1, (Sn), δ, β1) (0 < β1 <
2−Mδ), we find a δ-quasi tiling of T̂ with center sets C l ⊆ T̂ , 1 ≤ l ≤ M as in
Theorem 2.16. Furthermore, we can make the T l-translates in this δ-quasi tiling actu-
ally disjoint such that the resulting disjoint translates T ′l(c)c ⊆ T lc (c ∈ C l) are still
(TNT−1

N , 4δ0)-invariant by applying Theorem 2.16 with B = TNT
−1
N . Due to inequal-

ity (2.7), those sets maintain the covering properties of our tiling, i.e.

1 ≥ |B(δ, (T l), T̂ )|
|T̂ |

=
∑M
l=1
∑
c∈Cl |T

′
l(c)c|

|T̂ |
≥ (1− 2δ), (3.1)

where B(δ, (T l), T̂ ) :=
⊔M
l=1
⊔
c∈Cl T

′
l(c)c.

(3) Since all sets T ′l(c)c are (TNT−1
N , 4δ0)-invariant for 1 ≤ l ≤ M and c ∈ C l, and since

δ0 < 6−Nβ/4, we can apply Theorem 2.16 with δ0 = δ0 to fix in each translate T ′l(c)c,
(c ∈ C l) an ε-quasi tiling of (Ti)Ni=1 with center sets Ci(T

′
l(c)) and∣∣∣∣∣∣∣

∣∣∣ ⋃
c̃∈Ci(T

′
l(c))

Tic̃
∣∣∣

|T ′l(c)|
− ηi(ε)

∣∣∣∣∣∣∣ < β (3.2)
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for 1 ≤ i ≤ N . Furthermore, we put

Ĉi :=
M⋃
l=1

⋃
c∈Cl

Ci(T
′
l(c))

for 1 ≤ i ≤ N . Then the elements in Ĉi can be considered as centers for the Følner sets
Ti such that the {Tic}c∈Ĉi are ε-disjoint and such that for 1 ≤ i < j ≤ N , the sets TiĈi
and TjĈj are disjoint. Using the fact that β < 2−Nε, we obtain by inequality (2.7)∣∣∣∣∣∣∣

N⋃
i=1

⋃
c̃∈Ci(T

′
l(c))

Tic̃

∣∣∣∣∣∣∣ ≥ (1− 2ε)
∣∣∣T ′l(c)∣∣∣ (3.3)

for each 1 ≤ l ≤M and every c ∈ C l.

(4) We now would like to determine the portion of T̂ that is covered by each set TiĈi. We
will see that up to some small error (2β), this will be ηi(ε) = ε(1− ε)N−i.

Let 1 ≤ i ≤ N be given. Using the disjointness of the T ′l(c)c for all c ∈ C l and all
1 ≤ l ≤M , inequality (3.1) and (3.2), we obtain

∣∣∣TiĈi∣∣∣ =
M∑
l=1

∑
c∈Cl

∣∣∣ ⋃
c̃∈Ci(T

′
l(c))

Tic̃
∣∣∣

≥
M∑
l=1

∑
c∈Cl

|T ′l(c)|(ηi(ε)− β) ≥ (1− 2δ)(ηi(ε)− β)|T̂ | ≥ (ηi(ε)− 2β)|T̂ |,

where the last step is true for sufficiently small δ. Note that this is the first of the
announced conditions on the smallness of δ. Let us estimate in the other direction.
Estimates (3.2) and (3.1) lead to

∣∣∣TiĈi∣∣∣ (3.2)
≤

M∑
l=1

∑
c∈Cl

|T ′l(c)|(ηi(ε) + β) (3.1)= (ηi(ε) + β)|B(δ, (T l), T̂ )| ≤ (ηi(ε) + β)|T̂ |.

The above bounds yield for all 1 ≤ i ≤ N∣∣∣∣∣∣∣
∣∣∣TiĈi∣∣∣
|T̂ |

− ηi(ε)

∣∣∣∣∣∣∣ < 2β. (3.4)

(5) For each 1 ≤ i ≤ N , define the ratio γi := |Ĉi|/|T̂ |. We compare this expression with
the ratio ηi(ε)/|Ti|. By exploiting ε-disjointness of the Ti-translates, as well as (3.4), we
obtain for each 1 ≤ i ≤ N

∣∣TiĈi∣∣ ≤ |Ti||Ĉi| ≤ (1− ε)−1 ∑
c∈Ĉi

∣∣T ′i (c)c∣∣ = (1− ε)−1

∣∣∣∣∣∣
⋃
c∈Ĉi

T ′i (c)c

∣∣∣∣∣∣ ≤ (1− ε)−1 ∣∣TiĈi∣∣,
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where the sets T ′i (c)c, c ∈ Ĉi are pairwise disjoint and |T ′i (c)| ≥ (1− ε)|Ti| for all c ∈ Ĉi.
This leads us to

∣∣∣∣γi − ηi(ε)
|Ti|

∣∣∣∣ ≤ 1
|Ti|

∣∣∣∣∣∣∣
|Ĉi| |Ti|
|T̂ |

−

∣∣∣TiĈi∣∣∣
|T̂ |

∣∣∣∣∣∣∣+
1
|Ti|

∣∣∣∣∣∣∣
∣∣∣TiĈi∣∣∣
|T̂ |

− ηi(ε)

∣∣∣∣∣∣∣
≤ ε

1− ε
|Ĉi|
|T̂ |

+ 2β
|Ti|

(ε < 1/2) ≤ 2γi ε+ 2β
|Ti|

. (3.5)

Using the ε-disjointness of the translates of Ti (and the rough bound ε < 1/2), it is
straight forward to show that

N∑
i=1

γi |Ti| ≤ 2

holds true.

(6) In this step of the proof, it will be shown that most of the T -translates contained in T̂
will be (1− 3ε)-covered by the fixed pattern ∪Ni=1TiĈi. Here, we will have to impose a
second restriction on δ. We recall from step (1) that we chose the set A as the collection
of elements a ∈ Γ such that the translate Ta lies entirely in T̂ . For each a ∈ A, we set

X(a) :=

∣∣∣Ta ∩ (T̂ \B(δ, (T l), T̂ )
)∣∣∣

|T |
=

∣∣∣Ta \B(δ, (T l), T̂ )
∣∣∣

|T |

and treat X as a function on A into [0, 1]. Thus, it follows from the ’Chebyshev in-
equality’ that

√
δ
∣∣∣{a ∈ A |X(a) >

√
δ}
∣∣∣ ≤∑

a∈A
X(a) = 1

|T |
∑
a∈A

∑
g∈T̂\B(δ,(T l),T̂ )

1Ta(g).

Using (3.1) and Lemma 2.11 (i), we continue estimating

1
|T |

∑
a∈A

∑
g∈T̂\B(δ,(T l),T̂ )

1Ta(g) = 1
|T |

∑
g∈T̂\B(δ,(T l),T̂ )

∑
a∈A

1Ta(g)

(Lemma 2.11 (i)) ≤ |T̂ \B(δ, (T l), T̂ )|
(inequality (3.1)) ≤ 2δ|T̂ |.

This and |A| ≥ (1− δ)|T̂ | (see step (1)), as well as δ ≤ 1/2 yield
∣∣∣{a ∈ A |X(a) >

√
δ}
∣∣∣ ≤ 2

√
δ|T̂ | ≤ 2

√
δ|A|

1− δ ≤ 4
√
δ|A|,

or equivalently

|Λ| ≥ (1− 4
√
δ)|A|, where Λ := {a ∈ A | X(a) ≤

√
δ}. (3.6)
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Thus, up to a portion of 4
√
δ, the translates of T which lie entirely in T̂ are (1−

√
δ)-

covered by the tiling with basis sets (T l). However, it is convenient to work with quasi
tilings of the sets Ta with their basis sets being subsets of Ta, where a ∈ A. Therefore,
for each a ∈ A, we delete elements of the covering having a non-empty intersection with
Γ \ Ta. To do so, define for 1 ≤ l ≤M and a ∈ A the sets

∂(a, l) := {c ∈ C l |T
′
l(c)c ∩ Ta 6= ∅, T

′
l(c)c ∩ (Γ \ Ta) 6= ∅}, and

I(a, l) := {c ∈ C l |T
′
l(c)c ⊆ Ta}.

Then, T l∂(a, l) ⊆ ∂
T lT

−1
l

(Ta) for every a ∈ A and each 1 ≤ l ≤M . Using the invariance
properties of T assumed in step (1), for all a ∈ A, we arrive at

1
|T |

∣∣∣ M⋃
l=1

⋃
c∈∂(a,l)

T
′
l(c)c

∣∣∣ ≤ 1
|T |

M∑
l=1
|∂
T lT

−1
l

(T )|

≤ 1
|T |

M∑
l=1

2−lδ|T |

< δ.

It follows in particular, that if λ ∈ Λ, then the estimate

∣∣∣ M⋃
l=1

⋃
c∈I(λ,l)

T
′
l(c)c

∣∣∣ ≥ |Tλ ∩B(δ, (T l), T̂ )| −
∣∣∣ M⋃
l=1

⋃
c∈∂(λ,l)

T
′
l(c)c

∣∣∣
≥ (1−

√
δ − δ)|T |. (3.7)

holds true. Now, for a ∈ A, we are able to estimate the portion of Ta which is covered
by those Ĉi-translates of Ti, 1 ≤ i ≤ N which lie completely in Ta. To this end, we set

C̃i(a) :=
M⋃
l=1

⋃
c∈I(a,l)

Ci(T
′
l(c)), and D(a) :=

N⋃
i=1

⋃
c∈C̃i(a)

Tic ⊆ Ta

for 1 ≤ i ≤ N and for a ∈ A. Using the disjointness of the translates T ′l(c)c, 1 ≤ l ≤M ,
c ∈ C l and the estimate (3.3), we obtain

|D(λ)| =
M∑
l=1

∑
c∈I(λ,l)

∣∣∣ N⋃
i=1

⋃
c̃∈Ci(T

′
l(c))

Tic̃
∣∣∣ ≥ (1− 2ε)

M∑
l=1

∑
c∈I(λ,l)

|T ′l(c)|

for all λ ∈ Λ. Thus, imposing another condition on the smallness of δ and using (3.7),
we arrive at

|D(λ)| ≥ (1− 2ε)(1− δ −
√
δ)|T | ≥ (1− 3ε)|T | (3.8)

for every λ ∈ Λ.
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(7) Next, we define the desired family of center sets and verify properties (i) - (iii) of
Definition 2.15, as well as property (I) of Definition 3.1. In the previous step we have
already defined the set Λ. Recall that Λ depends on T = Uk, which justifies the notion
Λk := Λ. For each k ∈ N, λ ∈ Λk and 1 ≤ i ≤ N , we set

Cλi := Cλi (T ) := C̃i(λ)λ−1.

Then, we also have

N⋃
i=1

⋃
c∈C̃λi

Tic = D(λ)λ−1 ⊆ T

for all λ ∈ Λ, which shows (i) of Definition 2.15. The properties (ii) and (iii) are fulfilled
by construction. The bound in (I) of Definition 3.1 follows from (3.8).

(8) In this step, we prepare the proof of the uniform covering principle (II) of Definition 3.1.
To do so, we define Q(δ, ε, β, Ti) := Q := TMT

−1
M . We now show that for each 1 ≤ i ≤ N

and u ∈ T \ ∂Q(T ), we have indeed

∣∣∣ 1
|Λ|

∑
λ∈Λ

1Cλi
(u)− γi

∣∣∣ ≤ β

|Ti|
, (3.9)

where the numbers γi and the sets Cλi are as explained in steps (5) and (7) respectively.
Since C̃i(λ) ⊆ Ĉi, we obtain∑

λ∈Λ
1Cλi

(u) =
∑
λ∈Λ

1C̃i(λ)(uλ) ≤
∑
λ∈Λ

1Ĉi
(uλ) = |Ĉi ∩ uΛ| ≤ |Ĉi|. (3.10)

Next, use (3.6) and |A| ≥ (1− δ)|T̂ | (cf. step (1)) to calculate

|Λ|−1 ∑
λ∈Λ

1Cλi
(u) ≤ |Ĉi|

(1− 4
√
δ)|A|

≤ |Ĉi|
(1− 5

√
δ)|T̂ |

= γi

1− 5
√
δ

for all 1 ≤ i ≤ N . With γi ≤ 1, we obtain

|Λ|−1 ∑
λ∈Λ

1Cλi
(u)− γi ≤

( 1
1− 5

√
δ
− 1

)
γi ≤

( 1
1− 5

√
δ
− 1

)
≤ β

|Ti|
, (3.11)

where the last inequality holds true if δ is chosen small enough, which is the third
assumption on the size of δ. Note here that the choice of the Ti only depends on ε but
not other quantities developed in the proof. Let us verify the converse bound. At first,
we claim that for all λ ∈ Λ and every 1 ≤ i ≤ N ,

Ĉiλ
−1 ∩ (T \ ∂Q(T )) ⊆ Cλi . (3.12)

To see this, let u ∈ Ĉiλ−1∩T\∂Q(T ) be given. By the definition of Ĉi, we find 1 ≤ l ≤M ,
as well as c ∈ C l such that u ∈ Ci(T

′
l(c))λ−1. If c ∈ I(λ, l), then u ∈ C̃i(λ)λ−1 = Cλi
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and there is nothing left to show. If c /∈ I(λ, l), then T
′
l(c)c ∩ (Γ \ Tλ) 6= ∅. On the

other hand, as uλ ∈ Tλ and
uλ ∈ Tiuλ ⊆ T

′
l(c)c,

we also have T ′l(c)c ∩ Tλ 6= ∅ and thus c ∈ ∂(λ, l). It also follows from the latter
inclusion (see step (6)) that uλ ∈ ∂

T lT
−1
l

(Tλ) which implies u ∈ ∂Q(T ). But this is
a contradiction to the choice of u. Thus, we must have c ∈ I(λ, l) and the claimed
inclusion (3.12) follows. Let now u ∈ T \ ∂Q(T ) be given.
We use (3.12) to obtain

1Cλi
(u) ≥ 1Ĉiλ−1∩(T\∂Q(T ))(u) = 1Ĉiλ−1(u) = 1u−1Ĉi

(λ),

which together with (3.10) implies∑
λ∈Λ

1Cλi
(u) ≥ |uΛ ∩ Ĉi|.

With Ĉi ⊆ T̂ and uΛ ⊆ T̂ (as TΛ ⊆ T̂ ), we obtain |T̂ | ≥ |Λ| and hence, we calculate

γi −
1
|Λ|

∑
λ∈Λ

1Cλi
(u) ≤ |Ĉi|

|T̂ |
− |uΛ ∩ Ĉi|

|T̂ |

(Ĉi ⊆ T̂ ) ≤ |T̂ \ uΛ|
|T̂ |

= 1− |Λ|
|T̂ |

.

Now, the inequalities (3.6) and |A| ≥ (1− δ)|T̂ | yield

γi −
1
|Λ|

∑
λ∈Λ

1Cλi
(u) ≤ 1− (1− 4

√
δ)(1− δ)|T̂ |
|T̂ |

≤ 5
√
δ ≤ β

|Ti|
,

where the last inequality holds if δ is chosen small enough, which shall be the fourth
and last additional condition on δ. This and inequality (3.11) show (3.9).

(9) Finally, we prove the property (II) of our theorem. To do so, we use the triangle
inequality followed by the Inequalities (3.9) and (3.5). We obtain∣∣∣ 1

|Λ|
∑
λ∈Λ

1Cλi
(u)− ηi(ε)

|Ti|

∣∣∣ ≤ ∣∣∣ 1
|Λ|

∑
λ∈Λ

1Cλi
(u)− γi

∣∣∣+ ∣∣∣γi − ηi(ε)
|Ti|

∣∣∣ ≤ 2γiε+ 3β
|Ti|

for each u ∈ T \ ∂Q(T ) and all 1 ≤ i ≤ N , where
∑N
i=1 γi|Ti| ≤ 2 as shown above.

Thus, we have finally finished the proof of the theorem. �

3.2 Continuous groups

We turn to the case of possibly continuous, LCSCUH groups. Again, we construct families
of ε-quasi tilings with convenient uniformity properties. The corresponing existence Theo-
rem 3.4 for amenable groups is an extension of Proposition I.3.6 of [OW87]. For the proof
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of the general mean ergodic theorem for almost-additive functions (cf. Chapter 4), we even
need more sophisticated decompositions. This leads us to the concept of so-called uniform
decomposition towers, cf. Definition 3.5. This latter object consists of a pair of uniform
ε-quasi tiling famlies with index sets Υ,Λ ∈ F(Γ). The crucial property is that for each
y ∈ Υ, we can compute the corresponding uniform ε-quasi tiling over Λ with center sets
{Cy,λi (·)}λ∈Λ. For our later purposes, it will be essential that Λ is chosen independently of
y. Thus, we need in fact decomposition pairs as described in Definition 3.5 and we must
refrain from just ’glueing’ two uniform families of ε-quasi tilings together. In Theorem 3.6,
we show that in every amenable LCSCUH group, one can construct uniform decomposition
towers. The results of this section have been published in [Pog13a].

Definition 3.3 (Uniform continuous decompositions).
Let Γ be an LCSCUH group. We say that Γ satisfies the uniform continuous decompositions
condition (UCDC) if the following statements holds true.

• For each 0 < ε ≤ 1/10, N := N(ε) := dlog(ε)/ log(1 − ε)e, for arbitrary numbers
0 < β, ζ < 2−Nε, for every nested Følner sequence (Sn), and for each compact set
e ∈ B ⊆ Γ, the group Γ has the special tiling property according to Definition 2.15
with ε-prototiles

{e} ⊆ T1 ⊆ T2 ⊆ · · · ⊆ TN ,

where Ti ∈ {Sn |n ≥ i} for 1 ≤ i ≤ N(ε) and where the latter prototile sets are all
(B, ζ2)- invariant.

• For fixed positive numbers ε > 0, β > 0, ζ > 0 and for a fixed compact set e ∈ B ⊆ G,
there is some integer J ∈ N, as well as a positive number 0 < δ0 < β/4 depending on ε,
β and the basis sets Ti such that for each 0 < δ1 < δ0, every locally closed, (SJS−1

J , δ1)-
invariant set T ⊆ Γ can be uniformly ε-quasi tiled in the following manner: we find a
finite-measure set Λ ∈ F(Γ), along with a family

{Cλi (T ) |λ ∈ Λ, 1 ≤ i ≤ N}

of finite center sets for the basis sets Ti such that for each λ ∈ Λ, the set T is ε-quasi
tiled by the translates Tic, 1 ≤ i ≤ N , c ∈ Cλi (T ) according to Definition 2.15 and
moreover,

(I)
∣∣⋃N

i=1 TiC
λ
i (T )

∣∣
|T | ≥ 1− 4ε for all λ ∈ Λ,

(II) for all 1 ≤ i ≤ N and for every Borel set S ⊆ T ,∣∣∣∣∣|Λ|−1
∫

Λ

#(Cλi (T ) ∩ S)
|T |

dλ− ηi(ε)
|Ti|

· |S|
|T |

∣∣∣∣∣ < 4 β

|Ti|
+ 2ε · γi,

where ηi(ε) := ε(1−ε)N−i and the γi > 0 can be chosen such that
∑N
i=1 γi|Ti| ≤ 2,

(III) the translates Tic (c ∈ Cλi (T ), 1 ≤ i ≤ N) can be made disjoint such that the
resulting sets T (c)

i c have the properties listed in the statement of Theorem 2.16
for all λ ∈ Λ.
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If for T ∈ F(Γ) the assertions (I)-(III) hold true we say that T is uniformly ε-quasi tiled
by the translates Tic.

Remark.
The essential property of Definition 3.3 is given by the inequality (II) in the second item.
It shows that the center cets are uniformly distributed in T in the following sense. On
average with respect to the measure ν(·) := mL(·)

|Λ| , the mean occurrence frequency of the
center sets is nearly constant almost-everywhere of T . This statement is a refinement of
Proposition I.3.6 in [OW87] and we use basic constructions of this assertion. Beyond that,
we obtain quantitative estimates for the coverings in Definition 3.3. The uniform continuous
decomposition condition is the continuous analogue of the uniform special tiling property in
Definition 3.1. We also could have required property (III) already for the USTP. However,
it was not needed at this point. We will make use of this feature of the UCD condition when
we prove the existence of uniform decomposition towers in Theorem 3.6. Another difference
is that in the uniformity estimate we consider an inequality normalized by the mass of T .
The reason for this is that the number #(Cλi ∩S) might be large if S covers a large portion
of T . This problem does not occur in the inequality in assertion (II) of Definition 3.1, where
one deals with characteristic functions 1Cλi (u) for u ∈ T and this latter function is clearly
bounded by 1.

In the following theorem, we prove that each unimodular, amenable group is UCDC, i.e. it
satisfies the uniform continuous decompositions condition. This is the continuous analogue
of Theorem 3.2 for countable amenable groups and significant parts of the proof can be
adapted. For the presentation of the proof we essentially follow the proof of Theorem 3.7
in [Pog13a].

Theorem 3.4 (Uniform continuous decompositions).
Each amenable LCSCUH group Γ satisfies the uniform continuous decompositions condition.

Proof.
Let 0 < ε ≤ 1/10 and 0 < ζ, β < 2−Nε, as well as a compact set e ∈ B ⊆ Γ be given, where
as usual, N := N(ε) := dlog(ε)/ log(1− ε)e. Assume further that 0 < δ1 < 6−Nβ/20.

Note that by Theorem 2.16, we can find (B, ζ2)-invariant basis sets

{e} ⊆ T1 ⊆ · · · ⊆ TN ,

taken from a nested Følner sequence (Sn) that ε-quasi tile the group such that each (TNT−1
N , δ1)-

invariant set T ⊆ Γ can be ε-quasi tiled by translates Tic that can be made disjoint in a
way that they keep the claimed invariance properties with respect to the set B.

We choose 0 < δ < 1/100. As in the proof of Theorem 3.2, at various steps of the proof, we
will have to make this parameter smaller. This is possible since the corresponding restric-
tions do not depend on objects developed in the following constructions, but only on ε, β
and the basis sets Ti.
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We stick close to the proof of Theorem 3.2 and again, we proceed in nine steps. In fact, the
steps (1)-(7) can be proven in essentially the same manner as before. In step (8) we have
to deal with a major difference in the calculations because for continuous groups, the Haar
measure is not equal to the counting measure. Further, unlike in Theorem 3.2 we deal with
quantities normalized by the mass of T .

(1) We set M := dlog(δ)/ log(1 − δ)e and we find (TNT−1
N , δ2

1)-invariant sets T l ⊇ TN ,
1 ≤ l ≤ M , taken from (Sn) such that the T l δ-quasi tile the group Γ (cf. Theo-
rem 2.16). Define J := min{n ∈ N |Sn = TM}. Now let T be a locally closed set
which is (SJS−1

J , 2−Mδ)-invariant, hence (T lT
−1
l , 2−Mδ)-invariant for all 1 ≤ l ≤M by

Lemma 2.3 (iv). Further, we choose T̂ to be a (TT−1, δ)-invariant compact set inherit-
ing all the mentioned invariance properties of T , i.e. it is also (T lT

−1
l , 2−Mδ)-invariant

for all 1 ≤ l ≤ M . Using Theorem 2.16, we can also make sure that T̂ has the special
tiling property with respect to ({T l}Ml=1, (Sn), δ, β1), where 0 < β1 < 2−Mδ. We set
A := {g ∈ Γ |Tg ⊆ T̂} and we note that A ∈ F(Γ) and

|A| ≥ (1− δ)|T̂ | (3.13)

by Lemma 2.11 (ii) and the unimodularity of the group.

(2) We fix a δ-quasi tiling of T̂ as in Theorem 2.16 with basis sets T l, 1 ≤ l ≤ M , where
we make the T l-translates actually disjoint such that the resulting disjoint translates
T

(c)
l c are locally closed and still (TNT−1

N , 4δ1)-invariant. We note that these disjoint
translates (1− 2δ)-cover the set T̂ , i.e.∣∣∣ ⋃Ml=1

⋃
c∈Cl T

(c)
l c
∣∣∣

|T̂ |
=
∑M
l=1
∑
c∈Cl |T

(c)
l c|

|T̂ |
≥ 1− 2δ. (3.14)

(3) Since all the sets T (c)
l are still (TNT−1

N , 4δ1)-invariant for all 1 ≤ l ≤M and every c ∈ C l
and 4δ1 < δ0, it follows from Theorem 2.16 that we can fix in each translate T (c)

l c an
ε-quasi tiling with the basis sets Ti and finite center sets C l,ci such that∣∣∣∣∣ |TiC

l,c
i |

|T (c)
l c|

− ηi(ε)
∣∣∣∣∣ < β (3.15)

for every 1 ≤ i ≤ N . Further, we set

Ĉi :=
M⋃
l=1

⋃
c∈Cl

C l,ci

for 1 ≤ i ≤ N and we note that the Ĉi can be considered as center sets for the basis
sets Ti such that the family {Tic}c∈Ĉi is ε-disjoint and such that for 1 ≤ i < j ≤ N , the
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elements TiĈi and TjĈj are disjoint. For the covering properties of this ε-quasi tiling,
a short computation using inequality (3.15) shows that∣∣∣∣∣

N⋃
i=1

TiĈi

∣∣∣∣∣ ≥ (1− 2δ − 2ε)|T̂ |,

cf. proof of Theorem 3.2, step (3).

(4) The step (4) of Theorem 3.2 shows that by imposing a first condition on δ depending
on ε and β, we have ∣∣∣∣∣ |TiĈi||T̂ |

− ηi(ε)
∣∣∣∣∣ < 2β (3.16)

for all 1 ≤ i ≤ N .

(5) A short calculation using the ε-disjointness of the Ti-translates now shows with inequal-
ity (3.16) that ∣∣∣∣∣#(Ĉi)

|T̂ |
− ηi(ε)
|Ti|

∣∣∣∣∣ < 2β
|Ti|

+ γiε, (3.17)

where γi := #(Ĉi)/|T̂ | for 1 ≤ i ≤ N and
∑N
i=1 γi|Ti| ≤ 2, cf. proof of Theorem 3.2,

step (5).

(6) We recall from step (1) that we chose A to be the collection of elements a ∈ Γ such that
the translate Ta lies entirely in T̂ . So for each a ∈ A, we define

X(a) :=

∣∣∣Ta ∩ (T̂ \⋃Ml=1
⋃
c∈Cl T

(c)
l c
)∣∣∣

|Ta|
=

∣∣∣Ta \⋃Ml=1
⋃
c∈Cl T

(c)
l c
∣∣∣

|T |
.

Note that X is a measurable function on the finite measure set A. It follows then from
the Chebyshev inequality that

|{a ∈ A |X(a) >
√
δ}|

|A|
≤ 1√

δ

∫
A

∣∣∣Ta \⋃Ml=1
⋃
c∈Cl T

c
l c
∣∣∣

|A| · |T |
da.

Using the Inequalities (3.13) and (3.14), we obtain by interchanging integrals (Fubini’s
Theorem),

|{a ∈ A |X(a) >
√
δ}|

|A|
≤ 1√

δ

∫
A
|A|−1|T |−1

∫
Γ
1
Ta\
(
∪M
l=1∪c∈ClT

(c)
l c

)(g) dg da

= 1√
δ
|A|−1|T |−1

∫
A

∫
T̂\
(
∪M
l=1∪c∈ClT

(c)
l c

) 1Ta(g) dg da

= 1√
δ
|A|−1|T |−1

∫
T̂\
(
∪M
l=1∪c∈ClT

(c)
l c

) (∫
A
1Ta(g) da

)
dg

≤ 1√
δ

|T̂ \ ∪Ml=l ∪c∈Cl T
(c)
l c| · |T |

(1− ε1)|T̂ | · |T |
≤ 6

√
δ.
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This shows that for most of the a’s (up to a portion of 6
√
δ), the corresponding translates

Ta are (1−
√
δ)-covered by the disjoint union

M⊔
l=1

⊔
c∈Cl, T

(c)
l c∩Ta6=∅

T
(c)
l c.

It follows from this, as well as from the invariance properties of T that we can impose
a second restriction on δ depending on ε to obtain that up to a portion of 6

√
δ of the

elements a ∈ A, the translates Ta are (1− 3ε)-covered by the union
⋃N
i=1 TiĈi, cf. step

(6) in the proof of Theorem 3.2. However, for some elements a ∈ A and some c ∈ Ĉi,
the translate Tic will have non-trivial intersections with both Ta and its complement.
In order to cope with this difficulty, we introduce the following notions. Define

I(a, l) := {c ∈ C l |T
(c)
l c ⊆ Ta}

∂(a, l) := {c ∈ C l |T
(c)
l c ∩ Ta 6= ∅ ∧ T (c)

l c ∩ (G \ Ta) 6= ∅}

for a ∈ A and 1 ≤ l ≤M . Further, we set

Ci(a) :=
M⋃
l=1

⋃
c∈I(a,l)

C l,ci

for a ∈ A and 1 ≤ i ≤ N(ε), where the sets C l,ci are those defined in step (3).

(7) We are now in position to define the family Λ, as well as the corresponding center sets
Cλi (T ) := Cλi for 1 ≤ i ≤ N and λ ∈ Λ. Namely, we obtain Λ by erasing from the set A
the ’bad’ elements, i.e.

Λ := {λ ∈ A |X(λ) ≤
√
δ}.

From the measurability of the map X we deduce that Λ is measurable as well. Note
that by inequality (3.13), we have

|Λ| ≥ (1− 6
√
δ)(1− δ)|T̂ |. (3.18)

For λ ∈ Λ, we set
Cλi := {d ∈ T | dλ ∈ Ci(λ)} ⊆ Ĉiλ−1

for 1 ≤ i ≤ N . An easy computation using the previous step shows that for every λ ∈ Λ,
the set T is (1 − 4ε)-covered by the union

⋃N
i=1 TiC

λ
i . By construction of the Cλi , we

have indeed TiCλi ⊆ T for all 1 ≤ i ≤ N(ε) and every λ ∈ Λ. This shows property (I)
of Definition 3.3.

(8) We still have to show the uniform covering property (II) of Definition 3.3. Set T̃ :=
T \ ∂

TMT
−1
M

(T ). It follows from the invariance properties of T that with δ < β, we have
indeed |T̃ | ≥ (1− β)|T |.
Now, fix some Borel set S ⊆ T and fix 1 ≤ i ≤ N . We show first that there is a constant
κ > 0 such that∣∣∣∣∫

Λ
#(Cλi ∩ S) dλ−#(Ĉi) · |S|

∣∣∣∣ ≤ κ√δ |T ||Ti| |T̂ |+ #(Ĉi)β|T | (3.19)
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for all S and every 1 ≤ i ≤ N . To do so, note first that∫
Λ

#(Cλi ∩ S) dλ ≤
∑
c∈Ĉi

∫
Λ
1S(cλ−1) dλ.

One immediately obtains from this that∫
Λ

#(Cλi ∩ S) dλ ≤ #(Ĉi) · |S|. (3.20)

This gives one part of the desired inequality.

On the other hand, we can prove the remaining in the following way. Since by construc-
tion, TΛ ⊂ T̂ , we have Λ ⊂ T−1T̂ . Furthermore, in the same manner as in step (8) in
the proof of Theorem 3.2, we obtain Ĉiλ−1 ∩ T̃ ⊆ Cλi . This implies Cλi ∩ T̃ = Ĉiλ

−1 ∩ T̃
and hence one computes∫

Λ
#(Cλi ∩ S) dλ ≥

∫
Λ

#(Cλi ∩ S ∩ T̃ ) dλ =
∫

Λ

∑
c∈Ĉi

1S∩T̃ (cλ−1)

=
∫
T−1T̂

∑
c∈Ĉi

1S∩T̃ (cλ−1) dλ−
∫
T−1T̂\Λ

∑
c∈Ĉi

1S∩T̃ (cλ−1) dλ

≥
∫
T−1T̂

∑
c∈Ĉi

1S∩T̃ (cλ−1) dλ−
∫
T−1T̂\Λ

∑
c∈Ĉi

1S(cλ−1) dλ

=
∫
T−1T̂

∑
c∈Ĉi

1(S∩T̃ )−1c(λ) dλ−
∫
T−1T̂\Λ

#(Ĉi ∩ Sλ) dλ.

It follows from the ε-disjointness of the translates Tic that the maximal number of
elements in Ĉi which can belong to some translate Sλ must be bounded by

2
|∂TiT−1

i
(Tλ) ∪ Tλ|

(1− ε)|Ti|
≤ 2 1 + δ

1− ε
|T |
|Ti|

,

where we also used the (TiT−1
i , δ)-invariance of the set T . Hence, we can estimate∫

Λ
#(Cλi ∩ S) dλ ≥

∑
c∈Ĉi

∫
T−1T̂

1(S∩T̃ )−1c(λ) dλ− 2 1 + δ

1− ε
|T |
|Ti|
|T−1T̂ \ Λ|. (3.21)

Moreover, with inequality (3.18), we obtain

|T−1T̂ \ Λ| = |T−1T̂ | − |Λ|
≤ |T̂ ∪ ∂TT−1(T̂ )| − (1− 6

√
δ)(1− δ)|T̂ |

≤ [1 + δ − (1− 6
√
δ)(1− δ)] |T̂ |

≤ 8
√
δ |T̂ | (3.22)

by the invariance properties of T̂ . Now making use of ε, δ < 1/2 and the estimate in
inequality (3.22), the inequality (3.21) yields
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∫
Λ

#(Cλi ∩ S) dλ ≥ #(Ĉi) · |S ∩ T̃ | − 2 · 4 · |T |
|Ti|
· 8
√
δ |T̂ |

≥ #(Ĉi) · |S ∩ T̃ | − 64
√
δ
|T |
|Ti|
|T̂ |

≥ #(Ĉi)|S| −#(Ĉi)β|T | − 64
√
δ
|T |
|Ti|
|T̂ |.

Note that we used here the fact that |T̃ | ≥ (1 − β)|T |, as well as the inclusions S ⊆ T
and T̃ ⊆ T . Together with inequality (3.20), this shows (3.19) with κ = 64.

(9) We infer from inequality (3.18) that for δ small enough,∣∣∣∣∣#(Ĉi)
|T̂ |

− #(Ĉi)
|Λ|

∣∣∣∣∣ ≤
(

1
(1− δ)(1− 6

√
δ)
− 1

)
#(Ĉi)
|T̂ |

≤ ε · γi,

where γi = #(Ĉi)/|T̂ | as above.

From inequality (3.17), it follows that∣∣∣∣∣#(Ĉi)
|Λ| −

ε(1− ε)N−i

|Ti|

∣∣∣∣∣ < 2 γi · ε+ 2β
|Ti|

. (3.23)

Hence, using the triangle inequality in inequality (3.19) and plugging in inequality (3.23),
we arrive at∣∣∣∣∣|Λ|−1

∫
Λ

#(Cλi ∩ S)
|T |

dλ − ε(1− ε)N−i

|Ti|
· |S|
|T |

∣∣∣∣∣ < 64
√
δ

|Ti|
|T̂ |
|Λ| + 2 γi · ε+ 3β

|Ti|
(3.18)
≤ 64

√
δ

(1− δ)(1− 6
√
δ)|Ti|

+ 2 γi · ε+ 3β
|Ti|

.

So it remains to choose δ small enough such that we have finally proven the theorem.�

For the general mean ergodic theorem which will be proven in Chapter 4, we will need the
concept of a so-called uniform decomposition tower. In this context, we construct a uniform
family of ε-quasi tilings of a highly TT−1-invariant set T̂ as in Theorem 3.4 (with index set
Υ ⊆ Γ) such that each ε-quasi tiling associated with a y ∈ Υ generates another uniform
family of ε-quasi tilings for the set T with index set Λ ⊆ Γ. Moreover, this set Λ will not
depend on the choice for y ∈ Υ. In the following definition we make this concept precise.

Definition 3.5 (Uniform decomposition tower).
Let Γ be an amenable LCSCUH group. We say that Γ has the uniform decomposition tower
condition (UDTC) if for every strong Følner sequence (Uk) in Γ, the following statements
hold true.
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• For each 0 < ε ≤ 1/10, N := N(ε) := dlog(ε)/ log(1 − ε)e, for arbitrary numbers
0 < β, ζ < 2−Nε, for every nested Følner sequence (Sn), and for each compact set
e ∈ B ⊆ Γ, the group Γ satisfies the special tiling property according to Definition 2.15
with ε-prototiles

{e} ⊆ T1 ⊆ T2 ⊆ · · · ⊆ TN ,

where Ti ∈ {Sn |n ≥ i} for 1 ≤ i ≤ N(ε) and where the latter prototile sets are also
(B, ζ2)-invariant.

• For fixed positive numbers ε > 0, β > 0, ζ > 0 and for a fixed compact set e ∈ B ⊆ G,
there are numbers K ∈ N and η0 > 0 depending on ε, β and the basis sets Ti such
that for each k ≥ K and for every 0 < η < η0, there is some (UkU−1

k , η)-invariant,
compact set Ûk, as well as sets Λk,Υk ∈ F(Γ) of finite measure, such that

(I) UkΛk ⊆ Ûk, (1− β)|Ûk| ≤ |Λk| ≤ |Ûk| and Uk is (TNT−1
N , β)-invariant,

(II) there is a family
{Ĉyi (Ûk) | y ∈ Υk, 1 ≤ i ≤ N}

of finite center sets for the prototile sets Ti such that the covering of Ûk given
by the translates Tic, c ∈ Ĉyi (Ûk), satisfies the assertions (I) and (II) of Defini-
tion 3.3,

(III) for each y ∈ Υk, the set Uk is uniformly ε-quasi tiled by the family

{Cy,λi (Uk) |λ ∈ Λk, 1 ≤ i ≤ N}

of finite center sets for ε-quasi tiles Ti according to Definition 3.3, where

Ũk ∩ Ĉyi (Ûk)λ−1 ⊆ Cy,λi (Uk) ⊆ Uk ∩ Ĉyi (Ûk)λ−1

for all 1 ≤ i ≤ N and every λ ∈ Λk, and Ũk ⊆ Uk is a measurable, (TNT−1
N , 4β)-

invariant set with |Ũk| ≥ (1− β)|Uk|.

In this situation, we say that the pair (Υk,Λk) is a uniform decomposition tower for
the pair (Uk, Ûk) with respect to ({Ti}N(ε)

i=1 , (Sn), ε, β).

In fact, the existence of uniform decomposition towers can be proven in full generality. This
is shown in the following theorem, which is a strengthening of Theorem 3.4.

Theorem 3.6 (Uniform Decomposition Tower).
Each amenable LCSCUH group Γ satisfies the uniform decomposition tower condition.

Remark.
At a first sight, one might wonder whether the existence of uniform decomposition towers
follows trivially from a repeated application of Theorem 3.4. However, we will have to use
more involved arguments as we would like the sets Υk and Λk to be independent from each
other.
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Proof.
Let 0 < ε ≤ 1/10 and 0 < ζ, β < 2−Nε, as well as a compact set e ∈ B ⊆ Γ be given, where
N := N(ε) := dlog(ε)/ log(1− ε)e. Assume further that (Uk) is a strong Følner sequence.

By Theorem 2.16, we can find (B, ζ2)-invariant basis sets

{e} ⊆ T1 ⊆ · · · ⊆ TN ,

taken from a nested Følner sequence (Sn) that ε-quasi tile the group according to Defini-
tion 2.15.

As before (proof of Theorem 3.4), we choose 0 < δ < 1/100, and at various steps of the
proof, we reduce this parameter for our purposes (restrictions depending on ε, β and the
Ti). As before, set M := dlog(δ)/ log(1− δ)e.

(1) Let J ∈ N and 0 < δ0 < β/4 be the parameters from Definition 3.4 that can be found
by Theorem 3.4. Then we can choose a finite sequence of (SJS−1

J , δ2
0/64)-invariant sets

from (Sn), say (T l)l, 1 ≤ l ≤M ,

TN ⊆ SJ ⊆ T 1 ⊆ T 2 ⊆ · · · ⊆ TM ,

which δ-quasi tile the group Γ according to Definition 2.15 for any parameter 0 < β1 <
2−Mδ. Take some number K ∈ N depending on ε, β and the basis sets Ti such that
for each k ≥ K, the set T := Uk is (T lT

−1
l TNT

−1
N , 2−lδ)-invariant for all 1 ≤ l ≤ M .

Moreover, we choose T̂ := Ûk, where Ûk is a (UkU−1
k , δ)-invariant set which has all the

mentioned invariance properties of T = Uk and which has the special tiling property with
respect to ({T}Ml=1, (Sn), δ, β1). This can for instance be done by setting T̂ = Ûk = UK̃
for K̃ ∈ N large enough. Defining η0 := δ/2, we will be able to show all assertions
claimed for T̂ = Ûk.

(2) We use Theorem 2.16 to fix a δ-quasi tiling of T̂ with basis sets T l and finite center sets
C l, 1 ≤ l ≤M . In fact, by Theorem 2.16, we can actually find disjoint translates T ′l(c)c
which are still (SJS−1

J , δ0/2)-invariant for every 1 ≤ l ≤M and all c ∈ C l.

(3) Next, we choose T̃ as a (TMT
−1
M , δ̃)-invariant and (T̂ T̂−1, δ̃)-invariant, compact set,

where
0 < δ̃ <

( δ

8
∑M
l=1 #(C l)

)2
.

Now by Theorem 3.4, in every translate T
′

l(c)c, 1 ≤ l ≤M, c ∈ C l, we will find a uniform
family of ε-quasi tilings with finite Ti-center sets Cyi (l, c), where the y are taken from a
set Υ(l, c) ∈ F(Γ) of finite measure. We have seen before that those uniform coverings

can be induced by some background quasi tiling of a compact set T̂
′

l(c)c which just has
to be invariant enough with respect to T lT

−1
l for 1 ≤ l ≤ M . Hence, without loss of

generality, we can work with one single compact set T̃ ⊆ Γ replacing all the sets T̂
′

l(c)c
for 1 ≤ l ≤M and every c ∈ C l.
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(4) By the construction given in inequality (3.18) in the proof of Theorem 3.4 and with our
choice for δ̃ in the previous step, one obtains

|Υ(l, c)| ≥ (1− δ̃ − 6
√
δ̃)|T̃ |

≥ (1− 7
√
δ̃) |T̃ |

≥ 1− 7
√
δ̃

1 + δ̃
|T̂−1T̃ |

δ̃<1/100
≥ (1− 8

√
δ̃) |T̂−1T̃ |

≥
(

1− δ∑M
l=1 #(C l)

)
|T̂−1T̃ | (3.24)

for every 1 ≤ l ≤M and each c ∈ C l. Note that in the third inequality we used the fact
that T̃ was chosen to be (T̂ T̂−1, δ̃)-invariant.

Define

Υk := Υ :=
M⋂
l=1

⋂
c∈Cl

Υ(l, c) ∈ F(Γ).

Since Υ(l, c) ⊂ T̂−1T̃ for all 1 ≤ l ≤ M and every c ∈ C l (see proof of Theorem 3.4),
it follows from elementary measure theory from (3.24) that for all 1 ≤ l ≤ M and all
c ∈ C l,

|Υ| ≥ (1− δ) |T̂−1T̃ | ≥ (1− δ) |Υ(l, c)|. (3.25)

(5) We now show the uniform covering property for the set T̂ = Ûk. To do so, fix a Borel
set Ŝ ⊂ T̂ , as well as some 1 ≤ i ≤ N . As a preparative step, we use Theorem 3.4
to establish the uniform covering property for each translate T ′l(c)c. Indeed, it follows
from (II) in the second item of Definition 3.3 that∣∣∣∣∣|Υ(l, c)|−1

∫
Υ(l,c)

#[(Ŝ ∩ T
′

l(c)c) ∩ C
y
i (l, c)]

|T
′

l(c)|
dy − ε(1− ε)N−i

|Ti|
|Ŝ ∩ T

′

l(c)|
|T
′

l(c)|

∣∣∣∣∣
< 4 β

|Ti|
+ 2 γi(l, c) ε (3.26)

for all 1 ≤ l ≤ M and for every c ∈ C l, where
∑N
i=1 γi(l, c) |Ti| ≤ 2. Furthermore, we

compute∣∣∣∣∣|Υ(l, c)|−1
∫

Υ(l,c)

#[(Ŝ ∩ T
′

l(c)c) ∩ C
y
i (l, c)]

|T
′

l(c)|
dy − |Υ|−1

∫
Υ

#[(Ŝ ∩ T
′

l(c)c) ∩ C
y
i (l, c)]

|T
′

l(c)|
dy

∣∣∣∣∣
≤

∣∣∣∣ |Υ(l, c)| − |Υ|
|Υ||Υ(l, c)|

∣∣∣∣ ∫
Υ

#[(Ŝ ∩ T
′

l(c)c) ∩ C
y
i (l, c)]

|T
′

l(c)|
dy

+ |Υ(l, c)|−1
∫

Υ(l,c)\Υ

#[(Ŝ ∩ T
′

l(c)c) ∩ C
y
i (l, c)]

|T
′

l(c)|
dy.
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Note that due to δ-disjointness and due to the fact that all sets T ′l(c) are (TNT−1
N , δ0/2)-

invariant, it is true that

#[(Ŝ ∩ T
′

l(c)c) ∩ C
y
i (l, c)]

|T
′

l(c)|
≤ (1 + δ0)|T

′

l(c)|
(1− 2δ)|Ti| · |T

′

l(c)|
= 1 + δ0

(1− 2δ)|Ti|
.

Thus, with inequality (3.25) and δ < 1/100, one arrives at

∣∣∣∣∣|Υ(l, c)|−1
∫

Υ(l,c)

#[(Ŝ ∩ T
′

l(c)c) ∩ C
y
i (l, c)]

|T
′

l(c)|
dy − |Υ|−1

∫
Υ

#[(Ŝ ∩ T
′

l(c)c) ∩ C
y
i (l, c)]

|T
′

l(c)|
dy

∣∣∣∣∣
≤ 8δ(1 + δ0)

|Ti|
≤ 16δ
|Ti|

. (3.27)

So combining the inequalities (3.26) and (3.27) with the triangle inequality yields

∣∣∣∣∣|Υ|−1
∫

Υ

#[(Ŝ ∩ T
′

l(c)c) ∩ C
y
i (l, c)]

|T
′

l(c)|
dy − ε(1− ε)N−i

|Ti|
|Ŝ ∩ T

′

l(c)c|
|T
′

l(c)|

∣∣∣∣∣
< 4 β

|Ti|
+ 2 γ̃i ε+ 16δ

|Ti|
(3.28)

for all 1 ≤ l ≤M and every c ∈ C l, where γ̃i := maxl,c γi(l, c).

We are now in position to prove the uniform covering property of the family Υ for the
whole set T̂ . Firstly, we set

Ĉyi := Ĉyi (T̂ ) := Ĉyi (Ûk) :=
M⋃
l=1

⋃
c∈Cl

Cyi (l, c).

Then, for each y ∈ Υ, the finite set Ĉyi contains the Ti-centers of an ε-quasi tiling of the
set T̂ , see the steps (3) to (5) of the proof of Theorem 3.4. Next, by disjointness of the
T
′

l(c)c, we compute with

∣∣∣∣∣|Υ|−1
∫

Υ

#(Ŝ ∩ Ĉyi )
|T̂ |

dy − |Ŝ|
|T̂ |
· ηi(ε)
|Ti|

∣∣∣∣∣
≤

∣∣∣∣∣
M∑
l=1

∑
c∈Cl

|T
′

l(c)c|
|T̂ |

|Υ|−1
∫

Υ

#[(Ŝ ∩ T
′

l(c)c ∩ C
y
i (l, c)]

|T
′

l(c)c|
dy −

∣∣∣Ŝ ∩⋃Ml=1
⋃
c∈Cl T

′

l(c)c
∣∣∣

|T̂ |
· ηi(ε)
|Ti|

∣∣∣∣∣
+

∣∣∣T̂ \ (⋃Ml=1
⋃
c∈Cl T

′

l(c)c
)∣∣∣

|T̂ |
· ηi(ε)
|Ti|

+ |Υ|−1
∫

Υ

#
((
T̂ \

⋃m
l=1
⋃
c∈Cl T

′
l(c)c

)
∩ Ĉyi

)
|T̂ |

dy.
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Due to ε-disjointness and Lemma 2.3 (ii),(iii) we obtain

#
((
T̂ \

⋃M
l=1
⋃
c∈Cl T

′
l(c)c

)
∩ Ĉyi

)
|T̂ |

≤

∣∣∣T̂ \ (⋃Ml=1
⋃
c∈Cl T

′

l(c)c
)∣∣∣

(1− 2ε)|Ti||T̂ |
+
|∂TNT−1

N
(T̂ )|

(1− 2ε)|Ti||T̂ |

+
∑M
l=1
∑
c∈Cl |∂TNT−1

N
(T ′l(c)c)|

(1− 2ε)|Ti||T̂ |

≤ 2δ + δ + δ0
(1− 2ε)|Ti|

= 3δ + δ0
(1− 2ε)|Ti|

for all y ∈ Υ. We continue with∣∣∣∣∣|Υ|−1
∫

Υ

#(Ŝ ∩ Ĉyi )
|T̂ |

dy − |Ŝ|
|T̂ |
· ηi(ε)
|Ti|

∣∣∣∣∣
≤

∣∣∣∣∣
M∑
l=1

∑
c∈Cl

|T
′

l(c)c|
|T̂ |

|Υ|−1
∫

Υ

#[(Ŝ ∩ T
′

l(c)c) ∩ C
y
i (l, c)]

|T
′

l(c)c|
dy

−
M∑
l=1

∑
c∈Cl

|T
′

l(c)c|
|T̂ |

|Ŝ ∩ T
′

l(c)c|
|T
′

l(c)c|
ηi(ε)
|Ti|

∣∣∣∣∣ + 2δ ηi(ε)
|Ti|

+ 3δ + δ0
(1− 2ε)|Ti|

≤
M∑
l=1

∑
c∈Cl

|T
′

l(c)c|
|T̂ |

·
∣∣∣∣∣|Υ|−1

∫
Υ

#[(Ŝ ∩ T
′

l(c)c) ∩ C
y
i (l, c)]

|T
′

l(c)|
dy − |Ŝ ∩ T

′

l(c)c|
|T
′

l(c)|
ηi(ε)
|Ti|

∣∣∣∣∣
+2δ ηi(ε)

|Ti|
+ 3δ + δ0

(1− 2ε)|Ti|
(3.28)
≤ 4 β

|Ti|
+ 2 γ̃i ε+ 22δ

|Ti|
+ 2δ0
|Ti|

.

By noting that δ0 < β/4 and by making δ small enough (depending on ε and β), this
shows the uniformity estimate claimed in the second item of (II) of Definition 3.5. The
remaining assertion in the item (I) of Definition 3.3 is satisfied by construction.

(6) Next, we verify the statement (III) of the second item of Definition 3.5. We choose
Λ = Λk in exactly the same manner as in the proof of Theorem 3.4, steps (6) and (7).
Note that Λ results from considerations concerning the sets T, T̂ , and the T

′

l(c)c for
1 ≤ l ≤ M and c ∈ C l, but not from the tilings constructed above. In this sense, Λ is
indeed independent of Υ = Υk.

As demonstrated above, for every y ∈ Υ, the set T̂ is ε-quasi tiled by the basis sets
Ti with corresponding finite center sets Ĉyi for 1 ≤ i ≤ N and all the translates Tic
(1 ≤ i ≤ N , c ∈ Ĉyi ) are contained in some translate T dl d, where 1 ≤ l ≤M and d ∈ C l.
Thus, if we fix y ∈ Υ, we can argue as in the proof of Theorem 3.4, steps (6) and (7),
to define

Cy,λi (Uk) := Cy,λi (T ) := {d ∈ T | dλ ∈ Cyi (λ)}
= T ∩ Cyi (λ)λ−1
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for all 1 ≤ i ≤ N and all λ ∈ Λ, where

Cyi (λ) =
M⋃
l=1

⋃
c∈I(λ,l)

Cyi (l, c) ⊆ Ĉyi ∩ Uk.

Note that as in step (6) of the proof of Theorem 3.6, we have set I(λ, l) := {c ∈
C l |T

′
l(c)c ⊆ Tλ}. Continueing with the steps (8) and (9) in the proof of Theorem 3.4,

we obtain the desired uniform covering. Further, set Ũk := Uk \ ∂TMT−1
M

(Uk). Then

indeed, |Ũk| ≥ (1− β)|Uk| and Ĉyi λ−1 ∩ Ũk ⊆ Cy,λi for all λ ∈ Λ. Further, we infer from
Lemma 2.3 (iv) and (viii) and the fact that Uk is (TMT

−1
M TNT

−1
N , β)-invariant (for δ

small enough) that

|∂TNT−1
N

(Ũk)|

|Ũk|
≤ 2
|∂TNT−1

N
(Uk)|

|Uk|
+ 2
|∂
TMT

−1
M TNT

−1
N

(Uk)|

|Uk|
≤ 4β.

Since these considerations must hold true for all y ∈ Υ, we have proven the state-
ment (III) in the second item of Definition 3.5.

(7) The validity of statement (I) in the second item of Definition 3.5 follows by construction
for δ small enough depending on β.

This finishes the proof of the theorem. �





4 Banach space-valued ergodic theorems

The following elaborations deal with mappings

F : F(Γ)→ (Z, ‖ · ‖Z),

where Γ is an amenable LCSCUH group and where Z is a Banach space with norm ‖ · ‖Z .
We will assume that the values ‖F (Q)‖Z/|Q| are uniformly bounded. Further, we suppose
that for unions Q =

⊔m
k=1Qk of pairwise disjoint sets Qk ∈ F(Γ), the difference of the

expressions F (Q) and
∑m
k=1 F (Qk) in norm is controlled by a boundary term function

b : F(Γ)→ [0,∞). Those latter mappings have the crucial property that they asymptotically
relatively vanish for strong Følner sequences (Uj), i.e. limj→∞ b(Uj)/|Uj | = 0. We will F
call an almost-additive, Z-valued function on F(Γ). Canonical examples for almost-additive
functions are ergodic integral averages: let Γ act on a probability space (Ω, µ) by measure
preserving transformations, set Z = L2(Ω, µ) and take f ∈ L2(Ω, µ). In this situation,
one can define an almost-additive (in fact additive) mapping via F (Q)(ω) :=

∫
Q f(gω) dg.

By von Neumann’s ergodic theorem (cf. e.g. [Gre73], Corollary 3.4.), there is some f∗ ∈
L2(Ω, µ) such that

lim
j→∞

∥∥∥∥∥|Uj |−1
∫
Uj

f(g·) dg − f∗
∥∥∥∥∥
L2(Ω,µ)

= lim
j→∞

∥∥∥∥∥F (Uj)
|Uj |

− f∗
∥∥∥∥∥
L2(Ω,µ)

= 0

for every (strong or weak) Følner sequence (Uj). Thus, it is a natural question to find an
abstract setting in which one can expect norm convergence of the expressions F (Uj)/|Uj |
for general almost-additive mappings F . In this chapter, we show that this holds true
under natural ergodicity assumptions. We discuss two different approaches, one for count-
able groups and another one for general amenable (possibly continuous) LCSCUH groups.
Firstly, we endow countable amenable groups with a colouring map C : Γ → A, where A
is a finite set. For suitable Følner sequences, C induces some kind of measure on the set of
all possible finite coloured patterns in the coloured group. In Theorem 4.4, we prove the
Banach space convergence for almost-additive functions F which take their values accord-
ing to the shape of the patterns. The latter assertion is valid for all countable, amenable
groups. Hence, it is a major extension of the corresponding theorems in [LMV08, LSV11].
This result can be found in [PS14]. Secondly, one might work with classical ergodic the-
ory for general amenable LCSCUH groups. By imposing a mild compactness condition on
the Banach space under consideration, we use the uniform tiling results of Chapter 3 to
generalize the abstract mean ergodic theorem for integral averages given in Theorem 3.2 of
[Gre73]. Precisely, we show in Theorem 4.15 that there is some element F ∗ ∈ Z such that
for all strong Følner sequences, the ratios F (Uj)/|Uj | converge to F ∗ in the topology of Z.
This result has appeared in [Pog13a], Theorem 5.7.

49
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4.1 Countable amenable groups

In this section, we assume that Γ is a countable amenable group. As before, we write F(Γ)
for the set of all non-empty, finite subsets of Γ. We consider Γ to be coloured by finitely
many colours. As an ergodicity assumption, we consider Følner sequences along which
the occurrence frequencies of all possible coloured patterns must exist as a limit. The first
model of this kind has been outlined by Lenz in [Len02], where the author characterizes the
existence of pattern frequencies in a subshift dynamical system by the validity of an almost-
additive convergence theorem. In Theorem 1 of [LMV08] the authors prove the Banach space
convergence along Følner sequences for almost-additive functions over Γ = Zd. This latter
assertion was generalized in [LSV11], cf. Theorem 3.1, to all countable, amenable groups
that possess a monotile Følner sequence with symmetric grid system. In Theorem 4.4,
we get rid of this assumption and prove the convergence of almost-additive functions over
arbitrary countable, amenable groups. The major tool for this undertaking is the uniform
special tiling property of all countable amenable groups, see Theorem 3.2. This achievement
appears (among other things) in a common work of the author with Schwarzenberger,
cf. Theorem 5.5 in [PS14]. In his Ph.D. thesis [Sch13], Schwarzenberger adapts our
proof of Theorem 4.4 to the case of finitely generated, amenable groups.

We assume in the following that A is a finite set that colours the group Γ via some mapping
C : Γ→ A. For Q ∈ F(Γ), we call P := C|Q the pattern of Q. In this situation, we say that
Q is the domain D(P ) of P . The set of all finite patterns is denoted by P and for a fixed
Q ∈ F(Γ), we write P(Q) ⊆ P for the set of possible patterns with domain Q. Further, if
P is a pattern and Q ⊆ D(P ), the restriction of P to Q is given by

P|Q : Q→ A : h 7→ P (h).

Moreover, for a pattern P ∈ P and g ∈ Γ, we define the translation Pg of P by

Pg : D(P )g → A : hg 7→ P (h).

Translations and restrictions of whole colourings are defined analogously. Note that trans-
lations by group elements attach equivalence classes P̃ to patterns P ∈ P. Precisely, two
patterns are equivalent if and only if one pattern is some translation of the other. The set
of all possible induced equivalence classes shall be denoted by P̃.

Given two patterns P, P ′ ∈ P, the number of occurrences of the pattern P in P ′ is defined
as

#P (P ′) := #
(
{g ∈ Γ |D(P )g ⊆ D(P ′), P ′|D(P )g = Pg}

)
.

Counting occurrencies of patterns along a Følner sequence (Uj)j∈N leads to the definition
of frequencies. If for a pattern P and a Følner sequence (Uj)j∈N, the limit

νP := lim
j→∞

#P (C|Uj )
|Uj |

exists, we call νP the frequency of P in the coloring C along (Uj)j∈N.

In order to define the notion of an almost-additive set function, we need an object to measure
the degree of additivity of a mapping. We do this via a so-called boundary term.
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Definition 4.1 (Boundary term).
Let Γ be a countable, amenable group. A mapping

b : F(Γ)→ [0,∞)

is called boundary term for Γ if

(i) it is bounded, i.e. there exists some constant D > 0 such that b(Q) ≤ D |Q| for all
Q ∈ F(Γ),

(ii) limj→∞
b(Uj)
|Uj | = 0 for every Følner sequence (Uj) in Γ,

(iii) it is translation invariant, i.e. b(Q) = b(Qg) for all Q ∈ F(Γ) and every g ∈ Γ,

(iv) it satisfies the inequalities

b(Q ∩Q′) ≤ b(Q) + b(Q′), b(Q ∪Q′) ≤ b(Q) + b(Q′), b(Q \Q′) ≤ b(Q) + b(Q′)

for all Q,Q′ ∈ F(Γ).

For each coloured pattern P , we then define b(P ) := b(D(P )). (Note that due to the invari-
ance property (iii), the value b(P ) will only depend on the equivalence class of a pattern.)

With this definition at hand, we are in position to introduce the notion of an almost-additive,
Banach space-valued set function.

Definition 4.2.
Let (Z, ‖ · ‖) be a Banach space and assume that A is a finite set. Suppose that Γ is a
countable group with a colouring C : Γ→ A. A function

F : F(Γ)→ (Z, ‖ · ‖)

is called almost-additive if

(i) it is C-invariant, i.e. F (Q) = F (Q′) whenever Q,Q′ ∈ F(Γ) are such that C|Q = C|Q′,

(ii) there is a boundary term b such that for every finite collection {Qi}ki=1 of pairwise
disjoint sets in F(Γ) ∥∥∥∥∥F (Q)−

k∑
i=1

F (Qi)
∥∥∥∥∥ ≤

k∑
i=1

b(Qi),

where Q :=
⊔k
i=1Qi.

Every almost-additive function F : F(Γ)→ (Z, ‖ ·‖), gives rise to a function F̃ on P instead
of on F(Γ):

F̃ (P ) =
{
F (Q) if Q ∈ F(Γ) such that ˜C|Q = P̃ ,

0 else.
(4.1)
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This is well-defined by the C-invariance of F . The next result yields properties of the
functions F and F̃ . It is joint work with Schwarzenberger. It shows that even for ε-
disjoint families {Qk}mk=1, Qk ∈ F(Γ), an almost-additive mapping F still satisfies a certain
almost-additivity property.

Lemma 4.3 (cf. [PS14], Lemma 5.3).
Let Γ be a countable amenable group. Let a Banach space (Z, ‖ · ‖), as well as some finite
set A and a colouring C : Γ → A be given. Furthermore let F : F(Γ) → Z be C-invariant
and almost-additive with boundary term b.

(i) Then F and F̃ are bounded, i.e. there exists a constant C > 0 such that

‖F (Q)‖ ≤ C|Q| and ‖F̃ (P )‖ ≤ C|D(P )|,

for all Q ∈ F(Γ) and P ∈ P, where F̃ is given by (4.1).

(ii) If furthermore 0 < ε < 1/2 is given and Qi, 1 ≤ i ≤ k are ε-disjoint sets and
Q =

⋃k
i=1Qi, then∥∥∥∥∥F (Q)−

k∑
i=1

F (Qi)
∥∥∥∥∥ ≤ (3C + 9D)ε|Q|+ 3

k∑
i=1

b(Qi),

where C is the constant from (i) and D is given by property (i) of the boundary term,
cf. Definition 4.1.

Proof.
Firstly note that as A is a finite set and F is a C-invariant function, the maximum m :=
maxx∈Γ ‖F ({x})‖ exists. Therefore, we have for Q ∈ F(Γ)

‖F (Q)‖ ≤

∥∥∥∥∥∥F (Q)−
∑
x∈Q

F ({x})

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑
x∈Q

F ({x})

∥∥∥∥∥∥ ≤
∑
x∈Q

(b({x}) + ‖F ({x})‖) ≤ C|Q|,

where C := b({e}) + m and e is the unit element in Γ. Hence, F is indeed bounded with
that choice for C. By definition of F̃ , this proves the second estimate in (i) as well.
We now turn to the proof of assertion (ii). Now let ε ∈ (0, 1/2) and ε-disjoint sets Qi,
1 ≤ i ≤ k be given and set Q =

⋃k
i=1Qi. Thus, there are pairwise disjoint sets Q̄i ⊆ Qi

such that |Q̄i| ≥ (1− ε)|Qi| for all 1 ≤ i ≤ k. Using the triangle inequality, we compute∥∥∥∥∥F (Q)−
k∑
i=1

F (Qi)
∥∥∥∥∥ ≤

∥∥∥∥∥F (Q)− F
(

k⋃
i=1

Q̄i

)∥∥∥∥∥+
∥∥∥∥∥F

(
k⋃
i=1

Q̄i

)
−

k∑
i=1

F (Q̄i)
∥∥∥∥∥

+
k∑
i=1

∥∥∥F (Qi)− F (Q̄i)
∥∥∥ . (4.2)

Exploiting the fact that F is almost-additive with boundary term b, we obtain∥∥∥∥∥F
(

k⋃
i=1

Q̄i

)
−

k∑
i=1

F (Q̄i)
∥∥∥∥∥ ≤

k∑
i=1

b(Q̄i),
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as well as ∥∥∥F (Qi)− F (Q̄i)
∥∥∥ ≤ ∥∥∥F (Qi)− F (Q̄i)− F (Qi \ Q̄i)

∥∥∥+
∥∥∥F (Qi \ Q̄i)

∥∥∥
≤ b(Q̄i) + b(Qi \ Q̄i) + C

∣∣∣Qi \Qi∣∣∣
≤ b(Q̄i) + ε(C +D) |Qi| .

In the same manner, we derive∥∥∥∥∥F (Q)− F
(

k⋃
i=1

Q̄i

)∥∥∥∥∥ ≤ b
(

k⋃
i=1

Q̄i

)
+ b

(
Q \

k⋃
i=1

Q̄i

)
+ C

∣∣∣∣∣Q \
k⋃
i=1

Q̄i

∣∣∣∣∣
≤ b

(
k⋃
i=1

Q̄i

)
+ ε(C +D) |Q| ,

where we used |Q \
⋃k
i=1 Q̄k| ≤ ε|Q| (which is due to ε-disjointness). Putting the last

estimates together and using property (iv) of the boundary term b, inequality (4.2) leads to∥∥∥∥∥F (Q)−
k∑
i=1

F (Qi)
∥∥∥∥∥ ≤ 3

k∑
i=1

b(Q̄i) + ε(C +D)
(
|Q|+

k∑
i=1
|Qi|

)
.

If we furthermore apply

b(Q̄i) ≤ b(Qi) + b(Qi \ Q̄i) ≤ b(Qi) +D|Qi \ Q̄i| ≤ b(Qi) + εD|Qi|,

which holds for all 1 ≤ i ≤ k again by property (iv) of the boundary term, we obtain∥∥∥∥∥F (Q)−
k∑
i=1

F (Qi)
∥∥∥∥∥ ≤ 3

k∑
i=1

b(Qi) + 3εD
k∑
i=1
|Qi|+ ε(C +D)

(
|Q|+

k∑
i=1
|Qi|

)

≤ 3
k∑
i=1

b(Qi) + ε(C + 4D)
k∑
i=1
|Qi|+ ε(C +D)|Q|.

Using
∑k
i=1 |Qi| ≤ (1− ε)−1|Q| ≤ 2|Q|, we arrive at the desired estimate. �

We now prove our main theorem. This result appears in [PS14], Theorem 5.5.

Theorem 4.4 (Ergodic theorem for countable amenable groups).
Let Γ be a countable, amenable group along with a colouring C : Γ→ A, where A is a finite
set. Further, assume that (Sn)n∈N is a nested Følner sequence and suppose that (Uj) is a
Følner sequence in Γ such that for all patterns P ∈ P, the frequencies νP exist along (Uj).
If F : F(Γ)→ Z is an almost-additive (and C-invariant) map and if F̃ is given as in (4.1),
then the following statements hold true.

(i) There exists an element F ∗ ∈ Z such that

lim
j→∞

∥∥∥∥∥F (Uj)
|Uj |

− F ∗
∥∥∥∥∥ = 0.
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(ii) The element F ∗ can be expressed as the limit

F ∗ = lim
ε↘0

N(ε)∑
i=1

ηi(ε)

 ∑
P∈P(T εi )

νP
F̃ (P )
|T εi |

 ,
where for each 0 < ε < 1/10, we set N(ε) := dlog(ε)/ log(1 − ε)]e and ηi(ε) :=
ε(1 − ε)N(ε)−i for 1 ≤ i ≤ N(ε) and where the finite sequence (T εi )N(ε)

i=1 with the T εi
taken from (Sn) is given as in Definition 2.15 with parameters β = 2−N(ε)−1ε and
δ0(β) < 6−N(ε)β/20.

(iii) For every 0 < ε < 1/10, there is some j0 := j0(ε, β) ∈ N and some finite set Q ∈ F(Γ)
such that for every j ≥ j0, Uj is (Q, β)-invariant and the difference

∆(j, ε) :=

∥∥∥∥∥∥F (Uj)
|Uj |

−
N(ε)∑
i=1

ηi(ε)
∑

P∈P(T εi )
νP

F̃ (P )
|T εi |

∥∥∥∥∥∥
satisfies the estimate

∆(j, ε) ≤ (12C + 33D)ε+ C

N(ε)∑
i=1

ηi(ε)
∑

P∈P(T εi )

∣∣∣∣∣#P (C|Uj )
|Uj |

− νP

∣∣∣∣∣
+ 4

N(ε)∑
i=1

ηi(ε)
b(T εi )
|T εi |

+ (2C + 4D) |∂Q(Uj)|
|Uj |

N(ε)∑
i=1
|T εi |. (4.3)

Proof.
Fix 0 < ε < 1/10. We first show the estimate (4.3). To do so, choose j0 = j0(ε, β, T εi ) ∈ N
such that for each j ≥ j0, the set Uj is sufficiently invariant to apply Theorem 3.2. Hence,
for each j ≥ j0, we find a finite family Λεj of ε-quasi tilings for the set T = Uj satisfying
the uniform special tiling property (USTP), cf. Definition 3.1. With no loss of generality,
we may assume that all the Ti = T εi are taken from a subsequence {Snk}∞k=1 such that the
expressions b(Snk)/|Snk | converge to zero monotonically as k →∞. Additionally, we make
sure that T εi ∈ {Snl | l ≥ i} for all 1 ≤ i ≤ N . Then, for fixed j ≥ j0 we estimate with the
triangle inequality

∆(j, ε) ≤

∥∥∥∥∥∥∥
F (Uj)
|Uj |

− 1
|Λεj |

∑
λ∈Λεj

N(ε)∑
i=1

∑
c∈Cλi (Uj)

F (T εi c)
|Uj |

∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥
1
|Λεj |

∑
λ∈Λεj

N(ε)∑
i=1

∑
c∈Cλi (Uj)

F (T εi c)
|Uj |

−
N(ε)∑
i=1

ηi(ε)
∑

P∈P(T εi )

#P (C|Uj )
|Uj |

F̃ (P )
|T εi |

∥∥∥∥∥∥∥
+

∥∥∥∥∥∥
N(ε)∑
i=1

ηi(ε)
∑

P∈P(T εi )

(#P (C|Uj )
|Uj |

− νP
) F̃ (P )
|T εi |

∥∥∥∥∥∥ .
Again by the triangle inequality, we then obtain

∆(j, ε) ≤ D1(j, ε) +D2(j, ε) +D3(j, ε),
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where

D1(j, ε) := 1
|Uj ||Λεj |

∑
λ∈Λεj

∥∥∥∥∥∥∥F (Uj)−
N(ε)∑
i=1

∑
c∈Cλi (Uj)

F (T εi c)

∥∥∥∥∥∥∥ ,
D2(j, ε) := 1

|Uj |

∥∥∥∥∥∥∥
1
|Λεj |

∑
λ∈Λεj

N(ε)∑
i=1

∑
c∈Cλi (Uj)

F (T εi c)−
N(ε)∑
i=1

ηi(ε)
|T εi |

∑
P∈P(T εi )

#P (C|Uj )F̃ (P )

∥∥∥∥∥∥∥ ,
D3(j, ε) :=

N(ε)∑
i=1

ηi(ε)
∑

P∈P(T εi )

∣∣∣∣∣#P (C|Uj )
|Uj |

− νP

∣∣∣∣∣ ‖F̃ (P )‖
|T εi |

.

We will now separately estimate from above the expressions D3(j, ε), D1(j, ε) and D2(j, ε)
(in this order). The boundedness of F̃ , see Lemma 4.3, yields

D3(j, ε) ≤ C
N(ε)∑
i=1

ηi(ε)
∑

P∈P(T εi )

∣∣∣∣∣#P (C|Uj )
|Uj |

− νP

∣∣∣∣∣ . (4.4)

In order to estimate D1(j, ε), we make use of the almost-additivity of the function F and
we use part (ii) of Lemma 4.3. This gives for each j ≥ j0 and for every λ ∈ Λεj∥∥∥∥∥∥∥F (Uj)−

N(ε)∑
i=1

∑
c∈Cλi (Uj)

F (T εi c)

∥∥∥∥∥∥∥ ≤
∥∥∥F (Uj)− F

(
Aεj,λ

)∥∥∥+
∥∥∥∥∥∥∥F

(
Aεj,λ

)
−
N(ε)∑
i=1

∑
c∈Cλi (Uj)

F (T εi c)

∥∥∥∥∥∥∥
≤ b(Aεj,λ) + b(Uj \Aεj,λ) + ‖F (Uj \Aεj,λ)‖+ (3C + 9D)ε|Uj |+ 3

N(ε)∑
i=1

∑
c∈Cλi (Uj)

b(T εi c),

where

Aεj,λ =
N(ε)⋃
i=1

⋃
c∈Cλi (Uj)

T εi c.

It also follows from the properties listed in Definition 3.1 that for each λ ∈ Λεj , the set Uj is
(1 − 4ε)-covered by the translates T εi c, 1 ≤ i ≤ N , c ∈ Cλi (Uj) that are entirely contained
in Uj . Thus, we have |Uj \ Aεj,λ| ≤ 4ε|Uj |. Using this and the properties of the boundary
term b, we obtain after a short calculation

D1(j, ε) ≤ 1
|Uj ||Λεj |

∑
λ∈Λεj

(7C + 13D)ε|Uj |+ 4
N(ε)∑
i=1

∑
c∈Cλi (Uj)

b(T εi c)


(b translation invariant) ≤ (7C + 13D)ε+ 4

|Uj ||Λεj |
∑
λ∈Λεj

N(ε)∑
i=1
|Cλi (Uj)|b(T εi )


= (7C + 13D)ε+ 4

N(ε)∑
i=1

b(T εi )
|Λεj |

∑
λ∈Λεj

|Cλi (Uj)|
|Uj |

.
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Next, we make use of property (II) of the second item in Definition 3.1 to find someQ ∈ F(Γ)
such that for all u ∈ Uj \ ∂Q(Uj), the uniformity inequality in (II) is satisfied. Note that
additionally, Uj is (Q, β)-invariant. We will use this fact later. Splitting the sum over Uj
into sums over Uj \ ∂Q(Uj) and over ∂Q(Uj), one obtains

1
|Λεj |

∑
λ∈Λεj

|Cλi (Uj)|
|Uj |

= 1
|Λεj ||Uj |

∑
u∈Uj\∂Q(Uj)

∑
λ∈Λεj

1Cλi (Uj)(u) + 1
|Λεj ||Uj |

∑
u∈∂Q(Uj)

∑
λ∈Λεj

1Cλi (Uj)(u)

≤ |Uj \ ∂Q(Uj)|
|Uj |

(
ηi(ε)
|T εi |

+ 3β
|T εi |

+ εγε,ji

)
+ 1
|Λεj ||Uj |

∑
u∈∂Q(Uj)

∑
λ∈Λεj

1

≤ ηi(ε)
|T εi |

+ 3β
|T εi |

+ εγε,ji + |∂Q(Uj)|
|Uj |

.

Inserting this in the last estimate for D1(j, ε) and exploiting the properties of the boundary
term b, as well as

∑N(ε)
i=1 γε,ji |T εi | ≤ 2, we arrive at

D1(j, ε) ≤ (7C + 13D)ε+ 4
N(ε)∑
i=1

b(T εi )
(
ηi(ε)
|T εi |

+ 3β
|T εi |

+ εγε,ji + |∂Q(Uj)|
|Uj |

)

≤ (7C + 13D)ε+

4
N(ε)∑
i=1

ηi(ε)
b(T εi )
|T εi |

+ 12βDN(ε) + 8εD +

4 |∂Q(Uj)|
|Uj |

N(ε)∑
i=1

b(T εi )


≤ (7C + 33D)ε+

4
N(ε)∑
i=1

ηi(ε)
b(T εi )
|T εi |

+ 4D |∂Q(Uj)|
|Uj |

N(ε)∑
i=1
|T εi |, (4.5)

where the last step uses βN(ε) ≤ ε.
We finally estimate D2(j, ε), where again, we use the property (II) of Definition 3.1. To do
so, note that ∑

P∈P(T εi )
#P (C|Uj )F̃ (P ) =

∑
u∈Uj

Tε
i
u⊆Uj

F (T εi u).

Therefore, we have

D2(j, ε) = 1
|Uj |

∥∥∥∥∥∥∥∥∥
N(ε)∑
i=1

∑
u∈Uj

1
|Λεj |

∑
λ∈Λεj

1Cλi (Uj)(u)F (T εi u)−
N(ε)∑
i=1

ηi(ε)
|T εi |

∑
u∈Uj

Tε
i
u⊆Uj

F (T εi u)

∥∥∥∥∥∥∥∥∥
≤ 1
|Uj |

N(ε)∑
i=1

∑
u∈Uj

∣∣∣∣∣∣∣
1
|Λεj |

∑
λ∈Λεj

1Cλi (Uj)(u)− ηi(ε)
|T εi |

∣∣∣∣∣∣∣ ‖F (T εi u)‖ .

Again, we split the sum over Uj into two parts: one where we are able to apply property
(II) and a “small” one. Besides this, we use the boundedness of F and βN(ε) ≤ ε to arrive
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at

D2(j, ε) ≤ C

|Uj |

N(ε)∑
i=1
|T εi |

( ∑
u∈Uj

u/∈∂Q(Uj)

∣∣∣∣∣ ∑
λ∈Λεj

1Cλi (Uj)(u)
|Λεj |

− ηi(ε)
|T εi |

∣∣∣∣∣
+

∑
u∈∂Q(Uj)

∣∣∣∣∣ ∑
λ∈Λεj

1Cλi (Uj)(u)
|Λεj |

− ηi(ε)
|T εi |

∣∣∣∣∣
)

( Def. 3.1, ineq. (II) ) ≤ C

|Uj |

N(ε)∑
i=1
|T εi |

(
|Uj |

( 3β
|T εi |

+ εγε,ji

)
+ 2 |∂Q(Uj)|

)

= C

N(ε)∑
i=1

(
3β + εγε,ji |T

ε
i |
)

+ 2 C|∂Q(Uj)|
|Uj |

N(ε)∑
i=1
|T εi |

(βN(ε) ≤ ε) ≤ 5εC + 2 C|∂Q(Uj)|
|Uj |

N(ε)∑
i=1
|T εi |. (4.6)

To finish the proof of (iii), we combine the Inequalities (4.5), (4.6) and (4.4) and obtain

∆(j, ε) ≤ D1(j, ε) +D2(j, ε) +D3(j, ε)

≤ (12C + 33D)ε+ C

N(ε)∑
i=1

ηi(ε)
∑

P∈P(T εi )

∣∣∣∣∣#P (C|Uj )
|Uj |

− νP

∣∣∣∣∣
+ 4

N(ε)∑
i=1

ηi(ε)
b(T εi )
|T εi |

+ (2C + 4D) |∂Q(Uj)|
|Uj |

N(ε)∑
i=1
|T εi |

for all j ≥ j0(ε, β, T εi ). Since 0 < ε < 1/10 (and therefore also β) was arbitrarily chosen,
this shows the desired estimate (4.3) for j ≥ j0(ε, β, T εi ). Having this result at our disposal,
it is not hard to prove the remaining statements (i) and (ii) of the theorem.
The choice of the T εi and the monotonicity assumption on the sequence b(Snk)/|Snk | yield
that

lim
ε↘0

N(ε)∑
i=1

ηi(ε)|T εi |−1b(T εi ) ≤ lim
ε→0

N(ε)∑
i=1

ηi(ε)|Sni |−1b(Sni) = 0.

By the assumption that the frequencies νP exist along (Uj)j , we obtain with (4.3) and the
fact that Uj is (Q, β)-invariant that

lim
ε→0

lim
j→∞

∆(j, ε) = 0. (4.7)

Now the triangle inequality shows that∥∥∥∥∥F (Uj)
|Uj |

− F (Um)
|Um|

∥∥∥∥∥ ≤ ∆(j, ε) + ∆(m, ε)

for all 0 < ε < 1/10. By (4.7), the sequence (|Uj |−1F (Uj))j∈N must be Cauchy and hence, it
converges in the Banach space Z to some element F ∗. Hence, statement (i) of the theorem
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is proven. The limit in (4.7) also shows that

F ∗ = lim
ε↘0

N(ε)∑
i=1

ε(1− ε)N(ε)−i ∑
P∈P(Ti)

νP
F̃ (P )
|Ti|

and thus, statement (ii) holds as well. �

Remark.
Note that in general, the limit element F ∗ will depend on the choice of the Følner sequence
(Uj), see Chapter 6.

Being valid for all countable amenable groups, Theorem 4.4 generalizes the works [LMV08,
LSV11]. Another possible extension is to consider convergence of real-valued, subadditive
functions defined over amenable groups. In this context, Krieger uses ε-quasi tiling tech-
niques in [Kri07, Kri10] to show the convergence along Følner nets. An analogous semigroup
result for cancellative amenable semigroups can be found in [CSKC12]. However, the au-
thors need a periodicity condition on f , i.e. the (semi-)group is coloured by one colour only.
This assumption is too restrictive for the spectral applications that we have in mind, cf.
Chapter 6. We will get back to convergence issues for subadditive functions in Chapter 8.

4.2 Continuous amenable groups

If not stated otherwise, we now consider Γ to be an amenable (possibly continuous) LCSCUH
group. The main result of this section is Theorem 4.15, which is a mean convergence theorem
for almost-additive Banach space-valued mappings defined on F(Γ). Here, we will not deal
with coloured groups, but we will emanate from classical ergodic theory. Precisely, we make
use of a mean ergodic theorem for integral averages proven by Greenleaf in [Gre73].
The major ingredient for the proof will be the concept of uniform decomposition towers
(Definition 3.5). The elaborations of this section can also be found in [Pog13a].

Abstract mean ergodicity

At first, we summarize well-known results about mean ergodic theorems for amenable
groups, see [Gre73]. This includes the definition of abstract integral averages in Defini-
tion 4.6 and the corresponding mean ergodic theorem in Theorem 4.7. We will use this lat-
ter result in order to prove convergence along Følner sequences for general almost-additive
functions.
Definition 4.5.
Let Γ be a second countable, locally compact Hausdorff group and assume that Z is a Banach
space with corresponding dual space Z∗. We then say that Γ acts weakly measurably on Z
via uniformly bounded operators {Tg}g∈Γ if there is a constant A > 0 and a map

T : Γ× Z → Z : (g, f) 7→ Tgf

with the following properties.
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(i) Tg : Z → Z is a linear operator for each g ∈ Γ,

(ii) ‖Tg‖ ≤ A for all g ∈ Γ,

(iii) Tef = f for each f ∈ Z, where e is the unit element in Γ,

(iv) Tg1(Tg2f) = Tg1g2f for each f ∈ Z and all g1, g2 ∈ Γ,

(v) For each f ∈ Z and every h ∈ Z∗, the map

Φf,h : Γ→ C : g 7→ 〈Tgf, h〉Z,Z∗

is measurable with respect to the Borel σ-algebras on Γ and C respectively, where
〈·, ·〉Z,Z∗ denotes the dual pairing of elements in Z and Z∗.

Moreover, we define Fix(TΓ) := {f ∈ Z |Tgf = f for all g ∈ Γ} as the space of elements in
Z which are fixed under the action of all g ∈ Γ.

With the notion of weakly measurable actions at hand, we define the following abstract
ergodic integral averages.

Definition 4.6 (Integral averages).
Let Γ be a second countable, locally compact Hausdorff group acting weakly measurably
on a Banach space Z via a family of linear, uniformly bounded operators {Tg}g∈Γ as in
Definition 4.5. Then, if (Uj) is a sequence of compact sets with positive measure in Γ, we
denote for f ∈ Z the j-th abstract ergodic average Ajf as

Ajf := |Uj |−1
∫
Uj

Tg−1f dmL(g), j ∈ N.

Remark.
Note that in the first instance, the abstract ergodic averages are only defined in a weak
sense, i.e. Ajf ∈ Z∗∗ for f ∈ Z, where Z∗∗ is the bidual space of Z. However, under mild
compactness assumptions on the Tg-orbit of f , one can show Ajf ∈ Z, see the remark
following Theorem 4.3 in [Pog10]. One sufficient condition is that for f ∈ Z, the closure
of the convex hull of the set {Tgf | g ∈ Γ} is compact in the weak topology of Z. This
condition will be satisfied in all our subsequent considerations.

The following mean ergodic theorem is well-known, see e.g. Theorem 3.3 in [Gre73] or
Theorem 4.3 in [Pog10].

Theorem 4.7 (Mean ergodic theorem for integral averages).
Let Γ be a second countable, locally compact Hausdorff group acting weakly measurably on
a Banach space (Z, ‖ · ‖Z) via a family of linear, uniformly bounded operators {Tg}g∈Γ as
in Definition 4.5. If for each f ∈ Z, the convex hull co{Tgf | g ∈ Γ} has compact closure in
the weak topology of Z, then there is a bounded projection P on Z such that given a weak
Følner sequence (Uj) in Γ along with the corresponding ergodic averages (Aj)j,

• limj→∞ ‖Ajf − Pf‖Z = 0 for all f ∈ Z.
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• Z = ran(P )⊕ ker(P ), where ran(P ) denotes the range and ker(P ) denotes the kernel
of P respectively.

• ran(P ) = Fix(TΓ).

• ker(P ) is equal to strong closure of the set of those f ∈ Z spanned by finite linear
combinations of elements h− Tgh, where h ∈ Z, g ∈ Γ.

Proof.
See [Gre73], Theorems 3.1 and 3.2, as well as [Pog10], Theorems 4.2 and 4.3. �

In fact, there is no need to assume that the compactness condition holds true for all f ∈ Z.
This leads to the next corollary. It will serve as a major ingredient in the proof of the
abstract mean ergodic theorem, cf. Theorem 4.15.

Corollary 4.8.
Assume the structure of the previous Theorem 4.7. If f ∈ Z is such that the convex hull
co{Tgf | g ∈ Γ} has compact closure in the weak topology on Z, then there is some f∗ ∈ Z
such that

lim
j→∞

‖Ajf − f∗‖Z = 0.

Proof.
See [Gre73], Theorem 3.3. �

A mean ergodic theorem for almost-additive functions

In the following, we elaborate the concept of almost-additive functions on F(Γ), where Γ is
a possibly continuous group. This notion is the analogue of Definition 4.2 in the countable
case with a minor difference: we have to drop the assumption on the boundary term b
to be bounded. The reason for this is that one cannot expect a reasonable boundedness
condition for the measure of K-boundary sets in continuous groups. For instance, consider
Γ := (R,+), K := [−δ, δ] for an arbitrary δ > 0 and Tn := [0, 1/n] ∪ (Q ∩ [0, 1]) for n ∈ N.
Since Q is dense in R, one has that [1/n, 1] ⊆ ∂K(Tn), hence |∂K(Tn)| ≥ 1 − 1/n, but
|Tn| = 1/n, where | · | stands for the Lebesgue measure on R. Sending n to infinity, one
observes that supn

|∂K(Tn)|
|Tn| =∞ . To overcome this difficulty, we introduce tiling-admissible,

weak boundary terms in the Definitions 4.9 and 4.11. This leads to the notion of admissibly
almost-additive mappings F : F(Γ) → Z. In Theorem 4.15, we show that under mild
compactness conditions, there is an element F ∗ ∈ Z such that

lim
j→∞

∥∥∥∥∥F (Uj)
|Uj |

− F ∗
∥∥∥∥∥
Z

= 0

for every strong Følner sequence (Uj) in Γ. This extends Theorem 3.2 in [Gre73]. We start
with the concept of weak boundary terms.
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Definition 4.9 (Weak boundary term).
Let Γ be an amenable LCSCUH group. A mapping

b : F(Γ)→ [0,∞)

is called weak boundary term if

(i) limj→∞
b(Uj)
|Uj | = 0 for every strong Følner sequence (Uj) in Γ,

(ii) it is translation invariant, i.e. b(Qg) = b(Q) for all Q ∈ F(Γ) and every g ∈ Γ,

(iii) one has the inequalities

b(Q ∩Q′) ≤ b(Q) + b(Q′), b(Q ∪Q′) ≤ b(Q) + b(Q′), b(Q \Q′) ≤ b(Q) + b(Q′)

for all Q,Q′ ∈ F(Γ).

As in the proof of Theorem 4.4, we use uniform families of ε-quasi tilings in order to prove
our mean ergodic Theorem 4.15. For the ε-prototiles Ti appearing in the proof, some
estimates on the measure of their K-boundaries will be indispensable. However, our notion
of weak boundary terms will not guarantee boundedness in general. We cope with this
difficulty by introducing the concept of so-called tiling-admissible, weak boundary terms.
Those mappings possess certain boundedness properties for the sets arising from ε-quasi
tilings.

Definition 4.10.
Let 0 < ε < 1/10 be a positive number and assume that b is a weak boundary term. We call
a set C consisting of finite, ε-disjoint families of sets in F(Γ) an ε-admissible collection for
b if there is a constant D̃ > 0 such that for each such family {Qk}mk=1 in C we have

b(Qk) ≤ D̃ |Qk|

for all 1 ≤ k ≤ m and one can find a family {Q̄k}mk=1 of measurable, pairwise disjoint sets
with

• |Q̄k| ≥ (1− ε)|Qk|,

• b(Q̄k) ≤ D̃ (b(Qk) + ε|Qk|)

for all 1 ≤ k ≤ m.

In our later considerations, we will have to work with weak boundary terms which are com-
patible with ε-quasi tilings coming from uniform decomposition towers, see Definition 3.5.
This leads to the following definition.

Definition 4.11.
Let Γ be an amenable LCSCUH group and assume that b is a weak boundary term for Γ.
We call b tiling-admissible if for every nested, strong Følner sequence (Sn) in Γ, there is a
constant D̃ > 0 such that for all 0 < ε < 1/10 and for each choice of ε-prototiles

{e} ⊆ T ε1 ⊆ · · · ⊆ T εN(ε)
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taken from (Sn) according to Definition 2.15, every ε-quasi tiling as constructed in Theo-
rem 3.6 is an ε-admissible family of translates T εi c for b with constant D̃.

The following proposition shows that the natural choice b(Q) = D |∂L(Q)| for some constant
D > 0 and for some compact L ⊆ Γ defines a weak, tiling-admissible boundary term.

Proposition 4.12.
Suppose that Γ is an amenable LCSCUH group. Let D > 0 be arbitrary and assume that
{e} ⊆ L is a compact set in F(Γ). Then, the mapping

b : F(Γ)→ [0,∞) : b(Q) := D |∂L(Q)|

is a weak, tiling-admissible boundary term.

Proof.
The fact that b is a weak boundary term follows from the Følner condition and from
Lemma 2.3.
Let (Sn) be a nested, strong Følner sequence in Γ and set

D := sup
n∈N

b(Sn)
|Sn|

.

By the Følner condition, we have D < ∞. Now let C be an ε-disjoint family consisting of
translates T εi c appearing in some ε-quasi tiling as constructed in Theorem 3.6, where T εi is
an element of (Sn). Clearly, b(T εi c) ≤ D |T εi c| for all those translates. By construction, the
translates also satisfy the condition given in part (III) of the second item in Definition 3.3,
which guarantees the existence of measurable sets T εi (c) such that ∂L(T εi (c)) is measurable
as well, |T εi (c)| ≥ (1− ε)|T εi | and

|∂L(T εi (c)c)| ≤ |∂L(T εi )|+ ε |T εi c|,

see also Definition 2.15. Thus, we have proven that b is indeed tiling-admissible with the
constant D̃ := D + 1. �

Analogously to the case of countable groups, we can define Banach space-valued, almost-
additive functions on F(Γ), where Γ is a possibly continuous group. In order to avoid
confusions with Definition 4.2, we call those mappings F admissibly almost-additive.

Definition 4.13 (Admissibly almost-additive function).
Let Γ be an amenable LCSCUH group and suppose that (Z, ‖ · ‖Z) is a Banach space. A
map

F : F(Γ)→ Z

is called admissibly almost-additive if

(i) F is bounded, i.e. there exists some constant C > 0 such that

C = sup
Q∈F(Γ)

‖F (Q)‖Z
|Q|

<∞,



4 Banach space-valued ergodic theorems 63

(ii) there is some tiling-admissible, weak boundary term b : F(Γ)→ [0,∞) such that F is
almost-additive with respect to b, i.e.∥∥∥∥∥F (Q)−

m∑
k=1

F (Qk)
∥∥∥∥∥
Z

≤
m∑
k=1

b(Qk)

for any union Q =
⊔
kQk of pairwise disjoint sets in F(Γ).

The following proposition is the analogue to Lemma 4.3, part (ii). It appears in [Pog13a],
Proposition 5.6.

Proposition 4.14.
Let Γ be an amenable LCSCUH group and let (Z, ‖ · ‖Z) be a Banach space. Assume that
F : F(Γ)→ Z is admissibly almost-additive with boundary term b : F(Γ)→ [0,∞). Further,
let 0 < ε < 1/10 and denote by C an ε-admissible collection for b with constant D̃. Then if
{Qk}mk=1 is an element in C such that ∪kQk ⊆ Q and | ∪k Qk| ≥ α |Q| for some parameter
0 < α ≤ 1, the following error estimate holds true.∥∥∥∥∥F (Q)−

m∑
k=1

F (Qk)
∥∥∥∥∥
Z

≤ C (2ε+ 1− (1− ε)α) |Q|+ 10D̃ε |Q|+ b(Q) + (5D̃ + 1)
m∑
k=1

b(Qk),

where C is the boundedness constant for F .

Proof.
Since C is ε-admissible for b with constant D̃, for each 1 ≤ k ≤ m, one finds a measurable
set Q̄k ⊆ Qk with |Q̄k| ≥ (1 − ε)|Qk| such that the Q̄k are pairwise disjoint and b(Q̄k) ≤
D̃ b(Qk) + D̃ ε |Qk| for all 1 ≤ k ≤ m. Since Q is α-covered by the Qk, one obtains∣∣∣∣∣

m⋃
k=1

Q̄k

∣∣∣∣∣ ≥ (1− ε)α |Q|. (4.8)

By the triangle inequality, we get∥∥∥∥∥F (Q)−
m∑
k=1

F (Qk)
∥∥∥∥∥
Z

≤
∥∥∥∥∥F (Q)− F

(
m⋃
k=1

Q̄k

)∥∥∥∥∥
Z

+
∥∥∥∥∥F

(
m⋃
k=1

Q̄k

)
−

m∑
k=1

F (Q̄k)
∥∥∥∥∥
Z

+

m∑
k=1

∥∥∥F (Q̄k)− F (Qk)
∥∥∥
Z
.

For the first expression, we obtain from the almost-additivity of F that∥∥∥∥∥F (Q)− F
(

m⋃
k=1

Q̄k

)∥∥∥∥∥
Z

≤ b

(
m⋃
k=1

Q̄k

)
+ b

(
Q \

m⋃
k=1

Q̄k

)
+
∥∥∥∥∥F

(
Q \

m⋃
k=1

Q̄k

)∥∥∥∥∥
Z

.

Since |Q \ ∪kQ̄k| ≤ (1− (1− ε)α)|Q| and by Definition 4.9 (iii), we obtain by using bound-
edness and inequality (4.8)∥∥∥∥∥F (Q)− F

(
m⋃
k=1

Q̄k

)∥∥∥∥∥
Z

≤ 2
m∑
k=1

b(Q̄k) + b(Q) + C (1− (1− ε)α) |Q|.
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Moreover, by the fact that b(Q̄k) ≤ D̃ (b(Qk) + ε|Qk|) for 1 ≤ k ≤ m and as ε < 1/2,∥∥∥∥∥F (Q)− F
(

m⋃
k=1

Q̄k

)∥∥∥∥∥
Z

≤ 2D̃
m∑
k=1

b(Qk) + 4D̃ε |Q|+ b(Q) + C (1− (1− ε)α) |Q|.

For the second expression, we use the disjointness of the Q̄k to get∥∥∥∥∥F
(

m⋃
k=1

Q̄k

)
−

m∑
k=1

F (Q̄k)
∥∥∥∥∥
Z

≤
m∑
k=1

b(Q̄k).

By the considerations above and by the ε-disjointness of the Qk (with ε < 1/2), we arrive
at ∥∥∥∥∥F

(
m⋃
k=1

Q̄k

)
−

m∑
k=1

F (Q̄k)
∥∥∥∥∥
Z

≤ D̃
m∑
k=1

b(Qk) + 2D̃ε |Q|.

For the third expression, we compute similarly as before,

‖F (Qk)− F (Q̄k)‖Z ≤ b(Q̄k) + b(Qk \ Q̄k) + ‖F (Qk \ Q̄k)‖Z
≤ b(Qk) + 2 b(Q̄k) + Cε |Qk|

for 1 ≤ k ≤ m. Taking sums, one obtains with the previous considerations that

m∑
k=1
‖F (Qk)− F (Q̄k)‖Z ≤ (2D̃ + 1)

m∑
k=1

b(Qk) + 2C ε|Q|+ 4D̃ε |Q|.

Summing the partial results up, this proves the claim. �

We are finally in position to prove the abstract mean ergodic theorem for admissibly almost-
additive mappings on amenable groups. It has been published in [Pog13a], Theorem 5.7.

Theorem 4.15 (Mean ergodic theorem for set functions).
Let Γ be an amenable LCSCUH group, (Uj) a strong Følner sequence in Γ, (Z, ‖ · ‖Z) a
Banach space and {Tg}g∈Γ a family of linear, uniformly bounded operators acting weakly
measurably on Z. Further, denote by

F : F(Γ)→ (Z, ‖ · ‖Z)

some bounded (with constant C), admissibly almost-additive mapping with tiling-admissible,
weak boundary term b defined on F(Γ) with the additional property that

TgF (Q) = F (Qg−1)

for all Q ∈ F(Γ) and every g ∈ Γ.
If in addition to this, for every Q ∈ F(Γ), the convex hull CF,Q := co{F (Qg) | g ∈ Γ} has
compact closure in the weak topology on Z, then the following assertions hold true.
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(A) For each Q ∈ F(Γ), the limit

S(Q) := lim
j→∞

|Uj |−1
∫
Uj

F (Qg) dmL(g)

exists in the topology of Z and S(Q) does not depend on the choice for (Uj).

(B) For each ε > 0 and N(ε) := dlog(ε)/ log(1− ε)e, consider ε-prototiles {T εi }
N(ε)
i=1 in the

group Γ as in Definition 2.15 with 0 < β < 2−N(ε)ε. Then the following limits exist in
Z and are equal:

F ∗ := lim
j→∞

F (Uj)
|Uj |

= lim
ε→0

N(ε)∑
i=1

ηi(ε)
S(T εi )
|T εi |

,

where we have ηi(ε) := ε(1− ε)N(ε)−i for 1 ≤ i ≤ N(ε). Further, F ∗ is independent of
the choice of (Uj).

(C) The limit F ∗ is a Tg-fixed point, i.e. for all g ∈ Γ, we have

TgF
∗ = F ∗.

Proof.
For the proof of statement (A), let Q ∈ F(Γ). By Corollary 4.8, the claim now follows from
the relative weak compactness of CF,Q together with the invariance Tg−1F (Q) = F (Qg) for
all g ∈ Γ. Note that it follows also from Corollary 4.8 that S(Q) must be independent of
(Uj).

For the proof of (B), fix 0 < ε < 1/10 and β := 2−N(ε)ε. By Theorem 3.6, we find
K = K(ε, β, T εi ) ∈ N such that for each j ≥ K, one can construct a uniform decomposition
tower for Uj . Further, we set

∆(j, ε) :=

∥∥∥∥∥∥F (Uj)
|Uj |

−
N(ε)∑
i=1

ηi(ε)
S(T εi )
|T εi |

∥∥∥∥∥∥
Z

for ε > 0 and j ∈ N. In the following, we fix j ≥ K. With 0 < η < η0, where η0 is chosen
as in Definition 3.5, we can find

• some (UjU−1
j , η)-invariant set Ûj along with

• a uniform decomposition tower (Υ,Λ) with prototile sets T εi , (1 ≤ i ≤ N(ε)),

• a family of finite center sets Ĉyi (y ∈ Υ) for the ε-quasi tiling of Ûj ,

• and for each y ∈ Υ, a family of finite center sets Cy,λi (λ ∈ Λ) for the ε- quasi tiling of
Uj .

With no loss of generality, we assume that all the T εi are taken from a subsequence (Snk)∞k=1
of a strong Følner sequence such that the expressions b(Snk)/|Snk | converge to zero mono-
tonically as k →∞. Additionally, we make sure that T εi ∈ {Snl | l ≥ i} for all 1 ≤ i ≤ N(ε).
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It is our goal to show that limε→0 limj→∞∆(j, ε) = 0. To do so, we combine the construction
of the uniform decomposition tower for (Uj , Ûj), cf. Theorem 3.6, statement (III), with the
triangle inequality and we arrive at

∆(j, ε) ≤ D1(j, ε) +D2(j, ε) +D3(j, ε) +D4(j, ε) +D5(j, ε)

with

D1(j, ε) :=

∥∥∥∥∥∥∥
F (Uj)
|Uj |

−
N(ε)∑
i=1
|Υ|−1|Λ|−1

∫
Υ

∫
Λ

∑
c∈Cy,λi

F (T εi c)
|Uj |

dλ dy

∥∥∥∥∥∥∥
Z

,

D2(j, ε) :=

∥∥∥∥∥∥∥
N(ε)∑
i=1
|Υ|−1|Λ|−1

∫
Υ

∫
Λ

 ∑
c∈Cy,λi

F (T εi c)
|Uj |

−
∑

c∈Ĉyi λ−1∩Uj

F (T εi c)
|Uj |


∥∥∥∥∥∥∥ dλ dy,

D3(j, ε) :=

∥∥∥∥∥∥∥
N(ε)∑
i=1
|Υ|−1|Λ|−1

∫
Υ

∑
c∈Ĉyi

∫
Uj\cΛ−1

Tλ−1F (T εi )
|Uj |

dλ

 dy

∥∥∥∥∥∥∥
Z

,

D4(j, ε) :=

∥∥∥∥∥∥
N(ε)∑
i=1

(
|Υ|−1

∫
Υ

#(Ĉyi )
|Λ| dy

) (∫
Uj

Tλ−1F (T εi )
|Uj |

dλ− S(T εi )
)∥∥∥∥∥∥

Z

and

D5(j, ε) :=

∥∥∥∥∥∥
N(ε)∑
i=1

(
|Υ|−1

∫
Υ

#(Ĉyi )
|Λ| dy

)
S(T εi )−

N(ε)∑
i=1

ηi(ε)
S(T εi )
|T εi |

∥∥∥∥∥∥
Z

.

Here, to obtain D3(j, ε) and D4(j, ε), we used∫
Λ

∑
c∈Ĉyi λ−1∩Uj

F (T εi c) dλ =
∫

Λ

∑
c∈Ĉyi

1Uj (cλ−1) · F (T εi cλ−1) dλ

=
∑
c∈Ĉyi

∫
cΛ−1

1Uj (λ) · F (T εi λ) dλ

=
∑
c∈Ĉyi

∫
Uj∩cΛ−1

Tλ−1F (T εi ) dλ

for all 1 ≤ i ≤ N(ε) and y ∈ Υ. We also used here that the group Γ is unimodular.
We will now give estimates for these expressions.

(1) We start with D1(j, ε). Since Uj is α := (1− 4ε)-covered by ε-disjoint translates {Tic},
1 ≤ i ≤ N , c ∈ Cy,λi for each y ∈ Υ and each λ ∈ Λ and as the weak boundary term b
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is tiling-admissible for some constant D̃ ≥ 1, it follows from Proposition 4.14 that for
every j ≥ K,

D1(j, ε) ≤ (7C + 10D̃) ε+ b(Uj)
|Uj |

+(5D̃ + 1)
N(ε)∑
i=1

(
|Υ|−1|Λ|−1

∫
Υ

∫
Λ

#(Cy,λi )
|Uj |

dλ dy

)
· b(T εi ).

By Theorem 3.6, we can use the inequality in (II) of Definition 3.3 with S = T = Uj
and by the boundedness property of Definition 4.10 for the sets T εi , this yields

D1(j, ε) ≤ (7C + 10D̃) ε+ b(Uj)
|Uj |

+(5D̃ + 1)
N(ε)∑
i=1

(
ηi(ε) b(T εi ) + 2D̃γ̃i|T εi | ε+ 4D̃ β

)
.

By the triangle inequality,
∑
i γ̃i|T εi | ≤ 2 and βN(ε) < 2ε, one obtains

D1(j, ε) ≤ (7C + 10D̃) ε+ b(Uj)
|Uj |

+ (5D̃ + 1)
N(ε)∑
i=1

ηi(ε) b(T εi ) + 4D̃(5D̃ + 1) ε+ 8D̃(5D̃ + 1) ε

≤ (7C + 10D̃ + 12D̃(5D̃ + 1)) ε+ b(Uj)
|Uj |

+ (5D̃ + 1)
N(ε)∑
i=1

ε(1− ε)N(ε)−i · b(T
ε
i )

|T εi |

≤ (7C + 10D̃ + 12D̃(5D̃ + 1)) ε+ b(Uj)
|Uj |

+ (5D̃ + 1)
N(ε)∑
i=1

ε(1− ε)N(ε)−i · b(Sni)
|Sni |

.

for every j ≥ K. As limj→∞ b(Uj)/|Uj | = 0 we arrive at

lim sup
j→∞

D1(j, ε) ≤ (7C + 10D̃ + 12D̃(5D̃ + 1)) ε

+ (5D̃ + 1)
N(ε)∑
i=1

ε(1− ε)N(ε)−i · b(Sni)
|Sni |

. (4.9)

(2) We continue with the estimate for D2(j, ε). It follows from the property (III) of the
Definition 3.5 of the uniform decomposition tower that there is a set Ũj ⊆ Uj with
|Ũj | ≥ (1− β)|Uj | and

Ũj ∩ Ĉyi λ
−1 ⊆ Cy,λi ⊆ Uj ∩ Ĉyi λ

−1
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for 1 ≤ i ≤ N(ε), y ∈ Υ and λ ∈ Λ. Further, one can choose Ũj such that it is a
(T εN(ε)T

ε−1
N(ε), 4β)-invariant set.

By the triangle inequality and the boundedness of F , we then obtain

D2(j, ε) ≤
N(ε)∑
i=1
|Υ|−1|Λ|−1

∫
Υ

∫
Λ

∑
c∈Ĉyi λ−1∩(Uj\Ũj)

‖F (T εi c)‖
|Uj |

dλ dy

≤ C

N(ε)∑
i=1
|Υ|−1|Λ|−1

∫
Υ

∫
Λ

#(Ĉyi ∩ (Uj \ Ũj)λ)
|Uj |

|T εi | dλ dy.

Since the set Uj is (T εN(ε)T
ε−1
N(ε), β)-invariant, we have

|∂T εi T ε−1
i

(Uj \ Ũj)|
|Uj |

< 5β

for all 1 ≤ i ≤ N(ε). The ε-disjointness of the T εi -translates then implies the bound

#(Ĉyi ∩ (Uj \ Ũj)λ)
|Uj |

|T εi | ≤
|(Uj \ Ũj) ∪ ∂T εi T ε−1

i
(Uj \ Ũj)|

|Uj ||T εi |(1− 2ε) |T εi |

≤ 2 (β + 5β) = 12β

for every 1 ≤ i ≤ N(ε), for each y ∈ Υ and all λ ∈ Λ. Putting these estimates together,
we arrive at

D2(j, ε) ≤ C
N(ε)∑
i=1

12β
βN<2ε
≤ 24C ε.

Thus,

lim sup
j→∞

D2(j, ε) ≤ 24Cε. (4.10)

(3) For a good estimate forD3(j, ε), the concept of a uniform decomposition tower is crucial.
At first, we observe that c ∈ Ûj \ uΛ whenever u ∈ Uj and c ∈ Ĉyi ⊆ Ûj are such that
u /∈ cΛ−1. Hence, due to the boundedness of F , we have for j ≥ K that

D3(j, ε) ≤
N(ε)∑
i=1
|Υ|−1|Λ|−1

∫
Υ

∑
c∈Ĉyi

|Uj |−1
∫
Uj\cΛ−1

‖Tu−1F (T εi )‖Z du

 dy

≤ C

N(ε)∑
i=1
|Υ|−1|Λ|−1

∫
Υ

∑
c∈Ĉyi

|Uj |−1
∫
Uj

1Ûj\uΛ(c) · |T εi | du

 dy

≤ C

N(ε)∑
i=1
|Uj |−1

∫
Uj

|Υ|−1
(∫

Υ

#((Ûj \ uΛ) ∩ Ĉyi )
|Λ| dy

)
du · |T εi |

β<1/2
≤ 2C

N(ε)∑
i=1
|Uj |−1

∫
Uj

|Υ|−1
(∫

Υ

#((Ûj \ uΛ) ∩ Ĉyi )
|Ûj |

dy

)
du · |T εi |,
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where the last inequality is due to Definition 3.5, statement (I) and β < 1/2.
The independence of Λ and Υ comes into play now. As the set Λ is the same for every
chosen y ∈ Υ, we can exploit the properties (I) and (II) of Definition 3.5. Note that
the property (I) gives |Ûj \ uΛ| = |Ûj | − |Λ| ≤ β |Ûj | for all u ∈ Uj . Next, we apply
the inequality in (II) of Definition 3.3 for each u ∈ Uj with T̂ = Ûj , Ŝ = Ûj \ uΛ. Now
using the boundedness of F , β < 2−N(ε)ε,

∑
i γ̃i|T εi | ≤ 2 and β < ε we arrive at

D3(j, ε) ≤ 2C
N(ε)∑
i=1

(
ηi(ε) ·

β

|T εi |
+ 4 β

|T εi |
+ 2γ̃i ε

)
|T εi |

≤ 2C (β + 8ε+ 4ε)
≤ 26C ε.

Consequently,

lim sup
j→∞

D3(j, ε) ≤ 26C ε. (4.11)

(4) For D4(j, ε), it is a direct consequence of assertion (II) of Definition 3.3 with Ŝ = T̂
and with |Λ| ≥ (1− β)|Ûj | that

D4(j, ε) ≤
N(ε)∑
i=1

(1− β)−1
(
ηi(ε)
|T εi |

+ 4β
|T εi |

+ 2 γ̃i ε
) ∥∥∥∥∥

∫
Uj

Tλ−1F (T εi )
|Uj |

dλ− S(T εi )
∥∥∥∥∥
Z

β<1/2
≤ 2

N(ε)∑
i=1

[
ηi(ε)
|T εi |

∥∥∥∥∥|Uj |−1
∫
Uj

Tλ−1F (T εi ) dλ− S(T εi )
∥∥∥∥∥
Z

+

(
4 β

|T εi |
+ 2 γ̃i ε

)
C · 2 · |T εi |

]

≤ 2
N(ε)∑
i=1

ηi(ε)
|T εi |

∥∥∥∥∥|Uj |−1
∫
Uj

Tλ−1F (T εi ) dλ− S(T εi )
∥∥∥∥∥
Z

+ 48εC

for every j ≥ K. It now follows from the claim (A) that

lim sup
j→∞

D4(j, ε) ≤ 48C ε. (4.12)

(5) Finally, again by using Theorem 3.6 (i.e. property (II) of Definition 3.5 with Ŝ = T̂ =
Ûj), we also get an estimate for D5(j, ε). By the uniform distribution of the Ĉyi and
since |Λ| ≥ (1− β)|Ûj | by the statement (I) of Definition 3.5, we obtain

D5(j, ε) ≤
N(ε)∑
i=1

∣∣∣∣∣|Υ|−1
∫

Υ

#(Ĉyi )
|Λ| dy − ηi(ε)

|T εi |

∣∣∣∣∣ ‖S(T εi )‖Z

≤ C [(1− β)−1 − 1] · |Υ|−1
∫

Υ

N(ε)∑
i=1

#(Ĉyi ) |T εi |
|Ûj |

dy +

C

N(ε)∑
i=1

(
4β
|T εi |

+ 2γ̃iε
)
|T εi |
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for j ≥ K. Since the translates {T εi c}, c ∈ Ĉ
y
i are ε-disjoint and as

∑N(ε)
i=1 γ̃i |T εi | ≤ 2,

we arrive at

D5(j, ε) ≤ C
(1− β)−1 − 1

1− ε + C

N(ε)∑
i=1

(4β + 2γ̃i|T εi | ε)

β<2−N(ε)ε
≤ 16C ε

for j ≥ K and thus,

lim sup
j→∞

D5(j, ε) ≤ 16C ε. (4.13)

To conclude the proof of the theorem, we derive from the Inequalities (4.9), (4.10) (4.11),
(4.12), as well as (4.13) that indeed,

lim
ε→0

lim sup
j→∞

∆(j, ε) = 0.

Here, we use in the estimate (4.9) the monotonicity of (b(Sni)/|Sni |) to obtain

lim
ε→0

N(ε)∑
i=1

ηi(ε)
b(Sni)
|Sni |

= 0.

The triangle inequality now yields

lim sup
k,l→∞

∥∥∥∥F (Ul)
|Ul|

− F (Uk)
|Uk|

∥∥∥∥
Z

≤ lim
ε→0

lim sup
k→∞

∆(k, ε) + lim
ε→0

lim sup
l→∞

∆(l, ε)

= 0.

Hence, F (Uj)/|Uj | is a Cauchy sequence and thus, it converges in the Banach space Z. The
representation as the second limit is now an easy consequence of the triangle inequality. To
see the independence of the Følner sequence (Uj) under consideration, note first that by
claim (A), all the S(T εi ) do not depend on (Uj) and hence the above ε-limit only depends
of the choice of the tiling sets T εi . However, we have chosen an arbitrary collection of ε-
prototiles in the group Γ which does not depend on (Uj). Thus, the expressions F (Uj)/|Uj |
must converge to the same limit for every strong Følner sequence (Uj) in Γ.

To show claim (C), we take an arbitrary g ∈ Γ. Note that for all 0 < ε < 1/10 and every
1 ≤ i ≤ N(ε), we have TgS(T εi ) = S(T εi ) by the Følner property of the sequence (Uj). By
the boundedness (continuity) of the operator Tg and by the convergence result in claim (B),
the following computation finishes our proof.

TgF
∗ = Tg

lim
ε→0

N(ε)∑
i=1

ηi(ε)
S(T εi )
|T εi |

 = lim
ε→0

N(ε)∑
i=1

ηi(ε)
TgS(T εi )
|T εi |


= lim

ε→0

N(ε)∑
i=1

ηi(ε)
S(T εi )
|T εi |

 = F ∗.

�
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For spectral applications, we will also have to deal with situations where we do not have
an action of the group Γ on the Banach space Z at our disposal. However, assuming the
existence of certain abstract limits, we are still able to derive the abstract mean ergodic
theorem.
Corollary 4.16.
Let Γ be an amenable LCSCUH group, (Uj) a strong Følner sequence in Γ, (Z, ‖ · ‖Z) a
Banach space and {Tg}g∈Γ a family of linear, uniformly bounded operators acting weakly
measurably on Z. Further, denote by

F : F(Γ)→ (Z, ‖ · ‖Z)

some bounded (constant C), admissibly almost-additive mapping with tiling-admissible, weak
boundary term b defined on F(Γ). Assume that for each Q ∈ F(G) and all elements h in
the dual space Z∗ of Z, the mappings

ψQ,h : G→ C : g 7→ 〈F (Qg), h〉Z,Z∗

are measurable, where 〈·, ·〉Z,Z∗ denotes the dual pairing of Z with Z∗. For a positive se-
quence εk → 0 and N(εk) := dlog(εk)/ log(1− εk)e, take εk-prototiles {T εki }

N(εk)
i=1 in Γ as in

Definition 2.15 with 0 < β < 2−N(εk)εk.
Then, if for each k ∈ N and every 1 ≤ i ≤ N(εk), the expression

S(T εki ) := lim
j→∞

|Uj |−1
∫
Uj

F (T εki g) dg

exists in Z, the following limits exist in Z and are equal:

F ∗ := lim
j→∞

F (Uj)
|Uj |

= lim
k→∞

N(εk)∑
i=1

ηi(εk)
S(T εki )
|T εki |

,

where ηi(εk) := ε(1− εk)N(εk)−i for 1 ≤ i ≤ N(εk).
In addition to this, F ∗ does not depend on the choice of the sequence (Uj).

Proof.
This follows by a simple modification of the proof of (B) of Theorem 4.15. �





5 Bounded, additive processes on groups

This chapter is devoted to the investigation of a specific class of almost-additive functions.
Precisely, we focus on so-called bounded, additive processes F which can be interpreted as
admissibly almost-additive functions in the sense of Definition 4.13 with boundary term b =
0 and with Z = L1(Ω, Y ) being a Bochner space with reflexive Banach space Y . The main
theorem of the present chapter is Theorem 5.17. It is shown therein that for approximable
bounded, additive processes over probability spaces, there is some F ∗ ∈ L1(Ω, Y ) such that
for increasing Tempelman Følner sequences (Uj),

lim
j→∞

∥∥∥∥∥F (Uj)(ω)
|Uj |

− F ∗(ω)
∥∥∥∥∥
Y

= 0

for almost-all ω ∈ Ω. As far as the underlying geometry is concerned, this significantly
extends the setting of the considerations of Sato in [Sat99, Sat03], where he proves conver-
gence along d-dimensional cubes for an Rd-semigroup action. In the situation of the latter
work, the approximability is automatically satisfied. In the general setting of the present
thesis, we need to assume that L1-processes can be approximated in a suitable way by a
certain class of L∞-processes. Our result provides interesting applications and implications
to results from the literature. For instance, if F is absolutely continuous, i.e. if it is an inte-
gral average as in Definition 4.6, then we obtain a classical pointwise ergodic theorem, see
e.g. [Tem72, Eme74, Lin01]. By slightly extending the techniques in [Lin01], one can even
prove the convergence for Shulman sequences and for σ-finite measure spaces in this special
situation. This has been done by the author of this thesis in Theorem 6.8 of [Pog13a]. We
will state and discuss this result without proof in Theorem 5.5. More interestingly, our main
Theorem 5.17 applies to a larger class of bounded, additive processes. The present chapter
is divided into two parts. At first, we introduce Bochner spaces and bounded, additive
processes. In the second part, we present and discuss the new pointwise almost-everywhere
assertions and draw some links to the literature. The corresponding results are partially
taken from Chapter 6 in [Pog13a]. During the preparation of the present chapter, the author
of this thesis realized that in [Pog13a], there is a gap in the proof of the pointwise ergodic
theorem. To deal with this, we add the assumption of approximability in the present version,
cf. Theorem 5.17. An erratum on the pointwise almost-everywhere convergence statements
of [Pog13a] is in preparation.

5.1 Bounded, additive processes

In the following, we introduce bounded, additive processes on LCSCUH groups with values
in a Bochner space. Moreover, we give some illustrative examples. Considering abstract
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74 5 Bounded, additive processes on groups

Poisson point processes in Example 5.6, we demonstrate that there are bounded, additive
processes which are not of the integral form in Definition 4.6. In Theorem 5.5, we state
the almost-everywhere convergence result for absolutely continuous processes. This latter
assertion can be shown by using classical techniques. Therefore, we do not give a proof and
refer the reader to Theorem 6.8 in [Pog13a].

Definition 5.1.
Let Y be a Banach space and (Ω,F , µ) be a σ-finite measure space. For 1 ≤ p < ∞, we
denote by Lp(Ω, Y ) the (Bochner) space of all equivalence classes f : Ω→ Y such that each
representative f is strongly measurable with respect to F and

‖f‖Lp(Ω,Y ) :=
(∫

Ω
‖f(ω)‖pY dµ(ω)

)1/p
<∞,

i.e. ‖f(·)‖Y ∈ Lp(Ω,R) := Lp(Ω,F , µ). (Two functions f and h are considered as equivalent
if f(ω) = h(ω) for µ-almost every ω ∈ Ω.)
For p =∞, we set L∞(Ω, Y ) as the space of strongly measurable equivalence classes f such
that

‖f‖L∞(Ω,Y ) := ess sup
ω∈Ω

‖f(ω)‖Y <∞,

i.e. ‖f(·)‖Y ∈ L∞(Ω,R) := L∞(Ω,F , µ).

Remark.
The strong measurability condition mentioned in the above definition is the common notion
for measurability in Bochner spaces, cf. [Boc33]. Precisely, a mapping f : Ω→ Y is strongly
measurable if it can be obtained as a µ-almost-everywhere limit of simple classes (fn), i.e.
for each n ∈ N, there are L ∈ N, yi ∈ Y and Ai ∈ F , (1 ≤ i ≤ L) such that with

fn :=
L∑
i=1

yi1Ai ,

we have limn→∞ ‖fn(ω)− f(ω)‖Y = 0 for µ-almost every ω ∈ Ω.

In the following, we are interested in the case where Z := Lp(Ω, Y ) for some 1 ≤ p < ∞
and Y is a reflexive Banach space. Further, we suppose that the group Γ acts measurably
on (Ω,F , µ) by measure preserving transformations. This is made precise in the following
definition.
Definition 5.2.
Let Γ be an LCSCUH group with unity e and Borel σ-algebra B(Γ). Suppose that (Ω,F , µ) is
a probability space. We say that Γ acts on Ω measure preservingly or by measure preserving
transformations if there is a (B(Γ)⊗F)-F-measurable map

π : Γ× Ω→ Ω

such that

• π(e, ω) = ω for all ω ∈ Ω,
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• π(g, π(h, ω)) = π(gh, ω) for all g, h ∈ Γ and every ω ∈ Ω,

• µ(A) = µ(π(g,A)) for all g ∈ Γ and every A ∈ F .

If in addition, a set A ∈ F can only be fixed under the Γ-action (i.e. π(g,A) = A for all
g ∈ Γ) if µ(A) ∈ {0, 1}, then we say that the action of Γ on Ω is ergodic. In this situation,
we say that µ is an ergodic measure for the action of Γ on Ω.

For the sake of clarity, we write in the following simply gω := g · ω := π(g, ω) for g ∈ Γ and
ω ∈ Ω.

We assume that the action of Γ on the probability space Ω induces a weakly measurable
action of Γ on Z according to Definition 4.5. The connection of the corresponding operators
{Tg} with the group action on Ω shall be given by a measurable group homomorphism
ϕ : Γ → Γ. The latter must satisfy the following regularity condition: there is some
constant κ > 0 such that for every g ∈ Γ and for each f ∈ Z

‖Tgf(ω)‖Y ≤ κ ‖f(ϕ(g)−1ω)‖Y

for µ-almost every ω ∈ Ω. Since the action of Γ on Ω preserves the measure µ, it follows that
supg∈Γ ‖Tg‖Lp(Ω,Y ) ≤ κ. As ϕ is a group homomorphism, the above inequality implies

‖f(ϕ(g)−1ω)‖Y = ‖[Tg−1(Tgf)](ϕ(g)−1ω)‖Y
≤ κ ‖(Tgf)(ϕ(g−1)−1ϕ(g)−1ω)‖Y = κ ‖(Tgf)(ω)‖Y .

This shows that the above regularity condition is equivalent to the assumption that there
is a number κ > 0 such that

κ−1 ‖f(ϕ(g)−1ω)‖Y ≤ ‖Tgf(ω)‖Y ≤ κ ‖f(ϕ(g)−1ω)‖Y (5.1)

for all g ∈ Γ and every f ∈ Z. This also implies that κ ≥ 1. Note that this setting
includes the ’standard situation’ of the usual ground space transformation, where one has
(Tgf)(ω) = f(g−1ω) for f ∈ Lp(Ω, Y ), g ∈ Γ and ω ∈ Ω.

In the following, we denote by (Uj) a tempered, strong Følner sequence in Γ, cf. Defini-
tions 2.5 and 2.9. Recall that in Definition 4.6, we defined the j-th (j ∈ N) abstract ergodic
average with respect to (Uj) as

Ajf := |Uj |−1
∫
Uj

Tg−1f dmL(g)

for f ∈ Z.

We are now in position to define the notion of bounded, additive processes on groups with
values in a Bochner space.
In this context, we restrict ourselves to the set F0(Γ) consisting of all elements in F(Γ)
which additionally are locally closed and precompact (i.e. they have compact closure).
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Definition 5.3 (Bounded, additive processes).
Let Γ be an LCSCUH group and denote by Y some reflexive Banach space. For a σ-finite
measure space (Ω,F , µ) with µ-invariant Γ-action, as well as for 1 ≤ p <∞, we assume that
there is a family {Tg}g∈Γ of uniformly bounded, linear operators acting weakly measurably
on Lp(Ω, Y ) such that inequality (5.1) is satisfied for some κ ≥ 1 and for some measurable
group homomorphism ϕ : Γ→ Γ. In this situation, we call the map

F : F0(Γ)→ Lp(Ω, Y )

a bounded, additive process on Γ if the following statements hold.

(i) F is bounded, i.e. K := sup{‖F (Q)‖Lp(Ω,Y )/|Q| |Q ∈ F0(Γ), |Q| > 0} <∞,

(ii) F is additive, i.e. F (Q) =
∑m
k=1 F (Qk) if Q ∈ F0(Γ) is a disjoint union of the

Qk ∈ F0(Γ) for 1 ≤ k ≤ m,

(iii) F is equivariant, i.e. TgF (Q) = F (Qg−1) for all Q ∈ F0(Γ) and every g ∈ Γ.

Before we approach the issues of norm and pointwise convergence of these mappings F , let
us first give a couple of examples.

Examples 5.4.
• Assume that Γ acts on a σ-finite measure space (Ω,F , µ) by measure preserving trans-
formations. Then, for every f ∈ Lp(Ω,R) (1 ≤ p <∞), the map

F0(Γ)→ Lp(Ω,R) : F (Q)(·) :=
∫
Q
Tg−1f dg (·)

defines a bounded, additive process for the canonical action Tgh(ω) = h(g−1ω) on
Lp(Ω,R). Note that the regularity condition, inequality (5.1) is satisfied with κ = 1
and the identity ϕ = idΓ. In this case, we say that the process F is absolutely
continuous with density f with respect to Γ. The boundedness constant is given by
C := ‖f‖Lp(Ω,R).

• Let Γ = Rd (d ≥ 1) and assume that F : F0(Γ) → L1
+(Ω,R) is a bounded, additive

process for a measure preserving action Tgh(ω) = h(g−1ω) on the canonical non-
negative cone in L1(Ω,R). It is shown in [AdJ81] that in this situation, we can write
F = F1 + F2, where F1 is some absolutely continuous process with a non-negative
density and where F2 is a singular process, i.e. a bounded, additive process which does
not dominate any absolutely continuous, non-zero, non-negative process.

• In the previous example, set (Ω,F , µ) = (Rd,B(Rd),Ld), where Ld is the usual d-
dimensional Lebesgue measure in the euclidean space. Assume further that the action
of Γ on Rd is given by translation, i.e. Tgf(x) = f(x− g) for all g, x ∈ Rd and where
f ∈ L1

+(Rd). Then every singular bounded, additive process with respect to {Tg} is of
the form F (Q)(x) = ν(x+Q) (x ∈ Rd), where ν is a Borel measure which is singular
with respect to Ld (cf. [AdJ81], Example 4.12).

• The same result as in the previous example holds true if we consider (Ω,F , µ) =
(Td,B(Td),Ld), where Ld is the d-dimensional Lebesgue measure on the d-dimensional
torus Td and Γ = Rd acts by rotations.
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In [Pog13a], the author of this thesis has extended the Lindenstrauss pointwise ergodic the-
orem from L1(Ω̃,R) (with Ω̃ being a probability space) to general Bochner spaces Lp(Ω, Y )
as defined above. Since most parts of the proof are minor adaptions of Lindenstrauss’
techniques, we state the assertion here without proof. We have seen in the first example
above that on Bochner spaces, abstract ergodic averages of the form as in Definition 4.6
can be interpreted as absolutely continuous, bounded additive processes F . In this context,
Theorem 5.5 solves the question of almost-everywhere convergence of F (Uj)(ω)/|Uj | in case
that F has an Lp(Ω, Y )-density f , i.e. if F is absolutely continuous.

Theorem 5.5 (see [Pog13a], Theorem 6.8).
Let Γ be an amenable LCSCUH group which acts on a σ-finite measure space (Ω, µ) by
measure preserving transformations. Assume further that for 1 ≤ p <∞ and some reflexive
Banach space Y , the group acts weakly measurably on Lp(Ω, Y ) via a family {Tg}g∈Γ of
uniformly bounded operators such that the regularity condition in inequality (5.1) is satisfied.
Then, for each f ∈ Lp(Ω, Y ), there is a unique element f∗ ∈ Lp(Ω, Y ) such that for all
tempered, weak Følner sequences (Uj) in Γ,

lim
j→∞

∥∥∥∥∥|Uj |−1
∫
Uj

(Tg−1f)(ω) dg − f∗(ω)
∥∥∥∥∥
Y

= 0

for µ-almost every ω ∈ Ω.
Moreover, we have Tgf∗ = f∗ in Lp(Ω, Y ) for all g ∈ Γ.

Note that the Theorem 5.5 can also be interpreted as a convergence theorem for absolutely
continuous bounded, additive processes. Thus, it is natural to come up with the ques-
tion of pointwise almost-everywhere convergence of the averages F (Uj)(ω)/|Uj | for general
bounded, additive processes F . Before approaching this question, one has to make sure that
the Definition 5.3 is in fact more universal, i.e. that there are bounded, additive processes
which are not absolutely continuous. In order to show that processes of this latter kind do
in fact exist, we give the following example.

Example 5.6 (Poisson point processes).
Let Γ be a locally compact, second countable, unimodular Hausdorff group with left measure
m = | · |. Moreover, let (Ω,F , µ) be a probability space such that αm (α > 0) is the
intensity measure of some Γ-set valued, homogeneous Poisson point process X defined on
(Ω, µ). Concerning their existence and further information on point processes on locally
compact groups, the reader may refer to [Kin93]. Note that there is a µ-preserving action of
Γ from the right on Ω and we have X(gω) := X(ω(g)) = X(ω)g−1. In this case, the Poisson
random variables F (Q)(ω) := #(X(ω)∩Q) (ω ∈ Ω, Q ∈ F0(Γ)) define a bounded, additive
process for the canonical translations (see above) {Tg} on L1

+(Ω,R). This can readily be
checked.

• For the boundedness, note that by the distributional properties of the Poisson point
process, we have

‖F (Q)‖L1(Ω) = Eµ (#(X(·) ∩Q)) = α |Q|, (Q ∈ F0(Γ)),

where Eµ denotes the expected value with respect to the measure µ. Thus, F is
bounded with constant α > 0.
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• For the additivity, assume that Q =
⊔m
k=1Qk is a disjoint union of elements in F0(Γ).

Then indeed,

F (Q)(ω) = #(X(ω) ∩Q) =
m∑
k=1

#(X(ω) ∩Qk) =
m∑
k=1

F (Qk)(ω)

for all ω ∈ Ω.

• For the equivariance, we compute

F (Qg)(ω) = #(X(ω) ∩Qg) = #(X(ω)g−1 ∩Q)
= #(X(ω(g)) ∩Q) = F (Q)(gω)

for Q ∈ F0(Γ), ω ∈ Ω, g ∈ Γ.

A further interesting fact is the following: if Γ is not discrete, then the process is not
absolutely continuous. This might be known but we have not found a proof in the literature.
In the following, we give a brief justification which was delevoped by Xueping Huang and
reported to the author in private communication. So assume that there is some measurable
function f on Ω such that

#(X(ω) ∩Q) =
∫
Q
f(gω) dg

for every Q ∈ F0(Γ). Now take an arbitrary open set Q ∈ F0(Γ). Integration yields
that f ∈ L1(Ω, µ) and that there is a set Ω(Q) ⊆ Ω of full measure such that the integral∫
Q f(gω) dg is finite for all ω ∈ Ω(Q). Taking a countable cover Qj of the (second countable)
group consisting of open sets of finite measure, we find a subset Ω ⊆ Ω of full measure
such that for all ω ∈ Ω and every j ∈ N, the expression

∫
Qj
f(gω) dg is finite. This also

demonstrates that for almost all ω ∈ Ω and every compact set A ⊆ Γ,

#(X(ω) ∩A) =
∫
A
f(gω) dg <∞. (5.2)

Now fix ω0 ∈ Ω, along with an arbitrary x ∈ X(ω0). Further, take a decreasing sequence
An of compact sets such that ∩nAn = {x}. Since Γ does not possess atoms with respect to
the Haar measure, limn→∞m(An) = 0. Also, lim infn→∞#(X(ω0)∩An) ≥ 1. On the other
hand, it follows from Vitali’s theorem that limn→∞

∫
An
f(gω0) dg = 0. This clearly is a

contradiction to the equality (5.2). Hence, there is no such f ∈ L1(Ω, µ). We conclude that
those Poisson point processes do not belong to the class of absolutely continuous processes.

We give another example which has some similarities to the previous one.

Example 5.7.
Let Γ = (Rd,+). Clearly, this is a non-discrete, abelian LCSCUH group. A set ω ⊆ Rd

is called r-uniformly discrete for r > 0 if #(ω ∩ Br(g)) ≤ 1 for all g ∈ Rd, where Br(g)
is the standard ball of radius r around g. A set ω ⊆ Rd is R-relatively dense for R > 0
if ω ∩ BR(g) 6= ∅ for all g ∈ Rd. We say that a set ω ⊆ Rd is a Delone set if there exist
r,R > 0 such that ω is r-uniformly discrete and R-relatively dense. Note that this definition
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only makes sense if 2R ≥ r. For a fixed pair (r,R) of positive numbers with 2R ≥ r, we
denote by D(r,R) the collection of all Delone sets in Rd which are r-uniformly discrete and
R-relatively dense. Then, there is a canonical way to come up with a topology that turns
D(r,R) into a compact space, cf. e.g. [Sol98] or [LS03] as well. Further, the canonical action
of Rd on D(r,R) by translations is continuous with respect to this topology. Since Rd is
abelian (and hence amenable), there exists an invariant probability measure µ on D(r,R).
Similarly, as for the Poisson point processes above, we define

F (Q)(ω) := #(Q ∩ ω)

for Q ∈ F0(Rd) and ω ∈ D(r,R). By uniform discreteness, there is a constant Cr depending
on r such that F (Q)(ω) ≤ Cr |Q| for all Q ∈ F0(Rd) and every ω ∈ D(r,R). Thus, the
process F maps to L∞(D(r,R),R) and since µ(D(r,R)) = 1, F is bounded in L1(D(r,R),R).
Clearly, F is additive as well and satisfies the equivariance condition that for all g ∈ Rd,
every Q ∈ F0(Rd),

Tg−1F (Q)(ω) = F (Q)(gω) = F (Qg)(ω)

for (µ-almost-)every ω ∈ D(r,R). The same argument as in the previous example shows
that there cannot be an L1-class f such that F (Q)(·) =

∫
Q f(g·) dg. Therefore, as in the

previous example, F is not absolutely continuous.

5.2 Pointwise convergence

In the following, we prove a pointwise almost-everywhere ergodic theorem for approximable
bounded, additive processes, cf. Theorem 5.17. If not stated otherwise, we always assume
that the underlying processes take their values in L1(Ω, Y ), where Ω is a probability space
with measure µ and Y is some reflexive Banach space. The strategy will be in analogy to
classical proofs. Precisely, we use our abstract mean ergodic Theorem 4.15 in combination
with an L1-maximal inequality. The latter inequality is proven in a so-called dominated
ergodic theorem, cf. Theorem 5.14. Unlike in the absolutely continuous situation, we do not
have an integral representation of the process under consideration. Consequently, we will
have to assume that the Følner sequence satisfies the Tempelman condition. We conclude
this chapter with a short discussion, where we compare our pointwise convergence Theo-
rem 5.17 with the results in the literature. The achievements mentioned in this section are
partially taken from [Pog13a].

We will see below that with the notion of some bounded, additive process F at hand, it
is worth investigating this process on the level of the ‖ · ‖Y -norm of the elements F (Q)(ω)
with Q ∈ F0(Γ) and ω ∈ Ω. For this purpose, we define the following R-valued (in fact
non-negative) expressions. The analogue for the semigroup case Γ = Rd+ can e.g. be found
in [Sat99, Sat03].

Definition 5.8 (Associated dominating process).
Let Γ be an LCSCUH group. For a bounded, additive process F on Γ, we define the associ-
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ated dominating process F 0 as

F 0 : F0(Γ)→ L0(Ω,R) :

F 0(Q)(ω) := ess sup
{

L∑
k=1
‖F (Qk)‖Y (ω)

∣∣∣Q =
L⊔
k=1

Qk disj., Qk ∈ F0(Γ), 1 ≤ k ≤ L, L ∈ N
}

for Q ∈ F0(Γ) and for ω ∈ Ω, where L0(Ω,R) is the set of all real-valued, measurable
functions on Ω.

We have to justify the measurability of the F 0(Q) first. Note that in the case of discrete
groups, we simply have F 0(Q)(ω) :=

∑
g∈Q ‖F ({g})‖Y (ω) for ω ∈ Ω and a finite set Q ⊆ Γ.

If Γ is non-discrete, the measurability is guaranteed by the following lemma. For processes
on Rd-intervals, a variant of this assertion has been used in the proof of Lemma 3.7 in
[Émi85].

Lemma 5.9.
Let Γ be a continuous, amenable, LCSCUH group. Further, suppose that F is a bounded,
additive process on Γ with values in L1(Ω, Y ) as indicated above. Then, we can find a
sequence of partitions {Pm}m∈N of Γ consisting of countably many sets in F0(Γ) such that
the following properties hold.

•
⊔
A∈Pm A = Γ for all m ∈ N.

• For each A ∈ Pm, we have |A| < 2−m (m ∈ N).

• Pm+1 is a refinement of Pm for each m ∈ N, i.e. for each A ∈ Pm+1, there exists a
unique B ∈ Pm such that A ⊆ B.

• For each Q ∈ F0(Γ), we have the representation F 0(Q)(ω) = limm→∞ F
0
Pm

(Q)(ω) for
µ-almost every ω ∈ Ω, where F 0

Pm
(Q)(·) :=

∑
A∈Pm ‖F (A ∩Q)(·)‖Y for m ∈ N.

Proof.
Since Γ is second countable and Hausdorff and by the outer regularity of the Haar measure,
for every n ∈ N, one finds a precompact and open neighbourhood Vn of the unity e in Γ
such that ∩n∈NVn = {e}, Vn+1 ⊆ Vn and |Vn| < 2−n for all n ∈ N. So let Q ∈ F0(Γ). We
will define a sequence of successively refined partitions of Q in the following manner. For
each n ∈ N, cover the closure of Q by left-translates of Vn. Due to the precompactness of
Q, we can extract a finite subcover ∪K(n)

i=1 g
(n)
i Vn of Q. Next, we make the translates of this

union disjoint such that
K(n)⋃
i=1

g
(n)
i Vn =

K(n)⊔
i=1

g
(n)
i Ṽ i

n

where
⊔

stands for the disjoint union and the sets Ṽ i
n ⊆ Vn belong to F0(Γ) for all 1 ≤ i ≤

K(n). Hence, putting Q(n)
i := Q ∩ g(n)

i Ṽ i
n for 1 ≤ i ≤ K(n), we have Q =

⊔K(n)
i=1 Q

(n)
i , as

well as |Q(n)
i | < 2−n for every 1 ≤ i ≤ K(n). We define the partitions

P1(Q) := {Q(1)
i | 1 ≤ i ≤ K(1)},

Pm(Q) := {Q(m)
i ∩ Q̃(m−1) | 1 ≤ i ≤ K(m), Q̃(m−1) ∈ Pm−1} for m ≥ 1,
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for the set Q. It is obvious that Pm+1(Q) is finer than Pm(Q) for every m ≥ 1, and we write
Pm+1(Q) ≥ Pm(Q). Further, by construction, |A| ≤ 2−m for A ∈ Pm (m ≥ 1). Since Γ is
locally compact and second countable, it can be exhausted by a countable sequence (Γn)
of increasing, compact sets. We set Γ̃n := Γn \ Γn−1 with the convention that Γ0 := {e}.
Then, the sets Γ̃n are locally closed and precompact, i.e. they belong to F0(Γ) for every
n ∈ N. and we repeat the above construction for each precompact set Q = Γ̃n, n ≥ 1. Then
clearly, for each m ≥ 1, the expression

Pm :=
⋃
n∈N

Pm(Γ̃n)

is a partition of the group satisfying the first three items of the Lemma 5.9.

To show the approximation result for F 0, let Q ∈ F0(Γ) and define

F 0
Pm(Q)(ω) :=

∑
A∈Pm

‖F (A ∩Q)‖Y (ω)

for m ≥ 1, where the partitions Pm have been defined above. By the triangle inequality,
we have F 0

Pm
(Q) ≤ F 0

Pm+1
(Q) µ-almost-surely for all m ≥ 1. Further, it is clear from the

boundedness of F that ‖F 0
Pm

(Q)‖L1(R,Y ) ≤ C |Q| for every m ≥ 1. Hence, we can define

F
0(Q)(ω) := lim

m→∞
F 0
Pm(Q)(ω)

for µ-almost every ω ∈ Ω and we set F 0(Q)(ω) = 0 for the remaining ω ∈ Ω. We will now
show that in fact F 0(Q) = F

0(Q) µ-almost-everywhere. This shows that the equivalence
class F 0(Q) is well-defined and in particular measurable. Note that it follows from the
definition of F 0 that for each m ∈ N, we have

F 0
Pm(Q)(ω) ≤ F 0(Q)(ω)

for µ-almost every ω ∈ Ω. This implies F 0(Q) ≥ F 0(Q) almost-everywhere. For the converse
inequality, we choose a finite, disjoint union Q =

⊔L
l=1Ql, where Ql ∈ F0(Γ) for 1 ≤ l ≤ L.

For ω ∈ Ω, we obtain with the triangle inequality that
L∑
l=1
‖F (Ql)‖Y (ω) ≤

L∑
l=1

∑
A∈Pm

‖F (Ql ∩A)‖Y (ω)

≤
∑

A∈Pm,
∃ l:A⊆Ql

‖F (A ∩Q)‖Y (ω) +
L∑
l=1

∑
A∈Pm, ∃ l1 6=l:
A∩Ql,A∩Ql1 6=∅

‖F (A ∩Ql)‖Y (ω)

≤ F 0
Pm(Q)(ω) +

L∑
l=1

∑
A∈Pm, ∃ l1 6=l:
A∩Ql,A∩Ql1 6=∅

‖F (A ∩Ql)‖Y (ω) (5.3)

for all m ∈ N. Further, we have by the boundedness of F that∥∥∥∥∥∥∥∥
L∑
l=1

∑
A∈Pm, ∃ l1 6=l:
A∩Ql,A∩Ql1 6=∅

‖F (A ∩Ql)‖Y (·)

∥∥∥∥∥∥∥∥
L1(Ω,R)

≤ C
L∑
l=1
|∂VmV −1

m
(Ql)|.
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Note that since ∩m∈NVmV −1
m = {id} and as Ql has compact closure, it follows from the

continuity of the (Haar) measure from above that

|∂VmV −1
m

(Ql)| = |VmV −1
m Ql ∩ VmV −1

m (Γ \Ql)|
m→∞→ 0

for each 1 ≤ l ≤ L. Therefore, we can find a subsequence (mk) such that the second sum
in inequality (5.3) converges to zero almost-everywhere. Hence, we deduce from that same
inequality that

L∑
l=1
‖F (Ql)‖Y (ω) ≤ lim sup

k→∞
F 0
Pmk

(Q)(ω) = F
0(Q)(ω)

for almost-every ω ∈ Ω. Hence F 0(Q) ≤ F 0(Q) and since Q ∈ F0(Γ) was arbitrarily chosen,
this shows in fact that F 0 = F

0 on F0(Γ). �

In the following proposition, we collect useful properties of associated dominating pro-
cesses.
Proposition 5.10.
Assume that Γ is an amenable LCSCUH group. Let F be some bounded, additive process on
Γ with values in L1(Ω, Y ). Then the associated dominating process F 0 takes values in L1,
i.e. F 0(Q) ∈ L1(Ω,R) for every Q ∈ F0(Γ). Moreover, the following assertions hold true.

(i) supQ∈F0(Γ)
‖F 0(Q)‖L1(Ω,R)

|Q| ≤ supQ∈F0(Γ)
‖F (Q)‖L1(Ω,Y )

|Q| .

(ii) F 0(Q) =
∑L
l=1 F

0(Ql) for every disjoint union Q =
⊔L
l=1Ql in F0(Γ).

Proof.
Set γ̃ := supQ∈F0(Γ) ‖F 0(Q)‖L1(Ω,R)/|Q| and γ := supQ∈F0(Γ) ‖F (Q)‖L1(Ω,Y )/|Q|. It follows
from Proposition 5.9 and the monotone convergence theorem that ‖F 0(Q)‖L1(Ω,R) ≤ γ |Q|
for every Q ∈ F0(Γ). This shows γ̃ ≤ γ.
We turn to the proof of the fact that F 0(Q) =

∑m
k=1 F

0(Qk) for disjoint unionsQ =
⊔m
k=1Qk.

The ′ ≤′-inequality follows from the triangle inequality and the approximation statement in
Lemma 5.9. For the converse ′ ≥′-inequality we compute with inequality (5.3) and with the
approximation statement in the previous lemma that

m∑
k=1

F 0(Qk)(ω) =
m∑
k=1

lim
l→∞

∑
A∈Pl

‖F (Qk ∩A)‖Y (ω)

= lim
l→∞

m∑
k=1

∑
A∈Pl

‖F (Qk ∩A)‖Y (ω)

≤ lim
l→∞

F 0
Pl

(Q)(ω)

= F 0(Q)(ω)

almost-surely. This concludes the proof. �
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The following lemma describes how the dominating process F 0 for some F is related to the
Tg-action on Lp(Ω, Y ).

Lemma 5.11.
Let F be some bounded, additive process according to Definition 5.3 with its associated
dominating process F 0. Then, if κ ≥ 1 is the constant and if ϕ : Γ → Γ is the measurable
group homomorphism in inequality (5.1), we obtain for all g ∈ Γ and for every Q ∈ F0(Γ),

κ−1F 0(Q)(ϕ(g)ω) ≤ F 0(Qg)(ω) ≤ κF 0(Q)(ϕ(g)ω)

for µ-almost every ω ∈ Ω.

Proof.
The claim follows from the above representation of F 0 in Lemma 5.9 (fourth item) and from
the inequality (5.1). �

Note that Proposition 5.10 and Lemma 5.11 show that F 0 is a bounded, additive process
on F0(Γ). We are now in position to introduce the concept of L1-maximal inequalities for
bounded, additive processes.

Definition 5.12.
Suppose that Γ is an amenable LCSCUH group. Assume that (Uj) is a weak Følner sequence.
Further, let F : F0(Γ) → L1(Ω, Y ) be some bounded, additive process along with its asso-
ciated dominating process F 0 on F0(Γ). We say that F satisfies an L1-maximal inequality
(or the L1-maximality condition) for the sequence (Uj) if there is a constant γ > 0 such
that for all λ > 0 and for every M ∈ N, one has

µ

({
ω ∈ Ω

∣∣∣ sup
j≥M

F 0(Uj)(ω)
|Uj |

> λ

})
≤ γ

λ
sup
j≥M

‖F 0(Uj)‖L1(Ω,R)
|Uj |

.

A similar concept can be found in the book of Krengel, see § 6.4.2. in [Kre85]. For the
proof of the dominated ergodic theorem, we need the following combinatorial lemma.

Lemma 5.13.
Let Γ be an amenable LCSCUH group, along with a weak Følner sequence (Uj) with Uj ⊆
Uj+1 for all n ∈ N. Further, let M ≤ N ∈ N be integer numbers and assume that B,F ∈
F0(Γ) are given such that UNB ⊆ F . Then, for every map θ : B → {M, . . . , N}, there
exists a finite subset B̃ ⊆ B for which the sets Uθ(b)b (b ∈ B̃) are disjoint and such that
B ⊆

⋃
b∈B̃ U

−1
θ(b)Uθ(b)b.

Proof.
See [Kre85], Lemma 6.4.3. �

We are now in position to show that bounded, additive processes satisfy the L1-maximality
condition for every increasing, weak Tempelman Følner sequence in some unimodular group
Γ. It is an open problem whether this result can be extended to Shulman Følner sequences.
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The method of Lindenstrauss for absolutely continuous processes, see Theorem 5.5, relies
strongly on the integral structure of the ergodic averages (absolutely continuous case) and
we cannot make use of this fact here. We adapt a proof given in [Kre85]. There, the
originality of the dominated ergodic theorem is ascribed to Tempel’man.

Theorem 5.14 (Dominated ergodic theorem, cf. [Pog13a], Theorem 7.9).
Let Γ be an amenable LCSCUH group, along with a weak Følner sequence (Uj) such that
Uj ⊆ Uj+1 for all j ∈ N and which satisfies the Tempelman condition. Then, every bounded,
additive process F : F0(Γ)→ L1(Ω, Y ) respecting the regularity condition in inequality (5.1)
satisfies an L1-maximal inequality.

Proof.
The proof is a modification of the proof of Theorem 6.4.2 in [Kre85]. At first, we fix an
integer M ∈ N and λ > 0. Further, let N ≥ M be an integer and denote by δ > 0 an
arbitrary positive number. Define the compact set K := ∪Nl=MUl and since (Uj) is a weak
Følner sequence, we find a compact set UkN (kN ≥ N) such that |UkN4UN | < δ |UkN |,
where UN := KUkN . Moreover, define the sets

Dλ,M,N :=
{
ω ∈ Ω | sup

M≤l≤N
F 0(Ul)(ω)/|Ul| > λ

}
,

where F 0 is the associated dominating process for F . For ω ∈ Ω, set

B := B(ω, λ,M,N) := {g ∈ UkN |ϕ(g)ω ∈ Dλ,M,N},

where ϕ : Γ→ Γ is the homomorphism taken from inequality (5.1). Then, for any element
b ∈ B, there must be some number ` ∈ {M, . . . , N} such that F 0(U`)(ϕ(b)ω) > λ |U`|.
Picking for each b such an element ` gives rise to a map θ : B → {M, . . . , N} : θ(b) := `.
By Lemma 5.13, we find some finite subset B̃ ⊆ B such that the sets Uθ(b)b are disjoint for
b ∈ B̃ and

B(ω, λ,M,N) ⊆
⋃
b∈B̃

U−1
θ(b)Uθ(b)b.

Since the sequence (Uj) satisfies the Tempelman condition for some constant κ̃ > 0, it
follows that

|B(ω, λ,M,N)| ≤ κ̃

∣∣∣∣∣∣
⊔
b∈B̃

Uθ(b)b

∣∣∣∣∣∣ . (5.4)

By construction of B, we have Uθ(b)b ⊆ UN for b ∈ B̃. We compute with the additivity
statement (ii) of Proposition 5.10 and with Lemma 5.11 that

F 0(UN )(ω) ≥
∑
b∈B̃

F 0(Uθ(b)b)(ω) ≥ κ−1 ∑
b∈B̃

F 0(Uθ(b))(ϕ(b)ω)

b∈B̃
≥ λ

κ

∣∣∣∣∣∣
⊔
b∈B̃

Uθ(b)b

∣∣∣∣∣∣ ,
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where κ ≥ 1 is the constant and ϕ : Γ → Γ is the homomorphism taken from inequality
(5.1). It follows from inequality (5.4) that

|B(ω, λ,M,N)| ≤ κκ̃

λ
F 0(UN )(ω)

≤ κκ̃

λ

(
F 0(UN \ UkN )(ω) + F 0(UkN )(ω)

)
. (5.5)

Note that the latter inequality holds true µ-almost-everywhere. Integration of the left hand
side yields ∫

Ω
|B(ω, λ,M,N)| dµ(ω) = |UkN | · µ(Dλ,M,N ), (5.6)

since the action of Γ on Ω is µ-preserving. Note further that by the choice of the set
UN , it is true that |UN \ UkN | < δ |UkN | and therefore, integrating the right hand side of
inequality (5.5), we obtain with γ := supQ∈F0(Γ) F

0(Q)/|Q| <∞ (cf. Proposition 5.10) that

κκ̃

λ

∫
Ω

(
F 0(UN \ UkN )(ω) + F 0(UkN )(ω)

)
dµ(ω) ≤ |UkN | ·

κκ̃

λ

(
γ · δ +

‖F 0(UkN )‖L1(Ω,R)
|UkN |

)
.

Combining this fact with the inequality (5.6), we get with kN ≥M

µ(Dλ,M,N ) ≤ κκ̃

λ

(
γ · δ + sup

l≥M

‖F 0(Ul)‖L1(Ω,R)
|Ul|

)

and with δ → 0, we arrive at

µ(Dλ,M,N ) ≤ κκ̃

λ
sup
l≥M

‖F 0(Ul)‖L1(Ω,R)
|Ul|

.

Since the right hand side of the latter inequality does not depend on N , we can exploit the
continuity of the measure µ as N →∞ to finish the proof. �

We now set the preparations for a pointwise ergodic theorem for bounded, additive processes.
To do so, we introduce the notion of approximable, bounded, additive processes.

Definition 5.15 (Approximable processes).
Let Γ be an amenable LCSCUH Hausdorff group. Let some bounded, additive process F :
F0(Γ)→ L1(Ω, Y ) be given which satisfies the regularity condition (5.1). In this situation,
we call F approximable if there is a sequence (Fn) of bounded, additive processes on F0(Γ)
with the following properties.

• For each n ∈ N, the process Fn takes values in L∞(Ω, Y ) ⊆ L1(Ω, Y ).

• For every n ∈ N, the process F −Fn satisfies the regularity condition given by inequal-
ity (5.1).
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• For every weak Tempelman Følner sequence (Uj) in Γ with Uj ⊆ Uj+1, the following
boundedness condition holds true. For every n ∈ N, there is a j0 ∈ N such that for all
j ≥ j0

F 0
n(Uj)(ω) ≤ n |Uj |

for almost-every ω ∈ Ω, where F 0
n is the associated dominating process for Fn.

• For every weak Tempelman Følner sequence (Uj) in Γ with Uj ⊆ Uj+1, the sequence
(Fn) approximates F along (Uj) in the sense that

lim
n→∞

lim sup
j→∞

‖H0
n(Uj)‖L1(Ω,R)
|Uj |

= 0,

where H0
n is the dominating process associated with the process F − Fn.

Remark.
The classical integral averages give rise to approximable processes. Let f ∈ L1(Ω, Y ) be
fixed and consider the bounded, additive process

F : F0(Γ)→ L1(Ω, Y ) : F (Q)(ω) :=
∫
Q
f(gω) dg.

Now, let n ∈ N. Then, there is a set Bn of measure less than ‖f‖L1/n such that ‖f(ω)‖Y ≤ n
for all ω /∈ Bn. Define

Fn(Q)(ω) :=
∫
Q
f̃n(gω) dg

for Q ∈ F0(Γ) and ω ∈ Ω, where we set f̃n(ω) = f(ω) for ω /∈ Bn and f̃n(ω) = 0 for ω ∈ Bn.
It is easy to check that the Fn are bounded, additive processes and that the sequence (Fn)
approximates F in the sense of the previous definition.

The following proposition shows that the elements of an approximating sequence (Fn) for
some bounded, additive process F converge almost-surely along increasing Tempelman Føl-
ner sequences.

Proposition 5.16.
Let Γ be an amenable LCSCUH Hausdorff group and suppose that F : F0(Γ)→ L∞(Ω, Y ) ⊆
L1(Ω, Y ) is a bounded, additive process satisfying the regularity condition (5.1). Further,
assume that (Uj) is an increasing Tempelman Følner sequence and that there are numbers
n, j0 ∈ N such that for every j ≥ j0, we have

F 0(Uj)(ω) ≤ n |Uj | (5.7)

for almost-all ω ∈ Ω, where F 0 is the dominating process associated to F .
Then, there is a set Ω̃ ⊆ Ω of full measure such that for all ω ∈ Ω̃, the sequence F (Uj)(ω)/|Uj |
converges in the topology of Y as j →∞.

Proof.
Let (Uj) be an increasing Tempelman Følner sequence. Without loss of generality, we will
work with the sequence obtained by deleting the first j0 elements in (Uj). For the sake of
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simplicity, we will call this sequence (Uj) again. Then, F 0(Uj)(·) ≤ n |Uj | almost-surely
for all j ∈ N. We define the sequence (Sn) of sets in Γ via Sn := Unu

−1, n ≥ 1, where
u ∈ U1 is an arbitrary element. Since (Uj) is increasing, the sequence (Sn) is a nested Følner
sequence.
Now, take a sequence (εk) of positive numbers converging to zero. For every k ∈ N, we
set N(εk) := dlog(εk)/ log(1 − εk)e and we choose εk-prototiles {T εki }

N(εk)
i=1 taken from the

sequence Sn according to Definition 2.15 with 0 < βk < 2−N(εk)εk. By Theorem 5.5, we can
find a set Ω̂ ⊆ Ω with µ(Ω̂) = 1 such that for each k ∈ N, for every 1 ≤ i ≤ N(εk), and for
all ω ∈ Ω̂, the limits

S(T εki )(ω) := lim
j→∞

|Uj |−1
∫
Uj

F (T εki g)(ω) dg (5.8)

exist in the topology of the Banach space Y . Now, fix k ∈ N. By Theorem 3.6, we find
K = K(εk, βk, T εki ) ∈ N such that for every j ≥ K, we find a decomposition tower emanating
from the set Uj . Define

∆(j, εk, ω) :=

∥∥∥∥∥∥F (Uj)(ω)
|Uj |

−
N(εk)∑
i=1

ηi(εk)
S(T εki )(ω)
|T εki |

∥∥∥∥∥∥
Y

for j ≥ K. In the following, we fix j ≥ K, choose η0 as in Definition 3.5 and fix 0 < η < η0.
Then, we find

• some (UjU−1
j , η)-invariant set Ûj along with

• an associated uniform decomposition tower (Υ,Λ) with prototile sets T εki , (1 ≤ i ≤
N(εk)),

• a family of finite center sets Ĉyi (y ∈ Υ) for the εk-quasi tilings of Ûj ,

• and for each y ∈ Υ, a family of finite center sets Cy,λi (λ ∈ Λ) for the εk-quasi tilings
of Uj .

We will show
lim
l→∞

lim
j→∞

∆(j, εkl , ω) = 0

almost-surely for a subsequence (εkl). To do so, we follow the lines of the proof of Theo-
rem 4.15. Fixing ω ∈ Ω̃, we obtain by means of the triangle inequality

∆(j, εk, ω) ≤
5∑
`=1

D`(j, εk, ω),

where the expressions D`(j, εk, ω) are defined as in the proof of the mean ergodic theorem.
Using the boundedness in inequality (5.7) and the limit relations (5.8), we obtain

lim sup
j→∞

5∑
`=2

D`(j, εk, ω) ≤ (24 + 26 + 48 + 16)n εk = 114n εk (5.9)
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as in the steps (2) to (5) of the mentioned proof with C = n. For D1(j, εk, ω), we will have
to argue in a slightly different way. To do so, note first that due to the additivity of the
process, there is no boundary term present, i.e. b ≡ 0. For λ ∈ Λ and y ∈ Υ, we define

Aεky,λ :=
N(εk)⋃
i=1

⋃
c∈Cy,λi

T εki c.

Further, for c ∈ Cy,λi , we denote by T εki (c) a subset of T εki with |T εki (c)| ≥ (1− ε)|T εki | with
the property that the sets T εki (c)c are pairwise disjoint for all 1 ≤ i ≤ N(εk), c ∈ Cy,λi and

Aεky,λ =
N(εk)⊔
i=1

⊔
c∈Cy,λi

T εki (c)c.

Using the additivity of the process F , we compute

D1(j, εk, ω) ≤ |Υ|−1 |Λ|−1
∫

Υ

∫
Λ

(
‖F (Uj \Aεky,λ)(ω)‖Y

|Uj |

+

∑N(εk)
i=1

∑
c∈Cy,λi

‖F (T εki c \ T εki (c)c)(ω)‖Y
|Uj |

)
dλ dy

for every ω ∈ Ω̃. With inequality (5.7), one obtains that the function

D1(εk, ω) := lim sup
j→∞

D1(j, εk, ω)

is bounded by the constant 3n for all ω ∈ Ω̃. Moreover, the dominated ergodic theorem
combined with the boundedness of the process F in L1(Ω, Y ) yield

‖D1(εk, ·)‖L1(Ω,R) ≤ 4εk + 2εk = 6εk.

Note that we used here that the sets Uj are (1− 4εk)-coverd by the sets Aεky,λ and that the
εk-disjoint translates T εki c are (1 − εk) covered by the disjoint translates T εki (c)c. Finally,
take a subsequence εkl such that

lim
l→∞

D1(εkl , ω) = 0

for all ω ∈ Ω̃ ∩ Ω̂, where Ω̂ is a set of full measure as well. With inequality (5.9), we arrive
at

lim
l→∞

lim sup
j→∞

∆(j, εkl , ω) = 0

almost-surely. In the same manner as in the proof of Theorem 4.15, we conclude that
(F (Uj)(ω)/|Uj |)j is convergent in Y for almost-every ω ∈ Ω. �

We are finally in position to prove the main theorem of this chapter. Precisely, we verify
the pointwise almost-everywhere convergence for approximable bounded, additive processes
along increasing Tempelman Følner sequences. The method of the proof follows classical
concepts. The major steps towards pointwise convergence are the following.
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• Firstly, one proves the almost-everywhere convergence for essentially bounded pro-
cesses. We have done this in Proposition 5.16.

• For a given bounded, additive process, one finds an approximating sequence of L∞-
processes, cf. Definition 5.15. We will assume this in the pointwise ergodic theorem.

• One makes sure that one has an L1-maximal inequality at disposal. We have guaran-
teed this in the dominated ergodic theorem, cf. Theorem 5.14.

• Finally, one combines the mentioned concepts to obtain a pointwise almost-everywhere
ergodic theorem. Precisely, we approximate the underlying process in L1 by essentially
bounded processes. The pointwise convergence holds true for all elements in the
approximating sequence. Now, we can use the L1-maximal inequality to conclude
that the almost-everywhere convergence must also hold true for the original process.

Theorem 5.17 (Pointwise convergence of bounded, additive processes).
Assume that Γ is an amenable LCSCUH group and denote by (Uj) a strong Tempelman
Følner sequence such that Uj ⊆ Uj+1 (j ∈ N). Let F : F0(Γ) → L1(Ω, Y ) be a bounded,
additive process, and let Y be a reflexive Banach space. Further, suppose that F is compatible
with a family {Tg}g∈Γ of uniformly bounded operators acting weakly measurably on L1(Ω, Y )
(i.e. TgF (Q) = F (Qg−1) and the regularity condition given in inequality (5.1) is satisfied
for all g ∈ Γ and every Q ∈ F0(Γ) ).
If, in addition, the process F is approximable, then we obtain a unique F ∗ ∈ L1(Ω, Y ) such
that

lim
j→∞

∥∥∥∥∥F (Uj)
|Uj |

(ω)− F ∗(ω)
∥∥∥∥∥
Y

= 0

for µ-almost every ω ∈ Ω.
Further, for every g ∈ Γ, we have TgF ∗ = F ∗ µ-almost-everywhere.

Proof.
Since F is approximable, for every n ∈ N, we find an approximating process

Fn : F0(Γ)→ L∞(Ω, Y )

as described in Definition 5.15. Now, define

Hn : F0(Γ)→ L1(Ω, Y ) : Hn(Q)(ω) := F (Q)(ω)− Fn(Q)(ω)

for n ∈ N. By Definition 5.15, the Hn are bounded, additive processes satisfying the
regularity condition given in equality (5.1). Lemma 5.11 shows that the same holds true for
the processes H0

n. Since the processes (Fn) approximate F along (Uj), we have

lim
n→∞

lim sup
j→∞

‖H0
n(Uj)/|Uj |‖L1(Ω,R) = 0.

With this, we derive from the dominated ergodic theorem, Theorem 5.14, that for every
ε > 0, there is some integer n(ε) ∈ N such that for all λ > 0 and for every n ≥ n(ε), we
have

µ

({
ω ∈ Ω

∣∣∣ lim sup
j→∞

H0
n(Uj)(ω)
|Uj |

> λ

})
≤ γ

λ
lim sup
j→∞

‖H0
n(Uj)‖L1(Ω,R)
|Uj |

≤ γ

λ
ε,
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where γ > 0 is a constant independent of ε, n and λ. This shows that

lim
n→∞

lim sup
j→∞

∥∥∥∥∥F (Uj)(ω)
|Uj |

− Fn(Uj)(ω)
|Uj |

∥∥∥∥∥
Y

= 0 (5.10)

almost-surely. Further, it follows from Proposition 5.16 that for all n ∈ N, there is an
element F ∗n ∈ L1(Ω, Y ) such that

lim
j→∞

∥∥∥∥∥Fn(Uj)(ω)
|Uj |

− F ∗n(ω)
∥∥∥∥∥
Y

= 0

almost-surely. Inserting this into the limit relation 5.10, we arrive at

lim
n→∞

lim sup
j→∞

∥∥∥∥∥F (Uj)(ω)
|Uj |

− F ∗n(ω)
∥∥∥∥∥
Y

= 0.

This shows that for almost-all ω ∈ Ω, the sequence
(
F (Uj)(ω)/|Uj |

)
j
is Cauchy in the Banach

space Y . Thus, it converges to some element F̄ ∗ almost-surely. By Theorem 4.15, the ratios
F (Uj)/|Uj | converge in L1(Ω, Y ) to some element F ∗ ∈ L1(Ω, Y ) with the property that
TgF

∗(ω) = F ∗(ω) for almost-all ω ∈ Ω. (To check that the compactness criterion required in
the abstract mean ergodic theorem holds true, the reader may e.g. refer to [DU77], Theorem
IV.2.1.) Thus, F̄ ∗ = F ∗ almost-surely and we have finished the proof of the theorem. �

Let us briefly discuss Theorem 5.17. We have seen above that for f ∈ Lp(Ω,R) and some
strong Følner sequence (Uj), the classical ergodic averages

Ajf(ω) := |Uj |−1
∫
Uj

f(gω) dg

defined on Lp(Ω,R), 1 ≤ p < ∞ can be interpreted as values of an absolutely continuous,
bounded, additive process with density f . Therefore, in the situation of measure preserv-
ing actions of unimodular, amenable groups with an increasing strong Tempelman Følner
sequence (Uj), Theorem 5.17 generealizes the pointwise ergodic theorems of Tempel’man
[Tem72], Emerson [Eme74] and Lindenstrauss [Lin01]. Using convenient features of inte-
gral averages in the proof of the L1-maximal inequality for absolutely continuous processes,
cf. Theorem 6.6 in [Pog13a], convergence can even be obtained in the setting of tempered
weak Følner sequences. In fact, if one restricts oneself to absolutely continuous processes
(and this has been done in [Tem72, Eme74, Lin01]), Theorem 5.5 is more general than Theo-
rem 5.17. The question is unsolved whether our theorem also holds true in the full generality
of Shulman Følner sequences. Further, in order to guarantee the mild compactness criteria
of the almost-additive mean ergodic Theorem 4.15, we have to accept the condition on the
measure space to be finite. On the other hand, Theorem 5.17 also includes processes which
are not absolutely continuous. One class of these instances is given by point processes aris-
ing from Delone sets in non-discrete, abelian LCSCUH groups, cf. e.g. Example 5.7. In this
sense, it extends the assertions in [Tem72, Eme74, Lin01].
In [Sat99, Sat03], Sato has proven a semigroup result for Rd-semigroup actions on the
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Bochner space L1(Ω, Y ), where (Ω, µ) is a σ-finite measure space and Y is a reflexive Ba-
nach space. The convergence is shown along d-dimensional cubes exhausting the semigroup
Γ = Rd+. For the dynamics under consideration, it is assumed in the latter papers that
the weakly measurable transformations {Tg} have contraction majorants, i.e. for all g ∈ Γ,
there is a contraction Pg on L1(Ω,R) such that

‖Tgf(ω)‖Y ≤ (Pg ‖f(·)‖Y )(ω)

µ-almost-everywhere for all f ∈ L1(Ω, Y ), where ‖f(·)‖Y is the norm function for f on
L1(Ω,R). In the present thesis, we have fixed the operators Pg by inequality (5.1) via
(Pgf)(ω) = κ f(ϕ(g)−1ω) for f ∈ L1(Ω,R). In this sense, the present situation is more
special. However, we obtain in Theorem 5.17 a significant geometric extension, as we are
able to deal with arbitrary increasing strong Tempelman Følner sequences in arbitrary
unimodular, amenable groups. (The approximability condition is automatically satisfied in
the settings considered in [Sat98, Sat99].)

An interesting problem is also the issue of pointwise convergence for subadditive, bounded
processes. In some special euclidean situations and for certain random processes, muli-
tiparameter ergodic theorems with subadditivity properties have been proven, see e.g.
[Ngu79, KP87, Sch88]. For certain countable amenable groups, a Kingman type ergodic
theorem can be found in the recent work [DGZ13]. The ingredients of the proof of Theo-
rem 5.17 might provide essential tools for future investigations about abstract, subadditive
pointwise ergodic theorems for continuous amenable groups.





6 Spectral approximation for amenable
groups

This chapter is devoted to uniform approximation results concerning the integrated density
of states (IDS) for random operators on discrete structures. We discuss two models in this
context. To do so, we make use of the ergodic theorems developed in the Chapters 4 and 5.
The first application is inspired by [LSV11]. Using Theorem 4.4, we prove a statement
for all countable, amenable groups. Secondly, we reproduce major results in [LV09]. More
specifically, we show how the abstract ergodic Theorems 4.15 and 5.5 can be applied to
obtain the uniform existence of the IDS for operators resulting from certain point processes
in abstract metric spaces. The corresponding results can also be found in [Pog13a, PS14].

6.1 IDS approximation for countable groups

In this section, we give a major application of Theorem 4.4. In fact, we show the uni-
form approximation of the integrated density of states (IDS) for self-adjoint, finite hopping
range operators on Cayley graphs of amenable groups. The approach to work with almost-
additive, Banach space-valued set functions has been used before, see [Len02, LS05, LMV08].
In [LSV11], the authors prove a Banach space-valued ergodic theorem for amenable groups
in which a certain kind of Følner sequences can be found. Since Theorem 4.4 is valid
for all countable, amenable groups, we are now able to verify spectral approximation re-
sults in a more general geometric situation. The corresponding results are joint work with
Schwarzenberger and can also be found in [PS14]. In the main Theorem 6.5 of this sec-
tion, we prove the almost-sure uniform IDS convergence for an ergodic family of bounded,
self-adjoint, finite hopping range operators defined on a randomly coloured Cayley graph.
Having the abstract convergence Theorem 4.4 at our disposal, we do not need to develop ad-
ditional spectral theoretic tools. Therefore, our proof will be an adaption of the Theorem 4.5
in [LSV11]. Besides our elaborations, there are more possible applications of almost-additive
convergence theorems. One example is to show the almost-sure convergence of cluster den-
sities in an amenable bound percolation model. In [PS14], the authors use Theorem 4.4 to
extend previous results of Grimmett, [Gri76, Gri99]. In order not to go beyond the scope
of this thesis, we refer the reader to the literature for more details. This section is divided
into three parts. At first, endowing countable amenable groups with a random colouring, we
draw a link to classical ergodic theory. Using the Lindenstrauss ergodic theorem, we show
that in this situation, the frequencies of the coloured patterns exist almost-surely. Moreover,
the limit attained is independent of the (tempered) Følner sequence under consideration.
Secondly, we define an ergodic family {Hω} of bounded, self-adjoint operators on randomly
coloured Cayley graphs and we show the almost-sure uniform convergence of the integrated
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density of states along restrictions of the operators on Følner sequences. As in the classical
situation, the limit will not depend on the choice of the sequence. We conclude this section
by citing a model in [LSV11], Example 4.8., which shows that the IDS can serve as an
example for an almost-additive set function for which the limit F ∗ in Theorem 4.4 does in
fact depend on the chosen Følner sequence.

Random colourings and existence of frequencies

We assume that Γ is a countable, amenable group. Let A be a finite set of colours. We
define

Ω := {ω = (ω(g))g∈Γ |ω(g) ∈ A}

and endow this latter set with the canonical σ-algebra F generated by the finite-cylinder
sets. Then Γ acts naturally on the space Ω via the maps gω = (ω(gh))h∈Γ for g ∈ Γ.
Further, we suppose that µ is a probability measure on (Ω,F) which is invariant under the
translation by Γ, i.e. µ(gA) = µ(A) for all g ∈ Γ and every A ∈ F . In addition to this, we
assume µ to be ergodic with respect to the Γ-action.
In this situation, we call the collection (Ω,F ,Γ,A, µ) an ergodic random colouring of the
group, where the colours are chosen from the finite set A. Using the Lindenstrauss ergodic
theorem, we show that for µ-almost every ω ∈ Ω, the frequencies νωP exist along weak
and tempered Følner sequences for all possible coloured patterns P ∈ P, where P is the
collection of all coloured patterns, cf. Chapter 4.
Let P ∈ P be a finite coloured pattern with domain D(P ) ∈ F(Γ) containing the unity e.
For this P , set AP := {ω ∈ Ω |ω|D(P ) = P}, which is the set of all colourings of Γ that
coincide with P on D(P ). The indicator function on AP shall be denoted by 1P . Let (Uj)
be a weak, tempered Følner sequence in Γ. With these notions at hand, we obtain∑

g∈Uj\∂D(P )D(P )−1 (Uj)
1P (gω) ≤ #P (ω|Uj ) ≤

∑
g∈Uj

1P (gω) (6.1)

for all j ∈ N, see [PS14], Theorem 6.2.

The following theorem is an immediate consequence of the Lindenstrauss ergodic theorem,
cf. [Lin01].

Theorem 6.1.
Let Γ be a countable, amenable group along with a random colouring as described above.
Then for every weak, tempered Følner sequence (Uj), there is a set Ω0 ⊆ Ω of full measure,
µ(Ω0) = 1, such that the limit

νωP := lim
j→∞

#P (ω|Uj )
|Uj |

exists for all ω ∈ Ω0 and for all finite coloured patterns P ∈ P and it is equal to µ(AP ).

Proof.
For one single pattern P ∈ P, it follows from the Inequalities (6.1) and from the Linden-
strauss ergodic theorem that there is a set ΩP with µ(ΩP ) = 1 such that the above limit
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expression exists. As the set A contains only finitely many colours, there are at most count-
ably many different patterns that might occur in the random colouring. Intersecting yields
that the set Ω0 := ∩PΩP is a set of full measure as well. By ergodicity of the action, the
convergence must be towards the measure µ(AP ). �

Uniform convergence of the IDS

We turn to the proof of the uniform approximation of the integrated density of states for
Følner subgraphs of Cayley graphs induced by finitely generated, amenable groups. We
start by making this model precise.

Definition 6.2.
A group Γ is said to be finitely generated if there is a finite set S ⊂ Γ such that each element
g ∈ Γ can be written as a finite product of elements in S. In this situation, we call S a
generating system for Γ.

Every finitely generated group Γ with generating system S determines a canonical graph
structure. Namely, we call G := Cay(Γ, S) the Cayley graph for Γ with repect to S if G is
a graph with vertex set Γ and two elements g, h ∈ Γ are linked by an edge if and only if
there is some s ∈ S such that sg = h. At first hand, this definition forces us to work with
directed edges. Assuming in the following that the set S is symmetric (i.e. s ∈ S implies
that s−1 ∈ S), we can forget about the directions since then either both or no directions
exist between two vertices. For two vertices g, h ∈ Γ, we can define the canonical minimal
path distance dΓ,S in Cay(Γ, S) by

dΓ,S(g, h) := min{L ∈ N | ∃ si ∈ S, 1 ≤ i ≤ L, gh−1 = s1s2 . . . sL}.

For some integer number R ∈ N and g ∈ Γ, we denote by BR(g) := {h ∈ Γ | dΓ,S(g, h) ≤ R}
the ball of radius R around g. For balls around the unit element e ∈ Γ, we simply write BR
instead of BR(e).

Let us turn to operators on amenable Cayley graphs. At first, we have to define the under-
lying spaces. Assume that H is a finite-dimensional Hilbert space with inner product 〈·, ·〉H
and induced norm ‖ · ‖H. Further, set

`2(Γ,H) :=
{
u : Γ→ H

∣∣∣ ∑
g∈Γ
‖u(g)‖2H <∞

}
,

which again will be a Hilbert space with canonical `2-scalar product 〈·, ·〉`2 . For some
subset Q ⊆ Γ, we identify the subspace `2(Q,H) := {u : Q → H|

∑
g∈Q ‖u(g)‖2H < ∞} as

the collection of all elements in `2(Γ,H) which are supported on Q. Thus, we get a canonical
projection pQ, as well as a canonical inclusion map iQ. Precisely,

pQ : `2(Γ,H)→ `2(Q,H) : (pQ u)(g) := u(g),

for g ∈ Q, and

iQ : `2(Q,H)→ `2(Γ,H) : (iQ u)(g) :=
{
u(g), if g ∈ Q,

0, else.
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In order to deal with random operators, we introduce measurable families of operators on
`2(Γ,H).

Definition 6.3.
Let (Ω,F) be a measurable space. Then a family {Hω}ω∈Ω of bounded, measurable operators
on `2(Γ,H) is called weakly measurable if for all u, v ∈ `2(Γ,H), the mapping

ρu,v : Ω→ C : ρu,v(ω) := 〈u,Hωv〉`2

is F-B(C)-measurable, where B(C) is the natural Borel σ-algebra on C. Further, we say
that the family is self-adjoint if for all u, v ∈ `2(Γ,H) and every ω ∈ Ω,

〈u,Hωv〉`2 = 〈Hωu, v〉`2 .

We are now in position to define the family of random operators {Hω} on Cayley graphs
for which we will prove the uniform spectral approximation.

Definition 6.4.
Let Γ be an amenable group with finite generating system S and denote by H some finite-
dimensional Hilbert space. Assume that A is a finite set. Further, suppose that (Ω,F ,Γ,A, µ)
is an ergodic, random colouring of the group. Then, we call a family {Hω}ω∈Ω of bounded,
self-adjoint operators on `2(Γ,H) admissible if

• {Hω}ω∈Ω is weakly measurable in the sense of Definition 6.3,

• {Hω}ω∈Ω is of finite hopping range, i.e. there is a constantM ∈ N such that p{g}Hωi{h} =
0 for all g, h ∈ Γ with dΓ,S(g, h) > M and for every ω ∈ Ω,

• {Hω}ω∈Ω is equivariant, i.e. for every ω ∈ Ω and for all g, h, t ∈ Γ, one has

p{tg}Hωi{th} = p{g}Htωi{h}.

• {Hω}ω∈Ω is colouring invariant, i.e. there is a constant N ∈ N such that for every
ω ∈ Ω and for all t, g ∈ Γ, the fact ω|B2N (g) ∼ ω|B2N (tg) implies that

p{h}Hωi{h̃} = p{th}Hωi{th̃}

for all h, h̃ ∈ BN (g).

Remark.
Note that the operators Hω strongly take into account the underlying graph structure.
Thus, they are not only dependent on the group Γ, but also on the generating system S.

For every element Hω of an admissible family of bounded, self-adjoint operators and for
each finite set U ∈ F(Γ), we define the restriction of Hω to U as

Hω[U ] : `2(U,H)→ `2(U,H) : Hω[U ] := pU Hω iU .
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Note in case of a finite set U , the operator Hω[U ] is a finite-dimensional matrix possessing
dim(H)|U | real eigenvalues λi ∈ R, where dim(H) denotes the dimension of H. Therefore,
we can define the cumulative eigenvalue function on R by

nω[U ] : R→ N : nω[U ](E) := |{i ∈ N | ∃λi ≤ E}|,

where the λi, 1 ≤ i ≤ dim(H)|U | are the eigenvalues of the matrix Hω[U ], counted with
their multiplicities. Note that for each finite set U ∈ F(Γ) and for all ω ∈ Ω, the function
Nω[U ](·) := nω [U ]

dim(H)|U |(·) is bounded and continuous from the right. Thus, those mappings
belong to the Banach space Cbr(R) = Cbr(R, ‖ · ‖∞) of all bounded and right-continuous
functions on R equipped with the sup-norm.

We are now able to state and prove the announced Banach space spectral approximation
result for admissible families of bounded, self-adjoint operators. To keep notation simple,
we will write UR := U \ ∂B2R(U) for U ∈ F(Γ) and R ∈ N.

Theorem 6.5.
Let Γ be an amenable group with finite generating system S. Suppose that A is a finite set
of colours and that H is a finite-dimensional Hilbert space. Further, let (Ω,F ,Γ,A, µ) be an
ergodic random colouring of Γ and assume that {Hω}ω∈Ω is an admissible family of bounded,
self-adjoint operators on `2(Γ,H). Set R := max{M,N}, where the constants M,N ∈ N are
those of Definition 6.4. Then, there is a unique element N∗ ∈ Cbr(R, ‖ · ‖∞) such that for
every weak, tempered Følner sequence (Uj) in Γ, one obtains the Banach space convergence

lim
j→∞

‖Nω[Uj,R](·)−N∗(·)‖∞ = 0

for µ-almost every ω ∈ Ω.

Remark.
The element N∗ ∈ Cbr(R, ‖ · ‖∞) is called integrated density of states (IDS) of {Hω}. Theo-
rem 6.5 shows that we have almost-everywhere convergence to some abstract limit. In fact,
this limit can be identified by the so-called Pastur-Shubin trace formula, i.e.

N∗(E) := |Q|−1
∫

Ω
tr
(
1Q 1]−∞,E](Hω)

)
dµ(ω) (6.2)

for E ∈ R, where Q ∈ F(Γ) is an arbitrary non-empty, finite set. Here, the characteristic
function 1Q is identified with the corresponding multiplication operator and 1]−∞,E](Hω)
denotes the spectral projection of the operator Hω in the interval ] −∞, E]. We will not
prove the validity of equality (6.2) as the techniques can be found in the literature, see e.g.
[LPV07, LV09, LSV11, PSS13].

We now turn to the proof of Theorem 6.5. The main task is to check that the assumptions
of Theorem 4.4 are satisfied. We will not carry out the standard calculations in detail, but
refer to the literature at those points.

Proof (of Theorem 6.5).
By Theorem 6.1, there is a set Ω0 of full measure such that for all ω ∈ Ω0, the frequencies

νωP := lim
j→∞

#P (ω|Uj )
|Uj |
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exist for all possible finite patterns P ∈ P and they are independent of the choice of the
Følner sequence (Uj). So fix ω ∈ Ω0 and consider the group Γ with colouring ω. Define the
map

Fω : F(Γ)→ (Cbr(R), ‖ · ‖∞) : Fω(Q)(·) := 1
dim(H) nω[QR](·).

In order to show the ω-invariance, let two finite sets Q, Q̃ ∈ F(Γ) be given such that ω|Q ∼
ω|Q̃. Since the operator Hω is colouring-invariant, the eigenvalues of the operators Hω[QR]
and Hω[Q̃R] coincide and this implies Fω(Q) = Fω(Q̃). It remains to find a boundary term
b on F(Γ) with respect to which the map Fω is almost-additive. We claim that the function

b : F(Γ)→ [0,∞) : b(Q) := 4 dim(H)|∂B2R(Q)|

is in fact appropriate. Clearly, b is a boundary term. To check the almost-additivity, we
proceed as in the proof of Proposition 4.6 in [LSV11]. Let Q =

⊔m
k=1Qk a union of pairwise

disjoint subsets in F(Γ). By definition of R, the operators Hω[Qk,R] decouple, i.e.

Hω

[
m⋃
k=1

Qk,R

]
=

m⊕
k=1

Hω[Qk,R]

and we can count the eigenvalues of Hω[Qk,R] separately for 1 ≤ k ≤ m. This yields

nω

[
m⋃
k=1

Qk,R

]
=

m∑
k=1

nω[Qk,R]. (6.3)

The key step is a rank estimate that also can be found in [LSV11], see Proposition 7.2. We
arrive at ∥∥∥∥∥nω[QR]− nω

[
m⋃
k=1

Qk,R

]∥∥∥∥∥
∞

≤ 4 dim(H)
m∑
k=1
|∂B2R(Qk)|.

Thus, with equality (6.3), we obtain that Fω is almost-additive with boundary term b.
To conclude the proof of the theorem, note that we have verified the assumptions of Theo-
rem 4.4. Therefore, we find indeed some N∗ ∈ (Cbr(R), ‖ · ‖∞) such that

lim
j→∞

∥∥∥∥∥ nω[Uj,R]
dim(H) |Uj |

−N∗
∥∥∥∥∥
∞

= 0

in the ‖ · ‖∞-topology. Moreover, since the frequencies νωP do not depend on the choice
of the Følner sequence (Uj), we can deduce from the ε-limit expression in Theorem 4.4
that the same must hold true for N∗. We finish the proof with the observation that
limj→∞ |Uj,R|/|Uj | = 1. �

Theorem 6.5 is a random version of Theorem 7.5 in [PS14]. In the latter assertion, the
authors work in a deterministic setting and they assume to have a Følner sequence at hand
such that all pattern frequencies exist along this sequence. In the present situation, this



6 Spectral approximation for amenable groups 99

condition is guaranteed by the Lindenstrauss ergodic theorem. In [PSS13], the authors
discuss a model which is similar to the present one. Precisely, they show the almost-sure
uniform IDS approximation for random Schrödinger operators on amenable quantum graphs
with random boundary conditions at the vertices. Again, the key ingredients for the proof
are the Lindenstrauss ergodic theorem and our almost-additive ergodic Theorem 4.4. A
previous version for the case Γ = Zd can be found in [GLV07].

Non-uniqueness of the limit

In the above model, we strongly made use of the Lindenstrauss pointwise ergodic theorem
which assures that the values of the frequencies do not depend on the tempered Følner
sequence. However, even in situations in which no classical theorem can hold true, The-
orem 4.4 might be applicable. Due to lack of intrinsic ergodicity in those cases, the limit
expression F ∗ can be different for different Følner sequences (Uj) and (Vj). We give a
concrete spectral theoretic example which is taken from [LSV11], cf. Example 4.8.

Example 6.6.
Let Γ = Z along with generating system S = {−1,+1} and consider the Cayley graph
Cay(Γ, S). Further, assume that Γ is labeled by two colours 0 and 1 (A := {0, 1}) by the
colouring C, given by

C : Z→ A : C(m) :=
{

1, if m ≥ 0 or m = 3k for some k ∈ Z,
0, else.

Now delete all edges in Cay(Γ, S) which are incident to a 1-vertex to obtain a new graph
G. Let H be the adjacency operator on G, i.e.

H : `2(Z)→ `2(Z) : (Hu)(g) :=
∑
z∈Z

h(g, z)u(z)

with h(g, z) = 1 if g and z share an edge in G and h(g, z) = 0 otherwise. For a finite set
Q ⊂ Z, we set

H[Q] : `2(Q)→ `2(Q) : H[Q] := pQH iQ,

where, as above, pQ and iQ are the canonical projection and inclusion respectively. By the
same reasoning as above, the mapping Q 7→ n[Q](·), where

n[Q](E) := |{i ∈ N |λi ≤ E is eigenvalue of H[Q]}|,

is almost-additive with boundary term b(Q) := 4 |∂BR(Q)|. We define two (weak) Følner
sequences (Uj) and (Vj) in Z via

Uj := {1, 2, . . . , 3j − 1, 3j} and Vj := {−3j,−3j + 1, . . . ,−2,−1}.

for j ∈ N. Obviously, the frequencies along (Uj) and (Vj) do exist for all coloured patterns.
Thus, we can apply Theorem 4.4. However, we obtain different limits for (Uj) and (Vj)
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respectively. Since for all j ∈ N, all entries of the matrix H[Uj ] must be equal to zero, the
IDS with respect to the sequence (Uj) reads as

N∗(Uj)(E) :=
{

0, if E < 0,
1, otherwise.

On the other hand, basic linear algebra yields that the eigenvalues of the matrices H[Vj ]
are −1, 0 and 1 and each of those occurs with multiplicity j. Thus, the corresponding IDS
can be computed as

N∗(Vj)(E) :=


0, if E < −1
1/3, if − 1 ≤ E < 0
2/3, if 0 ≤ E < 1
1, otherwise,

which obviously is a different function from N∗(Uj).

6.2 Continuous groups

In this section, we give an application of our ergodic theorems, Theorems 4.15 and 5.5.
More precisely, we prove pointwise convergence of the normalized eigenspace dimensions for
a class of random operators on randomly chosen discrete structures, cf. Theorem 6.8. The
underlying space possesses a quasi isometry to an amenable group. By standard arguments,
this also leads to the almost-sure uniform convergence of the integrated density of states.
Those latter results are due to Lenz and Veselić and have been published in [LV09]. We
do not claim originality but show that almost-additive ergodic theorems can be used to solve
problems arising naturally in mathematical physics. With our tools at hand, we will able
to deal with operators which are randomly chosen as point processes over general LCSCUH
groups. We start by explaining the model in [LV09], see also [Pog13a].

Suppose that (X, dX) is a locally compact metric space with a countable basis of the topol-
ogy. Let Γ be an amenable LCSCUH group equipped with an invariant metric dΓ such that
every bounded ball in Γ has compact closure. Moreover, we assume that Γ acts continuously
from the right by isometries on X such that the following two properties hold:

• There exists a right fundamental domain J ′ with compact closure J , which is a count-
able union of compact sets,

• The map Φ : X → Γ : x 7→ g, whenever x ∈ J ′g, is a quasi isometry, i.e. there exist
a ≥ 1 and b ≥ 0 with

1
a
dΓ(Φ(x),Φ(y))− b ≤ dX(x, y) ≤ a dΓ(Φ(x),Φ(y)) + b

for all x, y ∈ X.
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For a set A ⊆ Γ and r > 0, we write Ar := {g ∈ Γ | dΓ(g,Γ \ A) > r}, as well as Ar :=
{g ∈ Γ | dΓ(g,A) < r} and ∂r(A) := Ar \ Ar. Analogously, with the metric dX at hand, we
introduce this notation for subsets of the space X.

For some fixed parameter η > 0, we set D as the family of η-uniformly discrete subsets of
X, i.e.

D := {A ⊂ X | dX(x, y) ≥ η, for x, y ∈ A with x 6= y}.

We define the set D̃ as

D̃ := {(A, h) |A ∈ D, h : A×A→ C∗},

where C∗ is an arbitrary compactification of C.

This space can be naturally equipped with the vague topology. It is then compact, cf. [LV09].
The action of Γ on X induces an action from the right on D̃ by g ·(A, h) = (Ag−1, h(xg, yg))
for g ∈ Γ and (A, h) ∈ D̃. In this situation, there exists a Γ-invariant ergodic probability
measure on D̃, whose topological support will be denoted by Ω, cf. [LV09]. Then, Ω is a
compact subset of D̃. Note that each element ω ∈ Ω can be written as ω := (X(ω), hω) ∈ D̃,
where X(ω) is η-uniformly discrete and hω : X(ω)×X(ω)→ C∗ is a map. Each X(ω) gives
rise to a Hilbert space `2(X(ω)), endowed with the canonical counting measure δX(ω) :=∑
x∈X(ω) δx.

We will draw our attention to the bounded operators Hω on `2(X(ω)), defined as

(Hωu)(x) :=
∑

y∈X(ω)
hω(x, y)u(y)

for each x ∈ X(ω). Moreover, we assume that the Hω are of finite hopping range, i.e.
there exists some number R > b such that for all ω ∈ Ω, we have hω(x, y) = 0 whenever
dX(x, y) ≥ R. For g ∈ Γ, we let

Ug : `2(X(ω))→ `2(X(gω)) : (Ugu)(x) := u(xg)

with adjoint U∗g = Ug−1 . With that notion, we assume that the operatorsHω are equivariant,
i.e.

U∗g Hgω Ug = Hω

for all g ∈ Γ and every ω ∈ Ω. Also, we need that the Hω are self-adjoint.

As in the previous section, we need to restrict and to expand the operators Hω. In light of
that, for Q ∈ F(Γ), we denote by iQ : `2(X(ω)∩(JQ)R)→ `2(X(ω)) the canonical inclusion
operator and by pQ : `2(X(ω)) → `2(X(ω) ∩ (JQ)R) the canonical projection operator for
ω ∈ Ω, where (JQ)R stands for the R-interior of JQ, i.e.

(JQ)R = {x ∈ JQ | dX(x,X \ JQ) ≥ R}.



102 6 Spectral approximation for amenable groups

For every ω ∈ Ω, we consider the restricted operators HR
ω [Q] : `2(X(ω) ∩ (JQ)R) →

`2(X(ω) ∩ (JQ)R), where

HR
ω [Q] := pQHωiQ

for Q ∈ F(Γ). Since X(ω) is η-uniformly discrete, each such HR
ω [Q] can be described by a

finite, quadratic matrix. Now fix some energy level E ∈ R. We define the function

FE· : F(Γ)→ L1(Ω,R) : FEω (Q) := #{i ∈ N |λi is eigenvalue of HR
ω [Q] and λi = E}

= tr
(
1{E}H

R
ω [Q]

)
.

Note that FEω [Q] simply gives the multiplicity of the eigenvalue E for the operator HR
ω [Q].

We consider the action of Γ on Ω as a weakly measurable action via operators {Tg}g∈Γ on
L1(Ω,R). By the same methods as in the case of countable groups, we obtain the following
proposition.

Proposition 6.7.
In the above model, the following holds true: for every E ∈ R and for all ω ∈ Ω, the mapping
FEω : F(Γ)→ R is admissibly almost-additive with tiling-admissible, weak boundary term

b : F(Γ)→ [0,∞) : b(Q) := D |∂B2R
(Q)|,

where D > 0 and R > 0 are constants depending on a, b, η and R and B2R is the open ball
of radius 2R around the unity e in the group Γ. Further, the equivariance condition

Tg−1FEω (Q) := FEgω(Q) = FEω (Qg)

is satisfied for all E ∈ R, every ω ∈ Ω, each Q ∈ F(Γ) and every g ∈ Γ.

Proof.
This follows by standard arguments, see e.g. the Propositions 8.1, 8.2 and 8.5 in [Pog13a].
For the almost-additivity (b is in fact tiling-admissible, see Proposition 4.12), the main
ingredient is the rank estimate given by Proposition 7.2 in [LSV11]. �

We now prove the main theorem of this section.

Theorem 6.8.
In the above model, the following spectral approximation result holds true: For every E ∈ R,
there is a number 0 ≤ FE ∗ ≤ 1 such that for every tempered strong Følner sequence (Uj),
one can find a measurable set Ω̃ ⊆ Ω of full measure such that for each ω ∈ Ω̃,

lim
j→∞

FEω (Uj)
|Uj |

= FE ∗.

Proof.
With Γ acting measure preservingly and ergodically on Ω, we obtain a canonical weakly
measurable and ergodic action of operators {Tg}g∈Γ on L1(Ω, µ) via Tgf(ω) := f(g−1ω).
Fix E ∈ R. By Proposition 6.7, we have TgFEω (Q) = FEω (Qg−1) for all g ∈ Γ, each Q ∈ F(Γ)
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and every ω ∈ Ω. It now follows from the ergodic Theorem 5.5 (resp. from the Lindenstrauss
ergodic theorem) that for all Q ∈ F(Γ), the limit

S(Q) := lim
j→∞

|Uj |−1
∫
Uj

FEω (Qg) dg

exists for all ω ∈ Ω̂, where Ω̂ is a set of full measure. Note that S(Q) does not depend on
the choice of (Uj). Moreover, for each Q ∈ F(Γ) and for every g ∈ Γ, we can find a set
Ω̄ ⊆ Ω̂ of full measure such that S(Qg)(ω) = S(Q)(ω) for all ω ∈ Ω̄. Take a sequence (εk)
of positive numbers converging to zero. For each εk, we have an εk-quasi tiling sequence
{T εki }

N(εk)
i=1 , N(εk) := dlog εk/ log(1−εk)e as in Definition 2.15. By the above considerations,

we find a set Ω̃ ⊆ Ω of full measure such that for every ω ∈ Ω̃, the limits S(T εki )(ω) exist
for all k ∈ N and all 1 ≤ i ≤ N(εk). We have seen in the above Proposition 6.7 that for
all ω ∈ Ω, the map FEω is admissibly almost-additive with tiling-admissible, weak boundary
term b(Q) := D |∂B2R

(Q)|, where the constants R,D > 0 depend on the parameters a, b, η, R
of our model. This puts us in the position to apply Corollary 4.16 to obtain the convergence
to some number 0 ≤ FE∗ω ≤ 1 for every ω ∈ Ω̃. It follows from the representation

FE∗ω := lim
k→∞

N(εk)∑
i=1

εk(1− εk)N(εk)−iS(T εki )(ω)
|T εki |

and the Tg-invariance of the averages S(T εki ) that for all g ∈ Γ, one obtains TgFE∗ω = FE∗ω
µ-almost-surely. The ergodicity of the action of Γ on Ω yields that FE∗ω must be constant
almost-surely. This finishes the proof. �

If one considers the empirical eigenvalue distributions of the operators HR
ω [Uj ] as measures

νjω, then a standard calculation shows that almost-surely, the sequence (νjω) converges weakly
to a deterministic measure ν (’density of states’). Moreover, ν is given by a trace represen-
tation on the group von Neumann algebra, see Theorem 2.1. in [LV09]. In fact, we have
FE ∗ = ν({E}) for all E ∈ R. For detailed discussions, the reader may e.g. refer to Lemma
6.1 in [LV09] or Chapter 9 of the present thesis. Theorem 6.8 shows the almost-everywhere
convergence of the normalized eigenspace dimensions for all energies E ∈ R. For continuity
points E of the IDS, it follows from standard measure theory that the convergence follows
already from the weak convergence, cf. e.g. Satz 4.12 in [Els05]. As the IDS allows only
for countably many discontinuity points, there is a set Ω̃ ⊆ Ω of full measure such that
the convergence statement in Theorem 6.8 holds true simultaneously for all E ∈ R, when-
ever ω ∈ Ω̃. Now, another tool from measure theory shows that weak convergence and the
just mentioned considerations about pointwise convergence even yield uniform convergence
of the distribution functions, cf. Lemma 6.3 in [LV09]. Further, the Pastur Shubin trace
formula holds true. This leads to the following uniform convergence result.

Theorem 6.9 (Uniform approximation of the IDS).
Let the conditions of Theorem 6.8 be given. Then, for every tempered strong Følner sequence
(Uj) in Γ, there is a measurable set Ω̃ ⊆ Ω of full measure such that for each ω ∈ Ω̃,

lim
j→∞

sup
E∈R

∣∣∣∣∣NE
ω (Uj)
|Uj |

−NE ∗
∣∣∣∣∣ = 0,
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where NE
ω (Uj) := #{i ∈ N |λi ≤ E is eigenvalue of HR

ω [Uj ]} and NE ∗ := ν((−∞, E]).

Note that this theorem has already been proven before. It can be found in [LV09], Theo-
rems 2.1 and 2.4.



7 Graphs and graphings

In this chapter, we deal with concepts of convergence for graph sequences. Firstly, we
discuss weak convergence [BS01] of finite graphs towards graphings. The latter objects
encode certain measurable equivalence relations which can be interpreted as a probability
distribution on the set of all isomorphism classes of countable graphs of bounded vertex
degree. Explicit constructions for graphings can e.g. be found in [Ele07b, Lov12, LPS14].
In a second part we define hyperfinite graph sequences as in [Ele07a] and show that weakly
convergent graph sequences of this kind converge in a stronger sense. More precisely, this
means that the graph sequence is Cauchy in a certain pseudometric δ, cf. Theorem 7.10. This
partially confirms Conjecture 1 of Elek in [Ele08a]. Using the Equipartition Theorem of
Elek (cf. Theorem 4 in [Ele12]), we give a detailed proof for this assertion. The fundamental
insight in this context that two graphs in a hyperfinite family having the same number of
vertices are geometrically alike (i.e. close in δ) whenever they have similar local graph
statistics, has already been obtained in Theorem 3.1 of [NS13] and Theorem 5 in [Ele12].
Theorem 7.10 has far reaching consequences. In the following chapters, we are able to prove
a Banach space-valued ergodic theorem for almost-additive functions defined on graphs
(Chapter 8), as well as the uniform approximation of the integrated density of states for
pattern-invariant, finite hopping range operators on the graphs (Chapter 9). The results of
this chapter are taken from [Pog13b].

7.1 Weak convergence and graphings

This section is devoted to a brief introduction of weakly convergent graph sequences. The
concept of weak convergence for graph sequences with uniform vertex degree bound has
been introduced by Benjamini and Schramm in the influential work [BS01]. Further,
we define limit graphings and sofic graphings as natural limit objects of convergent graph
sequences.

We start with some basic notation.

Throughout the remaining parts of this thesis, we deal with graphs G = (V,E), where V
is some set called the vertices of G and E ⊆ (V × V ) \ U is a symmetric set of edges of G,
where U := {(v, v) | v ∈ V } is the diagonal set. We say that two vertices v, w ∈ V are linked
by an edge in G if (v, w) ∈ E (and by symmetry also (w, v) ∈ E). For v ∈ V , we denote by
deg(v) the vertex degree of v, i.e. the number of w ∈ V such that (v, w) ∈ E. Throughout
the whole thesis, we will deal with graphs (V,E) for which there is some D ∈ N such that
supv∈V deg(v) ≤ D. Further, a graph G is connected if for any two vertices v, w ∈ V , one
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can find a finite sequence v0, . . . , vL ∈ L with v0 = v and vL = w such that (vi, vi+1) ∈ E
for all 0 ≤ i ≤ L − 1. In this situation, we call (v0, . . . , vL) a path connecting v with
w. A component in a graph G is a subgraph of G, where all vertices in the subgraph are
connected to each other via at least one finite path. Note that there are at most countably
many vertices in each such component. We say that two components are edge-disjoint in G
if the vertex sets of both components are disjoint and there is no edge in E linking a vertex
of one component with a vertex of the other component. For graphs G = (V,E), there is a
canonincal path metric on V , given by

dG : V × V → [0,∞) : dG(v, w) := min{L ∈ N | ∃ path (v0, . . . , vL) connecting v and w}.

If for v, w ∈ V , no connecting path can be found, we set dG(v, w) =∞ as a convention. A
graph G = (V,E, o) together with some distinguished vertex o ∈ V is called rooted and we
say that o ∈ V is the root of G. For a finite, connected, rooted graph, we define the radius
ρ(G) of G as

ρ(G) := max{dG(v, o) | v ∈ V }.

Given two finite, rooted graphs G = (V,E, o) and G̃ = (Ṽ , Ẽ, õ), we say that G and G̃
are rooted isomorphic if there is a bijective mapping ϕ : V → Ṽ such that ϕ(o) = õ and
(v, w) ∈ E if and only if (ϕ(v), ϕ(w)) ∈ Ẽ. In this situation we write G ' G̃. Fixing D ∈ N,
as well as some r ∈ N, we write ADr for the finite set of all rooted isomorphism classes
(graphs identified by rooted graph isomorphisms) of rooted graphs with radius at most r
and vertex degree bounded by D. The collection of all isomorphism classes of rooted graphs
is denoted by the countable set AD :=

⋃∞
r=1ADr .

Further, if G = (V,E) and T ⊆ V , we say that GT := (T,ET ) is the subgraph of G induced
by T if ET := {(v, w) | (v, w) ∈ E, v, w ∈ T}. In the following elaborations, SD denotes
a set consisting of finite, unrooted graphs with vertex degree bound D ∈ N. For some
G = (V,E) ∈ SD and α ∈ AD, we set

p(G,α) :=
|{v ∈ V |BG

ρ(α)(v) ' α}|
|V |

,

where ρ(α) is the radius of a (all) representative(s) of α. Here, we mean that for each v ∈ V ,
we consider the subgraph BG

ρ(α)(v) of G induced by the ρ(α)-ball in G around v as rooted
graph with root v and we check whether this element is rooted isomorphic to the class α.
Therefore, the expression p(G,α) measures the empirical occurrence frequency of the class
α in the graph G. We say that a sequence (Gn) in GD converges weakly if asymptotically,
the limit frequencies exist for all classes α ∈ AD. This is made precise in the following
definition.
Definition 7.1 (Weak convergence of graphs).
Let (Gn) be a sequence of finite, connected graphs with uniform vertex degree bound D ∈ N
and such that limn→∞ |Vn| = ∞. Then we say that (Gn) is weakly convergent if for all
α ∈ AD, the limit

p(α) := lim
n→∞

p(Gn, α)

exists.
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This concept of convergence has been introduced by Benjamini and Schramm in [BS01].
Therefore, weakly convergent graph sequences are also called Benjamini-Schramm conver-
gent in the literature. A natural question arising immediately is to attach some limit element
to weakly convergent graph sequences. Before approaching this issue, let us give some ex-
amples first.

Examples 7.2.
• Let Γ be a finitely generated (generating system S, unit element e), amenable group
along with its Cayley graph G = Cay(Γ, S). Let (Tn) be a Følner sequence in Γ. For
each n ∈ N, denote by Gn the subgraph of G induced by Tn. Then (Gn) is a weakly
convergent graph sequence with limit probabilities

p(α) :=

1, BG
ρ(α)(e) ' α

0, otherwise

for all α ∈ AD.

• The above concept can be extended to the class of all sofic groups Γ with finite
generating system S ⊂ Γ. Sofic groups have been invented by Gromov in [Gro99].
The name ’sofic’ was given by Weiss in [Wei00] who derived it from the Hebrew word
Pסו [sof] for ’finite’. In fact, a group is sofic if it can be approximated by certain weakly
convergent graph sequences, i.e. if there is a (particularly labeled) weakly convergent
graph sequence (Gn) with uniform vertex degree bound D = |S| ∈ N such that

p(α) :=

1, BG
ρ(α)(e) ' α

0, otherwise

for all α ∈ AD, where again G = Cay(Γ, S). Note that the graphs Gn are not
necessarily induced subgraphs of G. Subgraphs of this kind can only be found in
amenable groups. However, the class of sofic groups is much larger; in fact, it is not
known whether there are groups which do not have this property. In particular, all
amenable and all residually finite groups are sofic, cf. [Wei00]. A precise definition for
sofic groups will be given in Chapter 10.

• Assume that G is a countably infinite graph (with vertex degree bound D ∈ N) along
with a sofic group Γ acting freely and co-finitely on G by graph automorphisms.
Suppose that F is a finite fundamental domain for G/Γ. For α ∈ AD, we set

Fα := {f ∈ F |BG
ρ(α)(f) ' α}.

We show in Chapter 10 that in this situation, there is a weakly convergent graph
sequence (Gn) such that

lim
n→∞

p(Gn, α) = |Fα|
|F |

for all α ∈ AD. Note that this is an extension of the group case since every sofic group
acts freely and co-finitely on its own Cayley graph by group automorphisms.
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In all the above examples, the countably infinite graph G can be interpreted as a limit
object of some weakly convergent graph sequence. However, this cannot be done in general.
We will see in the following that weakly convergent graph sequences give rise to probability
distributions of countably infinite graphs. This leads us to the concept of graphings and
their induced measure graphs.

Definition 7.3 (Graphing).
Let X be a compact topological Hausdorff space and µ be a Borel probability measure on X.
Let furthermore finitely many measure preserving, continuous involutions Ik, 1 ≤ k ≤ D,
D ∈ N on (X,µ) be given. Then we call the collection

G := (X,µ, I1, . . . , ID)

a graphing over (X,µ).

Note that the involutions Ik of a graphing G give rise to a finitely generated group

Γ := 〈Ik | 1 ≤ k ≤ D〉,

where group multiplication is just composition of bijective mappings from X into itself.
Obviously, Γ acts on (X,µ) by measure preserving transformations. In the following, we
refer to Γ as the group associated with G. Given a graphing, one obtains a concept for
so-called measure graphs as given in [LPS14]. These objects are induced from certain
measurable equivalence relations with countable classes, see e.g. [FM77]. Let us make this
concept more precise.

Every graphing G := (X,µ, Ik), 1 ≤ k ≤ D comes along with a canonical graph structure.
Precisely, we can define a graph GX with vertex set X and two distinct elements x, y ∈ X
being by an edge coloured by the label k if and only if y = Ik(x). Then GX is a (possibly
uncountable) collection of pairwise disjoint, countable, coloured graphs with vertex sets Γx,
where x ∈ X. Unfortunately, this graph does not fiber over its connected components and
it turns out that the quotient space X/Γ has very unpleasant measurability properties, cf.
[LPV07]. To overcome this problem, we will work with a particular measurable equivalence
relation over X. We then obtain a measurable coloured graph, cf. [LPS14]. Define

V := {(x, y) ∈ X ×X |Γx = Γy}.

Note that the set V ⊆ X ×X is an eqivalence relation, where two elements x, y ∈ X shall
be equivalent if and only if there is some γ ∈ Γ such that y = γx. The set V is a measurable
subset of X × X when endowing the latter space with the product Borel σ-algebra. This
follows from the observation that Γ is countable and

V =
⋂
γ∈Γ

(idX ×Iγ)−1 diag(X),

where Iγ(x) := γ x and diag(X) := {(x, x) |x ∈ X} is the diagonal set in X ×X. We also
used here that the mappings Iγ are measurable (in fact they are also continuous). We now
define an edge relation on V . To do so, we set

E :=
{(

(w, x), (y, z)
)
∈ V × V |w = y, x 6= z, ∃ 1 ≤ k ≤ D : x = Ikz

}
.
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In this way, we obtain a graph G := (V,E) with vertex set V and edge set E. It is even
true that G is a measurable graph as defined in Definition 1.2 of [LPS14]. (For a rigorous
justification of this fact, see Section 7 of this latter paper.) We mention the most important
features which will be used in the following. For α ∈ AD, we set

Xα := {x ∈ X |BG
ρ(α)((x, x)) ' α}.

It is not hard to see that all sets Xα are measurable, cf. [LPS14]. Further, set

Vα := {v ∈ V |BG
ρ(α)(v) ' α}.

Due to the representation

Vα =
⋂
γ∈Γ

(Iγ × idX)−1 diag(Xα), diag(Xα) := {(x, x) |x ∈ Xα},

the sets Vα are measurable subsets of V for all α ∈ AD. It follows also from the con-
siderations in [LPS14] that there is a finite measure M on the set V with the property
that µ(Xα) = M(Vα) for every α ∈ AD. Furthermore, this measure can be desintegrated as
M = µ◦η, where for every x ∈ X, ηx is the counting measure on the set V x := {x}×Γx ⊆ V .
Then for every non-negative, measurable function f on V , we have∫

V
f(v)u(v) dM(v) =

∫
X
f((x, x)) dµ(x),

where u : V → R is a certain measurable, non-negative averaging function. This equality
follows from Lemma 1.16 (b) in [LPS14] which is strongly based on the non-commutative
integration theory of Connes (see [Con79]).

Definition 7.4 (Measure graph induced by a graphing).
Let G = (X,µ, Ik) be a graphing. Let G be the graph with vertex set V and edge set E as
above and let M be the finite measure on V constructed from µ as above. Then, we call
(G,M) the measure graph induced by the graphing G.

As said before, graphings can be constructed in a canonical way from weakly convergent
graph sequences. This is stated in the following theorem. For a proof, see [LPS14], Propo-
sition 9.3. The crucial observation that is needed here is the fact that one can attach to
every finite graph a canonical probability measure which is invariant under transformations
shifting a fixed root to another vertex. The existence of an invariant limit measure follows
from a compactness condition for probability measures. Similar constructions for graphings
have been obtained before, see e.g. [Ele07b, AL07].

Theorem 7.5 (Existence of graphings, cf. [LPS14], Proposition 9.3).
Let (Gn) be a weakly convergent sequence of graphs with uniform vertex degree bound D ∈ N.
Then, there is a graphing G = (X,µ, Ik) along with a measure graph (G,M) induced by G
such that for all α ∈ AD

lim
n→∞

p(Gn, α) = µ(Xα),

where Xα is the collection of x such that the subgraph in G = (V,E) induced by the ball of
radius ρ(α) around (x, x) ∈ V is rooted isomorphic to α.
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We will refer to the graphings arising from convergent graph sequences as so-called limit
graphings. The converse question is an open problem, i.e. it is not known whether all
graphings (with suitable topological and measurable assumptions) are a limit graphing for
some weakly convergent sequence (Gn) of finite graphs). This is a question of Aldous
and Lyons [AL07, Sch08]. A positive answer to this question would imply that all finitely
generated groups are sofic. However, we can define the large class of sofic graphings as those
graphings which are attained as a limit of Benjamini-Schramm convergent sequences.

Definition 7.6 (Sofic graphings).
Let G = (X,µ, Ik) be a graphing along with its induced measure graph (G,M). Then G is
called sofic if there is a weakly covergent sequence (Gn) of finite graphs such that for all
α ∈ AD

lim
n→∞

p(Gn, α) = µ(Xα),

where Xα is the collection of x such that the subgraph in G = (V,E) induced by the ball of
radius ρ(α) around (x, x) ∈ V is rooted isomorphic to α.

Sofic graphings have been considered before. This concept has been introduced in [EL10]
as sofic measurable equivalence relations. Further, some examples are given in the latter
paper. For instance, it is shown there that every treeable equivalence relation is sofic.

7.2 Hyperfiniteness and Banach space convergence

In this section, we consider a different notion of convergence for graphs with uniform vertex
degree bound D ∈ N. Precisely, a sequence (Gn) of graphs taken from a set SD will be
called strongly convergent if it is Cauchy in a particular pseudometric δ on SD introduced
by Elek in [Ele08a]. The goal of the next chapter is to prove a Banach space convergence
result for almost-additive mappings on SD. Here, we provide the necessary preparations.
In this context, we will have to work with hyperfinite graph sequences. This latter condi-
tion roughly says that all elements in the graph sequence can be cut in small edge-disjoint
components by deleting only a small portion of the edges in each graph. There is a signif-
icant link to concepts of amenability for graphs. For instance, a statement of Elek and
Szabó [ES11] shows that sofic approximations of a group are hyperfinite if and only if the
group is amenable. It is well-known that strong convergence implies weak convergence and
hyperfiniteness. One can conclude from the results in [NS13] or in [Ele12] that the con-
verse assertion holds also true. This is a partial positive answer to a conjecture of Elek in
[Ele08a]. The full conjecture refers to graph sequences with edge- and vertex colourings by
finitely many colours. In Theorem 7.10, we give a clear and detailed proof which is based
on the so-called Equipartition Theorem, cf. Theorem 4 in [Ele12]. It is an open problem
whether the latter statement also holds true for edge- and vertex coloured graphs. Pri-
vate communication of the author of this thesis with Elek gives rise to evidence that the
Equipartition Theorem holds also true in the coloured case. A nice consequence would be
the validity of Elek’s conjecture in full generality. This in turn would allow for the proof
of a Banach space-valued, almost-additive convergence theorem along hyperfinite, coloured
weakly convergent graph sequences.
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As usual, we assume that SD is a set consisting of finite graphs with uniform vertex degree
bound D ∈ N. Suppose that G, G̃ ∈ SD are defined on the same vertex set V and that the
vertices in both graphs are labeled with the numbers {1, . . . , |V |}. We set

δV (G, G̃) := |{v ∈ V |S
G(v) 6= SG̃(v)}|
|V |

,

where SG(v) denotes the labeled 1-ball (the star) around v ∈ V in the graph G. Thus, the
6=-sign must be understood not only in the sense of rooted isomorphism classes but it also
decodes the differences in the vertex numberings of both stars. As shown in Lemma 2.1 of
[Ele08a], δV defines a metric on the graphs in SD modulo isomorphism which are defined on
the common vertex set V . For the empty graph E , we set δV (G, E) = 1 for all G ∈ SD. Next,
we define a metric which is invariant under permutations of the vertex numbers. Referring
to Lemma 2.2 in [Ele08a], we define the metric

δS(G, G̃) := min
σ∈Sym(|V |)

δV (G, G̃σ)

on all graphs in G, G̃ ∈ SD modulo isomorphism defined on V , where Sym(|V |) is the
symmetric group over the set {1, . . . , |V |} and G̃σ is the graph G̃ with its vertex numbering
translated by σ. Finally, we get rid of the assumption that graphs need to be defined over
the same vertex set. This leads us to the so-called geometric distance

δ(G, G̃) := inf
{p,q∈N | p |V |=q |Ṽ |}

δS(pG, q G̃),

where the graph pG consists of p edge-disjoint copies of the graph G. This is a pseudometric
over the set of all unrooted isomorphism classes in SD, cf. [Ele08a], Proposition 2.1. In fact,
we have δ(G, G̃) = 0 if and only if there is some graph Ḡ ∈ SD such that both graphs G, G̃
consist of edge-disjoint copies of Ḡ. For G ∈ SD, we denote by α(G) the corresponding
unrooted isomorphism class for G. Now, we are finally in the position to define strong
convergence for graph sequences (Gn).

Definition 7.7 (Strong convergence of graphs).
Let (Gn) = (Vn, En) be a sequence of finite, connected, graphs in SD with limn→∞ |Vn| =∞.
Then (Gn) converges strongly if (α(Gn))n is Cauchy in the pseudometric δ.

It is well-known that strongly convergent graph sequences are also weakly convergent, see
e.g. [Ele08a], Proposition 2.2. We now turn to the concept of hyperfiniteness for graphs.

Definition 7.8 (Hyperfinite families of graphs).
A family P ⊆ SD is called hyperfinite if for every ε > 0, there is an integer Kε ∈ N such
that there is a way to remove from each G ∈ P a portion of at most ε of the edges such
that the remaining graph G′ε consists of edge-disjoint components consisting of at most Kε

vertices.
We say that a graph sequence (Gn) is hyperfinite if the set P := {Gn |n ∈ N} ⊆ SD is a
hyperfinite family.

Here are some examples for hyperfinite graph sequences.
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Examples 7.9.
• Let P := {Pn}∞n=1, where Pn is a path of length n. Then P is hyperfinite. One may

choose Kε := 2/ε for ε > 0.

• Let P := {Gn}∞n=1, where each Gn is the subgraph of Cay(Γ, S) induced by the set
Tn, where (Tn) is a Følner sequence in an amenable group Γ generated by some finite
set S ⊂ Γ. Using the ε-quasi tiling result of Theorem 2.16, it can be seen that P is
hyperfinite.

• Let P := {Gn = (Vn, En)}∞n=1 be a graph sequence of subexponential growth, i.e.
there is a function f : N → N of subexponential growth such that for every n ∈ N,
for each x ∈ Vn and for all r ∈ N, one has |BG

r (x)| ≤ f(r). Note that f is said to
have subexponential growth if for each β > 0, there is a number rβ > 0 such that
f(r) ≤ exp(β r) for every r ≥ rβ, cf. [Ele08a]. Then, P is a hyperfinite family.

• A large class of non-examples is given by sofic approximations for non-amenable
groups, see the second item in the example list 7.2. In fact, sofic approximations
for a group Γ are hyperfinite if and only if Γ is amenable, cf. Proposition 4.1 in [ES11].
In particular, if (Gn) is a sofic approximation for the free group Fr of rank r ≥ 2, then
the set P := {Gn}∞n=1 is not a hyperfinite family of graphs.

Hyperfiniteness is implied by strong convergence, cf. Proposition 2.3 in [Ele08a]. We now
turn to the converse statement and we show that weakly convergent, hyperfinite graph
sequences are in fact strongly convergent.

Theorem 7.10 ([Pog13b], Theorem 3.1).
Let (Gn) be a weakly convergent sequence of graphs with uniform vertex degree bound D ∈ N.
If in addition, (Gn) is hyperfinite, then (Gn) is strongly convergent.

Using algorithmic techniques, this statement has essentially been proven in [NS13]. In
Theorem 3.1 of this latter work, the authors show that two graphs on the same vertex set
taken from a hyperfinite family have small δ-distance from each other if they look alike
statistically. We follow a different approach and use the Equipartition Theorem which is
due to Elek. Roughly speaking, it says that one may delete a small portion of the edges
in the graphs of some hyperfinite Benjamini-Schramm convergent sequence in order to cut
them into small egde-disjoint components in such a way that asymptotically, the number of
the various remaining components stabilizes. It is shown in [Ele08a] that every hyperfinite,
weakly convergent graph sequence contains a strongly convergent subsequence. Using a
part of the proof of this latter statement, as well as the Equipartition Theorem, we obtain
convergence for all such sequences. We still need some notational preparation.

At first, we introduce another distance function dπ which measures statistical differences of
two graphs. Take an arbitrary enumeration (αi)i∈N of the elements in AD. Now consider
the map

L : SD → [0, 1]N : L(G) := (p(G,αi))i∈N.

Then L is almost-injective in the sense that L(G) = L(G̃) implies that there is a graph
Ḡ ∈ SD such that both G and G̃ are edge-disjoint unions of Ḡ-copies, cf. [Ele12]. With this
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notion at hand, we set

dπ(L(G),L(G̃)) :=
∞∑
i=1

2−i |p(G,αi)− p(G̃, αi)|
1 + |p(G,αi)− p(G̃, αi)|

for G, G̃ ∈ SD. Using this distance function, we can characterize weak convergence of some
graph sequence (Gn) by saying that (L(Gn))n is Cauchy with respect to dπ.
Moreover, for D, r ∈ N we denote by ÅDr the set of all unrooted isomorphism classes of
finite graphs with vertex degree bound D of diameter at most r. Note that the diameter
of a finite graph is the longest possible distance between two distinct points. Precisely, a
graph G ∈ SD is unrooted isomorphic to a class α̊ ∈ ÅDr if there is a bijection between
both vertex sets preserving the edge relations in G and α̊. Set ÅD :=

⋃∞
r=1 ÅDr . Then, the

Equipartition Theorem reads as follows.

Theorem 7.11 (Equipartition Theorem).
Let P ⊆ SD be a hyperfinite family. Then, for all ε > 0, one finds a number Kε ∈ N such
that the following holds true: for each β > 0, there exists δ > 0 such that if G = (VG, EG) ∈
P and G̃ = (VG̃, EG̃) ∈ SD are such that dπ(L(G),L(G̃)) ≤ δ, then there is a way to delete
less than 2ε |EG| edges in G, as well as less than 2ε |EG̃| edges in G̃ such that

• in the remaining graphs G′ε and G̃′ε, all connected (edge-disjoint) components have
vertex size at most Kε,

•
∑

α̊∈ÅDKε

∣∣cG′εα̊ − cG̃′εα̊ ∣∣ < β,

where cG
′
ε

α̊ := |CG
′
ε

α̊ |/|VG| and C
G′ε
α̊ is the set of vertices VG which lie in a component of G′ε

which is unrooted isomorphic to α̊.

Proof.
See [Ele12], Theorem 4. �

Remark.
We would like to point out that Elek shows more in Theorem 4 of [Ele12]. Namely, it is
assumed there that one, but not necessarily both of the graphs G and G̃ must belong to
the hyperfinite family P. This shows testability of important properties for bounded degree
graphs such as planarity. For our purposes, the weaker version given above is sufficient.

Having this result at hand, we are now able to prove Theorem 7.10.

Proof (of Theorem 7.10).
Assume that (Gn) = (VGn , EGn) is weakly convergent and hyperfinite as a set in SD. Let
ε > 0, set ε1 := ε/(6D) and for this ε1, choose Kε1 according to the Equipartition Theorem,
Theorem 7.11. For every n ∈ N, we remove at most 2ε1 |EGn | edges of Gn such that in
the remaining graphs G′n,ε1 , all connected components consist of at most Kε1 vertices. As
in [Ele08a], we call a vertex v ∈ VGn exceptional for ε1 if at least one of the edges in EGn
incident to v has been removed. Hence, for every graph Gn, there are at most 2Dε1|VGn |
exceptional vertices in VGn . Denote the various unrooted isomorphism classes of diameter
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at most Kε1 by α̊1, α̊2, . . . , α̊Mε1
(Mε1 ∈ N). For n ∈ N and for 1 ≤ i ≤ Mε1 , we write

κn,ε1i ∈ N for the number of connected components in G′n,ε1 which are unrooted isomorphic
to α̊i. Set γn,ε1i := κn,ε1i /|VGn | for n ∈ N and 1 ≤ i ≤Mε1 . With Cn,ε1α̊i

being defined as the
collection of vertices that lie in a component of G′n,ε1 unrooted isomorphic to α̊i, we have
κn,ε1i = |Cn,ε1α̊i

|/|V (αi)|. Since (Gn) is weakly convergent, the sequence (α(Gn)) is Cauchy
in the distance function dπ and Theorem 7.11 is applicable. Hence for β := ε1/(Kε1Mε1),
we find some number L ∈ N such that

|γn,ε1i − γm,ε1i | < β = ε

6DMε1Kε1
(7.1)

for all n,m ≥ L and every 1 ≤ i ≤ Mε1 . It remains to show that δ(Gn, Gm) ≤ ε for
n,m ≥ L. To do so, we follow the lines of the proof of Lemma 2.3 in [Ele08a]. Take
n,m ≥ L. We denote by Hn the graph given by |VGm | disjoint copies of Gn and by Hm the
graph given by |VGn | disjoint copies of Gm. Then there is no loss in generality to assume
that both graphs Hn and Hm are defined on a common vertex set V and that they both
have a vertex labeling with numbers {1, 2, . . . , |V |}. Analogously, we let H ′n,ε1 and H ′m,ε1
be the subgraphs consisting of |VGm | respectively of |VGn | edge-disjoint copies of G′n,ε1
respectively of G′m,ε1 . Then, there are |VGm |κ

n,ε1
i components in H ′n,ε1 which are unrooted

isomorphic to α̊i and |VGn |κ
m,ε1
i components in H ′m,ε1 which are unrooted isomorphic to α̊i.

Set qi,ε1 := min{|VGm |κ
n,ε1
i ; |VGn |κ

m,ε1
i } and Qi,ε1 := max{|VGm |κ

n,ε1
i ; |VGn |κ

m,ε1
i }. Further,

for each i, choose qi,ε1 edge-disjoint components in H ′n,ε1 which are unrooted isomorphic to
α̊i. If for v ∈ V , there is no 1 ≤ i ≤ Mε1 , such that v is contained in one of the chosen
components of H ′n,ε1 isomorphic to α̊i, then call v a non-matching (cf. [Ele08a], proof of
Lemma 2.3) vertex. Now, find a bijective map σ ∈ Sym(|V |) such that there is a subset V ′
of V of vertex size

∑
i qi,ε1 |V (αi)| such that σ restricted to V ′ preserves the star relations

between H ′n,ε1 and H ′m,ε1 , i.e. the edge relations including the number labeling. On the
numbers associated with vertices in V which are non-matching for H ′n,ε1 or for H ′m,ε1 , we
may define σ arbitrarily. We show that

δV (Hn, H
σ
m) ≤ ε.

To see this, observe that if v is neither non-matching nor exceptional for ε1 in H ′n,ε1 and
neither non-matching nor exceptional for ε1 in Hσ′

m,ε1 , then its star including the vertex
numbering is the same in Hn and as in Hσ

m respectively. The number of non-matching
vertices is bounded by

Mε1∑
i=1

(Qi,ε1 − qi,ε1)Kε1 .

By multiplication with |V |, we deduce from inequality (7.1) that

|Qi,ε1 − qi,ε1 | <
ε

6DMε1Kε1
|V |

for all 1 ≤ i ≤ Mε1 . By construction, the union of the exceptional vertices in Hn and in
Hσ
m has cardinality less than 4ε1D |V |. With our estimate for the non-matching vertices,

we conclude that
δV (Hn, H

σ
m) ≤ 4ε1D |V |

|V |
+ ε

6D < ε.
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Finally, passing to infima, we arrive at

δ(Gn, Gm) ≤ δV (Hn, H
σ
m) < ε.

This finishes the proof of the theorem. �

In [Ele08a], the author considers graphs with their edges and their vertices being labeled
by finitely many colours. In this context, weak convergence means that for all coloured
isomorphism classes, the occurrence frequencies exist in the limit. Thus, if one proved the
Equipartition Theorem for coloured graph sequences, one could use the same method as
above to solve the full conjecture of Elek claiming that weakly convergent, hyperfinite
coloured graph sequences are strongly convergent (note that in this situation, the stars in
the graphs to measure the δ-distance take the vertex und edge colourings into account in
the canonical manner). We have not pursued this goal in this thesis. A positive answer
to this issue can then also be considered as an extension of Theorem 4.4 in the finitely
generated situation. Precisely, one would be able to prove a Banach space convergence
theorem for almost-additive functions along hyperfinite, weakly convergent coloured graph
sequences. With the methods at our disposal, we can prove the convergence for uncoloured
graph sequences. This is the topic of the next chapter.





8 Convergence theorems for graphs

In this chapter, we prove two convergence theorems along weakly convergent, hyperfinite
(i.e. strongly convergent) graph sequences. The first result refers to almost-additive, Banach
space-valued functions on some set SD consisting of finite graphs with uniform vertex degree
bound D ∈ N. In this context, we discover that a natural notion for almost-additivity is
given by a particular continuity property with respect to the distance function δ introduced
in the previous chapter. It turns out that there is a nice analogy to our Banach space
convergence theorem for countable amenable groups, see Chapter 4. Namely, considering
finitely generated, amenable groups and sticking to the uncoloured situation, the conver-
gence theorem, Theorem 8.2, developed in this chapter can be interpreted as an extension
of Theorem 4.4. Being the first assertion of its kind for graph sequences, Theorem 8.2 is a
breakthrough in combinatorial approximation theory.
Secondly, we turn to the issue of subadditive convergence for graphs. Subadditive con-
vergence theorems play a major role in proving the existence of invariants in topological
dynamical systems, cf. e.g. [Gro99, LW00, CSKC12]. Using Theorem 7.10, we prove nor-
malized convergence along weakly convergent, hyperfinite graph sequences for a large class
of subadditive functions on SD, cf. Theorem 8.4. As far as the underlying geometry is
concerned, this provides a significant extension of variants of the ’Ornstein-Weiss Lemma’
for amenable groups [Gro99, LW00, Kri10] and semigroups [CSKC12]. All results of this
chapter are contained in [Pog13b].

8.1 Almost-additive, Banach space convergence

In this section, we provide an almost-additive Banach space-valued convergence theorem for
almost-additive functions. They will be defined on some set SD consisting of finite graphs
with uniform vertex degree bound D ∈ N. This assertion is analogous to Theorem 4.4 for
uncoloured, finitely generated groups.

Definition 8.1 (Almost-additive functions on graphs).
Let (Z, ‖ · ‖) be an arbitrary Banach space and denote by P some subset of SD. A mapping

F : SD → Z

is called almost-additive on P if F (∅̃) = 0 for the empty graph ∅̃ (in case ∅̃ ∈ SD) and if
there is a constant C depending on D such that∥∥pF (G)− q F (G̃)

∥∥ ≤ C δS(pG, qG̃) p |VG|,

whenever G, G̃ ∈ P and p, q ∈ N are such that p |VG| = q |VG̃|. (The distance function δS is
defined as in the previous chapter.)

117
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We are now in position to prove the convergence result.

Theorem 8.2 (Almost-additive convergence theorem for graph sequences).
Suppose that F is a mapping on SD with values in some Banach space (Z, ‖ · ‖). If (Gn) =
(Vn, En) is a weakly convergent, hyperfinite graph sequence in SD, and if F is almost-additive
on P := {Gn |n ∈ N}, then there is some F ∗ ∈ Z such that

lim
n→∞

∥∥∥∥F (Gn)
|Vn|

− F ∗
∥∥∥∥ = 0.

Proof.
Take a sequence (Gn) = (Vn, En) in SD which is hyperfinite and weakly convergent. By
Theorem 7.10, (Gn) is strongly convergent as well. Fix ε > 0 and find some integer L ∈ N
such that δ(Gn, Gm) < ε for n,m ≥ L. By definition, we find p, q ∈ N with p|Vn| = q|Vm|
such that δS(pGn, qGm) ≤ 2ε. Since F is almost-additive on (Gn) for some constant C > 0,
we obtain ∥∥∥∥F (Gn)

|Vn|
− F (Gm)
|Vm|

∥∥∥∥ =
∥∥∥∥pF (Gn)
p |Vn|

− q F (Gm)
q |Vm|

∥∥∥∥ ≤ 2C ε

for all n,m ≥ L. Therefore, the sequence (F (Gn)/|Vn|)n is Cauchy in the Banach space Z
and thus, it converges to some limit F ∗ ∈ Z. �

Let us briefly explain the links of the above result to Theorem 4.4. Consider the Cayley
graph G := Cay(Γ, S) induced by an amenable group Γ with finite generating system S ⊂ Γ.
Further, suppose that Γ is coloured trivially by a constant map C : Γ→ {a}, where a is the
only colour at disposal. Then, the setting described in Chapter 4 fits into the context of
Theorem 8.2. To see this, note first that every mapping

F : F(Γ)→ Z

can be rewritten as
F ′ : S |S|(Γ)→ Z

by identifying all finite sets in Q ∈ F(Γ) with their induced subraphs G(Q) in G such that

S |S|(Γ) := {G(Q) |Q ∈ F(Γ)}

and F ′(G(Q)) = F (Q) for all Q ∈ F(Γ). Let (Uj) be a Følner sequence in Γ. Then (G(Uj))j
is weakly convergent and hyperfinite. Now, Theorem 8.2 tells us that it is sufficient to show
that F ′ is almost-additive on {G(Uj) | j ∈ N}. This is proven in part (iii) of Theorem 4.4
(even for the situation where Γ is endowed with an ergodic colouring). There we use the
ε-quasi tiling theory to cut the Uj into ε-disjoint translates of T εi and asymptotically (with j
getting large), the occurrence frequencies of the different ε-quasi tiles stabilize. This implies
that there is some j0 ∈ N such that for j, j̃ ≥ j0, the graphs G(Uj) and G(Uj̃) are close in
the δ-distance.

The extension of Theorem 7.10 to the case of coloured graph sequences is an open problem.
Note that the proof essentially relies on the fact that (Gn) is Cauchy in δ. Therefore, if the
theorem holds true also for coloured graphs, we would immediately obtain a Banach space
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convergence theorem that gives an extension of Theorem 4.4 (for finitely generated groups).
As explained before, this would require an Equipartition Theorem for hyperfinite, coloured
graph sequences.

8.2 Subadditive convergence

In classical analysis, Fekete’s Lemma says that for every sequence (an) of real numbers with
an+m ≤ an + am (n,m ∈ N), the sequence (an/n) converges to its infimum (which may be
−∞). For the sake of applications, it is an important question whether one can replace
the index set of the sequence by more complicated structures such as sets or graphs. In
Theorem 1.1 of [CSKC12], the authors prove convergence along Følner nets for functions
on left-cancellative amenable semigroups. Using this result, they obtain the existence of
topological entropy and topological mean dimension for continuous dynamical systems. We
prove a corresponding subadditive convergence assertion in the context of weakly conver-
gent, hyperfinite graph sequences. To do so, we have to accept an additional monotonicity
condition on the subadditive function F under consideration. More precisely, we need F
to be non-decreasing with respect to the subgraph relation. However, unlike in [CSKC12],
we have to assume subadditivity only for disjoint decompositions of graphs. In this con-
text, Theorem 8.4 extends a variant of the ’Ornstein-Weiss Lemma’ which was used in the
framework of amenable group dynamical systems theory, cf. [OW87, Gro99, LW00].

We start with the definition of a subadditive function on SD. Note that G = (V,E) is a
subgraph of G̃ = (Ṽ , Ẽ) if V ⊆ Ṽ and if there is an injective map ϕ : V → Ṽ with the
property that (x, y) ∈ E implies (ϕ(x), ϕ(y)) ∈ Ẽ.

Definition 8.3 (Subadditive functions on graphs).
Let P ⊆ SD. A mapping h : SD → R is subadditive if it satisfies the following properties.

• There is a constant C > 0 such that h(G) ≤ C |V | for all G = (V,E) ∈ SD (bound-
edness).

• If G is a subgraph of G̃ ∈ SD, then h(G) ≤ h(G̃) (monotonicity).

• If G = (V,E) and G′ = (V ′, E′) are both subgraphs of some G̃ = (Ṽ , Ẽ) ∈ SD such
that Ṽ is the disjoint union of V and V ′, then

h(G̃) ≤ h(G) + h(G′) (subadditivity) .

If in addition, we are in the edge-disjoint situation, i.e. e ∈ Ẽ if and only if either
e ∈ E or e ∈ E′, then we have in fact

h(G̃) = h(G) + h(G′) (special additivity) .

• If G ∈ P is (unrooted) isomorphic to G′ ∈ P, then h(G) = h(G′) (pattern-
invariance).
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At a first glance, the special additivity assumption may look a bit strong. However, in
most settings it appears just as a technicality, e.g. if one considers induced subgraphs of
connected graphs. In the proof of the convergence theorem, we have to make use of this
special criterion at one technical point. Namely, we will have to work with the distance
function δ which forces us to consider q-fold (q ∈ N) vertex- and edge-disjoint copies of
graphs G ∈ SD. For those objects, the special additivity condition in combination with the
pattern-invariance condition makes sure that h(qG) = qh(G).

Theorem 8.4 (Subadditive convergence theorem for graph sequences).
Let (Gn) = (Vn, En) be a weakly convergent, hyperfinite graph sequence in SD and assume
that h : SD → R is subadditive. Then, there is an element λ ∈ R ∪ {−∞} such that

lim
n→∞

h(Gn)
|Vn|

= λ.

Proof.
Let (Gn) = (Vn, En) be a weakly convergent, hyperfinite graph sequence in SD. By Theo-
rem 7.10, (Gn) is in fact strongly convergent. Define

λ := lim inf
n→∞

h(Gn)
|Vn|

.

Due to the boundedness of h, we have λ ∈ [−∞, C], where C is the boundedness constant
for h. Note that λ = −∞ is possible as well. Denote by K ⊆ N an infinite set containing
the indices of some subsequence of (h(Gn)/|Vn|) that converges to λ (or diverges to −∞).
Now fix an arbitrary ε > 0. By strong convergence, we find some k0 ∈ K such that for all
n, k ≥ k0, we have δ(Gn, Gm) < ε. We fix such integers n and k and we also make sure that
k ∈ K. Take a pair of integers qn, qk ∈ N such that qn|Vn| = qk|Vk| and

δS(qnGn, qkGk) ≤ 2ε. (8.1)

With no loss of generality, we may assume that the graphs qnGn and qkGk are defined on
a common vertex set Vn,k. Then we find a subset V ′n,k ⊆ Vn,k containing those vertices such
that the labeled stars (i.e. 1-balls including vertex numberings in both graphs) coincide in
both graphs. By inequality (8.1), we obtain |V ′n,k| ≥ (1 − 2ε)|Vn,k|. For this set V ′n,k, we
denote the corresponding induced subgraph in qnGn (respectively in qkGk) by G′n,k. Using
the boundedness, subadditivity, special additivity, as well as the pattern invariance property
of h, we get

h(Gn)
|Vn|

= h(qnGn)
qn |Vn|

≤
h(G′n,k)
|Vn,k|

+ 2C ε. (8.2)

As h is monotone, it follows that h(G′n,k) ≤ h(qkGk). Now the special additivity property
and the pattern-invariance of h yield h(G′n,k) ≤ qk h(Gk). Thus, we deduce from inequal-
ity (8.2) that

h(Gn)
|Vn|

≤ qk h(Gk)
|Vn,k|

+ 2C ε = h(Gk)
|Vk|

+ 2C ε.
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Since k ∈ K,n ∈ N, n, k ≥ k0 were chosen arbitrarily, the latter inequality holds true for all
large enough k ∈ K and every large enough n ∈ N. We conclude that

lim sup
n→∞

h(Gn)
|Vn|

≤ lim inf
k→∞

h(Gk)
|Vk|

+ 2C ε = λ+ 2C ε.

Thus, sending ε→ 0 finishes the proof. �





9 Spectral approximation for graphs

In this chapter, we present some known results about spectral approximation in a structured
way fitting in the context of the previous chapters. We do not come up with new results,
but give direct proofs via calculations with explicit expressions for all involved quantities.
The chapter is divided into two parts.
Firstly, we associate to each graphing some canonical von Neumann algebra. The latter
space consists of those operators which act fiberwise on the connected components of the
graphing. This will lead us to the concept of so-called Carleman operators. Moreover, we
are able to define a notion of a trace on the von Neumann algebra. To do so, we stick to the
construction given in [LPS14] for measure graphs over a groupoid. The corresponding oper-
ator algebraic considerations in this latter article rely on the non-commutative integration
theory developed by Connes in the form discussed in [LPV07]. For similar results on opera-
tor algebras on measurable equivalence relations, see e.g. the papers [FM77, Ele08a, Ele08b].
In the second part, we turn to the question of the IDS approximation for operators on sofic
graphings along their finite analogues on weakly convergent graph sequences. We start by
proving weak convergence of the empirical spectral distributions towards the trace of the
spectral family. This result has been proven before, see e.g. [Ele08a, Ele08b]. Having an
explicit formula for the IDS of Carleman operators on graphings at hand, we are able to give
a slightly more structural proof below which is based on measuring the geometric differences
between the finite graphs in the graph sequence and the random geometric patterns in the
graphing. Briefly describing the Lück conjecture for weakly convergent graph sequences
(see e.g. [ATV13]), we give a short outline concerning the issue of uniform convergence in
possibly non-hyperfinite situations. While partial results on this matter have been obtained
through algebraic tools (cf. [Tho08, ATV13]), the full conjecture, as well as a geometric ap-
proach to a possible solution remain open. The main result of this chapter is Theorem 9.12,
where we show that for finite range Carleman operators on sofic hyperfinite graphings, we
can approximate the IDS uniformly. This is a variant of the convergence result in [Ele08a]
for strongly convergent graph sequences. Our proof relies on a different method, namely
the Banach space-valued convergence theorem from the previous chapter, cf. Theorem 8.2.
Being valid for all hyperfinite, weakly convergent graph sequences, it provides a direct ap-
proach describing the combinatorial structure behind spectral approximation results. More-
over, Theorem 9.12 generalizes previous assertions, see e.g. [Ele06a, DLM+03, Ele06b]. In
the context of uncoloured Cayley graphs of amenable groups, it also extends the spectral
approximation results in [LSV11, PS14].

123
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9.1 Operators on graphings

The von Neumann algebra of a graphing

In the following, we obtain a canonical von Neumann algebra arising naturally from graph-
ings. It turns out that this von Neumann algebra comes along with a finite and faithful
trace. The results are a special instance of the more general concept of measure graphs over
some measurable groupoid, cf. [LPS14].

We start with a graphing G = (X,µ, Ik) (see Definition 7.3) with the group Γ := 〈Ik〉 acting
measure preservingly on X. As discussed after Definition 7.3, every graphing induces a
measure graph G = (V,E) with M being the corresponding finite measure on V . For every
x ∈ X, we define

V x := {x} × Γx,

which clearly is a subset of V . Now for f ∈ L2(V,M), there is a bundle (fx)x∈X of mappings
fx ∈ `2(V x) such that f((x, γx)) = fx((x, γx)) for µ-almost every x ∈ X and each γ ∈ Γ.
There is a canonical way to write L2(V,M) as a direct integral over the bundle spaces, i.e.

L2(V,M) '
∫ ⊕
X
`2(V x) dµ(x).

For a more detailed discussion of this latter fact, see e.g. [Con79, LPV07]. More background
material in direct integral theory can e.g. be found in [Dix81].

We will make use of this decomposition in order to consider bounded, linear operators
on L2(V,M) acting as a graph operator on the fibers V x. This leads to the notion of
decomposable operators.

Definition 9.1.
Let G = (X,µ, I1, . . . , ID) be a graphing with induced measure graph (G,M), where G =
(V,E). Then, we call a bounded, linear operator H : L2(V,M) → L2(V,M) decomposable
if for µ-almost every x ∈ X, there exists a bounded, linear operator Hx : `2(V x) → `2(V x)
such that for v ∈ V x, we have (Hf)(v) = Hxfx(v). In this situation, we also use the direct
integral notation

H :=
∫ ⊕
X
Hx dµ(x).

Further, we call (Hx) a decomposition for H and we write H ' (Hx).

We still need an equivariance condition for the operators under consideration. So for x ∈ X
and γ ∈ Γ, define the unitary operator Ux,γ as

Ux,γ : `2(V x)→ `2(V γx) : (Ux,γh)((y, γ′y)) := h((γ−1y, γ−1γ′y)).

Note that we could also write x instead of γ−1y. Now, we are in the position to define a
class of operators which is suitable for our purposes.
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Definition 9.2 (Bounded random operators).
Let G = (X,µ, I1, . . . , ID) be a graphing with induced measure graph (G,M), where G =
(V,E). Suppose that H : L2(V,M) → L2(V,M) is decomposable. Then, we say that H is
a bounded random operator on the graphing G if there is a decomposition H ' (Hx)x∈X ,
Hx : `2(V x)→ `2(V x) such that

• the mapping x 7→ 〈fx, Hxgx〉`2(V x) is measurable for all f, g ∈ L2(V,M),

• there exists a constant C > 0 such that ‖Hx‖ ≤ C for µ-almost every x ∈ X,

• the equivariance condition is satisfied, i.e.

Hγx = Ux,γH
xU∗x,γ

for all x ∈ X and each γ ∈ Γ.

In this context, we say that two decompositions (Hx) and (H̃x) are equivalent if Hx = H̃x

holds true µ-almost-surely. Therefore, we will from this point on identify bounded random
operators with the equivalence class of its decompositions, i.e. H = [Hx]. For the operator
norm, we define

‖H‖ := inf
{
C ≥ 0 | [Hx] = H and ‖Hx‖ ≤ C µ-a.e.

}
.

Considering the usual addition and multiplication on the fibers, one notes that the set
N (V,G) of all bounded, random operators on the graphing (V,G,M) is an algebra. Even
more can be said.
Theorem 9.3.
The set N (V,G) is a von Neumann algebra.

Proof.
See e.g. [Con79], Theorem V.2. �

Denote by N+(V,G) the set of all non-negative, self-adjoint operators in N (V,G). Here, we
say that H ∈ N (V,G) is non-negative if the spectrum of H is contained in [0,∞). Then,
for each H ∈ N+(V,G), there is a canonical notion of a trace.

Definition 9.4 (Trace on N +(V, G)).
Let G = (X,µ, I1, . . . , ID) be a graphing with induced measure graph (G,M), where G =
(V,E). Then, for H ∈ N+(V,G), we define the trace τ(H) of H as

τ(H) :=
∫
X
〈δ(x,x), H

xδ(x,x)〉`2(V x) dµ(x),

where (Hx)x∈X is an arbitrary decomposition with H ' (Hx) and δ(x,x) : V x → {0, 1} is the
usual delta function giving weight 1 only to the element (x, x).

Note that the mapping τ : N+(V,G) → [0,∞] : H 7→ τ(H) is a weight on N (V,G), i.e. a
(positive) linear functional on N+(V,G). Following the lines of [LPS14], it can be readily
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checked that τ gives in fact rise to a trace on the von Neumann algebra N (V,G) in the
classical sense. Moreover, this trace is finite (i.e. it attaches a finite number to the identity
operator) and faithful (i.e. τ(H) = 0 implies that H = 0), see Theorem 7.6 in [LPS14]. Also,
there is a unique extension of τ to a continuous map on the whole algebra N (V,G).

Carleman operators

It turns out that the structure of the elements in N (V,G) can be described more explicitly.
More precisely, they can be represented as operators on L2(V,M) with a decomposable
kernel function. Those elements are called Carleman operators, see e.g. [Wei80, LPS14].
In the following, denote by π the measurable projection of the elements in V to its first
coordinate, i.e.

π : V → X : v = (x, γx) 7→ x.

Definition 9.5 (Carleman operators).
Let G = (X,µ, I1, . . . , ID) be a graphing with induced measure graph (G,M), where G =
(V,E). An operator H on L2(V,M) is called Carleman operator if there is a measurable
function on the space V × V with

h(v, ·) ∈ `2(V π(v))

for all v ∈ V such that for every f ∈ L2(V,M), one obtains

Hf(v) =
∑

w∈V π(v)

h(v, w) f(w) =: (Hπ(v)fπ(v))(v)

in the L2-sense. The function h is called the kernel function for the Carleman operator H.

Note that in the above definition, one can use an arbitrary decomposition (Hx)x∈X of H.
We denote by K the set of all Carleman operators in the von Neumann algebra N (V,G)
such that the kernel function h is compatible with the action of Γ on V in the sense that

h(γ · v, γ · w) = h(v, w),

where γ · v := (γx, γγ′x) for v = (x, γ′x) ∈ V .

It is known that K is a right ideal in N (V,G), see Proposition 4.4 in [LPV07]. Since the
identity operator also belongs to K with kernel function h(v, w) = 1 if v = w and h(v, w) = 0
otherwise, one directly obtains the following.

Proposition 9.6.
Let G = (X,µ, I1, . . . , ID) be a graphing with induced measure graph (G,M), where G =
(V,E). Then, every element in the von Neumann algebra N (V,G) is a Carleman operator
in K.

Note that the converse statement of the above proposition is trivial. Hence, one arrives at
N (V,G) = K. For this reason, there is no loss in generality to consider Carleman operators
as the ’right’ class of decomposable operators on graphings.
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9.2 Convergence of the IDS

The goal is to prove the IDS approximation for pattern-invariant, finite hopping range
Carleman operators on sofic graphings along weakly convergent graph sequences. The con-
vergence will be in the sense of weak convergence of (spectral) measures. In this context,
our Theorem 9.9 unifies the results in the literature in a concise and explicit way. This will
be discussed next.
The issue of spectral convergence along Benjamini-Schramm convergent graph sequences
has already been covered before, see for instance the work of Elek. In [Ele08a], the author
proves weak convergence on finite analogues towards the integrated density of states of an
element in a von Neumann algebra obtained from a GNS construction on graph sequences.
In a second paper [Ele08b], the author obtains weak convergence for the spectral distribu-
tions of discrete Laplace operators towards an element in the abstract von Neumann algebra
constructed from measurable equivalence relations, see e.g. [FM77]. In both cases, the limit
is given by a trace expression which coincides with the trace τ on the graphing von Neumann
algebra N (V,G) as introduced above. Using Carleman operators on graphings, we give an
explicit description for the arising limits. From the geometric point of view, Theorem 9.9
also extends the deterministic considerations of [ScSc12]. In the latter work, the authors
deal with more general, unbounded random operators. We will not pursue this goal in this
thesis. However, this seems to be an interesting project for future investigations.
As in the situation of (finitely generated) amenable groups, we will have our main focus
on the convergence of spectral distribution functions uniformly in all energies E ∈ R. Pre-
cisely, we show as an application of Theorem 8.2 that for self-adjoint, finite range operators
on hyperfinite graphings, one obtains indeed uniform convergence along weakly convergent,
hyperfinite graph sequences.
Passing to operators with matrix valued kernel, with only few steps we could now obtain
the Lück approximation in its original formulation (cf. [Lüc94]) for hyperfinite sequences.
This also generalizes the convergence statements along Følner sequences in finitely gen-
erated groups, see [DLM+03, Ele06b]. For length issues, we refrain from giving detailed
descriptions of those latter results, but we refer the interested reader to the mentioned
literature.

Weak convergence along Benjamini-Schramm sequences

We start with the definition of finite hopping range Carleman operators. Let G = (X,µ, Ik)
be a graphing. As usual, we denote the corresponding induced measure graph by G = (V,E)
and the finite measure on V is denoted by M . For x ∈ X, we write Gx for the subgraph of
G induced by V x ⊂ V . We say that Gx is the leaf graph for x.

Definition 9.7.
Let G = (X,µ, I1, . . . , ID) be a graphing with induced measure graph (G,M), and G = (V,E).
Assume that H is a Carleman operator on L2(V,M). We say that H is of finite hopping
range if there is a constant R̃ ∈ N such that for the kernel function h of H, one has
h(v, w) = 0 whenever π(v) = π(w) and dπ(v)(v, w) > R̃ for v, w ∈ V , where dπ(v) is the
canonical path metric in Gπ(v).
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In the following, we assume that G is a sofic graphing with approximating sequence (Gn) :=
(Vn, En). Further, denote by H a Carleman operator on L2(V,M) with finite hopping range
R ∈ N. Further, we require H to satisfy the following invariance condition. There is a
constant R > 0 such that for all pairs v, w ∈ V satisfying BGπ(v)

2R (v) ' BGπ(w)
2R (w) via some

rooted graph isomorphism ϕ, we have

h(z, z′) = h(ϕ(z), ϕ(z′))

for all choices of z, z′ in the vertex set of BGπ(v)
R (v). This essentially means that the coeffi-

cients of the operator depend only on the local geometric patterns occurring in the graphing.
In the following, we will refer to those elements as pattern-invariant, finite hopping range
Carleman operators. Then for large enough n ∈ N, there is a canonical way to define finite
analogues of H on `2(Vn). Let us describe this construction in detail.

Fix an arbitrary ε > 0. Since (Gn) is weakly convergent, we find some number N(ε) ∈ N
large enough such that for all α ∈ AD with ρ(α) ≤ 4R, we have that∣∣p(Gn, α)− µ(Xα)

∣∣ < ε/D4R+1

whenever n ≥ N(ε), where Xα := {x ∈ X |BG
ρ(α)((x, x)) ' α}. Decreasing ε if necessary

(thus increasing N(ε)), we have that for n ≥ N(ε) that the sets

T (Gn, α) :=
{
a ∈ Vn |BGn

ρ(α)(a) ' α
}

are non-empty for all α ∈ ĀD4R, where the latter set denotes the collection of those α ∈ AD
with ρ(α) ≤ 4R and µ(Xα) > 0. We define the following operators on the graphs Gn.
Namely,

Hn : `2(Vn)→ `2(Vn) : (Hnu)(a) :=
∑
b∈Vn

hn(a, b)u(b),

where the kernel function hn(a, b) is given by

hn(a, b) :=


hx(ϕ(a), ϕ(b)), ∃ v ∈ Vn, x ∈ X : a, b ∈ BGn

R (v),
BGn

4R (v) 'ϕ BGx
4R ((x, x)) ' α, µ(Xα) > 0

0, else.

We need to show that the kernel functions are well-defined, i.e. that they do not depend on
the choices for v ∈ Vn and x ∈ X.
Lemma 9.8.
Suppose that the operators (Hn) (n ∈ N) are as described above. Then, for every n ∈ N
and for all vertices a, b ∈ Vn, the value hn(a, b) does not depend on the choice of the v ∈ Vn
given in the above definition.

Proof.
For simplicity, we use in this proof the notation BG

R(v) both for the subgraph in G induced
by the set of vertices with distance at most R from v, as well as for the underlying vertex
set itself.
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Fix n ∈ N and take a, b ∈ Vn. Let v and v′ be elements in Vn with associated rooted graph
isomorphisms ϕ and ϕ′, as well as with elements x, x′ ∈ X as given in the definition of the
value hn(a, b). Due to the triangle inequality, we can compute for w ∈ BGn

2R (v)

dGn(w, v′) ≤ dGn(w, v) + dGn(v, a) + dGn(a, v′) ≤ 4R

and thus, BGn
2R (v) ⊆ BGn

4R (v′). Now, set

Φ : ϕ′
(
BGn

2R (v)
)
→ ϕ

(
BGn

2R (v)
)

: Φ := ϕ ◦
(
ϕ
′−1
|ϕ′(BGn2R (v))

)
.

This is a rooted graph isomorphism of induced subgraphs in the measure graph induced by
the graphing. By definition of ϕ′, we have

ϕ′(a), ϕ′(b) ∈ ϕ′(BGn
R (v)) = BGx

′

R (ϕ′(v)).

By the invariance property of the kernel function h of the graphing, we obtain

h(ϕ′(a), ϕ′(b)) = h(Φ ◦ ϕ′(a),Φ ◦ ϕ′(b)) = h(ϕ(a), ϕ(b)).

This shows our claim. �

The previous lemma shows that if H is a pattern-invariant, finite hopping range Carleman
operator, then the operator Hn is a well-defined, finite dimensional version of H on `2(Vn).
Even more can be deduced. Namely, if H is self-adjoint (symmetric), so is Hn as well
for large enough n. So assuming that H is a finite hopping range, self-adjoint Carleman
operator and if (Hn) are the approximating operators along some graph sequence converging
to the graphing, we can define the empirical eigenvalue distributions of the Hn as follows.
Set

Nn : R→ [0, 1] : Nn(E) := |{λ ≤ E |λ is eigenvalue of Hn|
|Vn|

and
N∗ : R→ [0, 1] : N∗(E) := τ

(
1]−∞,E](H)

)
,

where τ is the trace on N+(V,G) introduced above and 1]−∞,E](H) denotes the spectral
projection of the operator H to the real set ]−∞, E], see also [Wei80]. As in Chapter 7, we
call N∗ the integrated density of states (IDS) for the operator H. Note that for each n ∈ N,
the functions Nn are elements of the Banach space Cbr(R) of all bounded, right-continuous
functions endowed with the sup-norm ‖ · ‖∞.

Theorem 9.9 (Weak IDS convergence).
Let G = (X,µ, I1, . . . , ID) be a sofic graphing with induced measure graph (G,M), where
G = (V,E). Further, let (Gn) = (Vn, En) be a weakly convergent approximating sequence.
Now, assume that H = [Hx]x∈X is a self-adjoint, pattern-invariant Carleman operator on
L2(V,M) which is of finite hopping range with parameter R̃ ∈ N. Then, for all bounded,
continuous, real-valued functions f defined on the spectrum σ(H) of H, one has

lim
n→∞

|Vn|−1 ∑
a∈Vn
〈δa, f(Hn)δa〉`2(Vn) =

∫
X
〈δ(x,x), f(Hx)δ(x,x)〉`2(V x) dµ(x),

where all expressions are defined according to the continuous spectral calculus for bounded,
self-adjoint operators.
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The above theorem shows weak convergence of the empirical spectral measures to the density
of states measure of the limit operator H. It follows from a basic result in measure theory
that this implies the convergence of the spectral distribution functions in all continuity
points E of N∗.

Corollary 9.10.
In the situation of the previous theorem, we obtain

lim
n→∞

Nn(E) = N∗(E)

for all continuity points E of N∗, where the Nn(·) are the empirical eigenvalue distribution
functions for the operators Hn and N∗(·) denotes the IDS of the operator H.

Proof.
This follows from Theorem 9.9 in combination with Satz 4.12 in [Els05]. �

We now give the proof of Theorem 9.9.

Proof (of Theorem 9.9).
We first prove the theorem for the function f with f(x) = xk for all x ∈ σ(H), where k ∈ N
is an integer number. Then note that

f(H) = Hk := H ◦ · · · ◦H︸ ︷︷ ︸
k

.

As N (V,G) is an algebra, f(H) is also a Carleman operator. Further, computing the
kernel by matrix multiplication yields that f(H) is of finite hopping range with parameter
R̃′ := k · R̃. For the weakly convergent graph sequence (Gn), construct the operators f(Hn)
from f(H) as described above. Then for all large enough n ∈ N and a ∈ Vn, the value
θn(a) := 〈δa, Hk

nδa〉`2(Vn) only depends on the local geometry around a in Gn. Indeed, since
H is pattern-invariant, there is a constant R ∈ N depending on R̃′ such that if α ∈ AD has
radius ρ(α) = 4R, then all a ∈ T (Gn, α) give rise to the same value θn(a). The analogous
assertion holds true for all x ∈ X, i.e. θ(x) := 〈δ(x,x), H

kδ(x,x)〉`2(V x) is constant on each set
Xα of positive measure, where α ∈ AD has radius ρ(α) = 4R. Moreover, it follows from
the construction of the operators f(Hn) that θn(a) = θ(x) =: θα if there is some α ∈ AD
of radius ρ(α) = 4R such that a ∈ T (Gn, α), x ∈ Xα and µ(Xα) > 0. Due to the weak
convergence of the sequence (Gn) and the connectedness of the Gn, we obtain

lim
n→∞

|Vn|−1 ∑
a∈Vn
〈δa, f(Hn)δa〉`2(Vn) = lim

n→∞

∑
α∈AD
ρ(α)=4R

|T (Gn, α)|
|Vn|

θα

=
∑

α∈AD,ρ(α)=4R
µ(Xα)>0

θα µ(Xα)

=
∫
X
〈δ(x,x), f(Hx)δ(x,x)〉`2(V x) dµ(x). (9.1)

This shows the claim for f(x) = xk. By linearity, we can extend the statement to the space
P(H) consisting of all real coefficient polynomials defined on σ(H). Since the latter set is
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compact, we obtain from the Stone-Weierstraß Theorem (cf. [Wer00], Satz VIII.4.7) that
P(H) is dense in the set of all bounded, continuous functions on σ(H). We conclude that
the limit relation (9.1) also holds true for general bounded, continuous functions on σ(H).�

As mentioned before, we are interested in the question whether we can obtain uniform con-
vergence of the eigenvalue distribution functions Nn(E). It is well-known that the distribu-
tion functions of a sequence of finite measures converges uniformly whenever the measures
converge weakly and the distribution functions converge pointwise, cf. e.g. Lemma 6.3 in
[LV09]. So knowing that weak convergence holds true, we obtain even uniform convergence
of Nn(·) to N∗(·) if we can show

lim
n→∞

|Vn|−1 ∑
a∈Vn
〈δa,1{E}(Hn) δa〉`2(Vn) =

∫
X
〈δ(x,x),1{E}(Hx)δ(x,x)〉`2(V x) dµ(x) (9.2)

for all energies E ∈ R, where for n ∈ N and x ∈ X, the operators 1{E}(Hn) and 1{E}(Hx)
are defined according to the measurable spectral calculus. Note that here,∑

a∈Vn
〈δa,1{E}(Hn) δa〉`2(Vn) = tr

(
1{E}(Hn)

)
= dim

(
ker(Hn − E)

)
for all n ∈ N and for every E ∈ R, where tr(·) denotes the standard trace for matrices. The
question whether the limit relation (9.2) holds true for arbitrary weakly convergent graph
sequences is known as the Lück conjecture for Benjamini-Schramm sequences. Using the
Banach space almost-additive convergence theorem from the previous section (Theorem 8.2),
we solve this question for hyperfinite graph sequences in the next subsection. The issue of
uniform convergence for possibly non-hyperfinite, weakly convergent graph sequences (Lück
approximation for non-hyperfinite graph sequences) is an open problem. A partial answer
is given by Thom in [Tho08] (Theorem 4.3), where it is shown that uniform convergence
holds true along sofic approximations of groups for operators with algebraic integers as
matrix coefficients. The extension of this latter statement to general weakly convergent
graph sequences was realized in [ATV13], Theorem 4. The method of the corresponding
proofs is given by diophantine approximation techniques. However, this algebraic approach
cannot be used for operators with arbitrary complex coefficients. Thus, it is an interesting
(and seemingly hard) problem to use geometric tools to prove the Lück conjecture for graph
sequences in its full generality.

Uniform convergence in the hyperfinite case

The goal of the following subsection is to prove the uniform approximation of the integrated
density of states (IDS) of pattern-invariant, finite hopping range Carleman operators on
hyperfinite sofic graphings. We do so by applying our almost-additive Banach space-valued
ergodic theorem, Theorem 8.2. The corresponding Theorem 9.12 has essentially been stated
before as a convergence result for strongly convergent graph sequences, cf. [Ele08a], Propo-
sition 3.2. However, our method of proof detects the underlying combinatorial structure of
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spectral convergence assertions of this kind. Moreover, we obtain uniform approximation in
the more natural formulation of weakly convergent, hyperfinite graph sequences. To show
almost-additivity, we stick to the arguments given in [Ele08a]. For the sake of completeness,
we sketch the major steps in the proof and emphasize the use of our Banach space-valued
convergence theorem. We start with the definition of hyperfinite sofic graphings.

Definition 9.11 (Sofic hyperfinite graphings).
Let G be a sofic graphing. Then, we say that G is hyperfinite if it is a limit graphing of some
hyperfinite, weakly convergent graph sequence (Gn).

Note that one may also define hyperfiniteness for general graphings without referring to
approximating sequences, see e.g. [KM04, Ele12]. However, the context of sofic graphings
is absolutely sufficient for our purposes. In this situation the graphing will be hyperfinite
if and only if one/all approximating sequences are hyperfinite, cf. Theorem 1 in [Ele12] or
Theorem 1.1 in [Sch08].

The uniform IDS approximation theorem now reads as follows.

Theorem 9.12 (Uniform IDS approximation for hyperfinite graphings).
Let G = (X,µ, I1, . . . , ID) be a sofic graphing with induced measure graph (G,M), where
G = (V,E) and τ is the canonical trace on the von Neumann algebra N (V,G). Suppose
that (Gn) := (Vn, En) is an approximating sequence for G. Then, for every self-adjoint,
pattern-invariant Carleman operator H = [Hx]x∈X on L2(V,M) which is of finite hopping
range, one obtains

lim
n→∞

∥∥Nn −N∗
∥∥
∞ = 0,

where the Nn ∈ Cbr(R) are the empirical normalized spectral distribution functions corre-
sponding to the finite analogues (Hn) and N∗(E) := τ(1]−∞,E](E)).

Proof.
For n ∈ N and every subset Q ⊆ Vn, we denote by HQ

n the induced operator

`2(Q)→ `2(Q) : HQ
n := pQHn iQ,

where iQ and pQ are the canonical injection and projection respectively, see also Chapter 6.
Further, denote by G(n,Q) the subgraph of Gn induced by the set Q ⊆ Vn. We set

SD :=
{
G(n,Q) |n ∈ N, Q ⊆ Vn

}
and define the mapping

F : SD → (Cbr(R), ‖ · ‖∞) : F (G(n,Q))(E) :=
∣∣{λ ≤ E |λ eigenvalue of HQ

n

}∣∣.
We claim that F restricted to S ′ := {Gn |n ∈ N} is almost-additive in the sense of Def-
inition 8.1. Indeed, for m,n ∈ N, we find pm, qn ∈ N such that pm|Vm| = qn|Vn| and we
can assume that the two graphs pmGm and qnGn are defined on the same vertex set V
labeled with numbers {1, . . . , |V |}. Further, define in a canonical way H ′m :=

⊕
pm Hm and
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H ′n :=
⊕
qn Hn. It follows from the uniform rank estimate (cf. e.g. [LSV11], Proposition 7.2

or [Ele08a], Lemma 3.6) that there is a constant C > 0 depending on R and on D such that

rank
(
H ′m −H ′n

)
< C δV (pmGm, qnGn) |V |.

Hence (cf. e.g. [Ele08a], Lemma 3.5), one arrives at

‖F ′[H ′n]− F ′[H ′m]‖∞ ≤ C δV (pmGm, qnGn) |V |,

where F ′[H ′n](E) := |{λ ≤ E |λ eigenvalue of H ′n}| for n ∈ N. By passing to infima, we
conclude that the same holds true when replacing the distance function δV by the distance
function δS . By the definition of F , we also have F ′[H ′n] = pnF (Gn) for all n ∈ N. Therefore,
F is almost-additive on S ′. Now, by Theorem 8.2, there must be some F ∗ ∈ Cbr(R) such
that

lim
n→∞

‖Nn − F ∗‖∞ = lim
n→∞

∥∥∥∥F (Gn)
|Vn|

− F ∗
∥∥∥∥
∞

= 0.

This shows the claimed convergence. We still need to identify the limit F ∗ as N∗. Note that
by Theorem 9.9, the Nn converge to N∗ weakly, i.e. limnNn(E) = N∗(E) in all continuity
points E of N∗. Thus F ∗(E) = N∗(E) for all those points E ∈ R. Due to monotonicity,
there are at most countably many points of discontinuity of N∗ and for each such point E0,
there is a sequence En of continuity points converging to E0 from the right. Since F ∗ is
right-continuous, we arrive at

N∗(E0) = lim
n→∞

N∗(En) = lim
n→∞

F ∗(En) = F ∗(E0).

Thus, we have finished the proof of the theorem. �





10 The Ihara Zeta function for graphings

In this chapter, we define the Ihara Zeta function for graphings. In its original form, this
Zeta function has been introduced by Ihara in order to count prime elements in certain p-
adic groups, see [Iha66b, Iha66a]. Some years later it was discovered by Sunada that there
is a natural extension of this concept to finite, regular graphs. Further results concerning the
Ihara Zeta function for finite graphs can be found in [Has89, Has90, Has92, Has93, KS00].
In the past decade, various attempts have been made to define the Ihara Zeta function for
infinite graphs. For certain periodic graphs, see for instance the works [CMS01, GIL08].
Another approach for weighted graphs can be found in [Dei14]. Recently, it has been shown
by Lenz, Schmidt and the author of this thesis that there is a canonical way to define the
Ihara Zeta function for the very general class of measure graphs over a groupoid [LPS14].
This gives in particular a natural way to define a Zeta function for graphings and this in-
cludes the notions of [CMS01, GŻ04, GIL08, GIL09] as special cases. Further, the article
[LPS14] extends some classical results to a very general setting, amongst them determinant
formulae and convergence statements.
Here, we will prove the approximation of the Ihara Zeta function for sofic graphings by
normalized versions for elements in a weakly convergent graph sequence. Since the geo-
metric quantities under considerations depend only on local patterns, we obtain uniform
convergence on compact sets for all (and in particular, for possibly non-hyperfinite) graph
sequences. The corresponding Theorem 10.5 significantly generalizes the earlier results.
In fact, it contains all the approximation statements in [CMS02, GŻ04, GIL08, GIL09] as
special cases. Moreover, we give an explicit construction of an approximation sequence for
countable graphs endowed with a free, co-finite action by a countable sofic group of au-
tomorphisms. This includes and unifies important cases given in the literature, i.e. if the
subgroup Γ of the automorphisms is amenable, cf. [GIL08], or if Γ is residually finite and
acts on a regular graph, cf. [CMS02].
Theorem 5.3 of [LPS14] expresses the Ihara Zeta function in terms of a determinant formula.
Thus, approximation results for the Zeta function can also be interpreted as convergence
statements for an abstract notion of determinant. Hence, the question arises if one can prove
approximating statements for other kinds of determinants as well. An example is given in
Theorem 1.4 of [LT14]. There, the authors prove a corresponding result for the Fuglede-
Kadison determinant on the von Neumann algebra associated with a countable, amenable
group Γ. The approximation is attained along normalized finite analogues induced by a Føl-
ner sequence in Γ. For this notion of determinant, one has to cope with singularity issues
in the case of non-invertible operators. Thus, the extension of this result to general (even
hyperfinite) weakly convergent sequences seems to be a non-trivial problem.
The results of this chapter are contained in [LPS14].

Let G = (V,E) be a graph, where as before, E ⊆ V × V is a symmmetric set. If e =

135
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(v1, v2) ∈ E, then we say that o(e) := v1 is the origin of e and t(e) := v2 is the terminus of
e. A closed path of length l ∈ N in G is a sequence (e1, e2, . . . , el) of edges ej ∈ E such that
t(ej) = o(ej+1) for all 1 ≤ j ≤ l − 1 and t(el) = o(e1). In order to fix the rules for counting
cycles in a graph, we need to define some properties for closed paths.

Definition 10.1 (Properties of closed paths).
Let G = (V,E) be a graph and assume that P := (e1, e2, . . . , el) is a closed path of length
l ∈ N in G. Then

• we say that P is backtracking if there is some 1 ≤ j ≤ l−1 such that ej+1 = ej, where
ej is the edge linking the vertices of ej with interchanged roles for its origin and its
terminus. A closed path with no backtracking is said to be proper;

• we say that P has a tail if there is a number k ∈ N such that ej = el−j+1 for every
1 ≤ j ≤ k;

• we say that P is primitive if it is not obtained by going k ≥ 2 times around a shorter
closed path;

• we say that P is reduced if it is neither backtracking nor has a tail;

• we say that P is a prime cycle if it is reduced and primitive.

In the following, we denote the set of prime cycles of finite length in a graph by P. Note
that by ’forgetting’ the starting point of some element P ∈ P, one may consider equivalence
classes [P ] of prime cycles P . With a slight abuse of notation, we will then write [P ] ∈ P in
order to emphasize that we are interested in prime cycles ’modulo’ their starting points.

We now have all necessary tools at our disposal in order to define the Ihara Zeta function for
finite graphs. The original definition was given by the following Euler product formula.

Definition 10.2 (Ihara Zeta function for finite graphs).
Let G = (V,E) be a finite graph with vertex degree bound D ∈ N. Then, the Ihara Zeta
function for G is defined as

ZG(u) :=
∏

[P ]∈P

(
1− ul(P )

)−1
,

where l(P ) is the length of the cycles represented by [P ] and u ∈ C with |u| < (D − 1)−1.

Obviously, one has to verify that the above function is well-defined, i.e. that for u ∈ C with
|u| < (D−1)−1 the above product exists. This can be seen by an alternative representation
of ZG(u). Namely, ZG(u) can equivalently be written as an exponential function involving
the number of finite closed paths in G. For a fixed l ∈ N and p ∈ V , we denote by Nl(p)
the number of reduced (not necessarily primitive) closed paths of length l in G which start
and end at p. We further set

Nl :=
∑
p∈V

Nl(p)

for l ∈ N. Then, the following holds true.
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Proposition 10.3 (Exp-representation of ZG).
Let G = (V,E) be a finite graph with vertex degree bound D ∈ N. Then, the Ihara Zeta
function for G can be written as

ZG(u) = exp
( ∞∑
l=1

Nl

l
ul
)

for u ∈ C with |u| < (D − 1)−1.

Proof.
We define the function

ζG(u) := exp

∑
l≥1

Nl

l
ul

 , |u| < (D − 1)−1,

where Nl is the number of closed paths of length l in G without tail and without back-
tracking. Note that for |u| < (D − 1)−1, there exists some D∗ ∈ R with D∗ > D − 1 and
|u| ≤ D∗−1. Since Nl ≤ D(D − 1)l−1 we get

Nl |u|l ≤
D

D∗
·
(
D − 1
D∗

)l−1

for all l ≥ 1. Estimating with the geometric series, we observe that the series occurring in
the definition of ζG(u) exists. Further, we compute

log ζG(u) =
∑
l≥1

Nl

l
ul =

∑
reduced C

ul(C)

l(C)

(passing to primitive loops) =
∑
P∈P

∑
j≥1

ul(P
j)

l(P j) =
∑
P∈P

∑
j≥1

ujl(P )

jl(P )

(passing to primitive classes) =
∑

[P ]∈P

∑
j≥1

ujl(P )

j

(logarithmic series) = −
∑

[P ]∈P
log

(
1− ul(P )

)

= log

 ∏
[P ]∈P

(
1− ul(P )

)−1
 ,

where l(C) and l(P ) denote the lengths of the closed paths C and P respectively. Taking
exponentials yields ζG(u) = ZG(u). This finishes the proof. �

Note that for infinite graphs, there might exist lengths l ∈ N such that Nl =∞. Hence, the
corresponding Ihara Zeta function cannot be just defined in the same manner as in the finite
case. We will deal with this issue by normalization. Precisely, for a finite graph G = (V,E),
we define the normalized version of ZG(u) as

ZG,norm(u) := exp
( ∞∑
l=1

Nl

|V |
ul

l

)
.
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We immediately observe that ZG,norm(u)|V | = ZG(u). Hence, the values ZG,norm(u) could
be interpreted as some |V |-th root of the values ZG(u). However, taking roots in the field
of complex numbers, we might find several solutions. Therefore, we refrain from giving a
definition involving rational (non-integer) powers of ZG(u).

Now, one idea to define the Ihara Zeta function for a (countably) infinite graph G = (V,E)
(with vertex degree bound D ∈ N) is to exhaust G by induced subgraphs (Gn) of finite
volume and to verify that the limit

ZG(u) := lim
n→∞

ZGn,norm(u)

exists in a suitable topology. In [GIL09], the authors prove the existence of this limit
along some Følner type sequence (Gn) = (Vn, En) of finite, self-similar graphs. To do
so, the authors show that there is a notion of a trace τ defined for certain finite hopping
range operators on `2(V ) such that for each such operator H, one obtains τ from the limit
process

τ(H) := lim
n→∞

tr
(
P (Vn)H

)
|Vn|

,

where P (Vn)H = pVnHiVn denotes the canonical projection of H to `2(Vn) and tr(·) stands
for the natural finite dimensional trace. It is not hard to see that the latter limit relation
implies that the sequence (Gn) is in fact weakly convergent. These examples raise the ques-
tion whether it is possible to extend this definition to a Zeta function for limit graphings. It
turns out that this is true. We can even follow the more elegant way to define the Ihara Zeta
function for arbitrary graphings and we show afterwards that in the sofic situation, these
functions are approximated in uniform convergence on compact sets by the corresponding
normalized versions of the elements of the approximating sequence (Gn).

Definition 10.4 (Ihara Zeta function for graphings).
Let G = (X,µ, I1, . . . , ID) be a graphing with induced measure graph (G,M), where G =
(V,E). Then we define the Ihara Zeta function ZG for this graphing as

ZG(u) := exp
( ∞∑
l=1

N l

l
ul
)
, u ∈ C, |u| < (D − 1)−1,

where
N l :=

∫
X
Nl(x) dµ(x)

and Nl(x) denotes the number of reduced closed paths of length l in G starting and ending
at (x, x) ∈ V .

Remark.
Note that the function Nl(x) is measurable: as the connected components of the graphing
are infinite, the value Nl(x) just depends on the geometry of the ball BG

l+1((x, x)) as induced
subgraph of the graph G induced by the graphing G. Thus, for all α ∈ AD with ρ(α) ≥ l+1,
the mapping Nl(x) is constant on the set

Xα =
{
x ∈ X |BG

ρ(α)((x, x)) ' α
}
,
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which has already been defined in Chapter 7. Recall that those latter setsXα are measurable
by the construction of graphings, see e.g. [LPS14].
Furthermore, we have N l <∞ for all l ∈ N, as Nl(x) ≤ D(D− 1)l−1 for all x ∈ X and µ is
a probability measure.

10.1 Approximation of sofic graphings

We can immediately state and prove the approximation theorem for the Ihara Zeta functions
associated with a sofic graphing. As only local quantities need to be considered, we do
not have to impose amenability/hyperfiniteness conditions on the graphing. We have seen
above that Ihara Zeta functions for infinite graphs can be defined via convergence of finite,
normalized analogues. Moreover, there are infinite graphs with a natural definition for its
Ihara Zeta function. For many of these functions, one can find sequences of finite graphs such
that the associated normalized Ihara Zeta functions converge to a notion of Zeta function
for the original graph in the topology of uniform convergence on compact sets. For instance
in [CMS02], the authors show compact convergence along residually finite approximations of
groups acting freely on regular graphs. A similar approach involving the integrated density
of states of Markov operators on regular graphs can be found in [GŻ04]. An approximation
theorem for graphs with a free action by countable amenable groups has been shown in
[GIL08].
It turns out that all those limit functions can be interpreted as the Ihara Zeta function for
some sofic graphing and the underlying approximation is via weak convergence of graph
sequences, see [LPS14]. Hence, considering the graphs in [CMS02, GŻ04, GIL08, GIL09]
as sofic graphings, we can interpret our approximation theorem, Theorem 10.5 as a major
extension of the mentioned convergence results. The identification of the corresponding
Zeta functions with a Zeta function of a limit graphing is straight forward in all cases where
the Ihara Zeta function is defined via a limit relation. For other notions, this problem will
in general be more difficult. We will show how to do this for periodic graphs in the next
section.

Let us state and prove the main theorem of this section. It shows that the Ihara Zeta
function satisfies a continuity property with respect to weak convergence of graphs.

Theorem 10.5 (Approximation of the Ihara Zeta function).
Let G = (X,µ, I1, . . . , ID) be a sofic graphing with induced measure graph (G,M), where
G = (V,E). Moreover, let (Gn) = (Vn, En) be an approximating sequence of finite, connected
graphs with uniform vertex degree bound D ∈ N. If ZG denotes the Ihara Zeta function of
the graphing, then

lim
n→∞

ZGn,norm(u) = ZG(u)

in the topology of uniform convergence on compact sets in the set of numbers u ∈ C with
|u| < (D − 1)−1.

Proof.
Note that by dominated convergence and by the continuity of the exponential function, it
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is sufficient to check that
lim
n→∞

Nn
l

|Vn|
= N l

for every length l ∈ N. Here, N l is defined as in the definition of ZG (see above) and

Nn
l :=

∑
v∈Vn

Nn
l (v),

where Nn
l (v) denotes the number of reduced closed paths of length l in Gn which start and

finish in v. So fix l ∈ N and an arbitrary l′ ≥ l/2 + 1. Since the connected components of
the graphing G are infinite and as

N l =
∫
X
Nl(x) dµ(x)

with Nl(x) being constant on all sets Xα for α ∈ AD with ρ(α) = l′, we obtain

N l =
∑
α∈AD
ρ(α)=l′

Nl(α)µ(Xα).

Here, Nl(α) denotes the number of reduced closed paths of length l starting and ending at
the root in the class α. Since Nn

l is a local quantity and as the Gn are connected, we have

Nn
l

|Vn|
=

∑
α∈AD
ρ(α)=l′

Nl(α) p(Gn, α)

for all but finitely many n ∈ N. Now (Gn) is an approximating sequence and hence,

lim
n→∞

p(Gn, α) = µ(Xα)

for all α ∈ AD. Hence, the convergence follows from the above representations of N l and
Nn
l /|Vn| as finite sums. �

Remark.
The above theorem is also given in Theorem 9.5 of [LPS14]. There, the main ingredients
for the proof are the compactness of the space of invariant, normalized measures on X, as
well as the continuity of the Ihara Zeta function with respect to the weak topology of finite
measures. For details, we refer the reader to the Theorems 3.2 and 9.5 in [LPS14].

10.2 Approximation for periodic graphs

In this section, we consider the class of countably infinite, connected graphs G = (V,E)
with a countable subgroup Γ of its automorphisms Aut(G) acting freely and co-finitely on
G. Precisely, this means that the Γ-action does not have non-trivial fixed points and that
there is a finite fundamental domain F ⊆ V for the action of Γ on G. We show here that if
Γ is sofic, then the Ihara Zeta function ZG(u) for G is equal to the Ihara Zeta function for a
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sofic graphing. To do so, we explicitely construct weakly convergent sequences (Gn) of finite
graphs recovering the graph statistics of G in Theorem 10.8. Then, Theorem 10.5 implies
the approximation of ZG(u) by the normalized Zeta functions associated with the graphs
Gn, cf. Theorem 10.7. As mentioned before, the class of sofic groups is very large and it is
not known whether there is a non-sofic group. A nice survey on the topic can be e.g. found in
[Pes08]. In non-amenable situations, subgraph exhaustions of G are no sofic approximations.
Consequently, a continuity result for those sequences cannot be expected. On the other
hand, Følner exhaustions in amenable (hyperfinite) graphs are indeed sofic approximations.
Therefore, Theorem 10.7 is a significant generalization of the convergence theorem for graphs
endowed with an automorphism action through amenable groups in [GIL08]. Moreover,
Schreier graph approximations in residually finite groups are sofic approximations as well.
Hence, our Theorem 10.7 substantially extends the convergence statement of [CMS02] for
regular graphs endowed with a free and co-finite action by some countable residually finite
automorphism group.

For α ∈ AD and some fundamental domain F ⊆ V for the action of Γ on G, we define

Fα := {f ∈ F |BX
ρ(α)(f) ' α}.

Then, it is natural to denote the Ihara Zeta function for the graph G by

ZG(u) := exp
( ∞∑
l=1

N l

l
ul
)

for u ∈ C with |u| < (D − 1)−1, where

N l :=
∑
α∈AD
ρ(α)=l′

|Fα|Nl(α)

for some (every) l′ ≥ l/2 + 1, see also [LPS14]. Here again, Nl(α) is the number of reduced
closed paths of length l which start and end at the root of α. It is easy to see that the
definition of ZG is independent of the choice of F . Moreover, we would like to point out
that it is not hard to define the Ihara Zeta function also in the case of possibly non-free
actions with finite stabilizer sets for all points f ∈ F . Moreover, it was shown by Schmidt
that this notion corresponds to the usual definition via the Euler product representation, cf.
Proposition 2.10 in [LPS14]. Thus, we work indeed with the ’right’ notion of Zeta function.
However, since our approximation result (and likewise all mentioned results in the literature)
hold only true for free actions, we prefer sticking to this situation.

For a precise definition of sofic groups, we need a slight piece of preparation. For N ∈ N,
we denote by Sym(N) the symmetric group over {1, . . . , N} with unit element IdN . This
group is naturally endowed with the normalized Hamming distance dH , defined as

dH(σ, τ) :=
#
{
a ∈ {1, . . . , N} |σ(a) 6= τ(a)

}
N

for σ, τ ∈ Sym(N). One can check that dH is a metric on Sym(N), see e.g. [Pes08]. We
now define sofic groups via almost-homomorphisms with respect to the Hamming distance
dH .
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Definition 10.6 (Sofic groups).
A group Γ with unit element e is called sofic if for every finite set T ⊆ Γ and for each ε > 0,
there exist N ∈ N, along with a mapping

σ : T → Sym(N) : s 7→ σs

such that

(i) if s, t, st ∈ T , then dH(σsσt, σst) < ε,

(ii) if e ∈ T , then dH(σe, Idn) < ε,

(iii) if s, t ∈ T with s 6= t, then dH(σs, σt) ≥ 1− ε.

If for T and ε, there is some map σ satisfying (i) and (ii), then we say that σ is an almost
homomorphism for (T, ε).

Our goal is to prove the following theorem.

Theorem 10.7 (Approximation of the Ihara Zeta function for periodic graphs).
Let G be a countably infinite graph with vertex degree bound D ∈ N. Further, assume
that Γ ≤ Aut(G) is a countable sofic group acting freely and co-finitely on G. Denote by
F some finite fundamental domain. Then, there is a weakly convergent graph sequence
Gn = (Vn, En) such that

lim
n→∞

Z
|F |
Gn,norm

(u) = ZG(u)

in the topology of uniform convergence on compact subsets in the set of u ∈ C with |u| <
(D − 1)−1.

The main task in the proof of the above theorem is to construct a weakly convergent graph
sequence (Gn) = (Vn, En) such that

lim
n→∞

p(Gn, α) = |Fα|
|F |

for all α ∈ AD. It will follow then from Theorem 10.5 that the functions ZGn,norm(·)
converge to the Ihara Zeta function ZG(·) of the limit graphing G associated to the sequence
(Gn). Since ZG = Z

|F |
G (which is due to the finite sum representation for the values N l),

Theorem 10.7 will be a consequence of the following theorem.

Theorem 10.8.
Let G be a countably infinite graph with vertex degree bound D ∈ N. Further, assume that
Γ ≤ Aut(G) is a countable sofic group acting freely and co-finitely on G = (V,E). Let
F ⊆ V be a finite fundamental domain for the Γ-action on G. Then, there is a weakly
convergent graph sequence Gn = (Vn, En) such that

lim
n→∞

p(Gn, α) = |Fα|
|F |

for every α ∈ AD, where Fα := {f ∈ F |BG
ρ(α)(f) ' α}.
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Proof.
Take r ∈ N, as well as δ > 0 and pick a fundamental domain F . It is our goal to construct
a finite graph Gr,δ such that ∣∣p(Gr,δ, α)− |Fα|/|F |

∣∣ < δ (10.1)

holds true for every α ∈ ADr . Now for every v ∈ V , there are unique elements γv ∈ Γ and
f ∈ F such that v = γvf . We write π : V → F for the corresponding covering map with
π(v) := f . Set

T :=
{
γv
∣∣ v ∈ ⋃

f∈F
BG
r (f)

}
.

Since the action of Γ on G is free, this latter set is finite and we have e ∈ T . Next, we define

T̃ := TT ∪ (TT )−1 ∪ T−1T ∪ TT−1.

Note that T ∪ T−1 ⊆ T̃ , which is due to e ∈ T . Set ε := δ/(2|T̃ |2). Since Γ is sofic,
we find an N ∈ N depending on T̃ and ε, along with a map σ : T̃ → Sym(N) fulfilling
the properties (i), (ii) and (iii) of Definition 10.6. This puts us in the position to define
the graph Gr,δ = (Vr,δ, Er,δ) through an algebraic equality involving σ. To do so, define
first Vr,δ := F × {1, 2, . . . , N}. Further, two vertices (f, i) and (g, j) with f, g ∈ F and
i, j ∈ {1, 2, . . . , N} shall be linked by an edge if and only if there are elements γf , γg ∈ Γ
such that γff ∼ γgg in G and such that the equation

σγf (i) = σγg(j)

holds. Now, for each 1 ≤ i ≤ N , we define

ϕi : BG
r (F )→ Vr,δ : v 7→ (π(v), σγ−1

v
(i)),

where we have set BG
r (F ) :=

⋃
f B

G
r (f). The key observation for the proof of inequal-

ity (10.1) is the following.

Claim: For at least (1 − δ)N of the numbers in {1, 2, . . . , N}, the map ϕi is a graph
isomorphism onto its image in Vr,δ.

Let us prove the claim. We denote by Ñ the set of those numbers i such that the following
properties are fulfilled at the same time.

(a) We have σγ
(
σγ′(i)

)
= σγγ′(i) whenever γ, γ′ ∈ T ∪ T−1. We remind the reader at this

point that T ∪ T−1 ⊆ T̃ and by the definition of T̃ , it is also true that
(
T ∪ T−1)2 ⊆ T̃ .

(b) For all γ, γ′ ∈ T̃ , the equation σγ(i) = σγ′(i) implies γ = γ′.

Now, we use the fact that Γ is a sofic group. We will show that up to a portion of δ, the
properties (a) and (b) are satisfied for the numbers i. Indeed, by item (i) of Definition 10.6,
there are at most ε|T̃ |2N indices violating property (a) and by item (iii) of Definition 10.6,
there are not more than ε|T̃ |2N indices violating property (b). Hence, we arrive at

|Ñ | ≥ (1− 2ε|T̃ |2)N = (1− δ)N,
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where the latter equality is due to the choice of ε. We now show that for every i ∈ Ñ , the
map ϕi as defined above is indeed a graph isomorphism onto the image ϕi(Br(F )). So, fix
i ∈ Ñ . Since F is a fundamental domain and as the assertion (b) is satisfied, ϕi is injective,
hence bijective onto its image. We still need to show that ϕi and its inverse preserve the
edge relations given by E and defined in Er,δ above, respectively. To do so, suppose that
(π(v), σγ−1

v
(i)) ∼ (π(w), σγ−1

w
(i)) in Gr,δ for v, w ∈ BG

r (F ). We show that this is true if and
only if v ∼ w in G. By the definition of Er,δ the above edge relation is equivalent to the
existence of γ, γ′ ∈ T satisfying

γπ(v) ∼ γ′π(w) in G and σγ
(
σγ−1

v
(i)
)

= σγ′
(
σγ−1

w
(i)
)
.

It follows from property (a) that this holds true if and only if there exist γ, γ′ ∈ T such that

γπ(v) ∼ γ′π(w) in G and σγγ−1
v

(i) = σγ′γ−1
w

(i).

By property (b), this latter statement is equivalent to the existence of γ, γ′ ∈ T with

γπ(v) ∼ γ′π(w) in G and γγ−1
v = γ′γ−1

w .

Recall that π(v) = γ−1
v v and π(w) = γ−1

w w. Since the element γγ−1
v = γ′γ−1

w is a graph
automorphism by assumption, the previous statement is equivalent to v ∼ w in G. This
proves the claim.

We still need to finish the proof of the theorem. To do so, fix an arbitrary α ∈ ADr . The
previous claim shows that

(1− δ)|Fα|N ≤ |{(f, i) |B
Gr,δ
ρ(α)((f, i)) ' α}| ≤ |Fα|N + δ|F |N,

which in turn implies inequality (10.1). This finishes the proof. �

With this, Theorem 10.7 can be proven very quickly.

Proof (of Theorem 10.7).
By Theorem 10.8, we find a weakly convergent graph sequence (Gn) = (Vn, En) with limit
probabilities

lim
n→∞

p(Gn, α) = |Fα|
|F |

for every α ∈ AD. It follows from Theorem 10.5 that the normalized Zeta functions ZGn,norm
converge uniformly on compact sets in the complex (D − 1)−1-neighbourhood around 0
towards the Zeta function of the limit graphing G with counting functions

N l =
∫
X
Nl(x) dµ(x)

for l ∈ N, cf. Definition 10.4. Since the Gn are connected, the functions Nl(·) are constant
on the sets Xα for all α ∈ AD with ρ(α) = l + 1. Thus, N l =

∑
α:ρ(α)=l+1Nl(α) |Fα||F | . Note

that these expressions coincide with the counting functions for periodic graphs up to the
normalization by the power |F |. Hence, we arrive at ZG = Z

|F |
G , and this proves the desired

result. �



11 Open questions

In this chapter, we briefly summarize two open questions emanating from the elaborations
of this thesis. The first question refers to the Equipartition Theorem of Elek, cf. Theo-
rem 7.11. It is open whether there is a coloured version of this assertion.

Question 1.
Does the Equipartition Theorem also hold true for hyperfinite families of graphs with their
vertices and edges labeled by finitely many colours?

Private communication with Elek indicates that there is considerable evidence for a pos-
itive answer to this question. As a consequence, one could prove a Banach space-valued
convergence theorem for coloured, hyperfinite Benjamini-Schramm graph sequences. More-
over, one would obtain a coloured version of Theorem 8.2 standing in one line with the
ergodic theorem for coloured amenable groups, cf. Theorem 4.4. This in turn would imply
the uniform approximation of the integrated density of states of a larger class of Carleman
operators, cf. Theorem 9.12.

The attempt to prove Banach space-valued convergence theorems for non-hyperfinite graph
sequences will fail in general. The reason for this is that almost-additivity essentially means
continuity with respect to the pseudometric δ which will satisfy the Cauchy criterion if
and only if the graph sequence is hyperfinite, cf. Theorem 7.10. However, it is known
that for operators with algebraic integer coefficients, the integrated density of states does
converge uniformly along (possibly non-hyperfinite) weakly convergent approximations, cf.
[Tho08, ATV13]. The strategy of the proof is via diophantine approximation and cannot
be applied to operators with arbitrary real or complex coefficients. Therefore, it is natural
to raise the following question.

Question 2.
Let H be a self-adjoint, pattern-invariant, finite hopping range Carleman operator on a
(possibly non-hyperfinite) sofic graphing G. Let (Gn) be a weakly convergent graph sequence
for G and suppose that the operators Hn are the finite approximations of H on the Gn. Is
it true that

lim
n→∞

‖Nn −N∗‖∞ = 0,

where the Nn are the empirical spectral distribution functions for the operators Hn and where
N∗ is the IDS of H?

Note that the emphasize in Question 2 is on the uniform convergence of the spectral dis-
tribution functions. For the issue of weak convergence, we refer the reader at this point to
the discussions in Chapter 9. In the literature, this question also appears under the name
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Lück approximation. In [Lüc94], Lück showed the spectral convergence for combinatorial
Laplacians on Schreier graphs of residually finite groups for E = 0. This result was a start-
ing point for a considerable amount of investigations which finally led to the general issue
concerned with arbitrary coefficients. It would be nice to find a geometric approach to this
question which does not depend on the algebraic properties of the coefficients. In partic-
ular, it is an interesting task to investigate spectral convergence in non-amenable groups.
One approach might be to use the tools developed by Bowen and Nevo in their proofs of
ergodic theorems for non-amenable groups, cf. [BN13a, BN13b].
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