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Exam solutions

Each exercise is graded between 0 and 5 points.

1. Let (X,F) be a measurable space and f, g be F -measurable functions. Show that the set
{x ∈ X : ef(x) ≥ g(x)} belongs to F .

Solution. The function F : R2 → R defined by

F (x, y) = ex − y, (x, y) ∈ R2,

is Borel measurable because it is continuous. Hence, the composition h(x) := F (f(x), g(x)) =
ef(x) − g(x), x ∈ X, is an F -measurable function. Therefore, the preimage

h−1 ([0,∞)) = {x ∈ X : h(x) ∈ [0,∞)} =
{
x ∈ X : ef(x) − g(x) ≥ 0

}
belongs to F .

2. Construct the σ-algebra on R generated by the class {[0, 2), {3}}.
Solution. The σ-algebra generated by the class H := {[0, 2), {3}} is defined as follows:

σ(H) =
{
∅,R, [0, 2), {3}, [0, 2) ∪ {3}, (−∞, 0) ∪ [2,+∞),

(−∞, 3) ∪ (3,+∞), (−∞, 0) ∪ [2, 3) ∪ (3,+∞)
}
.

3. Show that the set
G = {x = (ξk)k≥1 ∈ c0 : ξk < 1, ∀k ≥ 1}

is open in c0. Is the set G open in c? Justify your answer.

Solution. Let x = (ξk)k≥1 be an arbitrary element of G. We will find r > 0 such that the
open ball

Br(x) =

{
y = (ηk)k≥1 ∈ c0 : ‖x− y‖ = max

k≥1
|ξk − ηk| < r

}
is contained in G. This will mean that G is open in c0. So, we first remark that the
sequence (ξk)k≥1 converges to 0, by the definition of the space c0. Consequently, there
exists N ∈ N such that for all k ≥ N it follows that |ξk| < 1

2
. In particular, ξk <

1
2

for

every k ≥ N . We define r := min
{

1− ξ1, . . . , 1− ξN−1, 12
}
> 0. Then for all y ∈ Br(x)

we have
ηk = ηk − ξk + ξk ≤ |ηk − ξk|+ ξk ≤ ‖y − x‖+ ξk < r + ξk.

If k < N , then r + ξk ≤ 1− ξk + ξk = 1. For k ≥ N , r + ξk ≤ 1
2

+ ξk <
1
2

+ 1
2

= 1. So, we
have obtained that ηk < 1, k ≥ 1. This yields that y ∈ G and, therefore, Br(x) ⊂ G.

Hovewer, the set G is not open in c. Indeed, for every x = (ξk)k≥1 ∈ G and r > 0 one has
that the vector y = (ξk + r

2
)k≥1 belongs to Br(x) = {y ∈ c : ‖y − x‖ < r}, because the

sequence y = (ξk + r
2
)k≥1 converges to r

2
and ‖y − x‖ = r

2
< r. But y is not an element of

G because y 6∈ c0 (the sequence y does not converges to 0).
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4. Show that the operator T defined on the space C[0, 1] by

(Tx)(t) = x(1)− x(t), x ∈ C[0, 1],

is linear and find its norm.

Solution. Let x, y ∈ C[0, 1] and α, β ∈ R. Then

(T (αx+ βy))(t) = (αx+ βy)(1)− (αx+ βy)(t) = αx(1) + βy(1)− αx(t)− βy(t)

= α(x(1)− x(t)) + β(y(1)− y(t)) = α(Tx)(t) + β(Ty)(t).

So, the operator T is linear.

Let us compute the norm of T . For any x ∈ C[0, 1] we estimate

‖Tx‖ = max
t∈[0,1]

|x(1)− x(t)| ≤ max
t∈[0,1]

(|x(1)|+ |x(t)|)

= |x(1)|+ max
t∈[0,1]

|x(t)| ≤ ‖x‖+ ‖x‖ = 2‖x‖.

Thus, ‖T‖ ≤ 2. We next take x(t) = −1 + 2t, t ∈ [0, 1]. Since the graph of the function
x is a segment that connects the points (0,−1) and (1, 1), we trivially have

‖x‖ = max
t∈[0,1]

| − 1 + 2t| = 1.

Since (Tx)(t) = x(1) − x(t) = 1 − (−1 + 2t) = 2 − 2t, t ∈ [0, 1], the graph of Tx is a
segment connectiong the points (0, 2) and (1, 0). Therefore, we can conclude that

‖Tx‖ = max
t∈[0,1]

|2− 2t| = 2.

Hence, ‖T‖ = 2.

5. Check if the linear functional

f(x) =
∞∑
k=1

ξk√
k
, x = (ξk)k≥1 ∈ l

4
3 ,

is continuous on l
4
3 .

Solution. To check that f is continuous, it is enough to show that f is a bounded linear
functional. We take p = 4

3
. Then for q = 4, 1

p
+ 1

q
= 1. Using the Hölder inequality, we

obtain

|f(x)| =

∣∣∣∣∣
∞∑
k=1

ξk√
k

∣∣∣∣∣ ≤
∞∑
k=1

|ξk|√
k
≤

(
∞∑
k=1

|ξk|
4
3

) 3
4
(
∞∑
k=1

1

(
√
k)4

) 1
4

= ‖x‖
l
4
3

(
∞∑
k=1

1

k2

) 1
4

.

Since the series
∑∞

k=1
1
k2

converges, we have that f is bounded and, hence, continuous.

Another way to solve this exercise is to conclude that the element y =
(

1√
k

)
k≥1

belongs

to the dual space l4 = (l
4
3 )′ because

∑∞
k=1

1
(
√
k)4

< +∞. This, immediately gives that f is

continuous.
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6. Let T be a linear operator on l2 defined by

Tx = (ξ1, 2ξ2, ξ3, 2ξ4, ξ5, 2ξ6, ξ7, . . . ), x = (ξk)k≥1 ∈ l2,

(even coordinates are multiplied by 2). Find and classify the spectrum of T .

Solution. We first find all λ ∈ C for which the operator T − λI is not injective. Consider
the equation

Tx− λx = (ξ1 − λξ1, 2ξ2 − λξ2, ξ3 − λξ3, 2ξ4 − λξ4, . . . ) = 0. (1)

Hence, for λ = 1 the vector x = (1, 0, 0, 0, . . . ) ∈ l2 is a nontrivial solurion to (1), and for
λ = 2 the vector x = (0, 1, 0, 0, . . . ) ∈ l2 is a nontrivual solution to (1). Consequently,
the points λ = 1 and λ = 2 belong to the point spectrum σp(T ). If λ 6∈ {1, 2}, then
obviously (1) has only zero solution. Hence, we can conclude that there exists the inverse
operator Rλ = (T − λI)−1 with D(Rλ) = Im (T − λI) for all λ 6∈ {1, 2}. Moreover, for
every y = (ηk)k≥1 ∈ D(Rλ)

Rλy =

(
η1

1− λ
,
η2

2− λ
,
η3

1− λ
,
η4

2− λ
, . . .

)
.

We remark that D(Rλ) = l2. Indeed, for every y = (ηk)k≥1 ∈ l2, we take

x =

(
η1

1− λ
,
η2

2− λ
,
η3

1− λ
,
η4

2− λ
, . . .

)
.

Then x ∈ l2, because

‖x‖2 =
|η1|2

|1− λ|2
+
|η2|2

|2− λ|2
+
|η3|2

|1− λ|2
+
|η4|4

|2− λ|2
+ . . .

≤ max

{
1

|1− λ|2
,

1

|2− λ|2

}
‖y‖2 <∞,

(2)

and Tx−λx = y. So, y ∈ Im (T −λI) = D(Rλ). Hence, D(Rλ) = l2 for all λ ∈ C \ {1, 2}.
Similarly as in (2), we obtain

‖Rλy‖2 ≤ max

{
1

|1− λ|2
,

1

|2− λ|2

}
‖y‖2.

So, Rλ is a bounded linear operator on l2. Thus, C \ {1, 2} ⊂ ρ(T ). Consequently,
ρ(T ) = C \ {1, 2}, σp(T ) = {1, 2}, σc(T ) = ∅ and σr(T ) = ∅.

7. Let T : D(T )→ L2[0,+∞) be defined by

(Tx)(t) =
√
tx(t), t ≥ 0, x ∈ D(T ),

where D(T ) =
{
x ∈ L2[0,+∞) :

∫∞
0
t|x(t)|2dt < +∞

}
. Check whether T is closed.

Solution. We will show that the operator T is closed. We take any sequence {xn}n≥1 from
D(T ) such that xn → x and Txn → y in L2[0,∞).
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We know that the convergence

‖xn − x‖2 =

∫ ∞
0

|xn(t)− x(t)|2dt→ 0, n→∞,

implies that |xn − x|2 λ→ 0, n → ∞ (see Problem sheet 5, Ex. 6), where λ denotes

the Lebesgue measure on [0,∞). Hence xn
λ→ x. Thus, there exists a subsequence

{nk}k≥1 such that xnk
→ x a.e. on [0,∞) as k → ∞, that is, there exists a Borel set

Φ ⊂ [0,∞) with λ(Φc) = 0 and xnk
(t) → x(t), k → ∞, for all t ∈ Φ. Consequently,

(Txnk
)(t) =

√
txnk

(t) →
√
tx(t) =: x̃(t), k → ∞, for all t ∈ Φ. Hence, Txnk

→ x̃ a.e. on
[0,∞) as k →∞.

Similarly, one can conclude that Txn
λ→ y, n → ∞. Thus, there exists a susequence

{nkj}j≥1 of {nk}k≥1 such that Txnkj
→ y a.e. on [0,∞) as j →∞. This implies that

Txnkj
→ x̃ a.e. and Txnkj

→ y a.e.

as j →∞. By the uniqueness of the limit, x̃ = y a.e. So, x̃(t) =
√
tx(t) = y(t) for almost

all t ∈ [0,∞). Therefore, x ∈ D(T ), because
∫∞
0
t|x(t)|2dt =

∫∞
0
|y(t)|2dt < +∞ and

y = Tx.
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