

Problem sheet 6

Solutions has to be uploaded into Moodle: https://lernen.min.uni-hamburg.de/mod/assign/view.php?id=37532 until 20:00, January 21.

1. Let $X(t), t \ge 0$, be a process and $\mathcal{F}_t^X = \sigma(X(s), s \le t)$. Let also $\mathbb{E} |X(t)| < \infty$ for all $t \ge 0$. Show that X is a martingale if and only if for every $s < t, n \in \mathbb{N}$, partitions $s_1 < s_2 < \cdots < s_n \le s$ and bounded continuous functions h_1, \ldots, h_n one has

 $\mathbb{E}\left(X(t)h_1(X(s_1))\dots h_n(X(s_n))\right) = \mathbb{E}\left(X(s)h_1(X(s_1))\dots h_n(X(s_n))\right).$

HW 1 [4 points] Let $X_n(t)$, $t \in [0,T]$, be a family of continuous square-integrable martingales such that

$$\mathbb{E} \sup_{t \in [0,T]} (X_n(t) - X(t))^2 \to 0, \quad n \to \infty,$$

where $X(t), t \in [0, T]$, is a continuous process. Show that X is a square-integrable martingale.

HW 2 [1 points] Let $X(t), t \ge 0$, be a continuous square integrable martingale with quadratic variation $\langle X \rangle_t, t \ge 0$. Show that

$$\mathbb{E} X^2(t) = \mathbb{E} X^2(0) + \mathbb{E} \langle X \rangle_t$$

for all $t \ge 0$.

- 2. Let $f \in C_0[0,T]$.
 - (i) Let f be absolutely continuous. Show that for every $h \in C^1[0,T]$

$$h(T)f(T) - \int_0^T h'(t)f(t)dt = \int_0^T h(t)\dot{f}(t)dt.$$

(*Hint:* Check first the equality if $\dot{f} \in C[0,T]$. Then, in the general case, approximate \dot{f} in $L_1[0,T]$ by continuous functions)

HW 3 [4 points] Let $g \in L_2[0,T]$ and for every $h \in C^1[0,T]$

$$h(T)f(T) - \int_0^T h'(t)f(t)dt = \int_0^T h(t)g(t)dt.$$

Show that f is absolutely continuous with $\dot{f} = g$.

(*Hint:* Consider the function $\tilde{f}(t) = \int_0^t g(s) ds$ and apply to $\int_0^T h(t)g(t) dt$ the integration by parts formula)