

Problem sheet 5

Solutions has to be uploaded into Moodle: https://lernen.min.uni-hamburg.de/mod/assign/view.php?id=36004 until 20:00, January 12.

1. Define on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ a new probability measure

$$\mathbb{P}^{a}\left\{A\right\} = \mathbb{E}\mathbb{I}_{A}e^{a\eta - \frac{a^{2}}{2}}, \quad A \in \mathcal{F},$$

where $\eta \sim N(0, 1)$. Show that \mathbb{P}^a is a probability measure on Ω .

- 2. Let $N(t), t \ge 0$, be a Poisson process. Define $N_n(t) = \frac{1}{n}N(nt), t \ge 0$, for all $n \ge 1$.
 - (a) Show that for every t > 0 the family $(N_n(t))_{n \ge 1}$ satisfies the LDP in \mathbb{R} (with $a_n = \frac{1}{n}$) and find the corresponding rate function.
- **HW1** [4 points] Show that for every $t_1 < t_2 < \cdots < t_d$ the family $((N_n(t_1), \ldots, N_n(t_d)))_{n \ge 1}$ satisfies the LDP in \mathbb{R}^d (with $a_n = \frac{1}{n}$) and find the corresponding rate function.
- **HW2** [2 points] Which form should have the rate function in the LDP for the family of processes $\{N_n(t), t \in [0,T]\}_{n>1}$ in the space $C_0[0,T]$?
- **HW3** [5 points] Show that for any $f \in H_0^2[0,T]$ there exists a sequence $(f_n)_{n\geq 1}$ from $C_0^2[0,T]$ such that $f_n \to f$ in $C_0[0,T]$ and $I(f_n) \to I(f)$ as $n \to \infty$, where

$$I(f) = \begin{cases} \frac{1}{2} \int_0^T \dot{f}^2(t) dt & \text{if } f \in H_0^2[0,T], \\ +\infty & \text{otherwise.} \end{cases}$$

(*Hint:* Use first the fact that $C^1[0,T]$ is dense in $L_2[0,T]$. Then show that if $h_n \to h$ in $L_2[0,T]$, then $\int_0^{\cdot} h_n(s)ds$ tends to $\int_0^{\cdot} h(s)ds$ in $C_0[0,T]$, using Hölder's inequality)

3. Let $h \in C^1[0,T]$ and $w(t), t \in [0,T]$, be a Brownian motion. Show that

$$\int_0^T h(t)dw(t) = h(T)w(T) - h(0)w(0) - \int_0^T h'(t)w(t)dt$$

(*Hint*: Take a partition $0 = t_0 < t_1 < \cdots < t_n = T$ and check first that functions $h_n = \sum_{k=1}^n h(t_k) \mathbb{I}_{[t_{k-1}, t_k]}$ converge to h in $L_2[0, T]$ as the mesh of partition goes to 0, using e.g. the uniform continuity of h on [0, T]. Next show that

$$\sum_{k=1}^{n} h(t_{k-1})(w(t_k) - w(t_{k-1})) = h(t_{n-1})w(T) - h(0)w(0) - \sum_{k=1}^{n-1} w(t_k)(h(t_k) - h(t_{k-1}))$$

Then prove that the first partial sum converges to the integral $\int_0^T h(t)dw(t)$ in L_2 and the second partial sum converges to $\int_0^T w(t)dh(t)$ a.s. as the mesh of partition goes to 0)

HW4 [3 bonus points] Show that for every $a \in \mathbb{R}$ and $\delta > 0$

$$\mathbb{P}\left\{w_{\sigma^2}(t) + at < \delta, \quad t \in [0,T]\right\} > 0,$$

where $w_{\sigma^2}(t), t \ge 0$, is a Brownian motion with diffusion rate σ^2 .

(*Hint*: Use the Cameron-Marting formula and the fact that $\sup_{t \in [0,T]} w_{\sigma^2}(t)$ and $|w_{\sigma^2}(T)|$ have the same distribution¹)

¹see Proposition 13.13 [Kallenberg]