Problem sheet 4

Solutions has to be uploaded into Moodle: https://lernen.min.uni-hamburg.de/mod/assign/view.php?id=34225 until 20:00, December 17.

HW 1 [6 points] Let *E* be a metric space and $f: E \to [-\infty, +\infty]$. Define

$$f_{\rm lsc}(x) = \sup\left\{\inf_{y \in G} f(y) : \ G \ni x \text{ and } G \text{ is open}\right\}.$$
(1)

- (a) Show that if $x_n \to x$, then $f_{lsc}(x) \leq \underline{\lim}_{n \to \infty} f(x_n)$. (*Hint:* Use Lemma 5.2, namely that the function f_{lsc} is lower semi-continuous and $f_{lsc} \leq f$)
- (b) Show that for each the supremum in (1) can only be taken over all ball with center x, namely

$$f_{\rm lsc}(x) = \sup_{r>0} \inf_{y \in B_r(x)} f(y) \tag{2}$$

(*Hint:* Use the fact that any open set G containing x also contains a ball $B_r(x)$ for some r > 0. It will allow to prove the inequality $f_{lsc}(x) \leq \sup_{r>0} \inf_{y \in B_r(x)} f(y)$. The inverse inequality just follows from the observation that supremum in the right and side of (2) is taken over smaller family of open sets)

(c) Prove that for each $x \in E$ there is a sequence $x_n \to x$ such that $f(x_n) \to f_{lsc}(x)$ (the constant sequence $x_n = x$ is allowed here). This gives the alternate definition

$$f_{\rm lsc}(x) = \min\left\{f(x), \underline{\lim}_{y \to x} f(y)\right\}.$$

(*Hint*: Use part b) of the exercise to construct the corresponding sequence $x_n, n \ge 1$)

1. Let $I: C_0[0,T] \to [0,+\infty]$ be defined by

$$I(f) = \begin{cases} \frac{1}{2} \int_0^T \dot{f}^2(x) dx, & \text{if } f \in H_0^2[0,T], \\ +\infty, & \text{otherwise }. \end{cases}$$

Show that the set $\{f \in C_0[0,T] : I(f) \leq \alpha\}$ is equicontinuous and bounded in $C_0[0,T]$ for all $\alpha \geq 0$. Conclude that I is good.

(*Hint*: Using Hölder's inequality, show that $|f(t) - f(s)|^2 \leq |t - s| \int_0^T \dot{f}^2(x) dx$ for all $t, s \in [0, T]$ and each $f \in H_0^2[0, T]$)

2. Prove that a family $(\xi_{\varepsilon})_{\varepsilon>0}$ is exponentially tight in E if and only if for any b>0 there exists a compact $K \subset E$ and $\varepsilon_0 > 0$ such that

$$\mathbb{P}\left\{\xi_{\varepsilon} \notin K\right\} \le e^{-\frac{1}{\varepsilon}b}, \quad \varepsilon \in (0, \varepsilon_0).$$

- 3. Let E be a complete and separable metric space.
 - a) Show that exponential tightness implies tightness for a countable family of random variables.

(*Hint:* Prove a similar inequality to one in the previous exercise and then use the fact that any random element on a complete and separable metric space is tight

- b) Show that tightness does not imply exponential tightness.
- **HW 2** [3 points] Let $(\xi_{\varepsilon})_{\varepsilon>0}$ be a family of random variables in \mathbb{R} such that there exist $\lambda > 0$ and $\kappa > 0$ such that $\mathbb{E} e^{\frac{\lambda}{\varepsilon}|\xi_{\varepsilon}|} \le \kappa^{\frac{1}{\varepsilon}}$ for all $\varepsilon > 0$. Show that this family is exponentially tight. (*Hint:* Use Chebyshev's inequality)
- **HW3** [3 bonus points] Find a simpler proof of Proposition 6.3 in the case $E = \mathbb{R}^d$. (*Hint:* Cover a level set $\{x \in \mathbb{R}^d : I(x) \leq \beta\}$ by an open ball and use the upper bound)