

## Problem sheet 3

Solutions has to be uploaded into Moodle: https://lernen.min.uni-hamburg.de/mod/assign/view.php?id=32488 until 20:00, December 8.

**HW1** [3 points] Let  $a_n > b_n$ ,  $n \ge 1$ , be positive real numbers such that there exist limits (probably infinite)

$$a := \lim_{n \to \infty} \frac{1}{n} \ln a_n$$
 and  $b := \lim_{n \to \infty} \frac{1}{n} \ln b_n$ 

and a > b. Show that

$$\lim_{n \to \infty} \frac{1}{n} \ln(a_n - b_n) = a$$

(*Hint:* Show that  $\frac{b_n}{a_n} \to 0, n \to \infty$ )

- 1. For any random vector  $\xi \in \mathbb{R}^d$  and non-singular  $d \times d$  matrix A, show that  $\varphi_{A\xi}(\lambda) = \varphi_{\xi}(\lambda A)$ and  $\varphi_{A\xi}^*(x) = \varphi_{\xi}^*(A^{-1}x)$ .
- 2. For any pair of independent random vectors  $\xi$  and  $\eta$  show that  $\varphi_{\xi,\eta}(\lambda,\mu) = \varphi_{\xi}(\lambda) + \varphi_{\eta}(\mu)$  and  $\varphi_{\xi,\eta}^*(x,y) = \varphi_{\xi}^*(x) + \varphi_{\eta}^*(y)$ .

(*Hint:* To prove the second equality, use the equality  $\sup_{\lambda,\mu} f(\lambda,\mu) = \sup_{\lambda} \sup_{\mu} f(\lambda,\mu)$ )

- 3. Let  $\xi_1, \xi_2, \ldots$  be independent random vectors in  $\mathbb{R}^d$  whose coordinates are independent exponentially distributed random variables with rate  $\gamma$ . Show that the empirical means  $(\frac{1}{n}S_n)_{n\geq 1}$  satisfies the LDP in  $\mathbb{R}^d$  and find the corresponding rate function I.
- **HW2** [5 points] Let  $\xi_1, \xi_2, \ldots$  be independent normal distributed random vectors in  $\mathbb{R}^d$  with mean 0 and positively defined covariance matrix C. Show that the empirical means  $(\frac{1}{n}S_n)_{n\geq 1}$  satisfies the LDP in  $\mathbb{R}^d$  and find the corresponding rate function I.
  - 4. Show that the function  $f(x) = 1 |x 1|, x \in [0, 2]$ , belongs to  $H_0^2[0, 2]$  but is not continuously differentiable.
- **HW3** [2 points] Let  $f_{\lambda} : E \to \mathbb{R}, \lambda \in \mathbb{R}$ , be a family of continuous functions, where E is a metric space. Show that the function  $f(x) = \sup_{\lambda \in \mathbb{R}} f_{\lambda}(x), x \in E$ , is lower semi-continuous.