

Problem sheet 1

Solutions has to be uploaded into Moodle: https://lernen.min.uni-hamburg.de/mod/assign/view.php?id=28452 until 20:00, November 17.

1. Show that

$$\int_{x}^{+\infty} e^{-\frac{y^2}{2}} dy \sim \frac{1}{x} e^{-\frac{x^2}{2}}, \quad x \to +\infty.$$

2. Let $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ be two sequences of positive real numbers. We say that they are logarithmically equivalent and write $a_n \simeq b_n$ if

$$\lim_{n \to \infty} \frac{1}{n} \left(\ln a_n - \ln b_n \right) = 0.$$

- (a) Show that $a_n \simeq b_n$ iff $b_n = a_n e^{o(n)}$.
- (b) Show that $a_n \sim b_n$ implies $a_n \simeq b_n$ and that the inverse implication is not correct.
- **HW1** [3 points] Show that $a_n + b_n \simeq \max\{a_n, b_n\}$.
- 3. Let ξ_1, ξ_2, \ldots be independent normal distributed random variables with mean μ and variance σ^2 . Let also $S_n = \xi_1 + \cdots + \xi_n$. Compute $\lim_{n \to \infty} \frac{1}{n} \ln \mathbb{P} \left\{ \frac{1}{n} S_n \ge x \right\}$ for $x > \mu$.
- 4. Let ξ_1, ξ_2, \ldots be independent Bernoulli distributed random variables with parameter $p = \frac{1}{2}$. Let also $S_n = \xi_1 + \cdots + \xi_n$. Using Theorem 1.1 from the lecture notes, show that

$$\sum_{n=1}^{\infty} \mathbb{P}\left\{ \left| \frac{S_n}{n} - \frac{1}{2} \right| \ge \varepsilon \right\} < \infty,$$

for all $\varepsilon > 0$. Conclude that $\frac{S_n}{n} \to \frac{1}{2}$ a.s. as $n \to \infty$ (strong low of large numbers).

(*Hint:* Use the Borel-Cantelly lemma to show the convergence with probability 1)

HW2 [3 points] Assume that a random variable ξ has a finite first moment $\mathbb{E}\xi = \mu$ and let φ be the comulant generating function associated with ξ . Show that for every $x > \mu$ and all $\lambda < 0$

$$\lambda x - \varphi(\lambda) \le 0.$$

(*Hint:* Use Jensen's inequality.)

5. Show that the Fenchel-Legendre transform of a convex function f is also convex.

(*Hint:* Show first that the supremum of convex functions is a convex function. Then note that the function $\lambda x - \varphi(\lambda)$ is convex in the variable x)

- **HW3** [4 points] Show that the Fenchel-Legendre transform of the comulant generating function associated with N(0,1) coincides with $\frac{x^2}{2}$.
 - 6. Suppose that φ^* is the Fenchel-Legendre transform of the cumulant generating function of a random variable ξ with $\mathbb{E}\xi = \mu$. Show that
 - (i) $\varphi^*(x) \ge 0$ for all $x \in \mathbb{R}$. (*Hint:* Use the fact that $\varphi(0) = 0$)
 - (ii) $\varphi^*(\mu) = 0$. (*Hint:* Use (i) and Jensen's inequality to show that $\varphi^*(\mu) \leq 0$)
 - (iii) φ^* increases on $[\mu, \infty)$ and decreases on $(-\infty, \mu]$. (*Hint:* Use the convexity of φ^*)