## Problem sheet 1

Solutions has to be uploaded into Moodle: https://lernen. min. uni-hamburg. de/mod/assign/view. php? id=28452 until 20:00, November 17.

1. Show that

$$
\int_{x}^{+\infty} e^{-\frac{y^{2}}{2}} d y \sim \frac{1}{x} e^{-\frac{x^{2}}{2}}, \quad x \rightarrow+\infty
$$

2. Let $\left(a_{n}\right)_{n \geq 1}$ and $\left(b_{n}\right)_{n \geq 1}$ be two sequences of positive real numbers. We say that they are logarithmically equivalent and write $a_{n} \simeq b_{n}$ if

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(\ln a_{n}-\ln b_{n}\right)=0 .
$$

(a) Show that $a_{n} \simeq b_{n}$ iff $b_{n}=a_{n} e^{o(n)}$.
(b) Show that $a_{n} \sim b_{n}$ implies $a_{n} \simeq b_{n}$ and that the inverse implication is not correct.

HW1 [3 points] Show that $a_{n}+b_{n} \simeq \max \left\{a_{n}, b_{n}\right\}$.
3. Let $\xi_{1}, \xi_{2}, \ldots$ be independent normal distributed random variables with mean $\mu$ and variance $\sigma^{2}$. Let also $S_{n}=\xi_{1}+\cdots+\xi_{n}$. Compute $\lim _{n \rightarrow \infty} \frac{1}{n} \ln \mathbb{P}\left\{\frac{1}{n} S_{n} \geq x\right\}$ for $x>\mu$.
4. Let $\xi_{1}, \xi_{2}, \ldots$ be independent Bernoulli distributed random variables with parameter $p=\frac{1}{2}$. Let also $S_{n}=\xi_{1}+\cdots+\xi_{n}$. Using Theorem 1.1 from the lecture notes, show that

$$
\sum_{n=1}^{\infty} \mathbb{P}\left\{\left|\frac{S_{n}}{n}-\frac{1}{2}\right| \geq \varepsilon\right\}<\infty
$$

for all $\varepsilon>0$. Conclude that $\frac{S_{n}}{n} \rightarrow \frac{1}{2}$ a.s. as $n \rightarrow \infty$ (strong low of large numbers).
(Hint: Use the Borel-Cantelly lemma to show the convergence with probability 1)
HW2 [3 points] Assume that a random variable $\xi$ has a finite first moment $\mathbb{E} \xi=\mu$ and let $\varphi$ be the comulant generating function associated with $\xi$. Show that for every $x>\mu$ and all $\lambda<0$

$$
\lambda x-\varphi(\lambda) \leq 0
$$

(Hint: Use Jensen's inequality.)
5. Show that the Fenchel-Legendre transform of a convex function $f$ is also convex.
(Hint: Show first that the supremum of convex functions is a convex function. Then note that the function $\lambda x-\varphi(\lambda)$ is convex in the variable $x)$

HW3 [4 points] Show that the Fenchel-Legendre transform of the comulant generating function associated with $N(0,1)$ coincides with $\frac{x^{2}}{2}$.
6. Suppose that $\varphi^{*}$ is the Fenchel-Legendre transform of the cumulant generating function of a random variable $\xi$ with $\mathbb{E} \xi=\mu$. Show that
(i) $\varphi^{*}(x) \geq 0$ for all $x \in \mathbb{R}$. (Hint: Use the fact that $\varphi(0)=0$ )
(ii) $\varphi^{*}(\mu)=0$. (Hint: Use (i) and Jensen's inequality to show that $\varphi^{*}(\mu) \leq 0$ )
(iii) $\varphi^{*}$ increases on $[\mu, \infty)$ and decreases on $(-\infty, \mu]$. (Hint: Use the convexity of $\varphi^{*}$ )

