13. Stokes' the orem
14. Stokes' the orem

Let S be a piecemile-smoth surface in \mathbb{R}^{3}
 oriented by a unit normal n and γ be the boundary of S positively oriented with respect to the normal n (it the thumb of the right hand points in the direction of n, then the other fingers in the direction γ^{\prime}).

Let \vec{F} be a continuously differentiable vector field on S. We recall

$$
\operatorname{curl} \vec{F}=\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right|
$$

Theorem 23.1 (Stokes) Under the assumption above

$$
\int_{\gamma} \vec{F} \cdot d s=\iint_{S} \operatorname{curl} \vec{F} \cdot d S .
$$

Remark 13.1 a) Let S be parametrized by $\{r(u, v),(u, v) \in \bar{D}\}$ and let Γ be the positively oriented boundary of $D \subseteq \mathbb{R}^{2}$. Then
 $\gamma=r(\Gamma)$ and is positively oriented with respect to the normal,

$$
\vec{n}=\frac{\vec{r}_{u} \times \vec{r}_{v}}{\left\|\vec{r}_{u}^{\prime} \times \vec{r}_{v}\right\|}
$$

if $\vec{F}=(P, Q, R)$, then stokes' the orem can be equivalently stated as

$$
\begin{align*}
& \int_{\gamma} P_{0} d x+Q d y+R d z=\iint_{S}\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) d y d z \\
& +\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) d z d x+ \tag{13.1}\\
& \quad+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
\end{align*}
$$

b) Let $\vec{n}=\left(n_{x}, n_{y}, n_{z}\right)$. Then

$$
\begin{aligned}
& \iint_{S} \operatorname{carl} \vec{F} \cdot d S=\iint_{S}(\operatorname{curl} \vec{F} \cdot \vec{n}) d S= \\
& =\iint_{S}\left|\begin{array}{ccc}
n_{x} & n_{y} & n_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right| d S .
\end{aligned}
$$

Proof od Th 13.1 As in the proof of Gauss Ostrogradskii theorem, it is suffices to prove the theorem for the fie eds $(P, 0,0)$, $(0, Q, 0),(0,0, R)$. We will prove it for the case $\vec{F}=(P, 0,0)$.

We will prove stokes' theorem in the form of (13.1). Let S be parametrized by $\{r(u, v),(u, v) \nmid \bar{\square}\}$ and let Γ be the positively oriented boundary of $D \subseteq \mathbb{R}^{2}$ parametrized by $\{(u(t), v(t)), 0 \leq t \leq T\}$.

 Then $\gamma=\tau(\Gamma)$ is the boundary of S parametrized by $\{r(u(t), v(t)), 0 \leq t \leq T\}$ and positively oriented with respect to $\vec{n}=\frac{\vec{r}_{u} \times \vec{r}_{v}}{\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|}$

So, we compute

$$
\begin{aligned}
& \int_{\gamma} \vec{F} \cdot d s=\int_{\gamma} P d x \\
& =\int_{0}^{T} P\left(r(u(t), v(t)) \cdot \frac{\partial x(u(t), v(t))}{\partial t} d t\right. \\
& =\int_{0}^{T} P / r(u(t), v(t)) \cdot\left(\frac{\partial x}{\partial u} u^{\prime}(t)+\frac{\partial x}{\partial v} v^{\prime}(t)\right) d t \\
& =\int p \frac{\partial x}{\partial u} d u+p \frac{\partial x}{\partial v} d v \quad \text { (green's theorem) } \\
& =\iint_{D}\left[\frac{\partial}{\partial u}\left(P \frac{\partial x}{\partial v}\right)-\frac{\partial}{\partial v}\left(P \frac{\partial x}{\partial u}\right)\right] d u d v \\
& =\iint_{D}\left[\frac{\partial p}{\partial z} \frac{\partial(z, x)}{\partial(u, v)}-\frac{\partial p}{\partial y} \frac{\partial(x, y)}{\partial(u, v)}\right] d u d v \\
& =\iint_{S} \frac{\partial p}{\partial z} d z d x-\frac{\partial p}{\partial y} d x d y \\
& =\iint_{S} \operatorname{curl} \vec{F} \cdot d S \text {. }
\end{aligned}
$$

Example 13.1 Let γ be the curve of intersection of paraboloid

$$
x^{2}+y^{2}+z=3
$$

and the plain

$$
x+y+z=2
$$

oriented positively with respect to the rector $(1,1,1)$.

Let S be the surduce in the plane spanned by γ oriented by the unit normal

$$
\vec{n}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)
$$

Note that γ is positively oriented with respect to n.

We aim to compute

$$
I=\int_{\gamma}\left(y^{2}-z^{2}\right) d x+\left(z^{2}-x^{2}\right) d y+\left(x^{2}-y^{2}\right) d z
$$

We are going to use the stokes theorem. We compute for $P=y^{2}-z^{2}, Q=z^{2}-x^{2}, R=x^{2}-y^{2}$

$$
\begin{aligned}
& \frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}=-2(y+z) \\
& \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}=-2(x+z) \\
& \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=-2(x+y)
\end{aligned}
$$

By Stokes' theorem (γ is positively oriented with respect to \vec{n})

$$
I=\iint_{S}(\text { curl } \vec{F} \cdot \vec{n}) d S=-\frac{4}{\sqrt{3}} \iint_{S}(x+y+z) d S
$$

Since S is a subset of the plain

$$
I=-\frac{8}{\sqrt{3}} \iint_{S} d S
$$

The surface S can be parametrized as

$$
z=2-x-y, \quad(x, y) \leftarrow \bar{D} .
$$

By Example 10.3 r)

$$
\sqrt{E G-F^{2}}=\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}=\sqrt{3}
$$

There fore

$$
I=-8 \text { Area (D) }
$$

The boundary of D is the projection of γ on $x y$-coordinate plane. To find its equation, we eliminate the dependeay on z from the system of equations

$$
\left\{\begin{array}{l}
x^{2}+y^{2}+z=3 \\
x+y+z=2
\end{array}\right.
$$

to get $\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2}=\frac{3}{2}$.
Which is a circle of radius $\sqrt{\frac{3}{2}}$.
Thus, Area $(D)=\frac{3}{2} \pi$ and

$$
I=-12 \pi
$$

2. Physical meaning of the curl. Suppose that the entire space, regarded as a rigid body, is rotating with constant angular speed w about a fixed axis (say the z-axis)

Let us find the curl of the field \vec{F} of linear vel locities of the points of space. j_{n} culind-ical coordinates (r, φ, z) we have the simple $\operatorname{expression}_{-\rightarrow}$

$$
\vec{F}(r, \varphi, z)=\omega r e_{\varphi}
$$

A simple computations shows that curl $\vec{F}=2 w e_{z}$.
where $e_{z}=(0,0,1)$.
That is, curl \vec{F} is a rector directed along the axis od rotation. Its magrontude 2ω equals the angular velocity of the rutation, up to the coefficient 2, and the direction of the rector determines the direction of rotation.

Locally the curl od a vector field at a point characterizes the degree of vorticity of the field in a neigh forkood of the point. Indeed, let n be o unit vector and γ_{ε} be a circle of radius ε centered at $p \in \mathbb{R}^{3}$, lying in the plain perpendicular to \vec{n} and positively oriented with respect to \vec{n}.

Then the projection of curl \vec{F}
 on \ddot{n} can be cumputed using stockes' the orem

$$
\operatorname{curl} \vec{F}(p) \cdot \vec{n}=\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi \varepsilon^{2}} \int_{\gamma_{\varepsilon}} \vec{F} \cdot d s_{r}
$$

where $\int_{\gamma_{i}} \ddot{F}$.dg is the circulation of \vec{F} along γ.

The value of curl $\vec{F}(r) \cdot \vec{n}$ is maximal in the direction of \vec{n} coinsiding with direction of curl \dot{F}.
3. Solenoidal vector fields

Def 13.1 A vector field \vec{F} in \mathbb{R}^{3} is solenoidal, or divergence free, in $V \subseteq \mathbb{R}^{3}$ it $\operatorname{div} F=0$ in V.

Examples 13.2 a) Coulomb's dorce

$$
\vec{F}=-\left(\frac{x}{\|z\|^{3}}, \frac{y}{\|z\|^{3}}, \frac{z}{\|r\|^{3}}\right), \tau=\sqrt{x^{2}+y^{2}+z^{2}} \text {. }
$$

b) Velocity field of incompressible fluid.
c) magnetic field.

The following characterization of solenoidal fields follows from Gauss - Ostrognadskii theorem prop 13.1 Let V be a simply connected domain in \mathbb{R}^{3} and \vec{F} be a smooth rector field on \bar{V}. Then, \vec{F} is solenoidal in V iff for any solid $\tilde{V} \subset V$ with smooth boundary \tilde{S}, the flux of \vec{F} through \vec{S} is zero.

