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1 Systems of Linear Equations (Lecture Notes)

1.1 Definitions

We consider the problem of finding n scalars xq, ..., z, € F which satisfy:

anzi + -+ anT, = b1
(1.1)
Am1T1 + -+ + GpTn = by,
where a;;, b; (i =1,...,m j=1,...,n) are given numbers from F.

Definition 1.1 We call (1.1) a system of linear equations with n unknowns. Any set of elements

T1,...,Tn € Fis called a solution if it satisfies the system. The system is said to be homogeneous
ifbp=by=---=0b, =0.

Definition 1.2 If we multiply the ;' equation by a scalar c;eF,Vj=1,...,m and then add

them, we get a new equation which is called a linear combination of equations in (1.1).

Definition 1.3 Two systems are equivalent if each equation in each system is a linear combi-

nation of the equations in the other system.
Theorem 1.1 FEquivalent systems have the same solutions.

Definition 1.4 A system is consistent if it has at least one solution, otherwise it is inconsistent.

1.2 Matrices and Elementary Row Operations

Definition 1.5 Given m,n € N, a rectangular array of numbers a;; € F

ail e QA1n
A = (aij); ;2 =

amil  --- Gmn

is called an m xn matriz. The numbers a;j are called the entries of A, where i indewes the rows

of A and j indexes the columns of A. We also say that A has size m X n.
Definition 1.6 The set of all m x n matrices with entries from F is denoted F™*".

Definition 1.7 If A, B € F™*", then B is row-equivalent to A if B can be obtained from A by

a finite number of elementary row-operations.

Theorem 1.2 If A and B are row-equivalent augmented matrices of systems of linear equations,

then those systems have the same solutions.
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1.3 Row-Reduced Echelon Matrices

Let A% be the i row vector of A and A7 be the ' column vector of A.

Definition 1.8 A is in row-echelon form (REF) if the rows of A satisfy:
1. either A® is the zero vector or the first non-zero entry is 1 when read from left to right
2. fori=1,...,m, if A" =0, then AT = A2 =...= A =

3. fori=2,...,m, if some A" is not the zero vector, then the first non-zero entry is 1 and

occurs to the right of the initial 1 in A}
Definition 1.9 The initial leading 1 is called the pivot.

Definition 1.10 A is in reduced row-echelon form (RREF) if A is in REF and if a column Al

containing a pivot implies that the pivot is the only non-zero entry in that column.

Example

|
[
—
=
&
B
o o O
o O =
oS = O
S N O

2
3 RREF
0

Theorem 1.3 Every m X n matriz is row-equivalent to a matriz in RREF.



2 Vector Spaces (Lecture Notes)

2.1 Vector Spaces

Definition 2.1 A vector space over a field F is a set V', along with the operations addition and

multiplication, which satisfies the following conditions:
lL.u+v=v4+u YVuveV
2. w+u)+w=v+(u+w) Vuov,weV
3.30eV:04+v=v VoeV
4. YVoeV JweV:iv+w=0, w:=-—v
5. 1-v=v YveV
6. a(u+v)=au+av, (a+bv=av+bv Yu,veV abeF

Definition 2.2 U C V is called a subspace of V' if U is a vector space over F under the same

operations.

Lemma 2.1 U CV is a subspace of V if and only if:
1.0eU
2. Vu,veU, u+velU

3. VaeF,uelU, auelU

2.2 Bases
Definition 2.3 Vectors vy,...,v, € V are linearly independent if the equation
av1 + -+ apvy, =0
only has the solution a1 =as =+ =a, = 0. The set
span (v1,...,v,) ={a1v1 + -+ apvp:a; €F,i=1,...,n}
1s the linear span of vectors vi,...,Un.
Definition 2.4 Vectors vi,...,v, € V form a basis of V if they are linearly independent and

if V. =span(vy,...,vp).

Theorem 2.1 Let vy,...,v, be a basis of a vector space V. Then for each v € V there exist
unique numbers ai,...,a, such that v = ajvy + -+ + apvy.
Definition 2.5 The numbers a1,...,ay, are the coordinates of v relative to the basis v1,...,vy.
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Definition 2.6 The number of basis elements of a vector space V' is the dimension of the vector

space V' and is denoted dimV .

Example
dimR" =n

dimC" =n

men:m‘n

dim

dimF,[z] =n+1

2.3 Linear Maps

Definition 2.7 Let V and W be vector spaces over F. A functionT : V — W is called a linear

transformation if:
1. Tu+v)=Tu+Tv VuveV
2. T(aww) =aTv VaeF,veV

The set of all linear transformations from V to W is denoted by L(V,W). If W =V, then
L(V):=L(V,V)

Remark The set L(V,W) is a vector space over F under the usual operations of additions of

functions and multiplication of functions by a scalar.



3 Invertible Matrices (Lecture Notes)

3.1 Matrix of a Linear Map

Definition 3.1 Let V' be a vector space with basis vy, ...,v, and let W be a vector space with
basis wi, ..., Wm. Gwen a map T € L(V,W), we can write the coordinates of T vj relative to
the basis wy, ..., wy, n a matriz My v

a1j

Qmyj
that is,

TUj = alju)l +---+ amjwm

We then form the following matriz:

ail e alj e Ain
My =
aml - amj Amn,
The matriz My is called the matriz of T relative to the pair of bases vi,...,v, and w1, ..., Wy,.
Theorem 3.1 Let U, V,W be vector spaces with bases u1,...,u;, V1,...,Un, Wi,..., W TESPEC-

tively. Let Ty, Ty be linear maps from V to W and let S be a linear map from U to V. Let M,

be a matriz representing a vector v € V.. Then:
1. Mpy, = My - M,
2. Mprg = Mr - Mg
3. M. =cMp,ceTF

4. MT1+T2 = MT1 + MT2

3.2 Isomorphism
1. A linear map 7 is injective if u #v =Tu#Tv (& kerT ={v:Tv =0} ={0}).
2. A linear map T is surjective if rangeT = {Tv:v €V} =W.

3. A linear map T is bijective if it is both injective and surjective; for all w € W there exists
a unique v € V such that Tv = w. T is then said to be invertible and there exists 7

which is the inverse of T. The vector v is then defined as v := T~ tw.
4. dim (ker T') + dim (range T') = dim V'

Definition 3.2 Two vector spaces V,W are called isomorphic if there exists T : V — W such

that T is an invertible linear map.
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Theorem 3.2 Every n-dimensional vector space over F is isomorphic to F".

Theorem 3.3 Let V be an n-dimensional vector space over F and let W be an m-dimensional

vector space over F. Then the set of all linear maps from V to W is isomorphic to T™*™.

Theorem 3.4 Vector spaces V,W are isomorphic if and only if dimV = dim W.

3.3 Invertible Linear Maps

Theorem 3.5 If T is an invertible linear map from V to W, then T is a linear map from
W to V.

Definition 3.3 The matriz A € F"*" is called invertible if there exists B € F™*™ such that
A-B=B-A=1, where I is the identity matrix

~
Il

S O =

oS = O

_= o O

and we then define B := A™' as the inverse of A.
Theorem 3.6 Let A, B € F"*" and let V,W be vector spaces over F.
1. If A is invertible, then A™' is invertible and (A=)~ = A.
2. If A, B are invertible, then AB is invertible and (AB)™' = B~1A™!.

3. If A is a matriz of a linear map T € L(V,W), then A is invertible if and only if T is

invertible. Moreover A™' is the matriz of T~1.
Theorem 3.7 If A € F™*", the following conditions are equivalent:
1. A is invertible.

2. A is row-equivalent to the n X n identity matriz. Moreover if a sequence of elementary row

operations reduces A to the identity matriz, then the same sequence of operations reduces
Ito AL

Theorem 3.8 For A € F™*" the following conditions are equivalent:
1. A is invertible.
2. Az =0 only has the trivial solution x = 0.

3. Az = b has a unique solution © = A™'b.



4 Rank of Matrices (Lecture Notes)

Definition 4.1 The dimension of rangeT = {T'v : v € V'} is called the rank of a linear map T

from V to W, which are both vector spaces over F.
rank 7' = dim (range T')

dimV = dim (ker T') 4+ dim (range T') = dim (ker T') 4+ rank T

Theorem 4.1 A linear map T : V — W 1is invertible if and only if
dimV =dim W =rankT

Proof: T is invertible if it is bijective. Then ker T' = {0} and range T = W, therefore
dimV =dim W = rank T

If dimV = dimW = rank7, then dim (kerT") = 0, thus T is injective. Since T' : V — W
and rangeT C W, we have that dim(rangeT) = dim W, thus T is surjective. Therefore, T is

bijective and thus invertible. O

Definition 4.2 For A € F™*", the mazimal number of linearly independent columns is called
the rank of the matriz A and is denoted rank A.

Theorem 4.2 The rank of a linear map T € L(V,W) is equal to the rank of its matriz Mrp,
that is rank T = rank M.

Corollary 4.1 A matriz A € F™*" is invertible if and only if rank A = n.
Theorem 4.3 The rank of A € F™*" is the maximal number of linearly independent rows.

Theorem 4.4 The rank of a matriz is preserved under elementary row and column transfor-

mations.

Definition 4.3 For a given matriz A = (a;;)];", € F""", the matriz AT = (aji)ji2, is the

transposed matriz of A.
Corollary 4.2 rank A = rank A7

Theorem 4.5 (Rouché-Capelli Theorem) A system of linear equations with a matrixz of coeffi-

cients A and augmented matriz A’ is consistent if and only if rank A = rank A’.
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5 Fundamental Systems of Solutions (Lecture Notes)

5.1 Rank

Theorem 5.1 Given the matrices A, B € F"*":
rank (AB) < min{rank A, rank B}
Corollary 5.1 A € F™*" is invertible if and only if there exists B € F™*™ such that
AB=1 (orBA=1I)

5.2 General Solutions to Systems of Linear Equations

Lemma 5.1 Solutions x and 2’ to a system of linear equations have a difference x — z’ that is

a solution to the corresponding homogeneous system of linear equations Ay = 0.

Corollary 5.2 Let 2’ be a solution to Ax =b. Then the set of all solutions is the set {x’' + 1y},

where y is a solution to the homogeneous system Ay = 0.

Definition 5.1 Let U denote the set of all solutions to the homogeneous system of linear
equations. A basis of U = {y : Ay = 0} is called a fundamental system of solutions to the
equation Ay = 0. Let y',...,y" be a fundamental system of solutions to Ay = 0. Then the

general solution to the equation Ax = b is:
= +ay' +- +apy

where a1, ...,a €F and 2’ is a partial solution to Ax = b.
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Example (Finding the Fundamental System of Solutions) Let A be given:

1 -2 1 0

A=1[1 -1 1 -1

0 1 0 -1

1. Transpose A:

1 1 0
o2
1 1 0
0o -1 -1

2. Augment the identity matriz I,, to the right of AT :

1 1 0|1 000
-2 -1 1,101 00
1 1 0|00 10
0O -1 —-1{0 0 0 1
3. Reduce AT to REF:
1 10 0 0 O
01 1, 2 1 0O
00 0/-1 010
0 0 0] 2 01

The fundamental system of solutions is then:

y1:<—1 0 1 0)

y2:(2 10 1)



Example (Method of Solving a System of Linear Equations) Let the following system be given:

T1+2x90 —x3—24 =1
T1+ a3+ 2x4 = —1 (5.1)
201+ 229+ 24 =0

We rearrange the system as follows:

a11x1 + -+ a1pTy — b1y =0 x1+2x9 —x3 — x4 — 25 =0
— x1 +x3+ 224 + 25 =0
Am1T1 + -+ GppTp — bpTpy1 =0 2x1 + 222+ 24 =0

Find the fundamental system of solutions of this new system as described in the previous example

and reduce it to the following form:

1 12/10000
2 0201000
-1 10/00 100
-1 2 1000 1 0
-1 10/000 01
1121 0000
00 0/—-43020
000/-11100
01 1/-1 1010
000/-11001

We find for this system the fundamental system of solutions:
1 _
y'= (-4 3 0 2)

y2:<—1 11 0)

and the partial solution:
= (-1 10 0)

We write the general solution to (5.1) in the form:

y=y" +hy' + - eyt

z1 -1 —4 -1

x 1 3 1
2 = +1 + o

I3 0 0 1

T4 0 2 0

10



6 Determinants (Lecture Notes)

6.1 Permutations

Definition 6.1 A permutation w of n elements is a bijective map from {1,...,n} to {1,...,n}:

1 2 3 ... n
m W W3 ... Tn
The set of all permutations of n elements is denoted Sy,.

Theorem 6.1 The number of all permutations of n elements |S,| = n!.

Example (Composition)

1 2 3 1 2 3 1 2 3
Too = o =
2 31 1 3 2 2 1 3
1 2
= 3
3 1 2
Definition 6.2 An inversion pair (i,j) of m € Sy, is a pairi,j € {1,...,n} for which i < j but

1 2 3
m =
2 31

Definition 6.3 The sign of m € S, is defined as:

T > Tj.

Example

(1,3) and (2,3) are inversion pairs.

1, evenm

—1, oddm

signm = (—1)" =

where m is the number of inversion pairs. w is called an even or odd permutation, depending

on the value of signm.

Example (Transpositions) t;; is a transposition:

Lo (r284) (1234
#7132 4) * {1432

1 2 3 4 5 6
23516 4

Example

) =(1,2,3,5,6,4)

11
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Theorem 6.2 Fach permutation can be written as a composition of transpositions, where each

cycle (i,...,i5) = (i1,1) © -+ - 0 (i1, 12).

Example
(1,2,3,5,6,4) =(1,4) o (1,6) o (1,5) o (1,3) 0 (1,2)

Theorem 6.3

sign (moo) =signm-signoe Vw0 €S,

Remark A permutation is even or odd if the number of transpositions from the decomposition

i Th. 6.2 is even or odd respectively.

6.2 Determinants
Definition 6.4 Given A = (a;j) € F**", the number
n
det A = Z signm (1,7 - - - Anry) = Z (siganaim>
TESK TESy i=1
is called the determinant of A.

Theorem 6.4 The determinant is a linear function of each row of the matriz:

1 2 | |1 2] |12
1+2 243 |1 2| |2 3
le 2¢ 1 2
=c
1 2 1 2

If two rows of a matrix A are the same, then det A = 0:

1 2
1 2

=0

The determinant of the identity matrix of any size is 1.

]FTLXTL

Remark The determinant is the only map from — [ that satisfies the properties listed in

Th. 6.4.

12



Theorem 6.5 Given A € F™*":

1.

2.

6.3

det A = det A

If B is obtained from A by adding a multiple of one row of A to another (or a multiple of
one column of A to another), then det A = det B.

Interchanging two rows or two columns introduces a factor of —1 to the determinant.

. det AB=det A-detB

A matriz with zeros to the left of the diagonal will have a determinant equal to the product

of the entries along the diagonal:

a;r #0 #0
O #0 :all.....ann
0 0 apn

Given matrices A, B,C' of size p X p, p X m, m X m respectively, and the zero matriz:

A B
0

=det A-detC

Computing Determinants with Cofactor Expansions

Definition 6.5 Fori,j = 1,...,n, the i —j minor of A, denoted by M;;, is defined to be the
determinant of the matriz obtained by removing the it row and ;" column from A. The i —j
cofactor of A is A;j = (—l)i“Mij.

Theorem 6.6 (Cofactor Expansion) For each it row ( Gt column, respectively ) the determinant

18

n

det A= aiAi; = (~1)ayM;
j=1

Jj=1

<det A= i aiinj = i(—l)iJrjaijMi >
=1

i=1

13



7 Change of Basis (Lecture Notes)

7.1 Inverse Matrices

Definition 7.1 The matriz
A11 Ce Anl
adjA = :

A oo Apn

where A;j is the i — j minor of A, is called the classical adjoint matriz of A. Note that A;; is

written in the 7 row and i™ column.

Theorem 7.1 The matriz A € F™*™ is invertible if and only if det A # 0. If A is invertible,

then

_ 1 .
A 1:detA-adJA

Example

7.2 Cramer’s Rule

Consider a system of linear equations written in the form
al]y ... Q1p il bl
anl ... QAnpn Tn bn
where A is the matrix of coefficients of the system. By Th. 7.1
detA-x=adjA-Ax =adjA-b

n (05 b1 NN A1n

detij:Z adl]AﬂyZ ZAUyZ— : : : | = det Bj

i=1 b
[077% R n e Apn

where B; is the nxn matrix obtained from A by replacing the §™" column of A by b = (b1, .

Thus, the system has a unique solution given by

o detBj
1= det A

if and only if det A # 0.

14

).
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7.3 Change of Basis

Let V be an n-dimensional vector space over F with a basis e1,...,e,. Any vector v € V can
then be written as v = aje; + - - - + anvy,, wWhere aq,...,a, € F are called the coordinates of v.
We will denote them by

ai
e _
M, =
Gnp,
e
with an index e emphasizing that they are coordinates in the basis ey, ..., e,. Let €],..., el be
n
another basis of V. Then we can write eg» = E Tij€i-
=1
Definition 7.2 The matrix
711 .- Tin
Qee’ = Q =
Tnl Tnn
whose columns are the columns of the coordinates of the vectors €}, ..., €l in the basis e1, ..., ep
is called the change-of-basis matriz from the basis ey,..., e, to the basis €},...,e.,. Taking
/ / /
e =(ep,...,€,), e=(e1,...,ep), then
/
€ = eQee’

Theorem 7.2 The change-of-basis matrix Qeer is invertible and Qe_; is the change-of-basis

. /
matriz from e’ to e.

Now we consider the transformation of vector coordinates. Let

! 1!
v=aie1+ -+ aneyp = arey+ -+ a,€,

that is,
/
(11 (11
/
e __ . e __
My =|: Mg =
/
a a
n e n/ el
We can then compute
n n n n n
/ / !/
V= E a; Tij€; = E E Q;Tij€; = a; = E Q;Tij
j=1 =1 i=1 j=1 j=1
and, in matrix form, we have
ay al a1
. —1 .
: - Qee/ : = Qere
/
a a a
n;/ e "/ e "/ e

15



7.4 Matrices of Linear Maps in Different Bases

Let V and W be vector spaces over F. Let e = (e1,...,e,) and ¢ = (€],...,¢e),) be bases in
V, and let € = (e1,...,6y) and € = (€],...,€,,) be bases in W. Let Qe be a change-of-basis

matrix from e to ¢/, and let Q. be a change-of-basis matrix from e to €, that is,

d=e Qee’ € =¢e Qee’

We consider a linear map 7' : V — W and its matrix M = M{® relative to the bases e, ¢, as
well as its matrix M’ = Mfwlﬁ/ relative to the bases €, €. Since the coordinates of T'e; in € are

written in the j* column of M, we have that
Te=(Tei,....,Te,) =M

and similarly
Te =M

We then have
Te =T(eQer) =€ M = (eQer )M’

T(eQeer) = (€Qeer)M' = €(Qeer M)
€M Qeer = €Qeer M’
By the linear independence of €, we obtain
M'= Q) M Qeer = Qe M Qee
If W=V and e = e, € = ¢, then we obtain
M = Q) M Qew

Definition 7.3 Square matrices A and B are called similar if there exists a matriz QQ, such
that Q is invertible and A = Q ' BQ.

Remark Two matrices are similar if and only if they represent one and the same linear map

in different bases.

Corollary 7.1 Let A and B be similar matrices. Then det A = det B.

16



8 Eigenvalues and Eigenvectors (Lecture Notes)

8.1 Definitions

Definition 8.1 A linear operator T : V +— V is called diagonalizable if there exists a basis

v1,...,U, €V such that

A0 0
0 A

MT = -2 .
0 An

Remark If My is of the form described in Def 8.1, then Tv; = \jv;, i = 1,...,n.

Definition 8.2 A number X € F is called an eigenvalue of a linear operator T if there exists
v # 0 such that Tv = Av. The vector v is called an eigenvector of T corresponding to the

etgenvalue .

Example Consider T : R? — R3 : T(x,y, 2) = (x,,0). It has eigenvalues A\; = 1 and Ay = 0.
The corresponding eigenvectors for \y = 1 are v = (1,0,0) and vo = (0,1,0), as well as any
linear combination of the two. The corresponding eigenvector for Ao = 0 is v3 = (0,0,1) and

any scalar multiple of vs.

Definition 8.3 The set of all eigenvalues of a linear map T : V — V 1is called the spectrum of
T and is denoted SpecT.

Definition 8.4 The set V\ = {v : Tv = A} = ker (' — X) is called the eigenspace of the

linear map T corresponding to the eigenvalue \.
Proposition The following statements are equivalent:
1. X is an eigenvalue of T.
2. T — M is not injective (ker (T'— M) # {0}).
3. T — M is not surjective (rank (T'— AI) <n—1,n=dimV).

4. T — X s not invertible.

17
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8.2 Characteristic Polynomials

Definition 8.5 The matriz

all — A ai19 e A1n
a1 agy — Ao aon,
A- M=
anl an2 e Qpn — A

is called the characteristic matriz of A and
det (A — AI)

is called the characteristic polynomial of A.

Theorem 8.1 A number X is an eigenvalue of a linear map T if and only if it is a root of the

characteristic polynomial of Mrp.
A € SpecT < det (M — M) =0
Example Consider T : R? — R? : T(z,y) = (—y, x). The matriz of T is
0 -1
M+ =
Setting its characteristic polynomial to 0:

-2 -1
1 =X

=X +1=0

we find that it has no roots in R and therefore T' has no eigenvalues or eigenvectors.

/

. / . .
Theorem 8.2 Matrices M5 and M of a linear map T in bases ey,...,e, and €},... e,

respectively, have the same characteristic polynomial, i.e. det (M% — AI) = det (M — ).
Corollary 8.1 The characteristic polynomials of similar matrices coincide.

Theorem 8.3 If \1,..., A\, are distinct eigenvalues of a linear map T with corresponding eigen-

vectors v, ..., v, respectively, then vi,...,v, are linearly independent.

18



8.3 Diagonalization

Theorem 8.4 A linear map T : V — V is diagonalizable if and only if there exists a basis

V1,...,U, €V consisting of eigenvectors of T'. Moreover, if T is diagonalizable, then the matrix
My, which is the matriz of T in the basis v1,...,Vn, 18
A O 0
w0
0 "

where \; is the eigenvalue of T corresponding to v;.

Example

1
T:R2n—>R2:MT:A:< 3)

4 2
1—A 3
=1-NMN2-XN)—-12=0=>X\=-2, =5
L 9 ( )( ) 1 2
For \i we have:

T+ 3y = —2x 3r+3y=20

Y = Y sz=1y=—-1=v =(1,-1)
do + 2y = —2y dr+4y =0

For Ay we have:

x4+ 3y =bzx —4r+3y=0
= =z=3,y=4= v =(3,4)
dx + 2y = 5y dr + -3y =0

The vectors v1 and vy are the eigenvectors of A1 and Ay respectively. We then have

-2 0
My —

which is the diagonal matriz of T in the basis v1,vs.
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9 Inner Products (Lecture Notes)

9.1 Diagonalization of Linear Maps

Theorem 9.1 IfdimV =n and if A1, ..., \, are distinct eigenvalues of the linear map T with

corresponding eigenvectors v, ..., vy, then T is diagonalizable.

Theorem 9.2 Given T : V — V,dimV = n and distinct eigenvalues Ai,..., Ay of T with
corresponding eigenspaces Vy, = {v : Tv = \jv} = ker (Mp — AI), the following statements are

equivalent:
1. T s diagonalizable.
2. det (Mp — AX) = (A = N)" ... (A — A)™"™ and dim V), = n;

3. dimVy, +---+dimV), A =n

9.2 Scalar Products in R? or R?

Definition 9.1 The scalar or dot product of vectors u and v is defined as
(u,v) =u-v=|u||v|cosp
where @ is the angle between u and v.
Theorem 9.3 Given u,v,w € R3 (IRz)7 a € R:
1. (u+v) - w=u-w+v-w, au-v=alu-v)
2. u-u=u?>>0
Su-u=0&u=0
4. -V =0-U
S.urv=0&ulw

6. u-v=(a1,a2,a3) - (bi,b2,b3) = arby + azba + azbs

U a1b1 + asbs + agbs
lullol /(a2 + a2 + a3)(b? + b3 + b2)

Definition 9.2 Vectors vy, vs,v3 € R® are called an orthonormal basis in R? if they are orthog-

onal and have unit length, that is
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9.3 Vector Products in R?

Definition 9.3 The vector or cross product
w=1u X v =|ul|lv]sineg

is defined as a vector w that is orthogonal to u and v with a direction given by the right hand
rule. The length of w is given by the area of the parallelogram that the vectors uw and v span.

Note that u X v = —v X u.

Theorem 9.4 Given u,v,w € R? and a € R:
l.uxv=0&ulwv
2. (u+v)Xw=uxw+ovxXw
3. (au) x v =a(u x v)

4. If i, 4,k form an orthonormal basis and i X j = k, then

i gk
u X v = (a1i+ azj + agk) x (b1i + baj + bszk) = |ay as a3
b1 by b3

S.u-(vxw)=v-(wxu)=w-(uxv)
6. ux (vxw)=vu w)—wu-v)

9.4 Inner Products

Definition 9.4 An inner product on a vector space V over F is a map (-,-) : V x V= F such

that we have:

1. Linearity in the first slot:
(u+v,w) = (u,w) + (v,w) Vu,v,weV
(au,v) = a(u,v) Yu,veV,aeF

2. Positivity:
(u,u) >0 YueV

3. Positive definiteness:
(u,u) =0 u=0

4. Conjugate symmetry:
(u,v) = (v,u) Yu,veV

(ifF =R, (u,v) = (v,u))
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Remark

(u, av) = a(u,v)

Definition 9.5 An inner product space is a vector space over F together with an inner product

<,>

Example
1. V=R?
(u,v) = (u,v) =u-v = arb; + azby + agbs
2.V =F"

<U,U> :Zazgz:ala++anbn
i=1
(V =R" = (u,v) = a1by + -+ + anby)
3. V=F[z] or V. =0C([0,1])

1
(f.g) = / f(2)9(z) dz
0

Definition 9.6 A map || - || : V + [0,00) is a norm on V if we have:

1. Positive homogeneity:

lavl] = lal[[o] VaeF, veV

2. Positive definiteness:

o] =0 v =0

3. Triangle inequality:
lutol <llull +lv]| Vu,veF

Theorem 9.5 (Cauchy-Schwarz Inequality) Let ||v|| = v/(v,v). Then for all u,v € V
[{w, v)[ < [lull][v]]

Moreover, we have equality if and only if u and v are linearly dependent.
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10 Orthonormal Bases (Lecture Notes)
10.1 Inner Product and Norm Maps
Definition 10.1 A map (-,-) : V. x V = F satisfying:

1. (u+v,w) = (u,w) + (v,w) Yu,v,weV
(au,v) = a(u,v) Yu,veV,aeF

2. (uy,u) >0 YueV

3. (u,u) =0 u=0

4. (u,v) = (v,u) Yu,veV
is called an inner product on the vector space V over F.
Definition 10.2 A map || || : V + [0, 00) satisfying

1. JJav|| = lal|jv|| VaeF,veV

2. |v|l=0<v=0

3. lu+ ol <flull + o] Vu,veF
is called a norm on the vector space V over F.

Example For V =C", u= (a1,...,an), v = (b1,...,by), w = (dy,...,d,) we check that (-,-)

satisfies the properties of the inner product:

L (u+v,w) = (a1 +b1)di + -+ (an + bn)dp = ardy + -+ + apdn + -+ brdi + -+ + bydy
= (u,w) + (v, w)

2. (u,u) = a1@i + -+ + anly = ag[* + -+ + |an|* 2 0

3 (u,u) = 1@ + -+ aply = a1 >+ +anP=0=>u=0

4o (u,0) = arby + -+ + anby = @iby + - + Gaby = byar + -+ bpan = (v, )

Definition 10.3 A vector space V' over F with an inner product (-,-) is called an inner product

space.

Theorem 10.1 (Triangle Inequality) Let ||u| := \/(u,u). Then for all u,v € V
lJu+ vl < flull + [|v]

Remark For all u,v,w €V, aeF

(u,v+w) = (v+w,u) = (v,u) + (w,u) = (u,v) + (u,w)

(u,av) = a(u,v)
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Example For V =R", u = (a,...,ay), v = (b1,...,b,), we have:

(u,v) = arby + -+ + apby

full = Vi) = Jad + v a2

Cauchy-Schwarz Inequality:

ya1b1+-~+anbn|§\/(a%+---+a%)(b§+--~+b%)

Triangle Inequality:

\/(a1+b1)2+---+(an+bn)2§\/(a%+---+ag)(b§+---+bg)

Corollary 10.1 The function ||u|| = \/{u,u) is a norm on the inner product space V.
Example We check that ||u|| = \/(u,u) is a norm:

1. Jlavl| = /faw, av) = v/a@fo, o) = /[al%o, ) = lalllo]

2. v =+v@w,0)=0=>0v=0

3. Nu+ol < flull + o]

10.2 Orthonormal Bases

Definition 10.4 Vectors u and v are orthogonal if (u,v) =0
Theorem 10.2 (Pythagorean Theorem) If u,v € V' are orthogonal, then
lu ) = [lul® + o]
Definition 10.5 Vectors eq,...,e, € V are called orthogonal if
(€i,ej) =0,i#]

They are orthonormal if

(i, €5) = i
Theorem 10.3 Fvery list of non-zero orthogonal vectors in V is linearly independent.

Definition 10.6 An orthonormal basis of V is a list of orthonormal vectors that form a basis

mV.

Theorem 10.4 Ifey,..., e, form an orthonormal basis in V, then
v={(v,e1)e; + -+ (v,ep)e,, YveEV

ol = (v,v) = [{v, e)* + - + (v, en)
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10.3 The Gram-Schmidt Orthogonalization Procedure

Theorem 10.5 If vy,...,v, is a list of linearly independent vectors in an inner product space
V', then there exist vectors eq,...,e, that are orthonormal such that
span{vy,...,vp} =span{ey,...,ex}, k=1,...,m
Proof: First we set e; = L Then eg = v2 — (v, e1)en . In general:
[[o]] [z = (v2, er)en |
v — (g, er)er — - — (Vg ep—1)ek—1
€L =
g — (vk, er)er — -+ — (v, ex—1)ex—1|
O
Example Tuke v; = (1,1,0), vp = (2,1,1) € R3.
V1 1
€1 = = 7(17 170)
losll V2
1 3
vo,e1) = —(2,1,1)-(1,1,0) = —
(va, €1) \@( )+ ( ) 7
Vg — <U2,€1>61 (27 ]-7 ]-) - %(1) 170) %(17 _172) 1 (1 1 2)
62 = = = = — , — 41,
lvz = (v, enenll  [(2,1,1) = 3(1,L,0)|  [I3(1.=1.2)| /6

Corollary 10.2 Every finite-dimensional inner product space has an orthonormal basis.

Corollary 10.3 FEvery orthonormal list of vectors in V' can be extended to an orthonormal basis

of V.
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11 Orthogonal Projections (Lecture Notes)

Definition 11.1 Let V be a vector space over F. Let U be a subset, but not necessarily a
subspace, of V.. The set
Ut ={veV:@wu =0 YueU}

is the orthogonal complement of U.
Lemma 11.1 If U is a subset of V, then U+ = (spanU)*.

Proposition (from Mathematics 1) Let Uy and Uy be vector subspaces of V.. ThenV = Uy @ U,
if and only if:

1.VveV,v=uy +uo, uy € Uy, ug € Uy
2. U1NUy = {0}
Theorem 11.1 If U is a vector subspace of V, then V =U & U~*.

Proof: Let eq,...,e, be an orthonormal basis of U. Then
up = (v,er)e; + -+ (v,ep)em € U
Checking that us = v —uy € Ut:

(ug,e1) = (v,e1) — (v, er){er,er) — - — (v, em)(€m,e1) =0 = (uz,e;) =0

We have
uz € {61’- . -aem}J_ = Span{el,.. . ,em}J‘ = UJ‘

Thus the first condition v = u; + us is fulfilled. Now let u € U N U+. Then
welUueUY)=0=|[ul?=>u=0

Thus the second condition U N U+ = {0} is fulfilled and V = U @ U*. O

Theorem 11.2 If U is a subset of V, then (Ul)L =spanU. In particular, if U is a subspace
of V, then (Ut =U.

Definition 11.2 The map Py : V — V defined as Py(v) = uy, where uy € U is such that
v = u + ug, up € UL, is called an orthogonal projection. If eq,...,en form an orthonormal

basis in U, then

Py(v) = (v,er)er + -+ (v,em)em

Theorem 11.3 Let U be a subspace of V and v € V. Then
o =Py <[lo—ul YVueU

Moreover, the equality holds if and only if u = Py(v).
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12 Adjoint Operators (Lecture Notes)

12.1 Dual Space

Let V be a finite-dimensional inner product space over F. Take v € V' and consider the map
fuw) = (v,u) VoeV

fu is a linear map from V to F and is called a functional on V.

Theorem 12.1 (Riesz Representation Theorem) Given a finite-dimensional inner product space
V and f € L(V,R), there exists a unique u € V such that

fw) =(v,u) YveV
Proof: Given an orthonormal basis ey, ..., e,, any vector can be written as
v=(v,er)e; + -+ (v,ep)ey

f(’U) = f((v, 61>61 +-+ <v7 en>en) = <Ua 61>f(61) +eoet <1), en>f(€n)

= <1), f(el)el + -+ f(en)6n> = (U’u>

We find that there exists u € V' such that f(v) = (v,u). Additionally, taking v = u; — ua:
f(U) = <’U7U1> = <U,U2>

0=f(v) — f(v) = (v,u1 —ug) = (ug — ug,us — us) = |lug — ua||* = us = uy
we find that v is unique. O

Definition 12.1 The set V* = L(V,F) is the set of all linear functionals on V' and is called
the dual space of V.

Remark
(v,ur) = (v,u2) Vv eV = u; =ug

Remark By Th. 12.1, V* only contains functionals of the form f(v) = (v,u) Vv e V.
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12.2 Adjoint Operators

Theorem 12.2 For T € L(V) there exists a unique linear map T* € L(V') such that
(Tv,uy = (v, T*u) u,veV
Proof: Consider f*(v) = (T v,u). Then there exists u’ € V such that
f'(w) =(Tv,u) = (v,
Simply take T* v = v/, then
(Tv,u) = (v, T"u) Yov,ueV
and T™ is a unique map from V' to V. Now take ui,us € V.
(0, T*(u1 + u2)) = (Tv,u; +uz) = (Tv,u1) + (T v,u2) = (v, T u1) + (v, T" ug)

=W,T u +T ug) YveV

=T (up +ug) =T uy + T uy
The same can be shown for T*(au) = aT* u, a € F. Thus T is linear. O
Definition 12.2 The operator T is called the adjoint of T.

Theorem 12.3 Letey, ..., e, form an orthonormal basis in V and T € L(V'). Then the entries

of the matriz My of T in the basis eq, ..., e, are given by
ai; = (T'ej, e;)

Theorem 12.4 The matric Mp~ in any orthonormal basis of V' is the complex conjugate,
transposed matriz of the matrix My of T € L(V).

Proof:
Mz~ = (bij)

bij = <T* 6j,€i> = <€Z’,T* €j> = <T€ia€j> = aj;

Theorem 12.5 For T,S € L(V), a € F:
1. (T+S) =T"+5"
2. (aT)* =aT"
3. (TS)* = S*T*

4. (T =T
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12.3 Self-Adjoint Operators

Definition 12.3 If T € L(V) satisfies T = T*, then T is called self-adjoint. If a matriz A
satisfies A = A*, then A is self-adjoint.

Remark T is self-adjoint if its matriz My, in any orthonormal basis, is adjoint.
Remark If each entry of A is real and A is self-adjoint, then A is symmetric.

Theorem 12.6 Let T, S € L(V) be self-adjoint and a € F. Then T, T+ S, aT, TS + ST are

also self-adjoint.

Theorem 12.7 If T € L(V) is self-adjoint, then each eigenvalue of T is real and eigenvectors

corresponding to distinct eigenvalues are orthogonal.

Proof:
Mv,v) = (A, v) = (Tv,v) = (v, T*v) = (v,Tv) = (v, \v) = XNv, )

=A=A=)eR
M (v1,v2) = (T'vr,v2) = (v1, T v2) = Aa(v1,v2)

= <’U1,’02>:0:>U1J_’02

Theorem 12.8 Given that T € L(V) is self-adjoint:

1. There exists an orthogonal basis of V', each vector of which is an eigenvector of T corre-

sponding to a real eigenvalue of T

2. There exists an orthonormal basis in which M has a diagonal form, where each entry is

real.
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13 Unitary Operators (Lecture Notes)

13.1 Definitions

Let V and W be inner product vectors spaces over the same field F.

Definition 13.1 T € L(V,W) preserves inner products if
(Tvo, Tuyw = (v,u)y Yu,veV

T is then called an isomorphism of V onto W.

Theorem 13.1 Let dimV = dim W be finite. Given T € L(V,W), the following statements

are equivalent:

1. T preserves inner products.

2. T is an inner product vector space isomorphism, i.e. it is invertible and preserves inner

products.
3. T maps some (then every) orthonormal basis in V' to an orthonormal basis in W.
Corollary 13.1 Inner product spaces V. and W are isomorphic if and only if dimV = dim W.

Theorem 13.2 T € L(V, W) preserves inner products if and only if
[Tl = o] YoeV

Definition 13.2 If the operator T € L(V') preserves inner products, then T is called a unitary

operator.

Theorem 13.3 T € L(V) is unitary if and only if
T"T=TT"=1<T"=T"

Definition 13.3 A matriz A € F**" is called unitary if
A*A=AA =T A* = A1

If A e R™" is unitary, i.e. ATA =1, then A is called an orthogonal matriz.

Theorem 13.4 T € L(V) is unitary if and only if its matriz in some (then every) orthonormal

basis is unitary.
Theorem 13.5

1. Given a self-adjoint matriz A € F™™", there exists a unique matriz P such that P~'AP

is diagonal.

2. If A is a real symmetric matriz, then there exists a real orthogonal matriz P such that
P~ YAP is diagonal.

Theorem 13.6 A € F™*" is unitary if and only if its rows (columns) form an orthonormal

basis in F".
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13.2 Normal Operators
Definition 13.4 A linear map T € L(V) is called normal if TT* = T*T. A matriz A is called
normal if AA* = A*A.

Theorem 13.7 (Spectral Theorem) If V is a finite-dimensional inner product space over C
and T € L(V), then T is normal if and only if there exists an orthonormal basis in V' consisting

of eigenvectors of T.

Corollary 13.2 Let T € L(V) be a normal operator and let V' be a finite-dimensional inner
product space over C. Let Ai,..., Ay be distinct eigenvalues of T'. Then

1L.V=V -V, VW ={v:Tv=\Nv}=ker(T — \I)
2.iFj=>Vy LV de VoeVy,ueV,, (v,u) =0
Remark Th. 13.7 tells us that T' € L(V) is normal if and only if My is diagonal with respect

to an orthonormal basis ey, ...,e, €V, i.e. there exists a unitary matrix U such that

AN ... 0
UMpU* =UMp U = :
0 ... M\

Remark Diagonal decomposition allows us to easily compute powers and functions of matrices.
Let

AM ... O
A=UDU' D= :
0 An
Then
AT ... 0
A"=UpUu Yyr=vuDwwt=U|: -.. :|U!
0 An
Thus we can define
f(A1) 0
fay=u| : Ut
0 f(An)

[]¢
x|~
>~
—a
[en}
>
=3
@)



14 Bilinear Forms (Lecture Notes)

14.1 Definitions

Definition 14.1 A function B : V x V — F, where V is a vector space over F, is called a

bilinear form if
1. B(au + bv,w) = aB(u,w) + bB(v,w)
2. B(w,au+ bv) = aB(w,u) + bB(w, v)
Example
1. For a vector space V' over R, the inner product is a bilinear form: B(u,v) = (u,v).

2. For vectors u = (x1,...,2,) and v = (y1,...,Yn) in F, a bilinear form can be defined as

the following:
Blu,v) = Y aij iy,

ij=1

If n = 2, this is, for example
2
Blu,v) = Y aijiy; = 2191 + 25291 + 32192 + T2y
ij=1
where a;; are arbitrary scalars.

3. For functions f,g € C([0,1]), we can define the bilinear form as
1
B(f.9) = [ Ma)f(@)ge)do k) € (10 1)
0

Definition 14.2 The matriz A = (aij);'j—1, where a;; = B(e;, e;), is called the matriz of B in

the basis eq, ..., ey,, also called the Gram matrix of B.
ai a1in Y1
B(v,u) = (zl xn> : = MTIAM,
Gnl Gnn Yn
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14.2 Change of Basis

When changing bases, a bilinear form B can be written as follows:
B(v,u) = (ME)" 45 Mg = (QME ) ac(QMe) = (M) (QTAQ) ¢

where Q = Q.. is the change-of-basis matrix from the basis e to the basis €’.
Theorem 14.1 Let A® be the matriz of B in the basis e. Then

/

A = Ze’AeQee’ = QTAeQ

where Q is the change-of-basis matriz from e to €', is the matriz of B in the basis €.

Definition 14.3 The rank of the matrix of a bilinear form B is called the rank of B and is
denoted rank B.

Theorem 14.2 If dimV = n, then the following conditions are equivalent:
1. rank B =n
2.Vv#0 Fu:B(v,u)#0
3. Yu#0 Fv:B(v,u) #0
Definition 14.4 If B satisfies one of the conditions in Th. 14.2, then it is non-degenerate.

Theorem 14.3 Let B be a symmetric bilinear form in a real vector space V. Then there exists
a basis e1,...,e, €V in which the matriz of B is diagonal with only 1’s, -1’s, and 0’s on the

diagonal, that is

1, 1=75<s
-1, s<i=j3<r
de,...,en €V, s <r<n:ay = Ble;ej) =
0, i=j>r
0, i#)
In this case, B(v,u) = 21y1 + -+ + TsYs — Ts1 Yst1 — =+ — TrYr.

Theorem 14.4 (Sylvester’s Law of Inertia) The number of 1’s, -1’s, and 0’s in Th. 14.3 is

independent of the basis in which the matriz of B is written.

14.3 Quadratic Forms

Let B be a symmetric bilinear form in the vector space V.

Definition 14.5 The map from V to F given by v — B(v,v) is called the quadratic form

associated with B.

Remark Any quadratic form in a real vector space uniquely determines the associated bilinear
form:
1
B(v,u) = 5 [B(v+ u, v+ u) — B(v,v) — B(u,u)]
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Theorem 14.5 For every quadratic form B(v,v) € R", there exists a basis such that

2 2 2 2
B(U,U):IE1+"'+$S—$S+1—"'—$T

Example Consider the quadratic form B(v,v) = x% + 2x1x9 — 42123 + 425 — 62013. We can

rewrite it as
B(v,v) = (a:% + 2x120 — 221223 — 229223 + 93% + 4x§) + 2x92x3 — x% — 6raoxs

= (z1 + x93 — 223)% — 23023 — 25
= (w1 + w9 — 223)* — (23 + 2z913 + 23) + 23
= (z1 4 29 — 223)? — (v2 + x3)% + 3

We can then simply assign a new basis:

21 =x1 + 19 — 223 29 = I3 23 = T9 + I3

such that B(v,v) = 23 + 23 — 22.
Definition 14.6 A quadratic form B is positive-definite if B(v,v) >0 Vv # 0. It is negative-
definite if B(v,v) <0 Vv #0.

Theorem 14.6 A quadratic form B is positive-definite if and only if My > 0,..., M, > 0. It
s negative-definite if and only if My < 0, Ma > 0, M3 < 0, My > 0.... The numbers M; are

the principal minors of the matriz of B given by

ain a2 a3
ain a2
My =an, M= , M3z =|ag1 az a3,

a21 a2

az1 asz ass
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15 TOpOlOgy in Rd (Lecture Notes)

15.1 Norms in R?

The distance between = = (z1,...,z,) and y = (y1,...,Ys) is given by

lz =yl = V(21— 91)? + - + (20— yn)?

Properties of norms and distance:

L |z =0 6. [[z—yll =0

2. |z =0< 2 =(0,...,0) T z—yl=0s2=y

3. |laz|| = |a|l||| 8. llz—yll=lly—=|

4l +yll < llfl + [yl 9. lz =yl < llz—z[ + Iz — yll
5. Izl = llyll] < ll= — yll 10. |[lz = 2|l = [ly = 2]l < [l= = y]|

15.2 Limits in R¢

Definition 15.1 A sequence (:p(”)) . of elements in R? converges if there exists x € R? such
n
that N

Hx(") —z|| - 0,n — o0

That is
Ve>0 INeN:Vn>N [z —z||<e

Theorem 15.1 If 2" — 2, n — oo and 2™ — y, n — oo, then z = y.

Theorem 15.2 If 2™ 5 2. n — 0o, then
Yy € R? Hx(") — yH = ||z —y|l, n = o0

15.3 Limit Points in R?

Definition 15.2 The set
By(x) ={y eR?: |lz —y|| <r}

is called an open ball of radius r > 0 and center x € RY.

Definition 15.3 The set
By(z)={yeR*: |z —y| <r}

is called a closed ball of radius r > 0 and center x € RY.
Definition 15.4 A set A C R? is bounded if 37 > 0: A C B,(0).
Definition 15.5 A point zg € R? is a limit point of A C R? if

Vr>0 dJze€A x#ux9:x€ B (x0)

35


http://www.math.uni-leipzig.de/~konarovskyi/teaching/2019/Math2/pdf/notes/note15.pdf

Theorem 15.3 A point zg € R? is a limit point of A C R? if and only if there exists a sequence
(x(”)> such that
n>1

1. xo ;éa:(") €A Vn

2. 2 = 29, n — 00

15.4 Open Sets

Definition 15.6 A point xo € A is called an inner point of A if 3r > 0: B.(x¢) C A.

Definition 15.7 A set A C R? is open if each point of A is an inner point of A, that is
VeeA Jr>0:B(x)CA
Example The set A = {(z1,22) € R? : 2y > 0} is open. If x = (x1,22) € A, we can take

r=x1 > O Th@n Br(w) g A

Remark The set A = {(x1,12) € R? : 2y > 0} is not open, since the points (0,x2), where

x2 € R, are not inner points of A.

Theorem 15.4 The union of any number of open sets is open.

Theorem 15.5 The intersection of a finite number of open sets is open.
Remark The intersection of any number of open sets is not open in general.
Example Consider the open set A, = B.(x). Then consider

mAT:{:c:xeAT:BT(a:) Vr >0} ={z}

r>0

Note that the set {x} is not open.

15.5 Closed Sets

Definition 15.8 A set A is closed if it contains all its limit points.

Theorem 15.6 A set A C R? is closed if and only if the set
RINA={zcR?:z¢ A}

18 open.

Theorem 15.7 The intersection of any number of closed sets is a closed set, and the union of

a finite number of closed sets is also a closed set.

Definition 15.9 The set A, which consists of all points of A and all limit points of A, is called
the closure of A.

Example
A={reR?:2;>0}=>A={zcR?: 2y >0}

By(z) ={y: |z —yl <r} = B,(2)
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16 Functions of Several Variables (Lecture Notes/Slides)

16.1 Compact Sets in R?

Definition 16.1 An open cover of a set K C R? is a collection Gy, o € T of open subsets of

R such that K C U G-
acT

Definition 16.2 A subset K C R is called a compact set if every open cover Go, o € T of K

contains a finite subcover, that is

n
dag,...,an: K C UGai
i=1

Theorem 16.1 If K C R?, then the following statements are equivalent:
1. K is compact.
2. K is closed and bounded.

3. If (x(")> - is a sequence of elements from K, then there always exists a subsequence
nz

(:c("k)) such that 2™ — x¢ and xo € K.
n>1

16.2 Examples of Functions of Several Variables
1. Real-valued functions of one variable f : D — R, D C R:
(a) fz) =2z

(b) f(x) =sinx
(¢) flx)=V1—2a2 ze[-1,1]

2. Real-valued functions of several variables f : D — R, D C R%:

(a) fz,y) =3z +2y
(b) fla,y) =a® +y?
(¢) f(x,y) =sinzxsiny
The set D, = {x € D : f(x) = a} is called a level set of f.
3. Vector-valued functions of several variables f : D — R™, D C R%:
(a) f(z,y) = (coszsiny,sinzcosy) = Vsinzsiny
4. Vector-valued functions of one variable f : D — R% D C R:

(a) f(t)=(1+2t,t,3—1)
(b) f(t) = (cost,sint)
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16.3 Limits of Functions
Definition 16.3 Given f : D — R™, D C R? and a limit point z¢ of D, the point P € R™ is
called the limit of f at the point xg if

v (1:(”)> . € D:z™ £ o, 2 — zg

one has f <:U(”)> — P. We write p= lim f(z).

T—T0
Theorem 16.2 Given f: D — R™ and a limit point xo of D, we have p = le f(x) if and
T—x0
only if
Ve>0 F6>0:YxeD,xz#ux, |x—zo] <d=|f(zx)—p|<e

Remark If f: D —R™ and f = (f1,..., fm), then p = lgn f(x) if and only if
T—T(

Vi p;= lim fi(x), p=(p1,...,Pm)

T—T0
Example
I For f(o,y) = =210, (6.y) € R\ {0} we h
. For f(x,y) = —", (, we have
W=, Y
2y | _ 2Pyl _ @+l : ’y
53| = 3 s s .a —lyl= lim 2. .2
ety ety ety (z,5)—(0,0) T + Yy
xy ‘
2. For f(x,y) Ry (z,y) € R\ {0}, consider x =y, then © = —y:
x
2 2
T 1 — 1
fon=mrp=y o0 =mre="3
. . . ry .
This implies that ~— lim ——=—— does not exist.

(z,)—(0,0) 22 +y

Theorem 16.3 Given f : D — R™, D C R? and a limit point xo of D, then p = lim f(x) if
T—T0

and only if for any map « : (0,€) — D such that

1. lima(t) = xo 2. a(t) £xg Vte(0,¢)
t—0

one has %E)I(l) f(a(t)) =p.
. 2
Example hm(z’y)ﬁ(op)r

+y 5 exists along every line, but does not exist in general. Consider
Yy

the following two cases:

a*t*bt  a®bt _
attib2t2  att? + b2

x:=at,y:=bt = f(x,y) = f(z,y) = f(at,bt) - 0,t — 0

|
4+ttt 2

This implies that the limit does not exist.

vty =2 fay) = = fley) = F(2) = 5,10
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17 Continuous Functions (Lecture Notes)

17.1 Definitions and Basic Properties
Definition 17.1 A function f : D — R™, D C R? is continuous at a limit point zg € D if

le (x) = f(xo). This definition is equivalent to the following:
T—x0

Ve>0 36>0:VeeD |z—xf <d=|f(z)— flzo)| <e

Definition 17.2 A point zo € D is called an isolated point of D if there exists v > 0 such that

By (z0) N D = {x0}. We assume that any function is continuous at any isolated point.

Definition 17.3 A function [ : D — R™ is called continuous on D if it is continuous at each
point of D. In this case f € C(D,R™). Additionally, if m = 1, we write C(D,R) := C(D)

Remark If xy is an inner point of D, then f is continuous at xq if and only if
Ve>0 35> 0: f(By(ao)) C Ba(f(x0))

Theorem 17.1 For functions f : D — R, g : D — R that are continuous at xqg, the following

are also continuous at xg:

1. cf VYeceR 2. f+g 3. fg 4. =, glxzo) #0

Q |

Theorem 17.2 A function f = (f1,...,fm) : D — R™ is continuous at xq¢ if and only if

fi : D — R is continuous at xg for eachi=1,...,m.

Theorem 17.3 If a function f : D — M, D C R M C R™ is continuous at xg € D and
g: M — R" is continuous at yo = f(xo) € M, then h(z) = g(f(z)) = (g o f)(x) is continuous
at xg.

17.2 Examples of Continuous Functions

1. Constant Functions
f@)=¢, z€RY ceR

2. Coordinate Functions

7 RY— R, =1,....d
(21, ) = T, = (21,...,24) e R?
Proof of continuity: Let zo = (29,...,29). Let € > 0 be given. We have

[me(@) — mp(w0)| = g — 27

= /@ —a)? < @1 —al)? + - + (2a—2D)” = o — o

Taking § = ¢, we have ||z — zo|| < § = |mp(z) — T(20)| < €. O

39


http://www.math.uni-leipzig.de/~konarovskyi/teaching/2019/Math2/pdf/notes/note17.pdf

3. Polynomials

ni ng

k k d

P(xy,...,2q) = E E Ay kg Tq -2y, T ER
k1=0  kq=0

4. Rational Functions

R(x):%, zeD

for polynomials P,Q on R? and D = {z € R? : Q(z) # 0}

5. Other Functions
fzy,w) = eVEH ¥ sin(a) 4+ 2123), (21, 3) € R

17.3 Characterization of Continuous Functions
Given f: D — R™ and B C R™, we set the preimage of B:

f7'(B)={zxeD: f(z) € B}
If A C D, then we say that A is open in D if

VeeA Jr>0:DNB(xg) CA

Remark If D is open, then A is open in D if and only if A is open in R?.
Theorem 17.4 If f : D — R™, D C R%, then f is continuous on D if and only if, for any
open set G € R™, the set f~1(G) = {x € D: f(z) € G} is open in D.

17.4 Continuous Functions on Compact Sets

Theorem 17.5 Given a compact set D in R? and f € C(D,R™), the set

f(D)={f(z):z €D}
is compact in R™.
Theorem 17.6 Given a compact set K in R and a continuous function f: K — R:
1. f is bounded on K, i.e. 3C >0:|f(z)| < C Vze K
. ot e K +) = mi , ) =
2. Jzy,2" € K : f(z.) = min f(z), f(z") = max f(z)

Theorem 17.7 If K is a compact set and f : K — R™ is continuous, then [ is uniformly

continuous, that is,

Ve>0 36<0:Va',2" e K |2 —2"|<d=|f@@) - f@a")|<e
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18 Differentiation of Functions of Several Variables (Part I)
(Lecture Notes/Slides)

18.1 Functions of One Variable

Consider the function f : (a,b) — R, which is differentiable at zo € (a,b). Then there exists

. f(m—i—Aa:)—f(x)_ /
Jim v A )

We take any line
9(@) = f(xo) + m(z — x0)

through the point (zg, f(z¢)), and consider the approximation

f(@) = g(x) = f(z) = f(xo) — m(z — z0)

Hhen flx) —g(x) _ f(x) = flxo)
x)—g(x)  f(x)— f(zo o
w0 1w -—m—0,x— zg<m= f(xg)

Thus f(x) — g(x) = f(z) — f(xo) — m(x — x9) = o(x — x) if and only if g is the tangent line to

[ at xg, i.e. m = f'(xp).

18.2 Definitions

The functional L : R? — R is called linear if V z, Yy € RY a eR
1. L(z+y) = L(z) + L(y) 2. L(az) = a L(x)
Additionally, by Th. 12.1 (Riesz Representation Theorem)
Jv=(v1,...,v9) €RY: L(z) = (v,z) VzeR?
As before, we will approximate a function f : R? — R by another function
g(x) =a+ L(x —x9) = a+ (v, — x0)

Definition 18.1 Let x¢ be an inner point of D C R The function f : D — R is called

differentiable at xq if there exists a linear function L(xz) = (v,x) such that

£(a) = f(a) = Lix — z0) = oflz — wol), = 2o & lim LI~ L= 70)

=0 [ = o

=0

The function g(z) = f(xo) + L(z — x0), z € R? is the tangent plane to f through the point
(o, f(x0))-

Definition 18.2 The function L is called the differential of f at xo and is denoted df (xg) = L.
Alternatively, df (xo) = vy dal + - - + vg dal.
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18.3 Partial Derivatives
Let eq,...,eq be the standard basis in R%.

Definition 18.3 The limit

of , . f(:c(l),...,x2+Axk,...,x2)—f(x?,...,xg,...,xg)
— pr— pr— 1
oxy, (z0) = fa, (wo) A:cl,fgo Axy,
— tim f(xo+tex) — f(xo)
t—0 t

if it exists, is called the partial derivative of f at xg with respect to xy.

Definition 18.4 The vector

Vf(xo) = (aaa'jfl(.ro), ey gj;(x@)

1s called the gradient of f at xg.
Theorem 18.1 If f is differentiable at xq, then for each k= 1,...,d, there exists

_ f@, 2+ Az, 29) — f(2Y,...,29)
ka Axp—0 Al’k

Moreover, the differential of f is defined as

df (o) = (gi(mo) dry+ -+ gil(a:o) dzg

The linear map in Def. 18.1 then has the following form:
Lz = <Vf(l’0),$>

Proof: Assume f is differentiable. Then

lim f(x) = f(zo) — L(z — x0)

=0 [ = ol

=0

This also means that

f(zo+teg) — fzo) — L(tex) f(wo +ter) — f(wo)

lim = lim —Lep=0
t—0 |t exl t—0 t
Then ﬂ(mo) = Ley = v. O

T

Remark g(z) = f(zo)+Vf(x0)(x—x0) is the tangent plane to the graph of f through the point
(o, f(x0))-

Theorem 18.2 If f is differentiable at xq, then f is continuous at xg.

zy
x2+y2
but the partial derivatives of f exist at each point of R%. Therefore, the inverse statement to

Th. 18.1 is not true.

Example The function f(z,y) = s discontinuous at 0, so f is not differentiable at 0,
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Theorem 18.3 Let xg be an inner point of D and let f : D — R be given. If

1. 3e > 0:Vz € B:(xo) Eia—f(z) Vk=1,...,d
8.C6k
of . .
2. —— 1is continuous at xo for allk=1,...,d
oxy,

then f is differentiable at xg.

Corollary 18.1 If f has continuous partial derivatives on D, where D is open, then f is
differentiable at each point of D. The set Cl(D) is the set of all differentiable functions on D.
Thus

of

fecCyD) = Bay C(A) VEk

Theorem 18.4 If f : D — R and g : D — R are differentiable at xo € D, then the following

are also differentiable at xg:

1. cf 2. f+g 3. fg 4. =, g(xzo) #0

Q [

Theorem 18.5 Let f : D + R be differentiable at 1°. Let xj, = zp(t1,...,tm) be such that
) = a1, ..., 1) and 3%%(150), Vj,k. Then for the function h(t) = f(x(t)), there exist

rvm

partial derivatives

d
O 40y = 3 L (,0) 9% o)
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19 Differentiation of Functions of Several Variables (Part II)
(Lecture Notes)

19.1 Derivatives of Real-Valued Functions

Theorem 19.1 (Chain Rule I) Let the function f : D — R be differentiable at xo and let
xr = xk(t1,...,tm) be such that the partial derivatives %%(to) exist for all j, k. We take
) = a2, (t9,...,t0). Then for the function

h(tl,...,tm) = f(i[}l(tl,.. . ,tm),...,xd(tl,...,tm))

there exists

d
gthj(tO) = Z ﬁ(ﬂ?o)a—%(m% I(tg) — 20

— Oxy, Ot
Definition 19.1 The limit
of o flxo+tl) — f(xo)
oy (wo) = fim t

if it exists, is the directional derivative of f : D — R at an inner point xo of D in the direction
of the vector | = (1, ...,1q) € R%

Theorem 19.2 If f : D +— R is differentiable at an inner point o of D, then for any vector

l=(l,...,0y) € R?, the directional derivative in the direction of | exists and

of d of
E(l’) (Vf(x0), kz_:8

Theorem 19.3 If f : D +— R is differentiable at an inner point xy of D, then

O
mase 1 (0) = |V f(z0)]

Moreover, the mazimum is attained by a vector with the same direction as V f(xg).

Proof: By the Cauchy-Schwarz inequality,

o (o) = (Vo)1) < IV S @] = [V 5 o)
Taking | = 7ol
af_ X ~_¥ X X = x
B = (TH0) ) = o (9 (e0), V) = [ fao)]
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19.2 Derivatives of Vector-Valued Functions

Definition 19.2 Let o be an inner point of D. A function f : D — R™, D C R? is called
differentiable at xq if there exists a linear map L : R — R™ such that

f(x) — f(xo) — L(x — x0) = o(||lx — 0]|), x = xo

In the standard basis, the linear map L can be given by a matriz, which is called the derivative

of f at xq:
V11 e V1d

f'(o) =
Uml -+ Umd

Theorem 19.4 A function f: D — R™, f = (f1,..., fm) is differentiable at xq if and only if
fr : D — R is differentiable at xq for all k =1,...,m. Moreover

oh oh

7 (.%'0) . td (iL'o)
! _ afz i o
) = (5ot w)ml -
Ofm Ofm
i(mo) ;d(aco)
Definition 19.3 The matriz
Fan) = (32 <xo>)m’d
Ox; ij=1

1s called the Jacobian matriz of f at xo. If m = d then the determinant

a(fi,.--, fa)

8(:111, c. ,xd) = det f’(l’o)

is called the Jacobian determinant of f at wo. A point xo at which det f'(x¢) = 0 is called a

stngular point.

Theorem 19.5 (Chain Rule II) Let D C RY, M CR™ be open. If f : D — M is differentiable
at zg and if g : M — R™ is differentiable at yo = f(xo), then the function h =go f: D +— R™

1s differentiable at xo and

W (w0) = g'(f(0)) - f'(20)
Corollary 19.1 Under the assumptions of Th. 19.5 and if n = m = d, then

O(hi,...,ha)  0(g1,---,94) O(f1,..., fa)

Axy,...,zq)  O(f1,..., fq) Ox1,...,24q)
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20 Implicit Function Theorem, Higher Order Derivatives
(Lecture Notes)

20.1 Implicit Function Theorem

Let D be an open set in R, We denote by C}(D,R™) the set of functions f : D — R™ which
are differentiable at each point z € D and for which f: D — R is continuous.

Theorem 20.1 Let D be an open set in RE. For f : D — R%, zg € D, and yo = f(x0), assume
that the following conditions hold:

1. fe CY(D,R%
2. det f'(zg) #0

Then an open set G C D, which contains xg, and a ball B.(yo) exist such that
1. f:Gw— By(y0) is a bijective map

2. the inverse map g = f~': B.(yo) — G belongs to C1(B,(yo),R?)

5. gy) = (F () = (f’(g<y>)) Vy € By(yo)

Theorem 20.2 (Implicit Function Theorem) Let G be an open set in R™™ and take a point
(z0,90) € G, where o € R? and yo € R™. Assume that F : G — R™ satisfies the following

properties:
1. F(xg,y0) =0
2. F e CY(G,R™)
3. det F;(wo,yo) # 0, where F; is the derivative of F' with respect to y

Then a ball B,(xo) € R? and a unique function h : B.(zo) — R™, h € CYB,(x0),R™) exist
such that

1. h(zo) = yo

2. F(xz,h(z)) =0 Vaz e By(xp)

-1
3. W (z) = —(Fé(a:,h(a;))) F)(x, h(z))
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Example Consider F(x1,z2,y) = a:% + x% +y? —1. This equality defines the unit sphere in R>.
Take xog = (0,0) and yo = 1. Then

1. F(z0,y0) =0
2. F e CYG,R)
3. Fy(wo,y0) =2yo =2 #0

So, a ball By(xo) and a unique function y = h(x1,x2) : Br(x9) — R exist, in this example,

y = h(x1,22) = /1 — 22 — 22, such that

2. F(x1,x9,h(x1,22)) =0

8. Fi(x,y) = (221, 2x2)

I i)
h,(l‘l,ZEQ) = —%(2:171,2%’2) = — <

h($1, $2) ’ h(.%’l, .7,'2)

) V(l’l,l‘g) S B,«(IL‘())

20.2 Higher Order Derivatives

Let D be an open set in R? and consider a function f : D — R%.

Definition 20.1 The second order partial derivative of f at xo € D, if it exists, is

O (D8 oy = 2L 0y (=LLiti=
Ox; \ Ox; 0 _Bxi(?xj 0 _81'22 =
o2 f g 2

Theorem 20.3 (Schwarz’s Theorem) If the second order partial derivatives aroy O 3,57

exist and are continuous on D, then they are equal:

o*f  O*f
oxdy Oyox

Definition 20.2 The matriz

d
Hess, f = f"(x0) = ( ’f )

0z 0; /) ; ;.

is called the second order derivative of f at xg, or the Hessian matriz of f.

Example Consider f(z,y) = zeY +y. Then % =¢eY and g—i = xeY + 1. Thus we obtain

0 Yy
fa,y) = (ey ;y>

By the same way, one can introduce the n'"-order derivative of f:
_ P =2 (0 of (z0)
(%il e aCCZn 0/ = a.’]’jil al’iQ o 8$in o 0
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Definition 20.3 We define C"(D) as a class of functions f : D +— R such that

o f
exists and is continuous on D for every ii,...,i, =1,...,d.

20.3 Taylor’s Theorem

Theorem 20.4 We assume f € C"(D). Let xg,x € D be given and for all 6 € [0,1] we have
(1=0)xg+ 0x € D. Then

F(@) = (o) + F'(ao) (& — z0) + 5 1" (o) @ — w0)* + ..

f(" D (zo)(z — x0)" ' + 1 F((1 = 0)zo + 02) (z — zo)"

B '
n:

(n—l)

where 0 is some point from [0,1], and

8kf (z

(*) _ 0 _ o 0

F) (20)(z — x0)* E Bac“. azlk( ) - (i), — 75,
7’17 77'k_

Remark Ifn =2, then
f(@) = f(zo) + (Vf(z0),x — x0) + %<f”(if)(33 — o), — Zo)

where & = (1 — 0)xo + 0z, 0 € [0,1] and (" (Z)(z — x0),x — x0) is a bilinear form.

Example Consider f(z,y) = sinzsiny. Then

Vf(z,y) = (coszsiny,sinx cosy)

Pl y) = —sinxsiny co§x00§y _ 0 1 at (0,0)
cosrcosy —sinzsiny 10

1 1
Close to the point xo = (0,0), f(xz,y) =0+ 0+ 2%y + 5%y =Ty
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21 Extrema of Functions of Several Variables (Lecture Notes/Slides)
21.1 Necessary Conditions of Local Extrema
Consider f: D~ R, D C R%
Definition 21.1
e A point xg € D is called a local mazimum (minimum) of f if there exists r > 0 such that

1. BT(.T()) - D
2. f(@) < f(wo) Y€ Br(wo) (f(z)=flwo) Vo€ Br(xo))

o If f(zo) > f(z) YzeD (f(xo) < f(z) Va € D), then the point xq is called the global

mazimum (minimum).
o If xg is a local mazimum or a local minimum then xq is called a local extremum.
Theorem 21.1 If z is a local extremum of f, then assuming V f(xo) exists, V f(xg) = 0.

Definition 21.2 If xg is an inner point of D for which V f(x¢) = 0, then xq is called a critical
point of f.

Remark In general, if xo is a critical point, it is not necessarily a local extremum.

Example Consider the function f(z,y) = x> — y* from Figure 1. The point zo = (0,0) is a
critical point of f but it is not a local extremum. In the case of f(x,y) = z? — 42, the point

xo = (0,0) is called a saddle point.

2

Figure 1: f(z,y) =2® —y
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21.2 Sufficient Conditions of Local Extrema

Theorem 21.2 Let D be an open set in R, Consider f € C*(D) and assume xo € D is a
critical point of f.

1. If f"(z0) is positive-definite, then xq is a local minimum of f.
2. If f"(wo) is negative-definite, then xq is a local maximum of f.

3. If f"(xo) is indefinite, i.e. {f"(xo)u,u) >0 and (f"(zo)v,v) <0 for some u and v, then

xg 1s not a local extremum of f.
(Refer to Def. 20.2 and Th. 14.6)

Corollary 21.1 Let D be open in R?. Assume g—i(xo,yo) =0 and %(xo,yo) =0.

2
1. If 8—@(3:0, yo) > 0 and det f"(x0,y0) > 0, then (xq,yo) is a local minimum.
x

2
2. If 8—{(@'0, yo) < 0 and det f"(xo,y0) > 0, then (xq,yo0) is a local maximum.
x

3. If det f"(xo,v0) < 0, then (z0,%0) is not a local extremum.
Example Consider f(z,y,z) = 2° +y* 4+ 22 + 2z + 4y — 62 + zy.

1. Find critical points at which V f(x) = 0:

=2y+44+2x=0 ?:22—6:0

—=2r+2 =0
3 z+2+y .

X

of of
Ay

20 +y=-2
r+2y=—4 =rv=0,y=-2,2=3
22=26

We find xo = (0,2, —3) is a critical point.

2. Check if xg is a local extremum:

2
f//<1',y,2): 1 =M =2>0, My=3>0,M3=6>0
0

S NN =
N O O

f"(z,y, 2) is positive-definite, therefore xq is a local minimum.
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22 Conditional Local Extrema (Lecture Notes)

22.1 Some Exercises

1. Find the point in the plane 3x + 4y + z = 1 closest to (—1,1,1). For this we minimize the

squared distance function
fla,y,2) = (@ + 1)+ (y — 1)+ (2 = 1)?
with the constraint 3z + 4y 4+ z = 1 given by the equation of the plane.

]

20

X

Figure 2: 3z +4y+2=1

2. Find the minimum distance between two curves in R? given by 22 + 2y? = 1 (ellipse) and

x +y =4 (line). For this we minimize the function

flx1,y1,22,92) = (21 — 22)* + (11 — y2)?

with the constraints :U% + 2y% = 1 and z2+y2 = 4 given by the equations of the two curves,

then take the square root of the result.

4 — r+y=4
— a2t 2t =1
1 AN
Figure 3

3. Find the size of an open rectangular bath of volume V for which its surface area is a

minimum. For this we minimize the function
f(z,y,2) = 22y + 2y2z + 22
with the constraint xyz = V.
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22.2 Method of Lagrange Multipliers

Consider functions f : D — R, ¢; : D — R, i = 1,...,m, where D C R? is an open set. We

want to find conditional local extrema of f subject to constraints g1 =0,..., g, = 0.

Definition 22.1 Let M = {x € D : gi(x) = 0,...,gm(x) = 0}. A point xo € D is called a

conditional local mazximum (minimum) of f subject to the constraints g1 = 0,...,gm =0 if
dr>0:Va € B(xo) "M f(xg) > f(x) (f(:co) < f(x))

If xg is a conditional local mazximum or minimum, then xq is called a conditional local extremum.

Theorem 22.1 We assume that m < d, f € C1(D), g; € CY(D), i =1,...,m and the matriz

(gi; (fvo)> "

4,j=1

has rank m at xg, where xg is a conditional local extremum of f subject to the constraints
g1 =0,...,9m = 0. Then there exist real numbers Ay, ..., Ay for which xqg is a critical point of

the function

F(z) = f(z) = Mgi(z) — - = Amgm(2)
that is OF
87:[}](1:0):0 \V/jzl,,d

Method of Lagrange Multipliers:

(i) Find all solutions x1,...,24, A1,..., Ay, of the system

oF .

gi(x)=0 i=1,....m

(ii) Determine which of the critical points are conditional local extrema of f. This can usually

be done using intuitive or physical arguments.
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Example (Solving Ex. 1, 2 from 22.1 using the Method of Lagrange Multipliers)

1. Solving Fx. 1

We must minimize the function
flay,z)=(@+1)°+(y—1)°+ (2 - 1)°

with the constraint

g(r,y,2) =3x+4y+2—-1=0
We then have
Flz,y,2) =+ 1)+ @w-12+(z-12=-XBzx+4y+2—-1)

OF OF OF
oy = 2@+ =3x=0 a—y—2(y—1)—4)\—0 5, =2z-1-Ar=0

1
Solving the system of equations for X in terms of x,y, z yields X\ = I3 Thus

_29 12
TT7% YT 13 “T %%

2. Solving Ez. 2

We must minimize the function
fl@ryr, 2, 92) = (21 — 22)* + (1 — 12)°
with the constraints
gr(@1,y1, 3o, y0) =2 +207 —1=0  gaw1,y1,22,42) =72 +y2 —4=0
We then have

F(x1,y1,29,92) = (21 — 22)* + (41 — y2)® — A (23 + 207 — 1) — Xa(z2 + 42 — 4)

oF oF

Ry (x1 — z2) 121 =0 o (y1 — y2) 11 =0
oF oF
D (1 —22) = A2 =0 s (y1 —y2) = A2 =0

Solving the system of equations and ignoring unphysical solutions, we obtain

3
V6

Thus the minimum distance between the two curves is V2 (2 —

):2[—@.
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23 Basic Concepts of Differential Equations (Lecture Notes/Slides)

23.1 Models Leading to Differential Equations

1. Population Growth and Decay
Let P(t) be the number of members of a population, which, in order to simplify the
mathematical model, we will assume can take any positive value, and let a be the rate of

change of that population. This results in the differential equation

P'(t) = a P(t)

2. Spread of Epidemics
Let the rate of change of the infected population be proportional to the product of the
number of people already infected and the number of people susceptible to infection but

not already infected. This leads to the differential equation
I'(t) =rI(t)(S—1(t))

where S is the total number of members of the population, I(t) is the number of infected
members at time ¢, and r is some positive constant. If at time ¢ = 0 there were Iy infected

people, then we can add to the equation the condition

3. Simple Pendulum
Consider a pendulum with length [ = 1. Its motion as a function of time can be described
by the differential equation
0" + gsinf =0

where ¢ is the gravitational constant. If the amplitude is small, we can approximate

sin @ ~ 6, resulting in the differential equation

0" +g0=0

23.2 Basic Definitions

Definition 23.1

o A differential equation is an equation that contains one or more derivatives of an unknown

function.
o The order of a differential equation is the order of the highest derivative that it contains.

o If a differential equation involves an unknown function of only one variable, it is called

an ordinary differential equation.
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We will consider differential equations of the form

y(”) = f(a;, v,y ... ,y(”*l)) (23.1)
Example (Some Examples of Differential Equations)
.Y =T 3.y =2x—-2y —y
2.y = (y* + 1)z? 4. y™ =y —siny +x
Definition 23.2 A solution to a differential equation of the form (23.1) is a function y = y(x)

that is defined on some open interval (a,b) and can be differentiated n times such that

y"(2) = f(z,y(@),y (@),....y"D(2)) Ve (a,b)

Definition 23.3

o The graph of a solution of a differential equation is called a solution curve.

e A curve C is said to be an integral curve of a differential equation if every function

y = y(x) whose graph is a segment of C is a solution to the differential equation.
Example Consider the differential equation
; x
Yy = = (23.2)

The functions

y12(z) = Va2 — 22, 2 € (—a,a)

where a is a constant, are solutions to (25.2). The graphs of these functions are then solution
curves of the differential equation. The integral curve of the differential equation is given by the

equation of a circle

(a) Solution curve y; (z) = v a? — a2 (b) Integral curve z° 4 3% = a?
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Example Solving the differential equation
Y’ =e" (23.3)

can be done by integration:

Y (x) = /y"(:c) dx = /ex dr =e* + ¢

y() :/y’(:v)dx:/(ex+cl)dx:e$+clx+02

with constants ¢; and co.

23.3 Initial Value Problem

As seen with (23.3), there can be infinitely many solutions to a differential equation, depending
on the constants involved. The problem of finding solutions to (23.1) which satisfy the initial

conditions

y(wo) = po, ¥/ (w0) = p1,- ..,y V(x0) = pny (23.4)
for some x( from the domain of y is called the initial value problem.
Example To solve (23.3) with initial conditions y(0) = 1, ¥/ (0) = 0, we first take the general
solution and ensure it satisfies the initial condition y(0) = 1:
y(0)=e’+c=1=¢=0
Now we differentiate the general solution and ensure it satisfies the initial condition y'(0) = 0:

Y(0)=e+c1=0=¢; =1

We thus obtain the particular solution to this initial value problem:

which, under the right conditions, is the unique solution.

Example Consider the differential equation

Yy =2y (23.5)

with the initial condition y(0) = 0. Then y(x) = 0 and y(z) = 2%, = > 0 are two different

solutions to this problem. This shows that solutions to the initial value problem are not unique.

Remark If f is continuous, then the differential equation y' = f(x) with the initial condition

y(xo) = yo has the following solution:

x

y(@) = yo + / f(t) dt

x0
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23.4 Directional Fields of First Order Differential Equations

Consider the equation
y' = f(z,y) (23.6)

We will discuss the graphical method of solving (23.6). Recall that y = y(z) is a solution to
(23.6) if y/(z) = f(x,y(x)) for all  from some interval. So, the slope of the integral curve of
(23.6) through a point (xg,yo) is given by the number f(xg,yo). If f is defined on a set R,
we can construct a directional field for (23.6) in R by drawing a short line segment or vector
with slope f(x,y) through each point (z,y) in R. Then integral curves of (23.6) are continuous

curves tangent to the vectors in the directional field.
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Figure 5: Examples of directional fields
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24 First Order Differential Equations (Lecture Notes)

24.1 Separable Differential Equations

Definition 24.1 A differential equation of the form

Y = f(y)g(x) (24.1)

1s called a separable differential equation.

In this section, we will describe the method of solving equations of the form (24.1). First, we

rewrite (24.1) in the form

where h(y) := ﬁ Assume that h(y) and g(x) have antiderivatives H (y) and G(x) respectively.

By the chain rule we have

d

T H (@) = H'(y(2)) - y'(x) = h(y(2)) - ' (x)

Thus J J
L H (y(2)) = - G(2)

Integrating both sides of this equation will yield
H(y(z)) = G(z) + ¢ (24.2)

Consequently, any differentiable function y = y(z) that satisfies (24.2) is a solution to (24.1).

To find this solution, we must find the antiderivatives of h and g.

Example (Separation of Variables)

2

d x
Y = xdxr = arctany = ?—I—c

1492

2
y—tan<g;+c>

Example (Differential Equation with Implicit Solution)

, dy 2z +1

R e

= (5y* 4+ 1)dy = (22 + 1) dz

YH+y=2"+a+c

Remark In dividing (24.1) by f(y) we may lose some solutions, namely the constant solution

y(x) = yo, where f(yo) = 0.
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Example We will solve the initial value problem:
y =2zy"  y(0)=1
First, we find the general solution of the differential equation by separation of variables:

dy
/:7:2 2
Yy du Yy

dy
?:2xdac,y7é0

1
—~=z+c
Y

1

_ 24.3
22+ c ( )

y:

Note that y = 0 is also a solution. Moreover, it cannot be written in the form (24.3). However,
this means that it cannot satisfy the initial condition. We therefore take the former solution

(24.3) to find c:
1

(&

y(0) =

We then have the solution )

m, T € (—1,1)

y(r) =

24.2 Linear First Order Differential Equations

Definition 24.2 A first order differential equation is said to be linear if it can be written in
the form
y' +p(x)y = f(z) (24.4)

If f =0, (24.4) is called homogeneous, otherwise, it is called nonhomogeneous.

To solve equations of the form (24.4), we first consider the corresponding homogeneous equation,
when f = 0:
Y +p(z)y=0 (24.5)

We can solve (24.5) using the method of separation of variables:
Inly| = —P(z) + k
where P(z) := [ p(z)dz and k is a constant. We then have
y=e"e P and y=—cfe @
Consequently, we can write solutions to (24.5) as
y=Ce @ (24.6)

where C' € R. Note that for C =0, y = 0 is also a solution to (24.5).
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Definition 24.3 (24.6) is called the general solution to the homogeneous equation (24.5).

In order to solve (24.4), we assume that C' in (24.6) depends on x, that is,
y=C(z)e T@ (24.7)
We then substitute (24.7) into (24.4) and obtain
Cla) = / F@) eP@ do + Oy

where (] is some constant of integration. We then have

y(z) = (/ fz)el® d:c) e @) 4 Cre=P@

Remark The general solution to (24.4) can be written as the sum of a partial solution to (24.4)

and the general solution to the homogeneous equation (24.5).

Example Take the differential equation
y —2xy = v

Flirst solve

y —2xy =0
y = Ce—f(—Qx) dx — Cea;2
Now substitute y = C’(ac)em2 into the differential equation to obtain
C(z) :/dx::lH—C&

We then have
y(z) = (x + cl)er = ze® + Cler
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24.3 Transformation of Nonlinear Functions

Here we consider the Bernoulli Equation, which is of the form

Y +px)y=f(z)y" (24.8)

where r € R\ {0, —1}. Let y; be a nontrivial solution to

Y +p(x)yr =0

Then we find a solution to (24.8) in the form

y=uy

where u is some function. So, substituting y = uy; into (24.8), we obtain

W'y +ulyy +p(@)y) =o'y = f@)(uy)’
which is a separable differential equation and can be solved.
Example Toke the differential equation
y —y=uay’

First solve

y—y=0

y=Ce"
Then take y1(z) = e*. We substitute y(z) = u(z) y1(x) = u(x)e® into the differential equation:

u'e® = ulre®®

erx

/
u =u
and we find a separable differential equation which we can solve:

1
(x —1)e* + ¢

Thus we find
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25 Existence and Uniqueness of Solutions, Higher Order Linear
Differential Equations (Lecture Notes)

25.1 Homogeneous Nonlinear Differential Equations

An equation which can be written as

=q(Y) 25.1
v =q (x (25.1)
is called a homogeneous nonlinear differential equation. To solve (25.1), we find a solution in

the form y(z) = x u(x).
Example Consider the homogeneous nonlinear differential equation

_ytae s
y =
T

(25.2)

We substitute y(x) = xu(x) into (25.2) and obtain

ur + re v

w'r +u= =u'z=e¢"=u=1In(lnlz|+c)

T

y = zIn(In|z| + ¢)

25.2 Existence and Uniqueness of Solutions

Theorem 25.1 (Peano) If f is continuous on (a,b) x (¢,d) and zo € (a,b), yo € (c,d), then

there exists € > 0 such that the initial value problem

y' = f(z,y), y(@0) = yo (25.3)
has a solution on [xy — €,z + €].
Theorem 25.2 (Picard-Lindeldf) If f = f(x,y) is

1. uniformly Lipschitz continuous in y, that is
3L >0 [f(z,y1) — f(z,92)| < Lly1 — y2

2. continuous in x
then there exists € > 0 such that (25.3) has a unique solution on [xo — €,z + €.

Remark If

‘gjyc <C V(x,y) € (a,b) x (c,d)

then the first condition from Th. 25.2 is satisfied.
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25.3 Higher Order Linear Differential Equations with Constant Coefficients

Definition 25.1 An equation of the form
any™ + an_1y" Y + 4 agy” + ary +aoy = F(x) an #0 (25.4)

is called a higher order linear differential equation with constant coefficients. If F' = 0, then

(25.4) is called homogeneous.

We substitute
y = Ce® (25.5)

into the corresponding homogeneous equation of (25.4)
any™ + an 1y Y 4+ dagy” Fary +agy =0 an #0
If X\ is a solution to the resulting polynomial equation
AN 4+ @ N+ a A +ag=0 (25.6)

then (25.5) is a solution to the homogeneous equation of (25.4).

Definition 25.2 (25.6) is called the characteristic polynomial of
Ly = apy™ + an1y" Y+ +agy” + a1y’ +agy = 0

Example Consider the differential equation

y" —6y" + 11y —6y =0
We obtain the characteristic polynomial

NN +1IA—6=0=>N =1, =2, \3=3

and we find the general solution

y = C1e® + Coe®® + Cse®®

Definition 25.3 The set {y1,...,yn} is a fundamental system of solutions to Ly = 0 if every

solution y can be written as a linear combination of {y1,...,yn}:
y=Cwyi+--+ Cpyn

for some constants C1,...,C.

Definition 25.4 The functions yi,...,yn are linearly independent if

Clyl(:c)+-~-+Cnyn(m):0 Ve=0C1=Cy=---=C, =0
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Theorem 25.3 A set of n solutions {y1,...,yn} to Ly = 0 is a fundamental system of solutions

if and only if y1,...,yn are linearly independent.

If the characteristic polynomial of Ly = 0 can be written as
PO ==X (A= Apn)km

we have the following cases:

LAER, k=1

Solution: y = e

2.0€eR k>1

Solutions: y; = e*?, Az k=lgAz

Yo =z, . Yy =2 e

3. N=axbi k=1

Solutions: y; = €** cosbx, yo = e** sin bz

4. A=axbi,k>1
Solutions:

y1 = e cosbx, yo = e sinbx, y3 = ze® cosbx, yys = xe* sinbx. ..

k—lea.t k—lea:v

cosbx, yop, = x sin bx

Yok—1 =T

Example Consider the differential equation
Yy +4y =0
The characteristic polynomial yields
MNApd=0=X =2, \g=—2i

P(A) = (A= A1) (A — Ag) = (A — 20)(\ + 2i)

and we obtain the solution

y = Cq cos2x + Cy sin 2z
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26 Systems of Linear Differential Equations (Lecture Notes)

26.1 Rewriting Scalar Differential Equations as Systems

Example Consider the differential equation describing the motion of a pendulum of length | = 1

as a function of time:

0" + gsinf =0 (26.1)

We define the velocity v(t) = 0(t), from which 0" (t) = v'(t) follows. We can then rewrite (26.1)

as a system of differential equations:

Example Consider the differential equation

aoy™ + a1y Y 4t an 1y +any = F(t) ag#0

We define
=y
2=y =y
Yz :=y" =y
=y Y =y
We can then write
Y1 = Y2
Ys = U3
/
Yn—1=Un
ai a2 Ap—1 a
Un == —Yn— Y1~ — ——yp — —y + F(t)
\ ao ao agp ao

Definition 26.1 A system of the form

y/I = gl(t7y17"‘ 7yn)

y’:’], = gn(t, yl?' . 7yn)

is called a first order system of differential equations.
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26.2 Linear Systems of Differential Equations

Definition 26.2 A first order system of differential equations of the form

y1 = a1 ()y1(t) + - 4 arn(t)yn(t) + fi(t)
: (26.2)

Yp = a1 (1 () + -+ + ann(B)yn(t) + fu(t)

1s called a linear system of differential equations. Defining

Y1 all (t) Ce. aln(t) f1 (t)
y=1: At) = : : f(t) = :
Yn an1(t) ... apn(t) fu(t)

where A is called the coefficient matriz of (26.2), we can rewrite (26.2) as
Y =Alt)y+ f(t)

If f =0, then (26.2) is called homogeneous.

Theorem 26.1 If A and f are continuous functions on (a,b) and ty € (a,b), yo € R", then
y' =A@y + f(t), y(to) = yo
has a unique solution on (a,b).

26.3 Homogeneous Systems of Linear Equations

Here, we will consider

Y = A(t)y (26.3)
We have the trivial solution y = (0,...,0). Let y',...,y" be vector-valued functions which are
solutions to (26.3). Then
y=cy' +--+cy” (26.4)
is also a solution to (26.3) for any constants ci, ..., cp.

Definition 26.3 If any solution to (26.3) can be written in the form (26.4) for some constants

1, cn, thenyt, ... y" is called the fundamental system of solutions to (26.3).

Definition 26.4 y',...,y" are called linearly independent on (a,b) if the equality
aytt) + -+ cy(t) =0 Vte (a,b)

mmpliescy =+ =¢, =0

Theorem 26.2 Let the n x n matriz A = A(t) be continuous on (a,b). Then a set of solutions
yl .. y" to (26.3) on (a,b) is a fundamental system of solutions if and only if it is linearly

independent on (a,b).
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26.4 Solving Homogeneous Systems of Linear Differential Equations with

Constant Coefficients

We will find solutions to (26.3), assuming the matrix A is constant, as solutions to higher order

linear differential equations.

Example Consider the system

! —4 -3 1= —4y1 -3
y/l _ ZR IR Y Y1 — SY2 (26.5)
Y4 6 5 )\ Yy = 6y1 + 512

We will find solutions in the form
y1 =z Yo = zoe™ (26.6)

where x1, 9 are some constants. We then have

t

yi = Az g = Aage (26.7)

Substituting (26.6) and (26.7) into (26.5), we obtain

—4x1 — 3x9 = A& —4—MNx1 —322=0
b R & Ja1 - 32z (26.8)

6x1 + Dxo = Axo 6x1 + (5 — )\):EQ =0

To find nontrivial solutions, we find X\ such that det(A — XI[) = 0. We obtain \1 = 2 and
Ao = —1. For A\ = 2 we have

*6561 — 3562 =0 Yy = —¢€
=
6x1+ 32 =0 Yo = 2¢2t
For Ay = —1 we have
—3x1 —329=0 Y1 = —e !
=
6x1 + 622 =0 Yo = et

The general solution to (26.5) is then given by
y1 = —cre”’ — cpe”

Yo = 20162t + cze_t
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In order to solve
y = Ay (26.9)

we first find eigenvalues of the matrix A from the equation det(A — A\I) = 0. Let
det(A— M) =(A=X)F ... (A= \p)km

1. If A = ); € R and the fundamental system of solutions to

(A= Xz =0 (26.10)
consists of & = k; solutions z', ..., 2", then
gl = sl |y = ket

are linearly independent solutions to (26.9).

2. If A € R and the fundamental system of solutions consists of m < k solutions, then we
find solutions to (26.9) in the form

y= (20 + 2@t 4. ghmmighmm) At
3. If A € C\ R, then we find solutions to (26.9) as before. We obtain
y=y' +iy’

Then take y' and 32 as linearly independent solutions to (26.9).

Example Consider
Y1 = 2y1 + y2 + y3
Yo = —2y1 — Y3 (26.11)
Y3 = 2y1 + Yo + 2u3

Solving the characteristic equation

2-x 1 1
—2 =X -1 [=0
2 1 2-2)

we obtain Ay = 2 and Ao = A3 = 1. For A\ = 2 we find the fundamental system of solutions to

To+x3=0
—2.%‘1—2.%’2—1‘3:0

201 + 22 =0

and obtain



Now for Ao = A3 = 1, we first find the number of vectors in the fundamental system of solutions
to
1+ x2+23=0

—21’1—{[}2—1‘3:0
201 +x2+ 23 =0

The rank of the corresponding matriz is 2, so the fundamental system of solutions contains only

1 vector. We substitute solutions in the form
Y1 = (1’1 + Z1t)6t Yo = (IL’Q + th)et (.Tg + th)et

into (26.11), find the fundamental system of solutions, then obtain

0 0 1 0
Y =rci 1|+ ]o]t|e+e 1|+ |[-1]¢]¢
1 0 0 1

Combining with the solutions obtained from A\; = 2, we obtain the general solution to (26.11)

Y1 = coet + C3€2t

yo = —(c1 + c2)e’ — cote! — 2c5e2t

Y3 = crel + eote! + 20362t
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