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8 Lecture 8 — Continuous Functions

8.1 Definitions and Examples

Let A CR, a € A be a limit point of A and f: A — R.

Definition 8.1. A function f is said to be continuous at a, if li_r)n f(x) = f(a), ie. li_r>n f(z) =
r—a r—a

f (tim )

By the definition of limit of function (see Definition 6.6) and Theorem 7.1, the following two
definitions are equivalent to Definition 8.1.

Definition 8.2. A function f is said to be continuous at a, if for each sequence (z,)n>1 such that
1) &, € Afor all n > 1; 2) x, — a, n — o0, it follows that f(z,) — f(a), n — cc.

Definition 8.3. A function f is said to be continuous at a, if

Ve>036>0Ve e AN B(a,0): |f(x)— fla)| <e.

Now we want to introduce the left and right continuity. For this we assume that a € A satisfies (7)

(resp., (8)).

Definition 8.4. A function f is said to be left continuous (resp. right continuous), if f(a—) =

f(a) (resp. f(at) = f(a)).
Remark 8.1. 1. If (a — v, a] C A for some v > 0, then f is left continuous iff
Ve>030>0Vz e (a—d,a]: [f(zx)— fla)|] <e.
This immediately follows from Theorem 7.6.
2. If [a,a + ) C A for some 7 > 0, then f is right continuous iff
Ve>030>0Vz € la,a+9): |f(z)— fla)|] <e.

This follows from Theorem 7.7.

Remark 8.2. Let a satisfy properties (7) and (8). Then, by Theorem 7.8, a function f is continuous
at the point a iff f is left and right continuous at a.

For convenience we will suppose that every function is continuous at each isolated point, points
from A which are not its limit points.

Definition 8.5. A function f: A — R is called continuous on the set A, if it is continuous at each
point of A. We will often use the notation f € C(A).

Theorem 8.1. Let functions f: A — R and g: A — R be continuous at a € A. Then
a) for each real number ¢ the function c- f is continuous at the point a;
b) the function f + g is continuous at the point a;

c¢) the function f - g is continuous at the point a;
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d) the function 5 is continuous at the point a, if additionally g(a) # 0.
In the theorem, the functions c¢- f, f 4+ g, f - g, I are defined in the usual way. For instance,
f-g:A— Risdefined as (f - g)(z) = f(x) - g(x) for all x € A.

Example 8.1. For an arbitrary real number ¢ we define the function f(z) = ¢, x € R. Then f € C(R).

Example 8.2. Let f(x) = x, z € R. Then f € C(R). Indeed, to show this, let us use e.g. Defini-
tion 8.3. We fix any a € R. Then we obtain that for every ¢ > 0 there exists § := ¢ > 0 such that for
each x € B(a,d) |f(x) — f(a)| = |x —a| < d =e. So, f is continuous at a. Since a was an arbitrary
point of R, f is continuous on R.

Example 8.3. Let P(z) = apz™ + a12™ ' + ... + @12 + am, * € R, where m € N U {0} and
ap,ai, ..., ay, are some real numbers. The function P is called a polynomial function. Theorem 8.1
and examples 8.1, 8.2 imply that P € C(R).

Example 8.4. Let P and @ be two polynomial functions. We define the function R(x) = %,
z € {z€eR: Q(z) # 0}, which is called a rational function. By Theorem 8.1 and Example 8.3, the

rational function R is continuous at any point where it is well-defined.

Example 8.5. The functions sin and cos are continuous on R. The functions tan and cot are con-
tinuous on the set where they are well-defined. The continuity of functions sin and cos follows from
Example 6.6. For the functions tan and cot the continuity follows from Theorem 8.1 and the equalities

__ sinz __ cosT
tanz = -7 and cotx = >

Example 8.6. Let a > 0 and f(x) = a”, x € R. Then f € C(R).

Exercise 8.1. Prove that the function from Example 8.6 is continuous on R.

Exercise 8.2. Compute the following limits:

2 T
: __ T : zf=3%+1. : zcosx+1
a) ilrr%)(tanx e’); b) ilr% T ¢) im}), B

Exercise 8.3. Let a,b be a real numbers, f(z) =2z +1, x <0 and f(x) =ax+b, x > 0. a) For which
a, b the function f is monotone on R? b) For which a,b the function f is continuous on R?

Exercise 8.4. Let f(z) = |«|sinmz, € R. Prove that f € C(R) and sketch its graph.
(Hint: If « € [k, k + 1) for some k € Z, then |z| = k and f(z) = ksinwz. Find f(k—) and f(k+) at the points k.)

Exercise 8.5. Let f : R — R be a continuous function on R and f(r) =73 +r+1 for all » € Q. Find
the function f.

Exercise 8.6. Show that |f| € C(A), if f € C(A), where |f|(z) := |f(x)|, z € A.

Exercise 8.7. For functions f,g € C(A) we set h(z) := min{f(z),g9(z)}, z € A, and [(x) =
max{ f(z),g(z)}, x € A. Prove that h,l € C(A).
(Hint: Use the equalities min{a, b} = 2(a + b — |a — b|) and max{a,b} = 3(a + b+ |a — b]).)

Definition 8.6. If a function f : A — R is not continuous at a point a € A, then f is said to be
discontinuous at the point a.

Example 8.7. The function sgn, defined in Example 7.5, is continuous on R \ {0} and discontinuous
at 0.

Exercise 8.8. Prove that the function f(z) =sinl, 2 # 0, and f(0) = 0, is discontinuous at 0.

Exercise 8.9. Show that the Dirichlet function f(z) =1, z € Q, and f(z) =0, z € R\ Q is
discontinuous at any point of R.
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8.2 Some Properties of Continuous Functions

Theorem 8.2. Let a function f: A — R be continuous at a € A and f(a) < q. Then
30 >0Vz € AN B(a,d): f(zx) <gq.

Proof. Using Definition 8.3, we obtain that for € := ¢ — f(a) > 0 there exists § > 0 such that for all
x € AN B(a,9) |f(x) — f(a)] < e =q— f(a). In particular, f(z) — f(a) < ¢ — f(a), which implies
f(z) < qfor all z € AN B(a,d). O

Theorem 8.3 (Limit of composition). Let a be a limit point of A (which could be +o00 or —oo)
and let for a function f : A — R there exists a limit lim f(z) = p € R. We also assume that
r—a

f(A)N{p} C B and a function g : B — R is continuous at the point p. Then lim g(f(z)) = g(p), that
T—a
wﬁggmfmﬁzg(ggfwﬂc

Proof. For any sequence (zp),>1 satisfying properties 1) and 2) from the definition of limit (see
Definition 6.6), one has f(z,) — p, n — oo. Since g is continuous, g(f(z,)) — g(p), n — oo, by
Definition 8.2. O

Theorem 8.4 (Continuity of composition). We assume that f : A — R is continuous at a € A,
f(A) € B and a function g : B — R is continuous at the point f(a). Then the function g o f is
continuous at the point a.

Proof. The statement immediately follows from Theorem 8.3, setting p := f(a). O

Let (a,b) C R, where —oo < a < b < 4o00. Let f : (a,b) — R be an increasing function. By
Theorem 7.9 (ii), there exists limJr f(z) =: ¢ € R, if f is bounded below. If f is unbounded below,
T—ra

then it is easy to see that lim f(z) = —oo =: ¢. Consequently, lim f(z) = c can be well defined for
T—ra+ rz—a+

any increasing function. Similarly, hlil f(z) =:d < +o0 is also well defined.
T—b—

Theorem 8.5 (Existence of continuous inverse function). Let a function f : (a,b) — R satisfy the
following properties:

1) f strictly increases on (a,b), that is, for any x1,x2 € (a,b) x1 < xo implies f(x1) < f(x2);
2) f € C((a,b)).
We set ¢ := m1—1>r£+ f(z) and d := Zli)rlr)l_ f(z).
Then there exists a function g : (¢,d) — (a,b) such that
a) g is strictly increasing on (c,d);
b) g € C(c,d));
c) g(f(x)) =z for all x € (a,b), and f(g(y)) =y for all y € (c,d), that is, g = f~1.

Remark 8.3. A similar statement also is true for a strictly decreasing function f : (a,b) — R, i.e.
for a function such that for any x1, 22 € (a,b) x1 < z2 implies f(z1) > f(x2).

Remark 8.4. If a € R, then Theorem 8.5 is also valid for the set [a, b).
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8.3 Some Inverse Functions

Example 8.8. n-th root function g(y) = z/y, y > 0.
Let m € N be fixed. We set [a,b) = [0,400) and f(z) = 2™, x € [0, +00). The function f satisfies
conditions of Theorem 8.5, namely, it strictly increases and is continuous on [0,+0c0). Moreover,

c= lim 2" =0and d = lim 2™ = 4o00. Thus, according to Theorem 8.5, there exists a function
z—0+ T——+00

g : [0,+00) — [0, 400) which increases and is continuous on [0, +00) and inverse to f. Usually, the
function g is denoted as follows 7/y = yi :=g(y), y > 0. Moreover, ¥/a™ = x for each x > 0 and
(x/y)™ =y for each y >0 .

Example 8.9. Logarithmic function g(y) = log, y, y > 0.
Let p > 0, p # 1 and f(z) = p*, x € R. We want to prove that the function f has the inverse
function, which is called the logarithm. We will consider the case p > 1, for which the function f

is strictly increasing and continuous, by Example 8.6. Moreover, c= lim p* =0and d = lim p~.
T——00 T—+00

By Theorem 8.5, there exists a function ¢ : (0, +00) — R, which is continuous on (0, 4+00) and inverse
to f. The function g is denoted by log,y := g(y), y > 0, and it satisfies log, p* = = for all z € R and

p'8rY =y for all y > 0.

Example 8.10. Trigonometric functions arcsin, arccos, arctan, arccot.

Let [a,b] = [—g, %], f(x) =sinz, x € [—%, %} By the definition of sin, it is strictly increasing
on [—g, g] Furthermore, by Example 8.5, sin is continuous on R and, in particular, on [—E E].
Thus, using Theorem 8.5, there exists the continuous inverse function ¢ : [—1,1] — [— , ] 0
is denoted by arcsiny := g(y), y € [~1,1], and satisfies arcsin(sinz) = z for all z € [-%, %] and
sin(arcsiny) =y for all y € [—1,1].

Similarly, one can define the functions arccos : [—1,1] — [0, 7|, arctan : R — (fg, g) and arccot :
R — (0,7), which are inverse to cos : [0,7] — [—1,1], tan : (—g,%) — R and cot : (0,7) — R,
respectively. Moreover, each function is continuous on the set where it is defined.

Exercise 8.10. Sketch the graphs of the functions In = log,, log1, arcsin, arccos, arctan and arccot.
2

Exercise 8.11. Compute the following limits:

. In(l4=z)+arcsinz? : arctanz . . arcsinz, : T . s arctanz,
a) iﬂg% arccos x+cosx b) };gnl 1+arctan z2’ C) achLHO T ) d) };ILI%) sin z-+arcsin x’ e) ig% x ’
. arccosz—ZI .. sin(arctanx
f) lim ————=2; g) lim %
r—0 z—0 anT

8.4 Some Important Limits

Theorem 8.6. Let a >0 and a # 1. Then

1 1
lim 1081+ _ o
z—0 X
in particular, for a =e
In(1
lim 20+2)
z—0 x

Proof. We are going to use Theorem 8.3 ablout limit of composition iIll order to prove the needed
equality. Let A = (—1,400), f(z) =1+ 2x)z, 2z > -1, p = lir%(l +x)z =e>0; B=(0,+00) and
T
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g(y) = log,y, y > 0. In Example 8.9, we have proved that g is continuous and, consequently, it is
continuous at p = e > 0. Thus, using Theorem 8.3, we obtain

log (1
lim og,(1+ )

1
T

= lim log,(1 + =)= = log, (lim(l + :c)%) = log, e.
z—0 z—0

z—0 T
O
Theorem 8.7. Let a > 0. Then
.oa®—1
lim =lna,
z—0 xT
in particular, for a = e
.oet—1
lim =1.
z—0 T

Proof. If a = 1, then the statement is true. We assume that a # 1. By the continuity and monotonicity
of the function h(z) = a” (see Example 8.6), one can easily seen that z := a” —1 — 0 provided  — 0.
Moreover, z = log, (1 + z). Hence, by Theorem 8.6, we obtain

.oa®—1 ) z 1
lim = lim = =log,a =1Ina.
=0 T z—0log,(1+2) log,e
O
Theorem 8.8. Let a« € R. Then

. (I4x)>-1

lim ——— = q.

z—0 T

Proof. For o = 0 the statement holds. We assume that o # 0. Using the continuity of In (see
Example 8.9), we have In(1 +x) — In1 =0, x — 0. By theorems 8.1, 8.6 and 8.7, we get

(4 =1 (e2F) 1) aln(l 4+ 2) . eomO4®) 1 In(1 4 )
lim ———— = lim = o lim - lim =
20 x 2—0 zaln(l 4+ x) =0 aln(l+z) 2-0 x

Theorem 8.9. Let a € R and f(x) = 2%, x > 0. Then f is continuous on (0,400).

Proof. Since for each 2 > 0, one has f(z) = e*? the statement follows from the continuities of the
exponential function and the logarithm (see examples 8.6 and 8.9, respectively) and Theorem 8.4. [J

Exercise 8.12. Compute the following limits:

1
. . . . . 14sin2z\ 5. . 1— . . In(l4x)+e*—cosz,
a) im%(cos x)%; b) mlu}rl z(In(1+z)—Inz); c) im% (Lsinzya, g) in% Locosz o) im}) R R r—

a ‘ o L N T i
f) lim(cosz)=?; g) lim %jﬁll) for m € N; h) lim =M™ for € N; i) lim 12Cosma)™ g,
z—0 z—=0 ¥ z—0 z 20 x

1
D e (G2 o v (12 )2 e o
m € N, k) ]1}_)1111 W’ 1) il_l)l%] (1_‘_?3%) ; m) ill)r%) xx—Z s for a > O, Il) il_}nll(l — IE) logx 2.
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