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24 Lecture 24 – Basis

24.1 Linear Independence

In this section, we are going to define the notion of linear independence of a list of vectors.

Definition 24.1. Vectors v1,v2, . . . ,vn are called linearly independent if the only solution for
a1, a2, . . . , an ∈ F to the equation

a1v1 + a2v2 + . . .+ anvn = 0

is a1 = a2 = . . . = an = 0. Otherwise, the vectors v1, v2, . . . , vn are said to be linearly dependent.

Example 24.1. The vectors e1, e2, . . . , en from Example 23.4 are linearly independent, since

a1e1 + a2e2 + . . .+ anen = (a1, a2, . . . , an) = (0, 0, . . . , 0)

provided a1 = a2 = . . . = an = 0.

Example 24.2. The vectors v1 = (1, 1, 3), v2 = (1, 1, 0), v3 = (0, 0, 1) are linearly dependent because

v1 − v2 − 3v3 = (0, 0, 0).

Example 24.3. The vectors (1, z, z2, . . . , zn) in Fn[z] are linearly independent.

Exercise 24.1. Show that the vectors v1 = (1, 1, 1), v2 = (1, 2, 3), and v3 = (2,−1, 1) are linearly
independent in R

3. Write v = (1,−2, 5) as a linear combination of v1, v2 and v3.

Exercise 24.2. Consider the complex vector space V = C
3 and the vectors v1 = (i, 0, 0), v2 = (i, 1, 0),

v3 = (i, i,−1).
a) Prove that span{v1,v2,v3} = V .
b) Are v1,v2,v3 a basis of C3?

Exercise 24.3. Determine the value of λ ∈ R for which each vectors (λ,−1,−1), (−1, λ,−1),
(−1,−1, λ) are linearly dependent in R

3.

Theorem 24.1. Vectors v1,v2, . . . ,vn are linearly independent iff each vector v ∈ span{v1,v2, . . . ,vn}
can be unequally written as a linear combination of v1,v2, . . . ,vn.

Proof. Let v1,v2, . . . ,vn be linearly independent. If v ∈ span{v1,v2, . . . ,vn} can be written as

v = a1v1 + a2v2 + . . .+ anvn = a′1v1 + a′2v2 + . . .+ a′nvn,

then 0 = v− v = (a1 − a′1)v1 + (a2 − a′2)v2 + . . .+ (an − a′n)vn, which implies that a1 = a′1, a2 = a′2,
..., an = a′n. The sufficiency can be proved trivially, taking v = 0.

Theorem 24.2. Let v1,v2, . . . ,vn be linearly dependent and v1 6= 0. Then there exists j ∈ {2, . . . , n}
such that

1) vj ∈ span{v1,v2, . . . ,vj−1};

2) span{v1, . . . ,vj−1,vj+1, . . . ,vn} = span{v1,v2, . . . ,vn}.
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Proof. Since v1,v2, . . . ,vn are linearly dependent, there exist a1, a2, . . . , an ∈ F such that a1v1 +
a2v2 + . . . + anvn = 0. Since v1 6= 0, not all of a2, . . . , an are 0. Let j ∈ {2, . . . , n} be the largest
index such that aj 6= 0. Then we have

vj = −
a1

aj
v1 −

a2

aj
v2 − . . .−

aj−1

aj
vj−1. (48)

This implies 1).
Let v be an arbitrary vector from span{v1,v2, . . . ,vn}. It means that there exist b1, b2, . . . , bn ∈ F

such that
v = b1v1 + b2v2 + . . .+ bnvn.

According to (48), v can be rewritten as linear combination of the vectors v1, . . . ,vj−1,vj+1, . . . ,vn.
This proves 2).

Theorem 24.3. Let V be a finite-dimensional vector space, v1,v2, . . . ,vn be linearly independent and
span V , and let w1,w2, . . . ,wm be vectors that span V . Then n ≤ m.

Proof. For the proof of the theorem see the proof of Theorem 5.2.9 [3].

Exercise 24.4. Let V be a vector space over F, and suppose that v1,v2, . . . ,vn ∈ V are linearly
independent. Let w be a vector from V such that the vectors v1 +w,v2 +w, . . . ,vn +w are linearly
dependent. Prove that w ∈ span{v1,v2, . . . ,vn}.

24.2 Bases

Definition 24.2. A set of vectors {v1,v2, . . . ,vn} is a basis of a finite-dimensional vector space V if
v1,v2, . . . ,vn are linearly independent and span V , i.e. V = span{v1,v2, . . . ,vn}.

Remark 24.1. We remark that each vector v ∈ V can be uniquely written as a linear combination
of v1,v2, . . . ,vn iff {v1,v2, . . . ,vn} is a basis of V .

Example 24.4. The set of the vectors {e1, e2, . . . , en} is a basis of Fn.

Exercise 24.5. Prove that the set of vectors (1, 1, 0), (1, 0, 0), (0, 0, 1) is a basis of F3.

Example 24.5. The set 1, z2, . . . , zn is a basis of Fn[z].

Theorem 24.4 (Basis reduction theorem). If V = span{v1,v2, . . . ,vn}, then either the set {v1,v2, . . . ,vn}
is a basis of V or some vk can be removed to obtain a basis of V .

Proof. Suppose V = span{v1,v2, . . . ,vn}. We start with the set S = {v1,v2, . . . ,vn} and sequentially
run through all vectors vk for k = 1, 2, . . . ,m to determine whether to keep or remove them from S:

Step 1. If v1 = 0, then remove v1 from S. Otherwise, leave S unchanged.
Step k. If vk ∈ span{v1,v2, . . . ,vk−1}, then remove vk from S. Otherwise, leave S unchanged.
The final set S still spans V since, at each step, a vector was only discarded if it was already in the

span of the previous vectors. The process also ensures that no vector is in the span of the previous
vectors. Hence, by Theorem 24.2, the final list S is linearly independent. It follows that S is a basis
of V .
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Example 24.6. The set of vectors v1 = (1,−1, 0), v2 = (0, 1, 0), v3 = (1, 1, 1), v4 = (0,−1, 2) are
linearly dependent, since

0v1 + 3v2 − 2v3 + v4 = 0.

But the vectors v1,v2,v3 form a basis of R3. Indeed, each element v = (x, y, z) can be uniquely
written as follows

(x, y, z) = (x− z)v1 + (x+ y − 2z)v2 + zv3.

Corollary 24.1. Every finite-dimensional vector space has a basis.

Proof. The statement immediately follows from Theorem 24.4.

Theorem 24.5 (Basis Extension Theorem). Every linearly independent set of vectors in a finite-
dimensional vector space V can be extended to a basis of V .

Proof. Let V be finite-dimensional and v1,v2, . . . ,vn be linearly independent. Since V is finite-
dimensional, there exists a set of vectors w1,w2, . . . ,wm that spans V . We are going to adjoin some
of the wk to {v1,v2, . . . ,vn} in order to create a basis of V .

Step 1. Ifw1 ∈ span{v1,v2, . . . ,vn}, then let S := {v1,v2, . . . ,vn}. Otherwise, S := span{v1,v2, . . . ,vn, w1}.
Step k. If wk ∈ spanS, then leave S unchanged. Otherwise, adjoin wk to S.
After each step, the set S is still linearly independent, since we only adjoined wk if wk was not

in the span of the previous vectors. After m steps, wk ∈ spanS for all k = 1, 2, . . . ,m. Since the set
{w1,w2, . . . ,wm} spans V , S also spans V . Consequently, S is a basis of V .

24.3 Dimension

Let {v1,v2, . . . ,vn} and {w1,w2, . . . ,wm} be two bases of a finite-dimensional vector space V , that
is, they both are linearly independent and span V . Then by Theorem 24.3, it follows that n = m.

Definition 24.3. We call the length of any basis of V the dimension of V and denote by dimV .

Example 24.7. According to Example 24.4, the dimension of Fn equals n.

Example 24.8. By Example 24.5, the dimension of Fn[z] equals n+ 1.

Exercise 24.6. Let p0,p1, . . . ,pn ∈ Fn[z] satisfy pj(2) = 0 for all j = 0, 1, . . . , n. Prove that
p0,p1, . . . ,pn must be a linearly dependent in Fn[z].

Remark 24.2. We note that dimC
n = n as a complex vector space, whereas dimC

n = 2n as a real
vector space. This comes from the fact that we can view C itself as a real vector space of dimension
2 with basis {1, i}.

Theorem 24.6. Let V be a finite-dimensional vector space with dimV = n. Then

(i) If U ⊂ V is a subspace of V , then dimU ≤ dimV .

(ii) If V = span{v1,v2, . . . ,vn}, then {v1,v2, . . . ,vn} is a basis of V .

(iii) If v1,v2, . . . ,vn are linearly independent in V , then they form a basis of V .
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Proof. To prove statement (i), first we note that U is necessarily finite-dimensional (otherwise we
could find a list of linearly independent vectors longer than dimV ). Therefore, by Corollary 24.1, U
has a basis u1,u2, . . . ,um which are linearly independent in both U and V . By Theorem 24.5, we can
extend u1,u2, . . . ,um to a basis of V , which is of length n since dimV = n. This implies that m ≤ n.

In order to prove statement (ii), we suppose that v1,v2, . . . ,vn span V . Then, by the basis
reduction theorem (see Theorem 24.4), this set can be reduced to a basis. However, every basis
of V has length n. Hence, no vector needs to be removed from {v1,v2, . . . ,vn}. It follows that
{v1,v2, . . . ,vn} is a basis of V .

To prove statement (iii), we assume that v1,v2, . . . ,vn are linearly independent. By the basis
extension theorem (see Theorem 24.5), this set can be extended to a basis. However, every basis has
length n. Hence, no vector needs to be added to {v1,v2, . . . ,vn}. It follows that {v1,v2, . . . ,vn} is a
basis of V .

Theorem 24.7. Let U ⊂ V be a subspace of a finite-dimensional vector space V . Then there exists a
subspace W ⊂ V such that V = U ⊕W .

Proof. Let u1,u2, . . . ,um be a basis of U . By Theorem 24.6 (i), we know that m ≤ dimV . Hence, by
the basis extension theorem (see Theorem 24.5), the set {u1,u2, . . . ,um} can be extended to a basis
{u1,u2, . . . ,um,w1,w2, . . . ,wk} of V . Let W := span{w1,w2, . . . ,wk}.

We now show that V = U ⊕W . Since the set {u1,u2, . . . ,um,w1,w2, . . . ,wk} is a basis of V , each
element v of V can be uniquely written as follows

v = a1u1 + a2u2 + . . .+ amum + b1w1 + b2w2 + . . .+ bkwk = u+w

for some a1, a2, . . . , am, b1, b2, . . . , bk ∈ F, where u := a1u1+a2u2+ . . .+amum and w = b1w1+b2w2+
. . .+bkwk. Since u ∈ U and w ∈ W , V is the direct sum of U and W , according to Definition 23.3.

Exercise 24.7. Let V be a finite-dimensional vector space over F with dimV = n for some n ∈ N.
Prove that there exist n one-dimensional subspaces U1, U2, . . . , Un of V such that

V = U1 ⊕ U2 ⊕ . . .⊕ Un.

Theorem 24.8. If U,W ⊂ V are subspaces of a finite-dimensional vector space, then

dim(U +W ) = dimU + dimW − dim(U ∩W ).

Proof. For the proof of the theorem see the proof of Theorem 5.4.6 [3].

Exercise 24.8. Let V be a finite-dimensional vector space over F, and let U be a vector subspace of
V for which dimU = dimV . Prove that U = V .

108


