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21 Lecture 21 – Complex Numbers

21.1 Definition and Basic Properties

We recall that the equation az2 + bz + c = 0, a, b, c ∈ R, a 6= 0, has solutions if and only if D :=

b2 − 4ac ≥ 0 which can be computed by the formula z1,2 =
−b±

√
D

2a . Thus, e.g. the equation

z2 − 2z + 2 = 0 (41)

has no solutions, since D = 4 − 4 · 1 · 2 = −4 < 0. However, we can formally take z1 := 2+
√
−4

2 and

z2 := 2−
√
−4

2 . If
√
−4 was a number such that (

√
−4)2 = −4, then a simple computation would show

that z1 and z2 are solutions to (41). We are going to give this idea the rigorous meaning, namely,
we extend the set of real numbers and later show that any polynomial equation has solutions in that
class of numbers.

We consider a new symbol i and postulate that i =
√
−1, that is, i2 = −1.

Definition 21.1. A number z = x+ yi, where x, y ∈ R and i2 = −1, is called a complex number.
The number x is called the real part of z and is denoted by x = Re z. The number y is called the
imaginary part of z and is denoted by y = Im z.

The set of all complex numbers is denoted by C, i.e C = {z = x+ yi : x, y ∈ R}.

Remark 21.1. If Im z = 0, that is, z = x + 0i, then we will identify z with the real number x and
write z ∈ R.

Next, we introduce operations on complex numbers.
Addition and subtraction of complex numbers: For z1 = x1 + y1i, z2 = x2 + y2i from C we

define
z1 ± z2 = (x1 ± x2) + (y1 ± y2)i. (42)

Example 21.1. a) (1−2i)+(2+4i) = (1+2)+(−2+4)i = 3+2i; b) i+(2−2i) = (0+2)+(1−2)i = 2−i.

Exercise 21.1. Prove that z1 + z2 = z2 + z1 and (z1 + z2) + z3 = z1 + (z2 + z3) for all z1, z2, z3 ∈ C.

Multiplication and division of complex numbers: For z1 = x1 + y1i, z2 = x2 + y2i from C

we define

z1 · z2 = (x1x2 − y1y2) + (y1x2 + x1y2)i, (43)

z1/z2 =
z1
z2

=
x1x2 + y1y2
x22 + y22

+
y1x2 − x1y2
x22 + y22

i, z2 6= 0. (44)

Remark 21.2. The multiplication rule is motivated by the multiplication rule of polynomials and the
equality i2 = −1. Indeed, multiplying z1 = x1 + y1i and z2 = x2 + y2i as two polynomials, we have

z1 · z2 = (x1 + y1i) · (x2 + y2i) = x1x2 + x1y2i+ y1x2i+ y1y2i
2 = (x1x2 − y1y2) + (y1x2 + x1y2)i.

Remark 21.3. The division of two complex numbers is motivated by the following observation:
(x2 + y2i)(x2 − y2i) = x22 + y22. Thus, for z2 6= 0

z1
z2

=
x1 + y1i

x2 + y2i
=

(x1 + y1i) · (x2 − y2i)

(x2 + y2i) · (x2 − y2i)
=

(x1x2 + y1y2) + (y1x2 − x1y2)i

x22 + y22
.
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Example 21.2. a) (2− i)(1 + 3i) = 2 + 6i− i− 3i2 = 2 + 5i− 3 · (−1) = 5 + 5i;

b) 1−i
1−2i =

(1−i)(1+2i)
(1−2i)(1+2i) =

1+2−i+2i
12+22

= 3+i
5 = 3

5 + 1
5 i; c) 1

i
= 1·(−i)

i·(−i) = −i.

Exercise 21.2. Express the following complex numbers in the form x+ yi for x, y ∈ R:
a) (−2 + 3i)(1 + i); b) (

√
2− i)2; c) 3−i

2+2i ; d) i
(1−i)2

.

Exercise 21.3. Show that for zk = xk + yki ∈ C, k = 1, 2, 3,
a) z1 · z2 = z2 · z1; b) (z1 · z2) · z3 = z1 · (z2 · z3); c) z1 · (z2 + z3) = z1 · z2 + z1 · z3;
d) z1 · z2 ∈ R if z1, z2 ∈ R.

21.2 Complex Conjugate and Absolute Value of Complex Numbers

Definition 21.2. The number z := x − yi is sad to be the conjugate of a complex number
z = x+ yi ∈ C.

Theorem 21.1. Let z1, z2, z ∈ C. Then the following equalities hold:

a) z1 + z2 = z1 + z2;

b) z1 · z2 = z1 · z2;

c) z + z = 2Re z and z − z = 2i Im z;

d) z · z = Re2 z + Im2 z = |z|2 (for the definition of |z| see Definition 21.3 below);

e) 1
z
= z

Re2 z+Im2 z
= z

|z|2 , z 6= 0;

f)
(

z1
z2

)

= z1/z2, z2 6= 0;

g) z = z.

Proof. Equalities a), b), c), d), f) and g) immediately follow from the definition of complex conjugate
and (42), (43), (44). Equality e) follows from d). Indeed, multiplying the nominator and denominator
of 1

z
by z and using d), we have

1

z
=

z

z · z =
z

Re2 z + Im2 z
=

z

|z|2 .

Exercise 21.4. Prove equalities a)-d), f) and g).

Definition 21.3. The number |z| =
√

x2 + y2 =
√

Re2 z + Im2 z is called the absolute value of a
complex number z = x+ yi ∈ C.

Theorem 21.2. Let z1, z2, z ∈ C. Then the absolute value satisfies the following properties:

a) |z| =
√
z · z;

b) |z| > 0 unless z = 0;

c) |z| = |z|;
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d) |z1 · z2| = |z1| · |z2|;

e)
∣

∣

∣

z1
z2

∣

∣

∣
= |z1|

|z2| , z2 6= 0;

f) |Re z| ≤ |z|, | Im z| ≤ |z|;

g) |z1 + z2| ≤ |z1|+ |z2|.
Proof. Properties a), b), c) and f) easily follow from Definition 21.3. To show d), we compute for
z1 = x1 + y1i and z2 = x2 + y2i

|z1 · z2|2 = Re2(z1 · z2) + Im2(z1 · z2)
(43)
= (x1x2 − y1y2)

2 + (y1x2 + x1y2)
2

= x21x
2
2 − 2x1x2y1y2 + y21y

2
2 + y21x

2
2 + 2x1x2y1y2 + x21y

2
2

= x21x
2
2 + y21y

2
2 + y21x

2
2 + x21y

2
2 = (x21 + y21)(x

2
2 + y22) = |z1|2 · |z2|2.

Thus, d) holds. Next, we prove e). So, for z2 6= 0 we have
∣

∣

∣

∣

z1
z2

∣

∣

∣

∣

Thm 21.1 e)
=

∣

∣

∣

∣

z1 · z2
|z2|2

∣

∣

∣

∣

d)
=

|z1| · |z2|
|z2|2

c)
=

|z1|
|z2|

.

Now, we check triangle inequality g):

|z1 + z2|2
a)
= (z1 + z2) · (z1 + z2)

Thm 21.1 a)
= (z1 + z2) · (z1 + z2) = z1 · z1 + z1 · z2 + z2 · z1 + z2 · z2

a) & Thm 21.1 g)
= |z1|2 + z1 · z2 + z2 · z1 + |z2|2

Thm 21.1 b), g)
= |z1|2 + z1 · z2 + z2 · z1 + |z2|2

Thm 21.1 c)
= |z1|2 + 2Re(z1 · z2) + |z2|2

f)

≤ |z1|2 + 2|z1 · z2|+ |z2|2
c), d)
= |z1|2 + 2|z1| · |z2|+ |z2|2 = (|z1|+ |z2|)2.

Exercise 21.5. Let z, w ∈ C. Prove the parallelogram law |z − w|2 + |z + w|2 = 2(|z|2 + |w|2).
Exercise 21.6. Let z, w ∈ C with zw 6= 1 such that either |z| = 1 or |w| = 1. Prove that

∣

∣

∣

∣

z − w

1− zw

∣

∣

∣

∣

= 1.

Exercise 21.7. Let z be a complex number with |z| < 1
2 . Show that

|(1 + i)z2 + iz| < 3

4
.

Exercise 21.8. Solve the following equations:
a) |z| − z = 1 + 2i; b) |z|+ z = 2 + i.

21.3 Complex Plane and Polar form of complex numbers

In this section, we will identify complex numbers with points of a plane which we will call the complex
plane. So, we will identify a number z = x + iy ∈ C with the point (x, y) of R2. The point (x, y) is
called the rectangular coordinates of z. We will also identify z with its polar coordinates (r, θ),
where r is the length of the vector (0, 0), (x, y) and equals the absolute volume of z, and θ is the angle
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θ

z = x + yi

r = |z|

y

x

between the positive real axis and the vector
(0, 0), (x, y). The angle θ is called the argu-
ment of z and is denoted by θ = arg z. We
remark that for z 6= 0 the argument θ is
uniquely determined up to integer multiples
of 2π.

By the definition of sin and cos, it is easy
to see that

cos θ =
x

r
and sin θ =

y

r
.

Consequently, we can write the number z =
x+ yi in the form

z = r(cos θ + i sin θ),

where r = |z| and θ = arg z. This form is called the polar form of the complex number z.

Example 21.3. Let us write the number z = 1 + i in the polar form. For this we compute r = |z| =√
12 + 12 =

√
2. The argument θ can be found from the equalities cos θ = 1√

2
and sin θ = 1√

2
. Thus,

θ = π
4 . Hence, z = 1 + i =

√
2
(

cos π
4 + i sin π

4

)

.

Exercise 21.9. Write the following complex numbers in the polar form:
a) i; b) 1− i; c) −1 +

√
3i; d) −2− 2i.

It turns out, that the polar form of complex numbers is convenient for the multiplication and
division.

Theorem 21.3. Let z1 = r1(cos θ1+ i sin θ1) and z2 = r2(cos θ2+ i sin θ2) be complex numbers, written
in the polar form. Then

z1 · z2 = r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)), (45)
z1
z2

=
r1
r2
(cos(θ1 − θ2) + i sin(θ1 − θ2)), z2 6= 0. (46)

Proof. The equalities immediately follows from (43), (44) and the formulas

cos(θ1 ± θ2) = cos θ1 cos θ2 ∓ sin θ1 sin θ2,

sin(θ1 ± θ2) = sin θ1 cos θ2 ± cos θ1 sin θ2.

Remark 21.4. Setting
eiθ = cos θ + i sin θ, 1

equalities (45) and (46) can be rewritten as follows

z1 · z2 =
(

r1e
iθ1

)

·
(

r2e
iθ2

)

= r1r2e
i(θ1+θ2),

z1
z2

=
r1e

iθ1

r2eiθ2
=

r1
r2
ei(θ1−θ2), z2 6= 0.

1This formula is called Euler’s formula and can be obtain from the Taylor expansion of functions of complex argument.
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Exercise 21.10. Simplify the expression cos θ+i sin θ
cosϕ−i sinϕ

.

Exercise 21.11. Compute (1−
√
3i)(cos θ+i sin θ)

2(1−i)(cos θ−i sin θ) .

Corollary 21.1 (De Moivre’s formula). Let z = r(cos θ+ i sin θ) 6= 0 be a complex number. Then for
each n ∈ Z

zn = rn(cosnθ + i sinnθ).

Proof. The corollary immediately follows from Theorem 21.3.

Exercise 21.12. Compute: a) (1 + i)25; b) (
√
3− 3i)15; c)

(

1+
√
3i

1−i

)20
; d)

(

1−
√
3−i
2

)24
.

21.4 Roots of Complex Numbers

Let n ∈ N be fixed.

Definition 21.4. A complex number w is called an n-th root of z ∈ C if wn = z.

Theorem 21.4. Let z = r(cos θ+ i sin θ) 6= 0 be a complex number. Then z has n different n-th roots
given by the formula

wk = n

√
r

(

cos
θ + 2πk

n
+ i sin

θ + 2πk

n

)

, k = 0, 1, . . . , n− 1,

where n

√
r is the usual n-th root of the positive real number r.

Proof. Let w = ρ(cosϕ + i sinϕ) be a complex number written in the polar form such that wn = z.
Then

wn = ρn(cosnϕ+ i sinnϕ) = r(cos θ + i sin θ),

by Corollary 21.1. Thus, ρn = r and nϕ = θ + 2πk, k ∈ Z. This implies that ρ = n

√
r and ϕ = θ+2πk

n
,

k ∈ Z. So, we obtain that the numbers

wk = n

√
r

(

cos
θ + 2πk

n
+ i sin

θ + 2πk

n

)

, k ∈ Z,

are n-th roots of z. By the periodicity of sin and cos, one can see that there are only n different wk,
k = 0, . . . , n− 1.

Example 21.4. Let us compute 4-th root of z = −1. First we write −1 in the polar form:
−1 = 1(cosπ + i sinπ). Then wk = cos π+2πk

4 + i sin π+2πk
4 , k = 0, 1, 2, 3, are 4-th roots of −1, by

Theorem 21.4. Thus, w0 = cos π
4 + i sin π

4 = 1√
2
+ 1√

2
i, w1 = cos π+2π

4 + i sin π+2π
4 = − 1√

2
+ 1√

2
i,

w2 = cos π+4π
4 + i sin π+4π

4 = − 1√
2
− 1√

2
i, w3 = cos π+6π

4 + i sin π+6π
4 = 1√

2
− 1√

2
i.

Remark 21.5. The n-th roots of z 6= 0 form a regular n-gon in the complex plane with center 0. The
vertices of this n-gon lie on the circle with center 0 and the radius n

√

|z|.

Exercise 21.13. Solve the following equations:
a) z5 − 2 = 0; b) z4 + i = 0; c) z3 − 4i = 0.

Exercise 21.14. Compute a) 6-th roots of 1−i√
3+i

; b) 8-th roots of 1+i√
3−i

.
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