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Interacting particles with mass changing and sticking

Main object

In�nite system of di�usion particles on the real line such that

1 start with some set of points with masses

2 independent motion up to the moment of the meeting

3 sticking

4 adding of the mass under sticking

5 di�usion changes correspondingly to the changing of the mass
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Some history of the system of di�usion particles with

interaction

? di�usion particles with sticking with out mass

- R.W. Darling (1987) Constructing nonhomeomorphing stohastic �ows, Text.
Article, Mem. Am. Math. Soc. 376, 97 p.

- R.A. Arratia (1979) Brownian motion on the line, PhD dissertation, Univ.
Wiskonsin, Madison.

- Y. Le Jan, O. Raimond (2004) Flows, coalescence and noise, The Annals of
Probability 32, no. 2, 1247�1315.

- A.A. Dorogovtsev (2004) One Brownian stochastic �ow, Theory of Stochastic
Processes, 10(26), no. 3�4, 21�25.
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Some history of the system of di�usion particles with

interaction

? The cases of �nite and in�nite numbers of particles with sticking that have
mass and speed and their motion obey the laws of mass conservation and
inertion

- E. Weinan, Yu.G. Rykov, Ya.G. Sinai (1996) Generalized Variational Principles,

Global Weak Solutions and Behavior with Random Initial Data for Systems of

Conservation Laws Arising in Adhesion Particle Dynamics, Communications in
Mathematical Physics 177, 349�380.

? empiric distribution the set of N processes with interection for �xed time

- V. Malyshev, A.D. Manita (2006) Asymptotic Behaviour in the Time

Synchronization Model, In Representation Theory, Dynamical Systems, and
Asymptotic Combinatorics AMS, American Mathematical Society Translations
- Series 2 Advances in the Mathematical Sciences, 217, 101�115.
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Non-random initial mass distribution

Theorem 1.
There exists system of processes X = {x(k, t); k ∈ Z, t ≥ 0} such that

1) x(k, ·) is continuous square integrable local martingale with respect to

(Ft)t≥0 = (σ(x(k, s); s ≤ t, k ∈ Z))t≥0;

2) x(k, 0) = xk, k ∈ Z;

3) ∀ k ∈ Z ∀ t ≥ 0 x(k, t) ≤ x(k + 1, t);

4) ∀ t ≥ 0 〈x(k, ·)〉t =
t∫
0

ds
m(k,s)

,

where

m(k, t) =
∑

i∈|A(k,t)|
ai,

A(k, t) = {j ∈ Z : ∃ s ≤ t, x(k, s) = x(j, s)};

5) the joint characteristic

〈x(l, ·), x(k, ·)〉t I{t<τl,k} = 0,

where

τl,k = inf{t : x(l, t) = x(k, t)}.
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Idea of construction

1 For �nite family.

2 Stabilization.

Finite family
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Idea of construction, stabilization

Lemma.

Let {wk; k ∈ N ∪ {0}} be the system of standard independent Wiener processes.
Denote

ξk = k + max
t∈[0,1]

wk(t), ηk = k + min
t∈[0,1]

wk(t).

Then for every δ ∈ (0, 1
2 )

P
{

lim
n→∞

{
max
k=0,n

ξk ≤ n+ 1
2 , ηn+1 > n+ 1

2 + δ

}}
= 1.
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Properties of the system

Theorem 2.

X = (. . . , x(−n, ·), . . . , x(n, ·), . . .) and Y = (. . . , y(−n, ·), . . . , y(n, ·), . . .) satisfy

conditions 1)�5). Then X
d= Y .

Properties

1◦. Sticking:

(x(k, t)− x(l, t))I{t>τl,k} = 0.

2◦. Mass growth:

P
{

lim
t→+∞

m(k, t)
4
√
t lln t

≤ 1
}

= 1.

3◦. Finite time of any two particles to sticking:

P{τk,k+p < +∞} = 1.
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Stationary case

Theorem 3.
Let µ =

∑
k∈Z

akδxk be a stationary point measure on R such that
∑
k∈Z

I[a,b](xk) <∞ for every

a, b ∈ R. Then there exists a system of processes {x(k, t); k ∈ Z, t ≥ 0} such that

1) x(k, ·)− xk is continuous square integrable local martingale respect to

(Ft)t≥0 = (σ(x(k, s); s ≤ t, k ∈ Z))t≥0;

2) x(k, 0) = xk, k ∈ Z;

3) ∀ k ∈ Z ∀ t ≥ 0 x(k, t) ≤ x(k + 1, t);

4) ∀ t ≥ 0 〈x(k, ·)− xk〉t =
t∫
0

ds
m(k,s)

,

where

m(k, t) =
∑

i∈|A(k,t)|
ai,

A(k, t) = {j ∈ Z : ∃ s ≤ t, x(k, s) = x(j, s)};

5) the joint characteristic

〈x(l, ·)− xl, x(k, ·)− xk〉t I{t<τl,k} = 0,

where

τl,k = inf{t : x(l, t) = x(k, t)}.
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Measure�valued process

µt =
∑
k∈Z

akδx(k,t)

Remake.

If µ0 is stationary measure with respect to spatial shifts. Then µt is stationary
measure for each t > 0 too.
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Markov property of µt

Theorem 4.
{µt; t ≥ 0} is continuous Markov process in the space of general functions D′(R). Moreover, for

every ϕ ∈ C2
0 (R) and f ∈ C2(R)

F (µt)− F (µ0)−
1

2

t∫
0

AF (µs)ds = MF (t),

where

F (µt) = f(〈µt, ϕ〉),

AF (µt) = f ′′(〈µt, ϕ〉)〈µt, ϕ̇2〉+ f ′(〈µt, ϕ〉)〈µ∗t , ϕ′′〉

µ∗t =
∑
k∈Z

δx(k,t)

and MF is continuous square integrable local martingale.
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