The system of sticking diffusion particles with variable weights

Vitalij Konarovskiy

Institute of Mathematics of National Academy of Sciences of Ukraine

19.06.2009

vitalik@imath.kiev.ua

- Interacting particles with mass changing and sticking
- Some history of the system of diffusion particles with interaction
- Non-random initial mass distribution
- Idea of construction
- Idea of construction, stabilization
- Properties of the system
- Stationary case
- Measure-valued process
- Markov property of μ_t

Main object

Infinite system of diffusion particles on the real line such that

- start with some set of points with masses
- independent motion up to the moment of the meeting
- ③ sticking
- adding of the mass under sticking
- I diffusion changes correspondingly to the changing of the mass

Some history of the system of diffusion particles with interaction

- \star diffusion particles with sticking with out mass
 - R.W. Darling (1987) Constructing nonhomeomorphing stohastic flows, Text. Article, Mem. Am. Math. Soc. 376, 97 p.
 - R.A. Arratia (1979) *Brownian motion on the line*, PhD dissertation, Univ. Wiskonsin, Madison.
 - Y. Le Jan, O. Raimond (2004) *Flows, coalescence and noise*, The Annals of Probability 32, no. 2, 1247-1315.
 - A.A. Dorogovtsev (2004) One Brownian stochastic flow, Theory of Stochastic Processes, **10(26)**, no. 3–4, 21–25.

Some history of the system of diffusion particles with interaction

- $\star\,$ The cases of finite and infinite numbers of particles with sticking that have mass and speed and their motion obey the laws of mass conservation and inertion
 - E. Weinan, Yu.G. Rykov, Ya.G. Sinai (1996) Generalized Variational Principles, Global Weak Solutions and Behavior with Random Initial Data for Systems of Conservation Laws Arising in Adhesion Particle Dynamics, Communications in Mathematical Physics 177, 349–380.
- $\star\,$ empiric distribution the set of N processes with interection for fixed time
 - V. Malyshev, A.D. Manita (2006) Asymptotic Behaviour in the Time Synchronization Model, In Representation Theory, Dynamical Systems, and Asymptotic Combinatorics AMS, American Mathematical Society Translations
 - Series 2 Advances in the Mathematical Sciences, 217, 101–115.

Non-random initial mass distribution

Theorem 1.

There exists system of processes $X = \{x(k,t); \ k \in \mathbb{Z}, \ t \geq 0\}$ such that

1) $x(k,\cdot)$ is continuous square integrable local martingale with respect to

$$(\mathcal{F}_t)_{t\geq 0} = (\sigma(x(k,s); s \leq t, k \in \mathbb{Z}))_{t\geq 0};$$

2)
$$x(k,0) = x_k, \quad k \in \mathbb{Z};$$

3) $\forall k \in \mathbb{Z} \quad \forall t \ge 0 \quad x(k,t) \le x(k+1,t);$
4) $\forall t \ge 0 \quad \langle x(k,\cdot) \rangle_t = \int_0^t \frac{ds}{m(k,s)},$
where
 $m(k,t) = \sum_{i \in |A(k,t)|} a_i,$

$$A(k,t) = \{j \in \mathbb{Z} : \exists s \le t, x(k,s) = x(j,s)\}$$

5) the joint characteristic

$$\langle x(l,\cdot), x(k,\cdot) \rangle_t \, \mathbb{I}_{\{t < \tau_{l,k}\}} = 0,$$

where

$$\tau_{l,k} = \inf\{t : x(l,t) = x(k,t)\}$$

- ・ロト 《日 》 《王 》 《王 》 《日 》
 - 6/12

Idea of construction

- For finite family.
- Stabilization.
- Finite family

Idea of construction, stabilization

Lemma.

Let $\{w_k; k \in \mathbb{N} \cup \{0\}\}$ be the system of standard independent Wiener processes. Denote

$$\xi_k = k + \max_{t \in [0,1]} w_k(t), \quad \eta_k = k + \min_{t \in [0,1]} w_k(t).$$

Then for every $\delta \in (0, \frac{1}{2})$

$$\mathbf{P}\left\{\overline{\lim_{n\to\infty}}\left\{\max_{k=\overline{0,n}}\xi_k \le n+\frac{1}{2}, \ \eta_{n+1} > n+\frac{1}{2}+\delta\right\}\right\} = 1.$$

Theorem 2. $X = (\dots, x(-n, \cdot), \dots, x(n, \cdot), \dots)$ and $Y = (\dots, y(-n, \cdot), \dots, y(n, \cdot), \dots)$ satisfy conditions 1)-5). Then $X \stackrel{d}{=} Y$.

Properties

 1° . Sticking:

$$(x(k,t) - x(l,t))\mathbb{I}_{\{t > \tau_{l,k}\}} = 0.$$

 2° . Mass growth:

$$\mathbf{P}\left\{\overline{\lim_{t \to +\infty} \frac{m(k,t)}{4\sqrt{t \ln t}}} \le 1\right\} = 1.$$

 3° . Finite time of any two particles to sticking:

$$\mathbf{P}\{\tau_{k,k+p} < +\infty\} = 1.$$

<ロト < 部 > < 三 > < 三 > < 三 > < 三 > < 9/12</p>

Stationary case

Theorem 3.

Let $\mu = \sum_{k \in \mathbb{Z}} a_k \delta_{x_k}$ be a stationary point measure on \mathbb{R} such that $\sum_{k \in \mathbb{Z}} \mathbb{I}_{[a,b]}(x_k) < \infty$ for every $a, b \in \mathbb{R}$. Then there exists a system of processes $\{x(k,t); k \in \mathbb{Z}, t \ge 0\}$ such that 1) $x(k, \cdot) - x_k$ is continuous square integrable local martingale respect to

$$(\mathcal{F}_t)_{t\geq 0} = (\sigma(x(k,s); s \leq t, k \in \mathbb{Z}))_{t\geq 0};$$

2) $x(k,0) = x_k, \quad k \in \mathbb{Z};$ 3) $\forall k \in \mathbb{Z} \quad \forall t \ge 0 \quad x(k,t) \le x(k+1,t);$ 4) $\forall t \ge 0 \quad \langle x(k,\cdot) - x_k \rangle_t = \int_0^t \frac{ds}{m(k,s)},$ where $m(k,t) = \sum_{i \in |A(k,t)|} a_i,$ $A(k,t) = \{j \in \mathbb{Z} : \exists s \le t, x(k,s) = x(j,s)\};$

5) the joint characteristic

$$\langle x(l,\cdot) - x_l, x(k,\cdot) - x_k \rangle_t \mathbb{I}_{\{t < \tau_{l,k}\}} = 0,$$

where

$$\tau_{l,k} = \inf\{t: x(l,t) = x(k,t)\}.$$

$$\mu_t = \sum_{k \in \mathbb{Z}} a_k \delta_{x(k,t)}$$

Remake.

If μ_0 is stationary measure with respect to spatial shifts. Then μ_t is stationary measure for each t>0 too.

Theorem 4.

 $\{\mu_t; t \ge 0\}$ is continuous Markov process in the space of general functions $\mathcal{D}'(\mathbb{R})$. Moreover, for every $\varphi \in C_0^2(\mathbb{R})$ and $f \in C^2(\mathbb{R})$

$$F(\mu_t) - F(\mu_0) - \frac{1}{2} \int_0^t AF(\mu_s) ds = \mathfrak{M}_F(t),$$

where

$$F(\mu_t) = f(\langle \mu_t, \varphi \rangle),$$

$$AF(\mu_t) = f''(\langle \mu_t, \varphi \rangle)\langle \mu_t, \dot{\varphi}^2 \rangle + f'(\langle \mu_t, \varphi \rangle)\langle \mu_t^*, \varphi'' \rangle$$

$$\mu_t^* = \sum_{k \in \mathbb{Z}} \delta_{x(k,t)}$$

and \mathfrak{M}_F is continuous square integrable local martingale.

< □ ▷ < 큔 ▷ < 분 ▷ < 분 ▷ 분 · 이 Q (~ 12 / 12