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Dean-Kawasaki equation and Wasserstein diffusion

In some space of probability measures, we consider the equation

dµt = Γ(µt)dt+ div(
√
µtdWt).

We mean here that

for each test function ϕ 〈ϕ, µt〉 −
∫ t

0

〈ϕ,Γ(µs)〉ds is a martingale with q.v.

∫ t

0

〈|∇ϕ|2, µs〉ds

There is no theory that gives existence and uniqueness
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Some partial examples

dµt = Γ(µt)dt+ div(
√
µtdWt)

in the space of probability measures P2(S) with the finite second moment.

1 Wasserstein Diffusion (von Renesse, Sturm ’09): S = [0, 1] or is a circle

〈ϕ,Γ(µt)〉 = β〈∆ϕ, µt〉+
∑

I∈gaps (µt)

[
ϕ′′(I+) + ϕ′′(I−)

2
− ϕ′(I+)− ϕ′(I−)

|I|

]
.

2 Modified Arratia flow (K., von Renesse ’15),
Coalescing-Fragmentating Wasserstein Dynamics (K., von Renesse ’17): S = R

〈ϕ,Γ(µt)〉 =
∑

x∈suppµt

ϕ′′(x),

or shortly

Γ(µt) =
1

2
∆µ∗t

Note: We have non-uniqueness in this case
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Connection with the Geometry of Wasserstein space

Wasserstein metric on P2(S):

d2W(ν1, ν2) = inf
{
E‖η1 − η2‖2S : ηi ∼ νi, i = 1, 2

}
For the mentioned processes the Varadhan formula holds:

P{µt = ν} ∼ e−
d2W (µ0,ν)

2t , t� 1

Today: We will discus a construction of a solution to the equation

dµt = Γ(µt)dt+ div(
√
µtdWt)

for some Γ, using a particle approach.
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Lift of n-particle motion

w1, w2 – independent Brownian particles on R with diffusion rates a1 and a2

µt := m1δw1(t) +m2δw2(t)

The Ito formula gives that 〈ϕ, µt〉 = m1ϕ(w1(t)) +m2ϕ(w2(t)) is a semimartingale with
q.v. ∫ t

0

(
m2

1ϕ̇(w1(s))2a1 +m2
2ϕ̇(w2(s))2a2

)
ds =

∫ t

0

〈ϕ̇2, µs〉ds,

if a1 = 1
m1

and a2 = 1
m2

.

The diffusion rate of each particle has to be inversely proportional to its mass!

µnt :=

n∑
k=1

mkδwk(t)

diverges, if µn0 → Leb|[0,1], since the diffusion rate of each particle tends to infinity.
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Modified Arratia flow on the real line (K., von Renesse ’15)

To overcome the problem with the increasing of the diffusion rates of particles,
we can coalesce particles after their meeting.

Grayscale colour coding is for atom mass.

Physical interpretation:
1 each particle has a mass that obeys the conservation law;

2 diffusion rate of each particle inversely depends on its mass;

3 particles move independently and coalesce after meeting.

In this case, µn· → µ· and

dµt =
1

2
∆µ∗t dt+ div(

√
µtdWt) in P2(R)

P{µt = ν} ∼ e−
d2W (µ0,ν)

2t , t� 1
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New model of sticky-reflecting particles (K., von Renesse ’17)

Can we replace the coalescing of
particles by something else?

So, we assume that:

1 each particle has a mass that obeys the conservation law;

2 diffusion rate of each particle inversely depends on its mass;

3 particles move independently and can reflect from each other.

Grayscale colour coding is for atom mass.



Two particle model

x1(t) ≤ x2(t) denote the positions of particles at time t ≥ 0
m1 = m2 = 1

2
particle mass at start (the total mass is always 1)

Let w1, w2 be two indep. Brownian motions with Var (wi(t)) = 1
mi
t =2t

dxi(t) = I{x1(t)<x2(t)}dwi(t) + I{x1(t)=x2(t)}d
w1(t) + w2(t)

2

+λiI{x1(t)=x2(t)}dt, λ1 ≤ λ2
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Sticky-reflected Brownian motion on R+

dy(t) = I{y(t)>0}dw(t) + λI{y(t)=0}dt, λ ≥ 0

(Engelbert, Peskir ’14)
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Three and more particles

Can three or more particles occupy the same position and which therms should contain
the equation?

The equation should contain:

I{x2(t)=x3(t)=x4(t)}d
w2(t) + w3(t) + w4(t)

3

where Var (wi(t)) = 1
mi
t = 5t
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Uncountable number of particles. Diffusion term

Let X(u, t) denote the position of the particle labeld by u ∈ [0, 1] at time t ≥ 0.

X(u, t) ≤ X(v, t), u ≤ v

dX(u, t) = d
1

m(u, t)

∫
π(u,t)

Wt + drift term

where π(u, t) = {v : X(u, t) = X(v, t)} and m(u, t) = Leb{π(u, t)}
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Uncountable number of particles. Drift term

ξ(u) – an interaction potential of the particle u,

where ξ : [0, 1]→ R, ξ(u) ≤ ξ(v), u ≤ v.

dX(u, t) = d
1

m(u, t)

∫
π(u,t)

Wt +

(
ξ(u)− 1

m(u, t)

∫
π(u,t)

ξ

)
dt

π(u, t) = {v : X(u, t) = X(v, t)} and m(u, t) = Leb{π(u, t)}

1 If ξ = const, then particles coalesce.

2 If ξ(u) = ξ(v), then particles u and v can not split.

3 If ξ = ξ1I[0,1/2) + ξ2I[1/2,1] and X(u, 0) = x1(0)I[0,1/2) + x2(0)I[1/2,1], then the
equation corresponds its two dimensional analog:

dxi(t) = I{x1(t)<x2(t)}dwi(t) + I{x1(t)=x2(t)}d
w1(t) + w2(t)

2
+ λiI{x1(t)=x2(t)}dt

with λi = ξi − ξ1+ξ2
2

4 If ξ(u) = u, then the the system has very complicated structure.
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ξ(u) = u

dX(u, t) = d
1

m(u, t)

∫
π(u,t)

Wt +

(
ξ(u)− 1

m(u, t)

∫
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ξ(u) = u

dX(u, t) = d
1

m(u, t)

∫
π(u,t)

Wt +

(
ξ(u)− 1

m(u, t)

∫
π(u,t)

ξ

)
dt

Let N(t) denote a number of particles at time t

Is N(t) finite or infinite?



The equation in L2[0, 1]

dX(u, t) = d
1

m(u, t)

∫
π(u,t)

Wt +

(
ξ(u)− 1

m(u, t)

∫
π(u,t)

ξ

)
dt

π(u, t) = {v : X(u, t) = X(v, t)} and m(u, t) = Leb{π(u, t)}

This family of equations can be rewritten as a one equation but in infinite dimensional
space L2[0, 1]:

dXt = prXtdWt + (ξ − prXtξ)dt in L↑2[0, 1]

where Xt := X(·, t) and prg is the projection in L2[0, 1] onto

L2(g) = {f : f is σ(g)−measurable}



ξ(u) = u



ξ(u) = u

dXt = prXtdWt + (ξ − prXtξ)dt

ξ(u) = u

N(t) = ‖prXt‖
2
HS denotes a number of particles at time t.

∫ T
0 N(t)dt <∞ a.s.

{t : N(t) =∞} is dense in [0,∞).



Reversible case.

Dirichlet form approach.



The main results

Theorem (K., von Renesse ’17)

There exists a σ-finite measure Ξ on L↑2[0, 1] and a Markov process Xt in L↑2[0, 1] such
that

The measure Ξ is invariant for Xt and supp Ξ = L↑2(ξ)

Xt solves
dXt = prXtdWt + (ξ − prXtξ)dt in L↑2[0, 1]

The process µt = X(·, t)|#Leb|[0,1], that describes the evolution of particle mass,
solves the equation

dµt =
1

2
4µ∗t dt+ div(

√
µtdWt), in P2(R),

where µ∗t =
∑
x∈suppµt δx

The Varadhan formula

P{µt = ν} ∼ e−
d2W (µ0,ν)

2t , t� 1,

holds, if ξ strictly increases, where dW denotes the Wasserstein distance

Note: Xt solves the equation only for E-q.e. X0 ∈ supp Ξ = L↑2(ξ).
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Other cases of drift therm

Drift term: (ξ − prXtξ)dt, Invariant measure: Ξ

Drift term: (ξ − prXtξ−Xt)dt, Invariant measure: e−
‖g‖22

2 Ξ(dg) – finite measure



Invariant measure and the Differential operator

Invariant measure:

Ξ =
∞∑
n=1

Ξn,

where Ξn: n− 1 jumps are distributed according

dνnξ =

n∏
k=1

(qk − qk−1)dξ(q1) . . . ξ(qn−1),

n-values are distributed according to Lebx1≤...≤xn

Space of “smooth” functions:

FC =
{
U = u((h1, ·), . . . , (hk, ·))ϕ(‖ · ‖2L2

)
}

;

Differential operator: DU(g) = prg∇L2U(g) ∈ L2[0, 1];

(Ex. Du((h, g)) = u′((h, g))prgh, D‖g‖2
L2

= 2g)



Integration by parts and Dirichlet form

Integration by parts (K., von Renesse ’17)

Let U, V ∈ FC. Then∫
L

↑
2

(DU(g),DV (g))Ξ(dg) = −
∫
L

↑
2

LU(g)V (g)Ξ(dg)

−
∫
L

↑
2

V (g)(∇L2U(g), ξ − prgξ)Ξ(dg).

(Ex. Lu((h, g)) = u′′((h, g))‖prgh‖
2
L2

, L‖g‖2
L2

= 2#g)

Dirichlet form:

E(U, V ) =
1

2

∫
L

↑
2(ξ)

(DU(g),DV (g))Ξ(dg), U, V ∈ FC

Theorem (K., von Renesse ’17)

E is a closable bilinear form on L2(L↑2,Ξ), its closure is a quasi-regular local symmetric
Dirichlet form and ‖ · ‖L2 is its intrinsic metric.
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General case.

Finite particle approximation.



Weak existence and some regularity

Theorem (K. ’17)

1 For each ξ ∈ L↑∞[0, 1] and X0 ∈ L↑2[0, 1] (not only from L↑2(ξ)) the equation

dXt = prXtdWt + (ξ − prXtξ)dt in L↑2[0, 1] (1)

has a weak martingale solution.

2 If g, ξ are piecewise 1
2
+-Hölder continuous then there exists
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