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Main object of investigation

System of diffusion particles on the real line that
@ start from some set of points with masses;
© move independently up to the moment of the meeting;
© coalesce;
@ have their mass adding after sticking;

© have their diffusion changed correspondingly to the changing of the mass
(c2=21).
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Interaction particles systems. Singular interaction
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Interaction particles systems. Singular interaction

Arratia flow, mathematical description
{z(u,t), t > 0,u € R} such that

@ z(u,-) is a Brownian motion;

Q z(u,0) =u, ueR,

Q z(u,t) <z(v,t), u<w, t>0;

(%] <1‘(U,'),$(’U,')>t =0, t<7-u,'u;
where 7, , = inf{t : z(u,t) = z(v,t)}.
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Total time of runs of the particles

Let a set of different points {uy, k € N} be dense in [0,U].
T = 1,
k—1
T, =inf ¢ 1;t: H(x(uk,t) —z(u,t))=0p, k>2.
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Total time of runs of the particles

The sum > 7, is finite a.s. and does not depend on the set {uy, k € N}.

n=1

For all ¢ the set {z(u,t), u € [0,U]} has a finite number of different points.

Dorogovtsev A. A. '04
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Special stochastic integral with respect to Arratia flow

Let a : R — R be a measurable bounded function then the series

a(z(un, s))dz(un, s)
=/

is convergent in Lo and their sum does not depend on the set {uy, k € N}.

Denote
7(u)

[ [

~ Tn
a(z(u, s))dz(u, s) E / a(z(un, $))dz(un, s).

Theorem 4

U 7(u)
The random processes [ [ a(z(u, s))dz(u,s), U >0, is a o(z(u,-), u € [0, U])-martingale.
0 0

Dorogovtsev A. A. '06
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Girsanov theorem for diffusion processes with coalescence

Let a : R — R be a bounded Lipschitz continuity function

Diffusion flow with coalescing
{y(u?t)a t> O, S R} such that

Q M(u, ) =y(u,-) — [a(y(u, s))ds is a Brownian motion, for all u € R;
0

Q y(u,0)=u, ueR;

Q y(u,t) <y(v,t), u<wv, t>0;

o <M(U, ')7M(Ua )>t =0, t<ouw,
where o, , = inf{t : y(u,t) = y(v,t)}.
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Girsanov theorem for diffusion processes with coalescence

Theorem 5

The distribution of y is absolutely continuous with respect to the distribution of z
in the space D([0,U], C(]0, 1])) with the density

7(u) 7(u)

U . U
= exp O/O/a ))dx(u, s) 20/ 0/ a(z(u, s))ds

Dorogovtsev A. A. 07
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Asymptotic behaviour

Law of the iterated logarithm for a Wiener process

Tim. |z (u, t) — ul _

t50 \/2f Inlnt—1

a.s.

Asymptotic in the sup-norm

R tf
lim sup lo(w,t) — u| =

t=04c[0,1] Vit Int—1

1 as.

Shamov A. '10

Asymptotic of cluster size
Let v(t) = Mu: z(u,t) = z(0,t)}, t > 0. Then a.s.
- v(t) _ v(t)
lm ———>1, lim ———— < 1.
t=0 /2t Inlnt—1 — t=0 2yt Inlnt—1
Dorogovtsev A. A., Vovchanskii M. B. '13
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Brownian web
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Brownian web

System of brownian particles which
© start from all time-space point in R x R;
© move independently up to the moment of the meeting;

© coalesce;

Fontes L. R. G., Isopi M., Newman C. M., Ravishankar K. 04 11/ 47



Interaction particles systems. Singular interaction

Coalescing system of non-Brownian particles

System of particles in a metric space such that
© every particle is described by the Markov process;
@ every two particles move independently up to the moment of the meeting;
© particles coalesce.

Le Jan Y. '04, Evens S. N. '12
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Interaction particles systems. Singular interaction

Main property such systems
All subsystem of such system may be described as a separate system
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Interaction particles systems. Systems concerning particles

Masses

- Coalescing Brownian particles which have some masses and these masses vary
by the some law. The mass does not influence motion of the particles
Dawson D. A. 01, '04.

- Stochastic differential equation with interaction
{dac(u,t) = a(x(u,t), g, t)dt + [o b(x(u,t), g, t, q)W(dt,dq)
2(u,0) = u, s = po o x(-, )71
Dorogovtsev A. A. '07.

- The cases of finite and infinite numbers of particles with sticking that have
mass and speed and their motion obey the laws of mass conservation and
inertion

Sinai Ya. G. '96.
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Coalescing particles system with variable weights

mo=m; =4
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Construction of finite system

{w(t), t>0, k=—-n
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,n} is a system of Wiener processes

where w™(-) =

(—n+w_p(-

z"(:) = Fa(w" (")),
)y ey wp(+)).
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Properties of finite system

Theorem 6
The process 2" (t), t > 0 satisfies the following conditions

1°) z}(-) is a continuous square integrable martingale with respect to the
filtration
Fir=o(x}(s), s<t, i=-n,...,n);

2°) 22(0) =k, k=—n,...,n;

where m(t) = |[{i: Is <t 2P (s) = z}(s)}];
5°) (2g ()2 (e =0, ¢ <77,

where 7, ; = inf{t : z}(t) = 2]'(¢)}.
Moreover, if a process y(-) satisfies the conditions 1°)-5°) then the processes y(-)
and z"(-) have the same distributions in the space (C([0,00)))?"*+1.
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Some property of a system of Wiener processes

Lemma 7
Let {wg(t), t >0, k=0,1,...} be a system of independent Wiener processes.
Define

T T _ 2
&k —tg[lg%{kﬂwk(t)}, Mk —té?gg]{k+wk(t)}-

Then for every "> 0 and ¢ € (0, 1)

P< lim 4 4 =1l
{nl_{réo{kfllaxnﬁk <n+96, N >n+6}}
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Stabilization

{w(t), t >0, k=0,1,...} is a fixed system of Wiener processes.
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The sequence {z}(-), n > k} converges almost surely in C([0, c0)). ]
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Infinite system

Theorem 8
There exists a sequence of processes {xy(t), t > 0, k € Z} such that

1°) zy(-) is a continuous square integrable martingale with respect to the

filtration
Fi=o(zi(s), s <t, i € Z);

where my(t) = [{i: Is <t x;(s) = zr(9)}:
5°) (xr(-), (1)) =0, t< Ty,

where 73, ; = inf{t : z,(t) = z(¢)}.
Moreover, if a sequence {y(t), t > 0, k € Z} satisfies the conditions 1°)-5°)
then {yx(¢t), t >0, k € Z} and {zx(t), t > 0, k € Z} have the same
distributions in the space (C([0,)))Z. Sy




Asymptotic behaviour

Question: What types of functions ¢ and v are?
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Estimation of asymptotic growth of the mass

Let wi(-), wa(-) be independent Wiener processes and

Ok, = il’lf{t : k +’U)1(t) =1 +w2(t)}.

Properties
Q P{r; <t} <P{ox, <t}

T my (t) 1.
° P{tl}ﬂowm = 1} =1L

Q P{Tk’ker < +OO} =1,
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Asymptotic behaviour of one particle

Using the estimation of asymptotic growth of the mass, the law of the iterated
logarithm for a Wiener process and the representation of a square integrable
continuous martingale

t

2x(t) = w({ze())e) = w /

0

ds
mg(s)

we have

Asymptotic behaviour

: lzu(t)] _ 1.
° P{tl}_t,_moo V2t Inlnt } =1

0
ep{t“f&l '51%=oo}:1, for all € € (0, 1).
—+oo
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Case of general conditions of start points

Theorem 9

For every non-decreasing sequence of real numbers {z;, ¢ € Z} and sequence of strictly positive
real numbers {b;, ¢ € Z} such that

Tim {(xn+1 —Zn) ANbpg1 A bn} > 0,

n—+oo
there exists a set of processes {zx(t), ¢ > 0, k € Z}, satisfying
1°) xg(-) is a continuous square integrable martingale with respect to the filtration
Fir =o(zi(s), s<t, i € Z);
2°) zx(0) =z, k € Z;
3°) zp(t) S my(t), k<, t>0;

) (O = f ks, 20,

5%) (zx(),z1())e =0, t<7p;=inf{t: zx(t) = zi(t)}.
Moreover, the conditions 1°)-5°) uniquely determine the distribution of the process in the space
(C([0,0)))%. 20/ 47




Process of heavy diffusion particles in the space M. Markov
property.

Let M be a set of non-decreasing sequences (x)rez in R such that

paa((an), () = o 2=
Definition 10

Let {z,(t), t > 0,n € Z} satisfies the conditions 1°)-5°) of Theorem 9 with
by =1, k € Z. The random process (z,,(t))nez, t > 0, is called the process of
heavy diffusion particles in M.

Theorem 11

The process of heavy diffusion particles in M is a continuous strictly Markov
process.

2547



Martingale problem. General conception

Let £(t), t > 0, be a continuous Markov process in a metric space F and
(A, D) be a generator of the process £(-).
We know

t

VEED FE(0) - FE0) ~ [ AFE(s)ds is a martingale (1)

0
and if a process n(t), t > 0, satisfies (1) then &(-) 4 n(-).

Definition 12
A process &(+) is called a unique solution of the martingale problem for (A, D) if

VieD: f(&)) /Alf ))ds is a martingale (2)

and for every process 7)(t), t > 0, that satisfies (2), we have £(-) < n(-).
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Martingale problem for the process of heavy diffusion
particles in M

Om={fom: feCR*™M), fhasa compact support, n € N}.

~ 1 — o? Loi=ay)
Srf@) =5 D Gpgm, I
leZ

where f: fomn, mpr=(Top,...,Ts).

The process of heavy diffusion particles in M is a unique solution of the
martingale problem for (G, D aq).

27 /47



Evolution of particles masses

Let H be a set of integer valued measures u on the real line such that

0 —n,0
i 2000 u(=n.0)
n—o00 n n—o00 n
where py = p1 + pa,
p1 is a metric of week convergence on bounded intervals and
p2 is a uniform distance between the elements of the sequence (3).

—1. (3)

Definition 14

Let {z,(t), t > 0,n € Z} satisfies the conditions 1°)-5°) of Theorem 9 with
br =1, k € Z. The random process ) d,, (1), t >0, is called the process of
kEZ

heavy diffusion particles in .

Theorem 15

The process of heavy diffusion particles in H is a continuous strictly Markov
process. 28/ 47|
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View of the generator
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Domain of the generator

Fom(p) :/.../cp(xl,...,xm),u(dxl)...ﬂ(dacm),

Dy =span{Fy,m : ¢ € Dy, m € N},
where ®,, is a set of functions ¢ : R™ — R such that
@ ( is continuous,
@  has compact support,
@  is symmetric,

@ ( satisfies some boundary conditions.
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Definition of martingale problem

Definition 16

{ut, t > 0} is a solution of the martingale problem for (&4, D) if
1) for every function F € Dy,

t
Flue) — Fo) — /QﬁH(F(uS))ds s & i
0

2) there exists a continuous strictly Markov process {(z(t))kez, t > 0} in M such that

=Y Oue(r)y t>0;
kez.

3) for each k € Z and any function f € C2([0,+0c0)) that is bounded together with its
derivatives and satisfies the condition f/(0) = 0, the difference

1 1
d
Nmm® V)

S

t
flerrn®) = an(®) = 5 [ " (@sa(s) ~ zas
0

is a martingale.

3T7

Lo




Martingale problem

The process of heavy diffusion particles in H is a unique solution of the martingale
problem for (G4, D).
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Problem

Question: Whether there exists a heavy diffusion particles system which start
from all points of the real line?

We want to construct a system of processes {z(u,t), t >0, u € R}

such that

1°) x(u,-) is a continuous square integrable martingale with respect to the
filtration

Fi=o(x(u,s), s<t, uecR)
2°) z(u,0) = u, u € R;
3°) z(u,t) < z(v,t), u <wv, t>0;
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Stationary case

We suppose that

@ there is a finite number of particles on each interval.
@ the mass distribution of the particles at the moment of start has stationary

distribution with respect to a spatial variable

M
i
P /'/Av'w
iy NATEY | N Y, e |
A Mo et M’/mm,‘ A W s s
N, Y W e
7, W \‘_‘ Y “M\,
X PV
L ",
ay N b
A Y
W/ L
W W,
m=a, o v,
K M » W, 9
¥ A P
N oo \\
AU e i t
L ry
"o, W My
Xa oy n
\,»“v‘\",k '"T“ ™, Mg e
Ly n N g V!
Bl M{,,«.‘WA/ W e A Y SRV
K,W "‘W‘\w Al /AM»‘W u\\ /
ks o, T
e Wy
Xy v
L
h \*ww\\
' ) produ, P
W T A v
o PN I "\”'\r e
F % e
Ay o T

34 / 47|



Stationary measure with respect to a spatial variable

Let 91 be a set of point measures 1 on R which have a finite number of atoms on
every interval.

Definition 18
A measure p on R is called a stationary point measure with respect to a spatial
variable if p is a map from B(R) x 2 to [0, co| that satisfies the following
conditions

1) for each B € B(R), u(B,-) is a random variable;

2) u(,w) €N, for all w € Q;

3) for any Bi,...,B, € B(R) and h € R,

((B1), . i(Bw)) £ (u(By +h),..., (B + h)).
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Existence of mathematical model

Theorem 19
Let 4 = > axd,, be a stationary point measure with respect to a spatial variable
kEZ

on R and x([0,00]) # 0. Then there exists a system of processes
{zx(t), k € Z, t > 0} such that

1°) x(-) — xy is a continuous local martingale with respect to
(Ft)t>0 = (o(zk(s), s<t, ke Z))t205

a:k( )—xk, kEZ;

2 (t) < 2 (t), for all I < k;

2°)
3°)

t
4°) the quadratic characteristic (zy(-) — zx)¢ = [ #ﬁs);
0
)

5°) the joint characteristic (z;(-) — z, 2% (-) — zk)e =0, < 7.
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Stationary case

Corollary 20

Foreach t > 0, s = ) axdy, (1) is stationary measure with respect to a spatial
kEZ
variable.
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Coalescing diffusion particles with drift

System of diffusion particles on the real line that

©000O0CO

start from some set of points with masses;
move independently up to the moment of the meeting;
coalesce;

have their mass adding after sticking;

have their diffusion changed correspondingly to the changing of the mass;

have evolution of particle described by SDE

dx(t) = (x(t))dt + U(x(t))dw

i) m(t)
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Existence of the mathematical model

Theorem 21

Let a,o be bounded Lipschitz continuity functions and in%a(x) > 0. Then for every
EAS

non-decreasing sequence of real numbers {z;, i € Z} and sequence of strictly positive real
numbers {b;, i € Z} such that

nglil {(zn+1 — Tn) Abpt1 Abp} >0,

there exists a set of processes (;(t), t > 0, i € Z, satisfying

1°) M, = ¢Gi(o) — of afj((S)))ds is a continuous square integrable martingale with respect to the

filtration ]-'f =0(Ci(s), s<t, i €Z), wherem;(t) = > by,
JEA;(t)
Ai(t) ={j: Fs <t G(s) = G(9)}
20) Cl(O) =x;, 1 €EZL;
3%) Gi(t) < ¢G(t), i<, t>0;

t
) )= ) g5, ¢ > 0;

50) <9ﬁi,9ﬁj>t =0, t< Tij = inf{t : Cz(t) = Cj(t)}
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Unique distribution of probability

The conditions 1° )-5°) of Theorem 21 uniquely determine the distribution of the process in the
space (C([0, 00)))*
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Markov property

b€ (0,00)%

T {by Abnsa} >0

Kb = {(E S RZ : ll@ {(.’L‘n+1 — (En) A bn+1 AN bn} > O}

PS=Po(!, ((0)==

The set of the distributions {P$, = € K} is a strictly Markov system. \

41 /47




Estimation of asymptotic growth of the mass

Incase by =1, xp 1 — 2, >0, k €Z

— dmy(t) }
P lim ——F———<1;,=1.
{t—H'OO 8|lo|| vVt Inlnt —
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Open problems

© Strict estimation of the probability P{r_, > t} for large n and ¢;
@ Asymptotic growth of the particle mass;

© Asymptotic behaviour of the particle;

@ Start from all points of the real line.
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