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Main object of investigation

System of di�usion particles on the real line that

1 start from some set of points with masses;

2 move independently up to the moment of the meeting;

3 coalesce;

4 have their mass adding after sticking;

5 have their di�usion changed correspondingly to the changing of the mass
(σ2 = 1

m ).
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Interaction particles systems. Singular interaction

Aratia �ow

Arratia R. A. '79
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Interaction particles systems. Singular interaction

Arratia �ow, mathematical description

{x(u, t), t ≥ 0, u ∈ R} such that

1 x(u, ·) is a Brownian motion;

2 x(u, 0) = u, u ∈ R;
3 x(u, t) ≤ x(v, t), u < v, t ≥ 0;

4 〈x(u, ·), x(v, ·)〉t = 0, t < τu,v,
where τu,v = inf{t : x(u, t) = x(v, t)}.
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Total time of runs of the particles

Let a set of di�erent points {uk, k ∈ N} be dense in [0,U].

τ1 = 1,

τk = inf

1; t :

k−1∏
j=1

(x(uk, t)− x(uj , t)) = 0

 , k ≥ 2.
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Total time of runs of the particles

Theorem 1

The sum
∞∑
n=1

τn is �nite a.s. and does not depend on the set {uk, k ∈ N}.

Theorem 2

For all t the set {x(u, t), u ∈ [0, U ]} has a �nite number of di�erent points.

Dorogovtsev A. A. '04
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Special stochastic integral with respect to Arratia �ow

Theorem 3
Let a : R→ R be a measurable bounded function then the series

∞∑
n=1

τn∫
0

a(x(un, s))dx(un, s)

is convergent in L2 and their sum does not depend on the set {uk, k ∈ N}.

Denote
U∫
0

τ(u)∫
0

a(x(u, s))dx(u, s) =

∞∑
n=1

τn∫
0

a(x(un, s))dx(un, s).

Theorem 4

The random processes
U∫
0

τ(u)∫
0

a(x(u, s))dx(u, s), U ≥ 0, is a σ(x(u, ·), u ∈ [0, U ])-martingale.

Dorogovtsev A. A. '06
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Girsanov theorem for di�usion processes with coalescence

Let a : R→ R be a bounded Lipschitz continuity function

Di�usion �ow with coalescing

{y(u, t), t ≥ 0, u ∈ R} such that

1 M(u, ·) = y(u, ·)−
·∫
0

a(y(u, s))ds is a Brownian motion, for all u ∈ R;

2 y(u, 0) = u, u ∈ R;
3 y(u, t) ≤ y(v, t), u < v, t ≥ 0;

4 〈M(u, ·),M(v, ·)〉t = 0, t < σu,v,
where σu,v = inf{t : y(u, t) = y(v, t)}.
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Girsanov theorem for di�usion processes with coalescence

Theorem 5

The distribution of y is absolutely continuous with respect to the distribution of x
in the space D([0, U ],C([0, 1])) with the density

p(x) = exp


U∫
0

τ(u)∫
0

a(x(u, s))dx(u, s)− 1

2

U∫
0

τ(u)∫
0

a(x(u, s))ds

 .

Dorogovtsev A. A. '07
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Asymptotic behaviour

Law of the iterated logarithm for a Wiener process

lim
t→0

|x(u, t)− u|
√
2t ln ln t−1

= 1 a.s.

Asymptotic in the sup-norm

lim
t→0

sup
u∈[0,1]

|x(u, t)− u|
√
t ln t−1

= 1 a.s.

Shamov A. '10

Asymptotic of cluster size

Let ν(t) = λ{u : x(u, t) = x(0, t)}, t ≥ 0. Then a.s.

lim
t→0

ν(t)
√
2t ln ln t−1

≥ 1, lim
t→0

ν(t)

2
√
t ln ln t−1

≤ 1.

Dorogovtsev A. A., Vovchanskii M. B. '13
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Brownian web

Brownian web
System of brownian particles which

1 start from all time-space point in R× R;
2 move independently up to the moment of the meeting;

3 coalesce;

Fontes L. R. G., Isopi M., Newman C. M., Ravishankar K. '04 11 / 47
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Interaction particles systems. Singular interaction

Coalescing system of non-Brownian particles

System of particles in a metric space such that

1 every particle is described by the Markov process;

2 every two particles move independently up to the moment of the meeting;

3 particles coalesce.

Le Jan Y. '04, Evens S. N. '12
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Interaction particles systems. Singular interaction

Main property such systems

All subsystem of such system may be described as a separate system
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Interaction particles systems. Systems concerning particles

masses

- Coalescing Brownian particles which have some masses and these masses vary
by the some law. The mass does not in�uence motion of the particles
Dawson D. A. '01, '04.

- Stochastic di�erential equation with interaction{
dx(u, t) = a(x(u, t), µt, t)dt+

∫
R b(x(u, t), µt, t, q)W (dt, dq)

x(u, 0) = u, µt = µ0 ◦ x(·, t)−1.
Dorogovtsev A. A. '07.

- The cases of �nite and in�nite numbers of particles with sticking that have
mass and speed and their motion obey the laws of mass conservation and
inertion
Sinai Ya. G. '96.
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Coalescing particles system with variable weights

xk(0) = k, mk(0) = 1, k ∈ Z
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Construction of �nite system

{wk(t), t ≥ 0, k = −n, . . . , n} is a system of Wiener processes

xn(·) = Fn(wn(·)),

where wn(·) = (−n+ w−n(·), . . . , n+ wn(·)).
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Properties of �nite system

Theorem 6

The process xn(t), t ≥ 0 satis�es the following conditions

1◦) xnk (·) is a continuous square integrable martingale with respect to the
�ltration

Fnt = σ(xni (s), s ≤ t, i = −n, . . . , n);

2◦) xnk (0) = k, k = −n, . . . , n;
3◦) xnk (t) ≤ xnl (t), k < l, t ≥ 0;

4◦) 〈xnk (·)〉t =
t∫
0

1
mn

k (s)
ds, t ≥ 0,

where mn
k (t) = |{i : ∃s ≤ t xni (s) = xnk (s)}|;

5◦) 〈xnk (·), xnl (·)〉t = 0, t < τnk,l,
where τk,l = inf{t : xnk (t) = xnl (t)}.

Moreover, if a process y(·) satis�es the conditions 1◦)�5◦) then the processes y(·)
and xn(·) have the same distributions in the space (C([0,∞)))2n+1.
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Some property of a system of Wiener processes

Lemma 7

Let {wk(t), t ≥ 0, k = 0, 1, . . .} be a system of independent Wiener processes.
De�ne

ξTk = max
t∈[0,T ]

{k + wk(t)} , ηTk = min
t∈[0,T ]

{k + wk(t)} .

Then for every T > 0 and δ ∈ (0, 1)

P
{

lim
n→∞

{
max

k=1,...,n
ξTk < n+ δ, ηTn+1 > n+ δ

}}
= 1.
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Stabilization

{wk(t), t ≥ 0, k = 0, 1, . . .} is a �xed system of Wiener processes.

xn(·) = Fn(wn(·)),
P
{
∃N ∀n ≥ N ∀t ∈ [0, T ] xnk (t) = xNk (t)

}
= 1, for all k ∈ Z

The sequence {xnk (·), n ≥ k} converges almost surely in C([0,∞)).
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In�nite system

Theorem 8

There exists a sequence of processes {xk(t), t ≥ 0, k ∈ Z} such that

1◦) xk(·) is a continuous square integrable martingale with respect to the
�ltration

Ft = σ(xi(s), s ≤ t, i ∈ Z);

2◦) xk(0) = k, k ∈ Z;
3◦) xk(t) ≤ xl(t), k < l, t ≥ 0;

4◦) 〈xk(·)〉t =
t∫
0

1
mk(s)

ds, t ≥ 0,

where mk(t) = |{i : ∃s ≤ t xi(s) = xk(s)}|;
5◦) 〈xk(·), xl(·)〉t = 0, t < τk,l,

where τk,l = inf{t : xk(t) = xl(t)}.
Moreover, if a sequence {yk(t), t ≥ 0, k ∈ Z} satis�es the conditions 1◦)�5◦)
then {yk(t), t ≥ 0, k ∈ Z} and {xk(t), t ≥ 0, k ∈ Z} have the same
distributions in the space (C([0,∞)))Z. 20 / 47
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Asymptotic behaviour

lim
t→∞

mk(t)

ϕ(t)
= 1;

lim
t→∞

|xk(t)|
ψ(t)

= 1;

Question: What types of functions ϕ and ψ are?
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Estimation of asymptotic growth of the mass

Let w1(·), w2(·) be independent Wiener processes and

σk,l = inf{t : k + w1(t) = l + w2(t)}.

Properties

1 P{τk,l ≤ t} ≤ P{σk,l ≤ t};

2 P
{

lim
t→+∞

mk(t)

4
√
t ln ln t

≤ 1

}
= 1;

3 P{τk,k+p < +∞} = 1.
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Asymptotic behaviour of one particle

Using the estimation of asymptotic growth of the mass, the law of the iterated
logarithm for a Wiener process and the representation of a square integrable
continuous martingale

xk(t) = w(〈xk(·)〉t) = w

 t∫
0

ds

mk(s)


we have

Asymptotic behaviour

1 P
{

lim
t→+∞

|xk(t)|√
2t ln ln t

= 0

}
= 1;

2 P
{

lim
t→+∞

|xk(t)|
4√
t1−ε

=∞
}

= 1, for all ε ∈ (0, 1).
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Case of general conditions of start points

Theorem 9
For every non-decreasing sequence of real numbers {xi, i ∈ Z} and sequence of strictly positive
real numbers {bi, i ∈ Z} such that

lim
n→±∞

{(xn+1 − xn) ∧ bn+1 ∧ bn} > 0,

there exists a set of processes {xk(t), t ≥ 0, k ∈ Z}, satisfying
1◦) xk(·) is a continuous square integrable martingale with respect to the �ltration

Ft = σ(xi(s), s ≤ t, i ∈ Z);

2◦) xk(0) = xk, k ∈ Z;

3◦) xk(t) ≤ xl(t), k < l, t ≥ 0;

4◦) 〈xk(·)〉t =
t∫
0

1
mk(s)

ds, t ≥ 0,

where mk(t) =
∑

i∈Ak(t)

bi, Ak(t) = {i ∈ Z : ∃ s ≤ t, xk(s) = xi(s)};

5◦) 〈xk(·), xl(·)〉t = 0, t < τk,l = inf{t : xk(t) = xl(t)}.
Moreover, the conditions 1◦)-5◦) uniquely determine the distribution of the process in the space
(C([0,∞)))Z . 24 / 47
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Process of heavy di�usion particles in the spaceM. Markov

property.

LetM be a set of non-decreasing sequences (xk)k∈Z in R such that

lim
k→∞

xk
k

= 1.

ρM((xk), (yk)) = max
k∈Z

|xk − yk|
1 + |k|

De�nition 10

Let {xn(t), t ≥ 0, n ∈ Z} satis�es the conditions 1◦)-5◦) of Theorem 9 with
bk = 1, k ∈ Z. The random process (xn(t))n∈Z, t ≥ 0, is called the process of
heavy di�usion particles inM.

Theorem 11

The process of heavy di�usion particles inM is a continuous strictly Markov
process.
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Martingale problem. General conception

Let ξ(t), t ≥ 0, be a continuous Markov process in a metric space E and
(A,D) be a generator of the process ξ(·).
We know

∀f ∈ D f(ξ(t))− f(ξ(0))−
t∫

0

Af(ξ(s))ds is a martingale (1)

and if a process η(t), t ≥ 0, satis�es (1) then ξ(·) d
= η(·).

De�nition 12

A process ξ(·) is called a unique solution of the martingale problem for (A1,D1) if

∀f ∈ D1 f(ξ(t))− f(ξ(0))−
t∫

0

A1f(ξ(s))ds is a martingale (2)

and for every process η(t), t ≥ 0, that satis�es (2), we have ξ(·) d
= η(·).
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Martingale problem for the process of heavy di�usion

particles inM

DM =
{
f ◦ πn : f ∈ C2(R2n+1), f has a compact support, n ∈ N

}
.

GMf̃(x) =
1

2

n∑
i,j=−n

∂2

∂xi∂xj
f(πnx)

I{xi=xj}∑
l∈Z

I{xi=xl}
,

where f̃ = f ◦ πn, πnx = (x−n, . . . , xn).

Theorem 13

The process of heavy di�usion particles inM is a unique solution of the
martingale problem for (GM,DM).
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Evolution of particles masses

Let H be a set of integer valued measures µ on the real line such that

lim
n→∞

µ([0, n))

n
= 1, lim

n→∞

µ([−n, 0))

n
= 1. (3)

where ρH = ρ1 + ρ2,
ρ1 is a metric of week convergence on bounded intervals and
ρ2 is a uniform distance between the elements of the sequence (3).

De�nition 14

Let {xn(t), t ≥ 0, n ∈ Z} satis�es the conditions 1◦)-5◦) of Theorem 9 with
bk = 1, k ∈ Z. The random process

∑
k∈Z

δxk(t), t ≥ 0, is called the process of

heavy di�usion particles in H.

Theorem 15

The process of heavy di�usion particles in H is a continuous strictly Markov
process. 28 / 47
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View of the generator

GHF (µ) =
1

2

∫∫
R2

∂2

∂x∂y

δ2F (µ)

δµ(x)δµ(y)
δx(dy)µ(dx)+

+
1

2

∫
R

d2

dx2
δF (µ)

δµ(x)
µ∗(dx),

µ∗ =
∑

y∈suppµ
δy,

δF (µ)

δµ(x)
= lim
ε→0+

F (µ+ εδx)− F (µ)

ε
.
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Domain of the generator

Fϕ,m(µ) =

∫
. . .

∫
ϕ(x1, . . . , xm)µ(dx1) . . . µ(dxm),

DH = span{Fϕ,m : ϕ ∈ Φm, m ∈ N},

where Φm is a set of functions ϕ : Rm → R such that

ϕ is continuous,

ϕ has compact support,

ϕ is symmetric,

ϕ satis�es some boundary conditions.
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De�nition of martingale problem

De�nition 16
{µt, t ≥ 0} is a solution of the martingale problem for (GH,DH) if

1) for every function F ∈ DH,

F (µt)− F (µ0)−
t∫

0

GH(F (µs))ds is a martingale;

2) there exists a continuous strictly Markov process {(xk(t))k∈Z, t ≥ 0} inM such that

µt =
∑
k∈Z

δxk(t), t ≥ 0;

3) for each k ∈ Z and any function f ∈ C2([0,+∞)) that is bounded together with its
derivatives and satis�es the condition f ′′(0) = 0, the di�erence

f(xk+1(t)− xk(t))−
1

2

t∫
0

f ′′(xk+1(s)− xk(s))
[

1√
mk+1(s)

+
1√
mk(s)

]
ds

is a martingale.
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Martingale problem

Theorem 17.

The process of heavy di�usion particles in H is a unique solution of the martingale
problem for (GH,DH).
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Problem

Question: Whether there exists a heavy di�usion particles system which start
from all points of the real line?

We want to construct a system of processes {x(u, t), t ≥ 0, u ∈ R}
such that

1◦) x(u, ·) is a continuous square integrable martingale with respect to the
�ltration

Ft = σ(x(u, s), s ≤ t, u ∈ R);

2◦) x(u, 0) = u, u ∈ R;
3◦) x(u, t) ≤ x(v, t), u < v, t ≥ 0;

4◦) 〈x(u, ·)〉t =
t∫
0

1
m(u,s)ds, t ≥ 0,

where m(u, t) = λ{v : x(v, t) = x(u, t)};
5◦) 〈x(u, ·), x(v, ·)〉t = 0, t < τu,v = inf{t : x(u, t) = x(v, t)}.
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Stationary case

We suppose that
1 there is a �nite number of particles on each interval.
2 the mass distribution of the particles at the moment of start has stationary

distribution with respect to a spatial variable

34 / 47
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Stationary measure with respect to a spatial variable

Let N be a set of point measures µ on R which have a �nite number of atoms on
every interval.

De�nition 18

A measure µ on R is called a stationary point measure with respect to a spatial
variable if µ is a map from B(R)× Ω to [0,∞] that satis�es the following
conditions

1) for each B ∈ B(R), µ(B, ·) is a random variable;

2) µ(·, ω) ∈ N, for all ω ∈ Ω;

3) for any B1, . . . , Bn ∈ B(R) and h ∈ R,

(µ(B1), . . . , µ(Bn))
d
= (µ(B1 + h), . . . , µ(Bn + h)).
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Existence of mathematical model

Theorem 19

Let µ =
∑
k∈Z

akδxk
be a stationary point measure with respect to a spatial variable

on R and µ([0,∞]) 6= 0. Then there exists a system of processes
{xk(t), k ∈ Z, t ≥ 0} such that

1◦) xk(·)− xk is a continuous local martingale with respect to
(Ft)t≥0 = (σ(xk(s), s ≤ t, k ∈ Z))t≥0 ;

2◦) xk(0) = xk, k ∈ Z;
3◦) xl(t) ≤ xk(t), for all l < k;

4◦) the quadratic characteristic 〈xk(·)− xk〉t =
t∫
0

ds
mk(s)

;

5◦) the joint characteristic 〈xl(·)− xl, xk(·)− xk〉t = 0, t < τl,k.
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Stationary case

Corollary 20

For each t ≥ 0, µt =
∑
k∈Z

akδxk(t) is stationary measure with respect to a spatial

variable.
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Coalescing di�usion particles with drift

System of di�usion particles on the real line that

1 start from some set of points with masses;

2 move independently up to the moment of the meeting;

3 coalesce;

4 have their mass adding after sticking;

5 have their di�usion changed correspondingly to the changing of the mass;

6 have evolution of particle described by SDE

dx(t) =
a(x(t))

m(t)
dt+

σ(x(t))√
m(t)

dw(t).
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Existence of the mathematical model

Theorem 21
Let a, σ be bounded Lipschitz continuity functions and inf

x∈R
σ(x) > 0. Then for every

non-decreasing sequence of real numbers {xi, i ∈ Z} and sequence of strictly positive real
numbers {bi, i ∈ Z} such that

lim
n→±∞

{(xn+1 − xn) ∧ bn+1 ∧ bn} > 0,

there exists a set of processes ζi(t), t ≥ 0, i ∈ Z, satisfying

1◦) Mi = ζi(·)−
·∫
0

a(ζi(s))
mi(s)

ds is a continuous square integrable martingale with respect to the

�ltration Fζt = σ(ζi(s), s ≤ t, i ∈ Z), where mi(t) =
∑

j∈Ai(t)

bj ,

Ai(t) = {j : ∃s ≤ t ζj(s) = ζi(s)};
2◦) ζi(0) = xi, i ∈ Z;

3◦) ζi(t) ≤ ζj(t), i < j, t ≥ 0;

4◦) 〈Mi〉t =
t∫
0

σ2(ζi(s))
mi(s)

ds, t ≥ 0;

5◦) 〈Mi,Mj〉t = 0, t < τi,j = inf{t : ζi(t) = ζj(t)}. 39 / 47
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Unique distribution of probability

Theorem 22
The conditions 1◦)-5◦) of Theorem 21 uniquely determine the distribution of the process in the
space (C([0,∞)))Z
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Markov property

b ∈ (0,∞)Z

lim
n→±∞

{bn ∧ bn+1} > 0

Kb =

{
x ∈ RZ : lim

n→±∞
{(xn+1 − xn) ∧ bn+1 ∧ bn} > 0

}
Pζx = P ◦ ζ−1, ζ(0) = x

Theorem 23

The set of the distributions {Pζx, x ∈ Kb} is a strictly Markov system.
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Estimation of asymptotic growth of the mass

In case bk = 1, xk+1 − xk > δ, k ∈ Z

P
{

lim
t→+∞

δmk(t)

8‖σ‖
√
t ln ln t

≤ 1

}
= 1.
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Open problems

1 Strict estimation of the probability P{τ0,n ≥ t} for large n and t;

2 Asymptotic growth of the particle mass;

3 Asymptotic behaviour of the particle;

4 Start from all points of the real line.
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Thank you!
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