
On Conditioning Brownian Particles to Coalesce

Vitalii Konarovskyi∗ † Victor Marx‡

October 20, 2020

Abstract

We consider a cylindrical Wiener process, interpreted as a system
of independent Brownian particles starting from di�erent points of the
real line. In this paper, we study the conditional distribution of this
system to the event that particles coalesce. After having introduced
a notion of conditional distribution to a zero-probability event in a
given direction of approximation, we prove that this conditional dis-
tribution coincides with the law of a modi�ed massive Arratia �ow,
de�ned in [Kon17b]. In the case of �nitely many particles, this result
is independent of the direction of approximation.
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1 Introduction

The original motivation for this paper was the following simple problem.
Consider two independent Brownian motionsW1 andW2, starting at x1 ∈ R
and x2 ∈ R, respectively, with same variance. What is the conditional
distribution of (W1,W2) to the event that their paths coalesce, i.e. that
W1(t) = W2(t) for every t larger than the �rst meeting time τ? We will see
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that it should be the law of the process (Y1, Y2) that is equal to (W1,W2)

before time τ and such that Y1(t) = Y2(t) = W1(t)+W2(t)
2 for any t > τ .

We prove in this paper that the conditional distribution of any �nite fam-
ily (W1,W2, . . . ,Wn) of independent real-valued Brownian motions to the
event that the paths coalesce is the law of the modi�ed massive Arratia �ow
(MMAF), see De�nition 1.3 below.

Moreover, that problem turns out to be more challenging in in�nite di-
mension. We still justify that the conditional law of a cylindrical Wiener
process in L2[0, 1] starting at some non-decreasing function g to the event
of coalescence is the law of a MMAF. But we pay the prize of having to
investigate more carefully the notion of conditional law to a zero-probability
event, allowing to de�ne it only in some directions of approximation.

1.1 Conditional distribution to a zero-probability event

For the purpose of this paper - but possibly also for quite di�erent uses - we
introduce a de�nition of a conditional distribution along a direction, which
extends the commomly-used notion of regular conditional probability (see
e.g [IW89, Theorem I.3.3] and [Kal02, Theorem 6.3]).

Let E be a Polish space, B(E) denote the Borel σ-algebra on E and
P(E) be the space of probability measures on (E,B(E)) endowed with the
topology of weak convergence.

In general, given a random element X in E and C ∈ B(E) such that
P [X ∈ C] = 0, de�ning the conditional probability P [X ∈ ·|X ∈ C] has no
sense if we consider {X ∈ C} as an isolated event (see e.g. Borel-Kolmogorov
paradox). However, one can make a proper de�nition if C is given by
C = T−1({z0}), where z0 belongs to a metric space F and T : E → F
is some measurable map. Let p : B(E)× F→ [0, 1] be a regular conditional
probability of X given T(X), see De�nition A.1 in appendix. By Proposi-
tion A.2, p(·, z) is well-de�ned for PT(X)-almost every z ∈ F, where PT(X)

denotes the law of T(X). Thus the naive candidate p(·, z0) to be the con-
ditional distribution of X given {T(X) = z0} is not well-de�ned in general.
However, it becomes well-de�ned if e.g. z 7→ p(·, z) is continuous at z0, as a
map from F to P(E), and if z0 belongs to the support of PT(X).

When the continuity of z 7→ p(·, z) is not obvious, we still can de�ne a
value of p at z0, at least along some given sequence {ξn} converging to z0.
To make the random element p(·, ξn) independent of the version of p, we
should assume that the law of ξn is absolutely continuous with respect to
PT(X). Then the value of p at z0 is de�ned as the weak limit of {p(·, ξn)}n>1,
in the following sense:

De�nition 1.1. Let {ξn}n>1 be a sequence of random elements in F such
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that

(B1) for each n > 1, the law of ξn is absolutely continuous with respect to
the law of T(X);

(B2) {ξn}n>1 converges in distribution to z0 in F.

A probability measure ν on (E,B(E)) is the value of the conditional distri-

bution of X to the event {T(X) = z0} along the sequence {ξn} if for every
f ∈ Cb(E)

E
[∫

E
f(x)p(dx, ξn)

]
→
∫
E
f(x)ν(dx), n→∞, (1)

where p is a regular conditional probability of X given T(X). We denote
this measure by ν = Law{ξn}(X|T(X) = z0).

In Section 2, we explain that the above de�nition generalizes the case
where p is continuous at z0 and that it is very close to the intuitive de�ni-
tion of P [X ∈ · |X ∈ C] by approximation of the set C. Furthermore, we
introduce in Section 2 a method to construct ν.

1.2 De�nition of cylindrical Wiener process and of MMAF

We introduce here the main two probabilistic objects appearing in this paper.
First, de�ne a cylindrical Wiener process according to [GM11, De�nition 2.5]:

De�nition 1.2. The process Wt, t > 0, de�ned on (Ω,F , (Ft)t>0,P) is an
(Ft)-cylindrical Wiener process (or shortly, cylindrical Wiener process) in a
Hilbert space H starting at 0 if

i) for each t > 0, Wt : H → L2(Ω,F ,P) is a linear map;
ii) for any h ∈ H, Wt(h), t > 0, is an (Ft)-Brownian motion starting at 0;
iii) for any h1, h2 ∈ H and t > 0, E [Wt(h1)Wt(h2)] = t(h1, h2)H .

For any g ∈ H, we say that Wt, t > 0, is a cylindrical Wiener process in H
starting at g if there is a cylindrical Wiener process ηt, t > 0, in H starting
at 0 such that Wt(h) = (g, h)H + ηt(h), t > 0, h ∈ H.

Second, we introduce the MMAF, already investigated in [Kon10, Kon14,
Kon17b, Kon17a, Mar18, KvR19]. Let D((0, 1), C[0,∞)) denote the space of
càdlàg functions from (0, 1) to C([0,∞),R). Let g : [0, 1] → R be a non-
decreasing càdlàg function such that

∫ 1
0 |g(u)|pdu <∞ for some p > 2.

De�nition 1.3. A random element Y = {Y (u, t), u ∈ (0, 1), t ∈ [0,∞)} in
the space D((0, 1), C[0,∞)) is called modi�ed massive Arratia �ow (shortly
MMAF) starting at g if it satis�es the following properties
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(E1) for all u ∈ (0, 1) the process Y (u, ·) is a continuous square-integrable
martingale with respect to the �ltration

FY
t = σ(Y (v, s), v ∈ (0, 1), s 6 t), t > 0; (2)

(E2) for all u ∈ (0, 1), Y (u, 0) = g(u);
(E3) for all u < v from (0, 1) and t > 0, Y (u, t) 6 Y (v, t);
(E4) for all u, v ∈ (0, 1), the joint quadratic variation of Y (u, ·) and Y (v, ·)

is

〈Y (u, ·),Y (v, ·)〉t =

∫ t

0

1{τu,v6s}

m(u, s)
ds, t > 0,

where m(u, t) = Leb {v : ∃s 6 t, Y (v, s) = Y (u, s)} and τu,v = inf{t :
Y (u, t) = Y (v, t)}.

Intuitively, the massive particles Y (u, ·), for each u ∈ (0, 1), evolve like
independent Brownian particles with di�usion rates inversely proportional
to their masses, until two of them collide. When two particles meet, they
coalesce and form a new particle with the mass equal to the sum of masses
of the colliding particles.

Moreover, the random element Y can be identi�ed with an L↑2-valued

process Yt, t > 0, where L↑2 is the subset of L2[0, 1] consisting of all func-
tions which have non-decreasing versions. There exists a cylindrical Wiener
process W in L2[0, 1] starting at g such that

Yt = g +

∫ t

0
prYs dWs, t > 0, (3)

where for any f ∈ L↑2, prf is the orthogonal projection operator in L2[0, 1]
onto the subspace of σ(f)-measurable functions. Those results will be re-
called with further details and references in Section 3.

1.3 Main result

Our main results consists in the construction of the following objects and in
the following theorem.

(S1) We start from Y , a MMAF starting at a strictly increasing map g.
(S2) Thus there exists a cylindrical Wiener process W in L2[0, 1] starting

at g satisfying (3). Y can be seen as the coalescing part of W .
(S3) Given X = (Y ,W ), we decompose W into Y and a non-coalescing

part T(X ), so that W is completely determined by Y and T(X ). We
postpone to Section 3.3 the precise de�nition of the map T. We are
interested in the conditional distribution of X to the event {T(X ) = 0},
which is the event where W coincides with its coalescing part Y .
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(S4) For every n > 1, ξn is de�ned as a sequence {ξnj }j>1 of independent
Ornstein-Uhlenbeck processes such that {ξn}n>1 converges to 0 in dis-
tribution and the law of ξn is absolutely continuous with respect to the
law of T(X ), which is the law of a sequence of independent standard
Brownian motions.

Theorem 1.4. The value of the conditional distribution of X = (Y ,W ) to

the event {T(X ) = 0} along {ξn} is the law of (Y ,Y ).

Our initial hope was to prove that result for any sequence {ξn} satisfying
(B1)-(B2), but unfortunately this seems to be not achievable and possibly
even not true. Nevertheless, a sequence of Ornstein-Uhlenbeck processes
is already a reasonable choice of {ξn} satisfying (B1)-(B2). We refer to
Theorem 3.12 for a more precise statement after having carefully de�ned T
and {ξn}n>1 among others.

In brief, starting from a modi�ed massive Arratia �ow Y , we are able
to construct a cylindrical Wiener process W driving the evolution of Y , and
the conditional distribution of W to the event of coalescing paths along some
direction is the law of Y . Of course, this is only a partial answer to our initial
question, since we are not able to start from a cylindrical Wiener process W
and to recover the law of a MMAF. As we will see, this is possible in �nite
dimension. In in�nite dimension, the additional di�culty comes from the
fact that it is unknown - and seemingly a di�cult problem - whether given
W , equation (3) admits a unique strong solution.

However, the characterization of MMAF as a conditional distribution of a
cylindrical Wiener process to the event of coalescence, given by Theorem 1.4,
is interesting. It explains e.g. the form of the rate function in the large
deviation principle for the MMAF which is the restriction of the rate function
of cylindrical Wiener process to the set of coalescing paths (see [Kon14,
KvR19]).

1.4 Law of the coupling (Y ,W )

The following statement ensures that the law of a pair (Y ,W ) coupled by
equation (3) is uniquely determined by the law of Y .

Theorem 1.5. Let Yt, t > 0, be a MMAF starting at g. Let W and W̃ be

cylindrical Wiener processes in L2 starting at g and such that (Y ,W ) and

(Y , W̃ ) satisfy equation (3). Then Law(Y ,W ) = Law(Y , W̃ ).

Theorem 1.5 has an interest which is independent of the conditional dis-
tribution problem, but it is proved using the same techniques as for Theo-
rem 1.4. Moreover, as a corollary, one can see that steps (S1) and (S2) in
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the statement of the main result can be replaced by starting from any pair
(Y ,W ) coupled by (3), which is a stronger result.

1.5 Finite dimensional case

As a particular case of the above introduced method, we come up with a
complete answer to our initial question in the �nite dimensional case. Let
[n] := {1, . . . , n}. Let Wk(t), t > 0, k ∈ [n], be a family of independent
Brownian motions starting at x0

k, k ∈ [n], with di�usion rates σ2
k = 1

mk
,

k ∈ [n], where x0
1 6 . . . 6 x0

n and m1 + · · ·+mn = 1. De�ne

g :=

n∑
k=1

x0
k1π0

k
, (4)

where π0
k = [ak−1, ak), a0 = 0, and ak = ak−1 + mk, k ∈ [n]. Let Y be a

MMAF starting at g. Then by the coalescing property of the MMAF, it is
easily seen that there exists a unique family of processes yk(t), t > 0, k ∈ [n],
such that almost surely

Yt =
n∑
k=1

yk(t)1π0
k
, t > 0.

Moreover, yk, k ∈ [n], describe the evolution of the di�usion particles in the
MMAF and satisfy properties similar to (E1)�(E4) of De�nition 1.3 (see also
properties (F1)-(F4) in [Kon17a]).

Theorem 1.6. Let X := (Wk(t))
n
k=1, t > 0. Then the conditional distri-

bution of X to the event {X coalesces}1 is the law of a MMAF (yk(t))nk=1,

t > 0, starting at (x0
k)
n
k=1.

We obtain that stronger result for several reasons. Mainly, we know that
the law of a MMAF starting at a step function g is uniquely determined.
That is, for any given g as in (4) and any X as in Theorem 1.6, there is a
unique strong solution to equation (3). Moreover, the map T can now be
more easily de�ned. E.g, in the case of our initial problem of two Brownian
motions with the same variance, T : C[0,∞)2 → C0[0,∞) is de�ned by

T(x)(t) =

{
x1(τ+t)−x2(τ+t)

2 , if τ <∞,
0, if τ =∞,

t > 0,

where τ = inf {t > 0 : x1(t) = x2(t)}. Furthermore, the regular conditional
probability p of X given T(X) is now continuous at 0, which allows us to

1see Section 5 for the precise de�nition of this set.
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de�ne a conditional distribution of X to {T(X) = 0} independently of the
direction.

Content of the paper. In Section 2, we propose a method to e�ectively
construct a conditional distribution according to De�nition 1.1. In Section 3,
we recall needed properties of the MMAF and we de�ne the non-coalescing
map T, using a construction of an orthonormal basis in L2[0, 1] which is
tailored for the MMAF. Finally in that section, we state the main result in
Theorem 3.12. Sections 4, 5 and 6 are devoted to the proofs of Theorem 3.12,
Theorem 1.6 and Theorem 1.5, respectively.

2 On conditional distributions

2.1 On the de�nition of conditional distribution

De�nition 1.1 is consistent with the continuous case. Indeed, if z 7→ p(·, z)
is continuous at z0, then by the continuous mapping theorem p(·, z0) =
Law{ξn}(X|T(X) = z0) for any sequence {ξn}n>1 satisfying (B1) and (B2).
Actually, it is an equivalence, as the following lemma shows.

Lemma 2.1. Let z0 belong to the support of PT(X). There exists a probability

measure ν such that ν = Law{ξn}(X|T(X) = z0) along any sequence {ξn}n>1

satisfying (B1) and (B2) if and only if there exists a version of p which is

continuous at z0 ∈ F. In this case, ν is equal to the value of the continuous

version of p at z0.

We postpone the proof of the lemma to Section A.2 in the appendix.

Remark 2.2. De�nition 1.1 extends the intuitive de�nition of the conditional
distribution of X given {X ∈ C} as the weak limit

P [X ∈ · |X ∈ C] = lim
ε→0

P [X ∈ · |X ∈ Cε] ,

where C denotes a closed subset of E and Cε is its ε-extension, i.e. Cε =
{x ∈ E : dE(C, x) < ε}. We assume P [X ∈ Cε] > 0 for any ε > 0. Then T
can be de�ned by T(x) := dE(C, x). We note that {X ∈ C} = {T(X) = 0}
and {X ∈ Cε} = {T(X) < ε} for all ε > 0. The sequence {ξn} could then
be de�ned by

P [ξn ∈ A] =
1

P
[
T(X) < 1

n

] ∫
A
1{x< 1

n}P
T(X)(dx), A ∈ B(E).

One can easily check that {ξn} satis�es conditions (B1) and (B2) with z0 = 0,
and that

E
[∫

E
f(x)p(dx, ξn)

]
=

∫
E
f(x)P

[
X ∈ dx|X ∈ C1/n

]
.
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Therefore, the weak limit of P
[
X ∈ · |X ∈ C1/n

]
coincides with the measure

Law{ξn}(X|T(X) = 0).

2.2 Method of construction of conditional distribution

We introduce here an idea to build a conditional distribution of X given
{T(X) = z0} along a sequence {ξn}. The idea is to split the random element
X into two independent parts, Y and Z, so that Z has the same law as T(X).

More precisely, we assume that there exists a quadruple (G,Ψ, Y, Z)
satisfying the following conditions

(P1) G is a measurable space;

(P2) Y and Z are independent random elements in G and F, respectively;

(P3) Ψ : G× F→ E is a measurable map such that T(Ψ(Y, Z)) = Z a.s.;

(P4) X and Ψ(Y,Z) have the same distribution.

Proposition 2.3. Let (G,Ψ, Y, Z) be a quadruple satisfying (P1)-(P4). The
map p de�ned by

p(A, z) := P [Ψ(Y, z) ∈ A] , A ∈ B(E), z ∈ F (5)

is a regular conditional probability of X given T(X).

Moreover, if {ξn}n>1 is a sequence of random elements in F independent

of Y and satisfying (B1) and (B2) of De�nition 1.1, then Ψ(Y, ξn) converges
in distribution to the measure Law{ξn}(X|T(X) = z0).

Proof. Since Ψ is measurable, p de�ned by (5) satis�es properties (R1) and
(R2) of De�nition A.1. Moreover, for every A ∈ B(E) and B ∈ B(F)

P [X ∈ A, T(X) ∈ B]
(P4)
= P [Ψ(Y,Z) ∈ A, T(Ψ(Y, Z)) ∈ B]

(P3)
= P [Ψ(Y,Z) ∈ A, Z ∈ B]

(P2)
=

∫
B
p(A, z)PZ(dz).

Furthermore, since X and Ψ(Y,Z) have the same law, T(X) and Z =
T(Ψ(Y, Z)) have the same law too, so PZ = PT(X). This concludes the
proof of (R3).

Let f ∈ Cb(E). By (5) and Proposition A.2, we know that for any regular
conditional probability p of X given T(X), the equality

∫
E f(x)p(dx, z) =

E [f(Ψ(Y, z))] holds for PT(X)-almost all z ∈ F. It also holds Pξn-almost
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everywhere by Property (B1). By independence of ξn and Y and Fubini's
theorem,

E [f(Ψ(Y, ξn))] =

∫
F
E [f(Ψ(Y, z))]Pξ

n
(dz) =

∫
F

∫
E
f(x)p(dx, z)Pξ

n
(dz).

By (1), the last term tends to
∫
E f(x)ν(dx), where ν = Law{ξn}(X|T(X) =

z0). This concludes the proof of the convergence in distribution.

We show in appendix, see Section A.3, how to apply this method to the
well-known Brownian bridge.

3 Statement of the main result

In Section 1.3, we announced the construction of several objects, including
a modi�ed massive Arratia �ow (MMAF) and a non-coalescing remainder
map T. The main part of this construction will be the de�nition of an
orthonormal basis of L2[0, 1] which is tailored for the MMAF. In this section,
we will follow the steps (S1)-(S4) of Section 1.3 and �nally, we will state again
Theorem 1.4 in a more precise form, see Theorem 3.12.

3.1 MMAF and set of coalescing paths

In this section, we de�ne the set Coal of coalescing trajectories in an in�nite-
dimensional space and we recall important properties of the MMAF intro-
duced in De�nition 1.3 to show that it takes values almost surely in Coal.
Since they are not the central issue of this paper, the proofs of this section
will be succinct, but we will refer to previous works or to the appendix for
the detailled versions.

Fix g belonging to the set L↑2+ that consists of all non-decreasing càdlàg

functions g : (0, 1)→ R satisfying
∫ 1

0 |g(u)|2+εdu <∞ for some ε > 0.

Let St denote the set of non-decreasing step functions f : [0, 1) → R of
the form

f =
n∑
j=1

fj1πj , (6)

where n > 1, f1 < · · · < fn and {π1, . . . πn} is an ordered partition of [0, 1)
into half-open intervals of the form πj = [aj , bj). The natural number n is
denoted by N(f) and is by de�nition �nite for every f ∈ St. Recall that

L2 := L2[0, 1] and that L↑2 is the subset of L2 consisting of all functions
which have non-decreasing versions.

De�nition 3.1. We de�ne Coal as the set of functions y from C([0,∞), L↑2)
such that
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(G1) y has a version in D((0, 1), C[0,∞)), the space of càdlàg functions from
(0, 1) to C([0,∞),R);

(G2) y0 = g;

(G3) for each t > 0, yt ∈ St;

(G4) for each u, v ∈ (0, 1) and s > 0, ys(u) = ys(v) implies yt(u) = yt(v) for
every t > s;

(G5) t 7→ N(yt), t > 0, is a càdlàg non-increasing integer-valued function
with jumps of height one and which is constant equal to 1 for su�-
ciently large time.

We can interpret y as a deterministic particle system, where yt(u), t > 0,
describes the trajectory of a particle labeled by u. Condition (G3) means
that there is only a �nite number of particles at each positive time. By Con-
dition (G4), two particles coalesce when they meet. Moreover, by Condition
(G5), there can be at most one coalescence at each time, and the number of
particles is equal to one for large time.

Note that, according to Lemma B.2 in appendix, the set Coal is mea-
surable in C([0,∞), L↑2). We will also consider Coal as a metric subspace of

C([0,∞), L↑2).

Recall the following existence property of modi�ed massive Arratia �ow.

Proposition 3.2. Let g ∈ L↑2+. There exists a MMAF starting at g.

Proof. See [Kon17a, Theorem 1.1].

Remark 3.3. However it is not known if properties (E1)-(E4) uniquely de-
termine the distribution of a MMAF starting at g, except the case where
g ∈ St (see e.g [Kon17a, Proposition 3.3]).

Equivalently, we may also de�ne a MMAF as an L↑2-valued process, in

the following sense. For every f ∈ L↑2, prf denotes the orthogonal projection
operator in L2 onto the subspace of σ(f)-measurable functions.

Lemma 3.4. Let g ∈ L↑2+ and {Y (u, t), u ∈ (0, 1), t ∈ [0,∞)} be a MMAF

starting at g. Then the process Yt, t > 0, de�ned by Yt := Y (·, t), t > 0,
satis�es

(M1) Yt, t > 0, is a continuous L↑2-valued process with E
[
‖Yt‖2L2

]
< ∞,

t > 0;
(M2) for every h ∈ L2 the L2-inner product (Yt, h)L2, t > 0, is a continuous

square integrable martingale with respect to the �ltration generated by

Yt, t > 0, that trivially coincides with (FY
t )t>0;
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(M3) the joint quadratic variation of (Yt, h1)L2, t > 0, and (Yt, h2)L2, t > 0,
equals 〈(Y·, h1)L2 , (Y·, h2)L2〉t =

∫ t
0 (prYs h1, h2)L2ds, t > 0.

Furthermore, if a process Yt, t > 0, starting at g satis�es (M1)-(M3), then

there exists a MMAF {Y (u, t), u ∈ (0, 1), t ∈ [0,∞)} such that Yt = Y (·, t)
in L2 a.s. for all t > 0.

Proof. The �rst part of the statement follows directly from Lemma B.3 in
appendix, for Property (M1), and from [KvR19, Lemma 3.1], for properties
(M1) and (M2). As regards the second part of the lemma, it is proved
in [Kon17a, Theorem 6.4].

According to Lemma 3.4, we may identify the modi�ed massive Arratia
�ow {Y (u, t), u ∈ (0, 1), t ∈ [0,∞)} and the L↑2-valued martingale Yt, t > 0,
using both notations for the same object.

Lemma 3.5. The process Yt, t > 0, belongs almost surely to Coal.

Proof. By construction, the process satis�es properties (G1) and (G2). Prop-
erties (G3) and (G4) were proved in [Kon17a], propositions 6.2 and 2.3 ibid,
respectively. Property (G5) is stated in Lemma B.4 in appendix.

3.2 MMAF and cylindrical Wiener process

The goal of this section is to explain how to construct, given a MMAF Y ,
a cylindrical Wiener process W starting at the same point which satis�es
equation (3), in order to complete step (S2) of Section 1.3.

For any f ∈ L↑2, let L2(f) denote the subspace of L2 consisting of σ(f)-
measurable functions. In particular if f is of the form (6), then L2(f) consists

of all step functions which are constant on each πj . For any f ∈ L↑2, let prf
(resp. pr⊥f ) denote the orthogonal projection in L2 onto L2(f) (resp. onto

L2(f)⊥). Moreover, for any progressively measurable process κt, t > 0, in
L2 and for any cylindrical Wiener process B in L2, we denote∫ t

0
κs · dBs :=

∫ t

0
KsdBs.

where Kt = (κt, ·)L2 , t > 0.

Proposition 3.6. Let g ∈ L↑2+ and Yt, t > 0, be a MMAF starting at g. Let
Bt, t > 0, be a cylindrical Wiener process in L2 starting at 0 de�ned on the

same probability space and independent of Y . Then the process Wt, t > 0,
de�ned by

Wt := Yt +

∫ t

0
pr⊥Ys dBs, t > 0, (7)
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is a cylindrical Wiener process in L2 starting at g, where equality (7) should
be understood2 as follows:

Wt(h) := (Yt, h)L2 +

∫ t

0
pr⊥Ys h · dBs, t > 0, h ∈ L2.

Moreover, (Y ,W ) satis�es equation (3).

Proof. It follows from Property (M3) and from [GM11, Corollary 2.2] that
there exists a cylindrical Wiener process B̃ in L2 starting at 0 (possibly on
an extended probability space also denoted by (Ω,F ,P)) such that

Yt = g +

∫ t

0
prYs dB̃s, t > 0.

Moreover, we may assume that B̃ is independent of B. It is trivial that
the map Wt : L2 → L2(Ω,F ,P) de�ned by (7) is linear. Let (Ft)t>0 be the
natural �ltration generated by B̃ and B. Let us check that Wt(h), t > 0, is
an (Ft)-Brownian motion starting at (g, h)L2 with di�usion rate ‖h‖2L2

for

any h ∈ L2. Using the independence of B̃ and B, we have that Wt(h), t > 0,
is a continuous (Ft)-martingale with quadratic variation

〈W (h)〉t =

∫ t

0
‖ prYs h‖

2
L2

ds+

∫ t

0
‖ pr⊥Ys h‖

2
L2

ds =

∫ t

0
‖h‖2L2

ds = t‖h‖2L2
.

This implies ii) and iii) of De�nition 1.2 by Lévy's characterization and by
the polarization equality, respectively.

Moreover, for every h ∈ L2 and t > 0,∫ t

0
prYs h · dWs =

∫ t

0
(Ys,prYs h)L2ds+

∫ t

0
pr⊥Ys ◦ prYs h · dBs

=

∫ t

0
(Ys, h)L2ds = (Yt, h)L2 − (g, h)L2 .

Therefore Yt = g +
∫ t

0 prYs dWs, which is equality (3).

Note that it is not obvious whether each cylindrical Wiener process W
in L2 starting at g and satisfying (3) is necessary of the form (7). Actually,
this is the result of Theorem 1.5 and will be proved in Section 6.

2The process pr⊥Yt , t > 0, does not take values in the space of Hilbert-Schmidt operators

in L2. Therefore, the integral
∫ t
0
pr⊥Ys dBs is not well-de�ned but h 7→

∫ t
0
pr⊥Ys h · dBs is.
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3.3 Construction of non-coalescing remainder map

Up to now and until the end of Section 4, we �x a strictly increasing func-

tion g in L↑2+ and X := (Y ,W ), where Yt, t > 0, is a modi�ed massive

Arratia �ow starting at g and Wt, t > 0, is de�ned by (7). In particular, the
assumption on g implies that L2(g) = L2. In this section, we consider step
(S3) of Section 1.3.

Let us introduce for every y ∈ Coal the corresponding coalescence times:

τyk := inf{t > 0 : N(yt) 6 k}, k > 0. (8)

Since g is a strictly increasing function, one has that N(g) = +∞, and
therefore, the family {τyk , k > 0} is strictly decreasing for all y ∈ Coal, i.e.

0 < · · · < τy2 < τy1 < τy0 = +∞,

by Condition (G5).

Now we are going to de�ne an orthonormal basis {eyk, k > 0} in L2

which depends on y ∈ Coal. Since yt, t > 0, is an L2-valued continuous
function and L2(g) = L2 due to the strong increase of g, it is easily seen that
the closure of

⋃∞
k=1 L2(yτyk

) coincides with L2. Let Hy
k be the orthogonal

complement of L2(yτyk
) in L2, k > 1.

Lemma 3.7. For every y ∈ Coal there exists a unique orthonormal basis

{eyl , l > 0} of L2 such that

1) the family {eyl , 0 6 l < k} is a basis of L2(yτyk
) for each k > 1;

2) (eyl ,1[0,u])L2 > 0 for every u ∈ (0, 1).

Moreover, the family
{
eyl , l > k

}
is a basis of Hy

k for each k > 1.

In other words, the map t 7→ pryt is a projection map onto a subspace
which decreases from exactly one dimension whenever a coalescence of y
occurs, and the basis {eyl , l > 0} is adapted to that decreasing sequence of
subspaces.

Proof. Let us construct the family {eyk, k > 0} explicitly. Since yτy1 is con-

stant on [0, 1], the only choice is ey0 = 1[0,1].

We say that an interval I is a step of a map f if f is constant on I but
not constant on any interval strictly larger than I. At time τyk a coalescence
occurs. So there exist a < b < c such that [a, b) and [b, c) are steps of yτyk+1

,

and [a, c) is a step of yτyk
. We call b the coalescence point of yτyk

. The only
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possible choice for eyk so that it has norm 1, it belongs to L2(yτyk+1
), it is

orthogonal to every element of L2(yτyk
) and it satis�es Condition 2) is:

eyk =
1√
c− a

(√
c− b
b− a

1[a,b) −
√
b− a
c− b

1[b,c)

)
. (9)

Since
⋃∞
k=1 L2(yτyk

) = L2, we get that {eyk, k > 0} form a basis of L2.

The last part of the statement follows from the fact that for each k > 1,
Hy
k = L2(yτyk

)⊥.

Remark 3.8. The construction of the basis
{
eyk, k > 0

}
in the above proof

easily implies that the map Coal 3 y 7→ eyk ∈ L2 is measurable for any

k > 0, where Coal is endowed with the induced topology of C([0,∞), L↑2).
Moreover, by (9), for every k > 1, eyk is uniquely determined by y·∧τyk

.

According to step (S3), given X = (Y ,W ), we will de�ne now the non-
coalescing part T(X ) of W . Note that τY

k are (FY
t )-stopping times for all

k > 0, where (FY
t )t>0 is the complete right-continuous �ltration generated by

the MMAF Y . Furthermore, Remark 3.8 yields that eY
k is an FY

τY
k

-measurable

random element in L2. To simplify the notation, we will write ek and τk
instead of eY

k and τY
k , respectively.

Recall that W is de�ned by equality (7). In particular, the real-valued
process Wt(ek), t > 0, satis�es:

Wt(ek) = (Yt, ek)L2 +

∫ t

0
1{s>τk}ek · dBs,

because pr⊥Ys ek = 1{s>τk}ek. By construction of ek in Lemma 3.7, (Yt, ek)L2

vanishes for all t > τk. Thus we note that for t ∈ [0, τk], Wt(ek) = (Yt, ek)L2

and that Wτk(ek) = 0, whereas for t > τk, Wt(ek) = Bt(ek)−Bτk(ek). Since
B is independent of Y and thus of ek, Bt(ek) is well-de�ned by Bt(ek) =∫ t

0 ek · dBs, t > 0. To recap, in space direction ek, the projection of W is
equal to the projection of its coalescing part Y before stopping time τk, and
is equal to the projection of a noise B which is independent of Y after τk.
Therefore, we de�ne formally ξ = T(X ) = T(Y ,W ) as follows

ξt =

∞∑
k=1

ekWt+τk(ek), t > 0.

More rigorously3, we de�ne ξt as a map from the Hilbert space L0
2 := L2 	

3Similarly as for the cylindrical Wiener process W , ξ can not be de�ned as a random

process taking values in L2.
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span{1[0,1]} to L2(Ω). We set

ξt(h) :=
∞∑
k=1

(ek, h)L2Wt+τk(ek), t > 0, h ∈ L0
2. (10)

Proposition 3.9. For every h ∈ L0
2 the sum (10) converges almost surely in

C[0,∞). Moreover, ξt, t > 0, is a cylindrical Wiener process in L0
2 starting

at 0 that is independent of the MMAF Y .

In order to prove the above statement, we start with the following lemma.

Lemma 3.10. The processes W·+τk(ek), k > 1, are independent standard

Brownian motions that do not depend on the MMAF Y .

Proof. Let us denote

ηk(t) := Wt+τk(ek) = Bt+τk(ek)−Bτk(ek), t > 0, k > 1. (11)

We �x n > 1 and show that the processes Y , ηk, k ∈ [n], are independent
and that ηk, k ∈ [n], are standard Brownian motions. Let

F0 : C([0,∞), L↑2)→ R, Fk : C[0,∞)→ R, k ∈ [n],

be bounded measurable functions. By strong Markov property of B and the
independence of B and Y , B·+τk − Bτk is also independent of Y . Moreover
for every y ∈ Coal,

ηyk(t) := Bt+τyk
(eyk)−Bτyk (eyk), t > 0, k ∈ [n],

are independent standard Brownian motions. Therefore, we can compute

E

[
F0 (Y )

n∏
k=1

Fk (ηk)

]
= E

[
E

[
F0 (Y )

n∏
k=1

Fk (ηk)

∣∣∣∣Y
]]

= E

[
F0 (Y )E

[
n∏
k=1

Fk
(
ηyk
)] ∣∣∣∣

y=Y

]

= E

[
F0 (Y )E

[
n∏
k=1

Fk (wk)

] ∣∣∣∣
y=Y

]
= E [F0 (Y )]

n∏
k=1

E [Fk(wk)] ,

where wk, k ∈ [n], are independent standard Brownian motions that do not
depend on Y . This completes the proof of the lemma.

Proof of Proposition 3.9. Let h ∈ L0
2 and y ∈ Coal be �xed. For every

n ∈ N we de�ne

My,n
t (h) :=

n∑
k=1

(eyk, h)L2ηk(t), t > 0,
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where ηk, k > 1, are de�ned by (11). By Lemma 3.10, ηk, k > 1, are inde-
pendent standard Brownian motions, hence My,n

t (h) , t > 0, is a continuous
square-integrable martingale with respect to the �ltration (Fηt )t>0 generated
by ηk, k > 1, with quadratic variation

〈My,n(h)〉t =
n∑
k=1

(eyk, h)2
L2
t, t > 0.

Moreover, for each T > 0 the sequence of processes {My,n(h)}n>1 restricted
to the interval [0, T ] converges in L2(Ω, C[0, T ]). Indeed, for each m < n, by
Doob's inequality

E

[
sup
t∈[0,T ]

|My,n
t (h)−My,m

t (h)|2
]

= E

 sup
t∈[0,T ]

∣∣∣∣∣
n∑

k=m+1

(eyk, h)L2ηk(t)

∣∣∣∣∣
2


6 4
n∑

k=m+1

(eyk, h)2
L2
T,

The sum
∑n

k=1(eyk, h)2
L2

converges to ‖h‖2L2
because {eyk, k > 1} is an

orthonormal basis of L0
2. Thus, {My,n(h)}n>1 is a Cauchy sequence in

L2(Ω, C[0, T ]), and hence, it converges to a limit denoted by My(h) =∑∞
k=1(eyk, h)L2ηk. Trivially, My

t (h) can be well-de�ned for all t > 0, and,
by [CE05, Lemma B.11], My

t (h), t > 0, is a continuous square-integrable
(Fηt )-martingale with quadratic variation 〈My(h)〉t = limn→∞〈My,n(h)〉t =
‖h‖2L2

t, t > 0.

Remark that
∑∞

k=1(eyk, h)L2ηk is a sum of independent random elements
in C[0, T ]. Hence, by Itô-Nisio's Theorem [IN68, Theorem 3.1], the sequence
{My,n(h)}n>1 converges almost surely to My(h) in C[0, T ] for every T > 0,
and therefore, in C[0,∞). Recall that by Lemma 3.10, the sequence {ηk}k>1

is independent of Y , and by Lemma 3.5, Y belongs to Coal almost surely.
Then

∑∞
k=1(ek, h)L2ηk also converges almost surely in C[0,∞) to a limit that

we have called ξ(h).

Moreover, similarly as the proof of Lemma 3.10, we show that the pro-
cesses Y and {ξ(hi), i ∈ [n]} for every hi ∈ L0

2, i ∈ [n], n > 1, are indepen-
dent. We conclude that ξ is independent of Y .

Let us show that ξ is a cylindrical Wiener process. Obviously, h 7→ ξ(h)
is a linear map. We denote F̃η,Yt = Fηt ∨σ(Y ), t > 0. We need to check that
for every h ∈ L0

2, ξ(h) is an (F̃η,Yt )-Brownian motion. According to Lévy's
characterization of Brownian motion [IW89, Theorem II.6.1], it is enough
to show that ξ(h) is a continuous square-integrable (F̃η,Yt )-martingale with
quadratic variation ‖h‖2L2

t. So, we take n > 1 and a bounded measurable
function

F : C[0,∞)n × C([0,∞), L2)→ R.
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Then using Lemma 3.10 and the fact that My(h) is an (Fηt )-martingale, we
have for every s < t

E[ξt(h)F ((ηk(· ∧ s))nk=1 ,Y )] = E
[
E
[
ξt(h)F ((ηk(· ∧ s))nk=1 ,Y )

∣∣Y ]]
= E

[
E [My

t (h)F ((ηk(· ∧ s))nk=1 , y)]
∣∣∣
y=Y

]
= E

[
E [My

s (h)F ((ηk(· ∧ s))nk=1 , y)]
∣∣∣
y=Y

]
= E [ξs(h)F ((ηk(· ∧ s))nk=1 ,Y )] .

Hence, ξ(h) is an (F̃η,Yt )-martingale. Similarly, one can prove that ξt(h)2 −
‖h‖2L2

t, t > 0, is also an (F̃η,Yt )-martingale. This proves that ξ(h) is a contin-

uous square-integrable (F̃η,Yt )-martingale with quadratic variation ‖h‖2L2
t,

t > 0. The equality E [ξt(h1)ξt(h2)] = t(h1, h2)L2 , t > 0, trivially follows
from the polarization equality and the fact that ξ(h1) and ξ(h2) are mar-
tingales with respect to the same �ltration (F̃η,Yt )t>0. Thus, ξ is an (F̃η,Yt )-
cylindrical Wiener process in L0

2 starting at 0. This �nishes the proof of the
proposition.

We conclude this section by de�ning properly the space E on which
the random element X take values and the non-coalescing remainder map
T : E → F needed to achieve step (S3) of Section 1.3. However, as we
already noted, the cylindrical Wiener process W is not a random element
in C([0,∞), L2). So we de�ne E := C([0,∞), L↑2) × C[0,∞)N0 and F :=
C0[0,∞)N. Here, C[0,∞) is the space of continuous functions from [0,∞) to
R equipped with its usual Fréchet distance, C0[0,∞) denotes the subspace
of all functions vanishing at 0 and N0 := N∪{0}. Equipped with the metric
induced by the product topology, E is a Polish space.

Now, we �x an orthonormal basis {hj , j > 0} of L2 such that h0 = 1[0,1].
In particular, {hj , j > 1} is an orthonormal basis of L0

2. We identify
the cylindrical Wiener process W with the following random element in
C[0,∞)N0 :

Ŵt =
(

Ŵj(t)
)
j>0

:= (Wt(hj))j>0 , t > 0.

Indeed W and Ŵ are related by Wt(h) =
∑∞

j=0 Ŵj(t)(h, hj)L2 , for all t > 0
and h ∈ L2, where the series converges in C[0,∞) almost surely for every
h ∈ L2.

Similarly, we identify ξ with ξ̂t =
(
ξ̂j(t)

)
j>1

:= (ξt(hj))j>1, t > 0, and

Y with Ŷt =
(

Ŷj(t)
)
j>0

:= ((Yt, hj)L2)j>0, t > 0. By equality (10), ξ̂ and Ŵ
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are related by

ξ̂j(t) =
∞∑
k=1

∞∑
i=1

(ek, hj)L2(ek, hi)L2Ŵi(t+ τk), t > 0, j > 1. (12)

We de�ne X̂ =
(

Y , Ŵ
)
, which is a random element on in E. By (12),

there exists a measurable map T̂ : E→ F such that

ξ̂ = T̂(X̂ ) (13)

almost surely.

3.4 Statement of the main result

Let us clarify step (S4) of Section 1.3. According to De�nition 1.1, we need
to de�ne a random sequence {ξn}n>1 in F = C0[0,∞)N converging to 0 in
distribution and such that Pξn is absolutely continuous with respect to the

law of T̂(X̂ ). By (13) and Proposition 3.9, PT̂(X̂ ) is the law of a sequence of
independent Brownian motions.

Let for each n > 1, ξn := (ξnj )j>1 be the sequence of Ornstein-Uhlenbeck
processes, independent of Y , that are strong solutions to the equations{

dξnj (t) = −αnj 1{t6n}ξnj (t)dt+ dξ̂j(t),

ξnj (0) = 0,
(14)

where {αnj , n, j > 1} is a family of non-negative real numbers such that

(O1) for every n > 1 the series
∑∞

j=1(αnj )2 < +∞;

(O2) for every j > 1, αnj → +∞ as n→∞.

Remark 3.11. (i) Using Kakutani's theorem [Kak48, p. 218] and Jensen's
inequality, it is easily seen that Condition (O1) guaranties the abso-

lute continuity of Pξn with respect to Pξ̂ on C[0,∞)N. The indicator
function in the drift is important, otherwise the law is singular. Hence,
Assumption (B1) of De�nition 1.1 is satis�ed by the sequence {ξn}n>1.

(ii) Condition (O2) yields the convergence in distribution of {ξn}n>1 to 0
in C[0,∞)N (see Lemma 4.7 below). Thus Assumption (B2) is also
satis�ed.

The following theorem is the main result of the paper.

Theorem 3.12. The value of the conditional distribution of X̂ = (Y , Ŵ ) to

the event {T̂(X̂ ) = 0} along {ξn} is the law of (Y , Ŷ ).



19

The event {T̂(X̂ ) = 0}, which equals to {ξ̂ = 0}, is by construction the

event where the non-coalescing part of Ŵ vanishes.

Remark 3.13. For simplicity, we assumed in sections 3.3 and 3.4 that the
initial condition g is strictly increasing. Actually, everything remains true if
g is an arbitrary element of L↑2+, up to replacing the space L2 by the space
L2(g). In particular, if g is a step function, then L2(g) has �nite dimension,
equal to N(g), and the orthonormal basis constructed in Lemma 3.7 and the
sum in the de�nition of ξ̂ consists of �nitely many summands.

4 Proof of the main theorem

In order to prove Theorem 3.12, we follow the strategy introduced in Sec-
tion 2.2. We start by the construction of a quadruple (G,Ψ, Y, Z) satisfying
(P1)-(P4). The idea behind the construction of Ψ is inspired by the result of
Proposition 3.6, stating that W can be build from the MMAF Y and some
independent process.

4.1 Construction of quadruple

De�ne G := Coal, Y := Y and Z := Ẑ, where Z is a cylindrical Wiener pro-
cess in L0

2 starting at 0 that is independent of Y . By the same identi�cation as

previously, for the same basis {hj , j > 0}, Ẑt =
(
Ẑj(t)

)
j>1

:= (Zt(hj))j>1,

t > 0, is a sequence of independent standard Brownian motions and is a
random element in F. Therefore, properties (P1) and (P2) are satis�ed.

We de�ne
ψ(Y ,Z) := (Y , ϕ(Y ,Z)) ,

where ϕt(Y ,Z) is a map from L2 to L2(Ω) de�ned by

ϕt(Y ,Z)(h) = (Yt, h)L2 +
∞∑
k=1

(ek, h)L21{t>τk}Zt−τk(ek) (15)

for all t > 0 and h ∈ L2. As in the proof of Lemma 3.10, one can show
that Z(ek), k > 1, are independent standard Brownian motions that do not
depend on Y .

Lemma 4.1. For each h ∈ L2, the sum in (15) converges almost surely in

C[0,∞). Furthermore, ϕ(Y ,Z) is a cylindrical Wiener process in L2 starting

at g and the law of ψ(Y ,Z) is equal to the law of X = (Y ,W ).

Remark 4.2. Before giving the proof of the lemma, note that the map ϕ
constructs a cylindrical Wiener process from Y , by adding to Y some non-
coalescing term. Actually, for each y ∈ Coal, ϕ(y, z) belongs to Coal if and
only if z = 0. This statement is proved in Lemma B.9.
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Proof of Lemma 4.1. Let us �rst show that the sum in (15) converges almost
surely in C[0,∞). Fixing y ∈ Coal and h ∈ L2, we de�ne for every n > 1

Ry,nt (h) :=

n∑
k=1

(eyk, h)L21{t>τyk}Zt−τ
y
k

(ek) , t > 0.

Since Z(ek), k > 1, are independent standard Brownian motions, one can
easily check that Ry,nt (h), t > 0, is a continuous square-integrable martingale
with respect to the �ltration generated by Zt−τyk (ek), k > 1. As in the
proof of Proposition 3.9, one can show that the sequence of partial sums
{Ry,n(h)}n>1 converges in C[0,∞) almost surely for each y ∈ Coal. By the
independence of Z(ek), k > 1, and Y , one can see that the series

RY
t (h) :=

∞∑
k=1

(ek, h)L21{t>τk}Zt−τk(ek), t > 0,

also converges almost surely in C[0,∞).

Next, we claim that there exists a cylindrical Wiener process θt, t > 0,
in L0

2 starting at 0 independent of Y such that

Wt = Yt +

∫ t

0
pr⊥Ys dθs, t > 0. (16)

Indeed, by Proposition 3.6, there is a cylindrical Wiener process Bt, t > 0,
in L2 starting at 0 independent of Y and satisfying equation (7). Taking
θ equal to the restriction of B to the sub-Hilbert space L0

2, we easily check
that

∫ t
0 pr⊥Ys dθs =

∫ t
0 pr⊥Ys dBs, t > 0, since for all s > 0, pr⊥Ys = prL0

2
◦ pr⊥Ys

almost surely. Furthermore, almost surely∫ t

0
pr⊥Ys dθs =

∞∑
k=1

ek1{t>τk}(θt∧τk(ek)− θτk(ek)), t > 0.

For each �xed y ∈ Coal, the family{
1{t>τyk}(θt∧τ

y
k
(eyk)− θτyk (eyk)), t > 0, k > 1

}
,

has the same distribution as{
1{t>τyk}Zt−τ

y
k
(eyk), t > 0, k > 1

}
.

Therefore, using the independence of Y and θ on the one hand and the
independence of Y and Z on the other hand, we get the equality

Law

{(
Yt,
∫ t

0
pr⊥Ys dθs

)
, t > 0

}
= Law

{(
Yt,

∞∑
k=1

ek1{t>τk}Zt−τk(ek)

)
, t > 0

}
.
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This relation and equalities (15) and (16) yield that the law of X = (Y ,W )
is equal to the law of ψ(Y ,Z) = (Y , ϕ(Y ,Z)). In particular, ϕ(Y ,Z) is a
cylindrical Wiener process in L2 starting at g.

Moreover, there exists a measurable map ϕ̂ : E→ C[0,∞)N0 such that

ϕ̂(Y , Ẑ) = ϕ(Y ,Z )̂.

almost surely. Let us de�ne Ψ : G× F→ E by

Ψ(y, z) := (y, ϕ̂(y, z)) . (17)

It follows from the last two equalities and from Lemma 4.1 that

Corollary 4.3. The laws of Ψ(Y , Ẑ) and of X̂ = (Y , Ŵ ) are the same.

Hence Property (P4) is satis�ed. It remains to check (P3). By equali-
ties (12) and (13), we compute T̂(Ψ(Y , Ẑ)):

T̂(Ψ(Y , Ẑ))j(t) =

∞∑
k=1

∞∑
i=1

(ek, hj)L2(ek, hi)L2ϕ(Y ,Z )̂i(t+τk), t > 0, j > 1.

Proposition 4.4. Almost surely T̂(Ψ(Y , Ẑ)) = Ẑ.

Proof. By continuity in t of T̂(Ψ(Y , Ẑ))j(t) and Ẑj(t), it is enough to show

that for each t > 0 and j > 1 almost surely T̂(Ψ(Y , Ẑ))j(t) = Ẑj(t). Since
{hi, i > 1} is an orthonormal basis of L0

2, we have

T̂(Ψ(Y , Ẑ))j(t) =
∞∑
k=1

∞∑
i=1

(ek, hj)L2(ek, hi)L2ϕt+τk(Y ,Z)(hi)

=
∞∑
k=1

(ek, hj)L2ϕt+τk(Y ,Z)(ek).

By (15) and Lemma 3.7, we have

ϕt+τk(Y ,Z)(ek) = (Yt+τk , ek)L2 +

∞∑
l=1

(el, ek)L21{t+τk>τl}Zt+τk−τl(el)

= 1{t+τk>τk}Zt+τk−τk(ek) = Zt(ek).

Hence, almost surely

T̂(Ψ(Y , Ẑ))j(t) =
∞∑
k=1

(ek, hj)L2Zt (ek) = Zt(hj) = Ẑj(t),

because {ek, k > 1} is an orthonormal basis of L0
2.
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Thus, Property (P3) holds. Hence, by Proposition 2.3, the probability
kernel p de�ned by

p(A, z) := P [Ψ(Y , z) ∈ A] = P [(Y , ϕ̂ (Y , z)) ∈ A] (18)

for all A ∈ B(E) and z ∈ F, is a regular conditional probability of X̂ given
T̂(X̂ ).

Remark 4.5. Informally, we understand the event {T̂(X̂ ) = 0} as an equiva-
lent to the event {W ∈ Coal}. Nevertheless, we should not expect to prove
that both events are equal, since the map T̂ was de�ned up to a set of mea-
sure zero with respect to the law of X̂ . But in view of Remark 4.2, this
equivalence seems reasonable.

4.2 Value of p along a sequence of Ornstein-Uhlenbeck pro-

cesses

According to Proposition 2.3, it remains to show the following to complete
the proof of Theorem 3.12. Let {ξn}n>1 be the sequence de�ned by (14) and
independent of Y . Let Ψ be de�ned by (17). Then Ψ(Y , ξn) converges in
distribution to (Y , Ŷ ).

For y ∈ Coal we consider

Ψ(y, ξn) = (y, ϕ̂(y, ξn)),

where the map ϕ̂ : E → C[0,∞)N0 was de�ned in Section 4.1. Since for

every n > 1 the law of ξn is absolutely continuous with respect to Pξ̂ (which
is equal to PẐ), we have that for almost all y ∈ Coal with respect to PY

ϕ̂j (y, ξn) = (y·, hj) +
∞∑
k=1

∞∑
l=1

(eyk, hj)L2(hl, e
y
k)L21{·>τyk}ξ

n
l (· − τyk ) (19)

for each j > 0, where the series converges in C[0,∞) almost surely. Without
loss of generality, we may assume that equality (19) holds for all y ∈ Coal.
Otherwise, we can work with a measurable subset of Coal of PY -measure
one for which equality (19) holds.

Proposition 4.6. Let ε ∈ (0, 1) and y ∈ Coal be such that the series∑∞
k=1(τyk )1−ε converges. Then the sequence of processes Ψ(y, ξn), n > 1,

converges in distribution to (y, ŷ) in E = C([0,∞), L↑2) × C[0,∞)N0, where

ŷ = ((y·, hj)L2)j>0.

Let us �x y ∈ Coal satisfying the assumption of Proposition 4.6. Before
starting the proof, we de�ne for all j > 0

Rnj (t) :=

∞∑
k=1

∞∑
l=1

(eyk, hj)L2(hl, e
y
k)L21{t>τyk}ξ

n
l (t− τyk ), t > 0,
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and Rnt := (Rnj (t))j>0, t > 0. Remark that Rn0 = 0. Note that it is su�cient
to prove that

Rn
d→ 0 in C[0,∞)N0 , n→∞. (20)

Indeed, this will imply that

Ψ(y, ξn) = (y, ϕ̂(y, ξn)) = (y, ŷ +Rn)
d→ (y, ŷ) in E.

Let us �rst prove some auxiliary lemmas.

Lemma 4.7. The sequence of random elements {ξn}n>1 converges in distri-

bution to 0 in C[0,∞)N.

Proof. In order to prove the lemma, we �rst show that the sequence {ξn}n>1

is tight in C[0,∞)N. This will imply that the sequence {ξn}n>1 is relatively
compact, by Prohorov's theorem. Then we will show that every (weakly)
convergent subsequence of {ξn}n>1 converges to 0. This will immediately

yield that ξn
d→ 0 in C[0,∞)N.

According to [EK86, Proposition 3.2.4], the tightness of {ξn}n>1 will
follow from the tightness of {ξnj }n>1 in C[0,∞) for every j > 1. So, let
j > 1 and T > 0 be �xed. Since the covariance of Ornstein-Uhlenbeck
processes is well-known, one can easily check that for every n > 1 and every
0 6 s 6 t 6 n,

E
[(
ξnj (t)− ξnj (s)

)2]
6

1

αnj
∧ (t− s), (21)

where 1
0 := +∞. Since ξnj is a Gaussian process, it follows that for every

0 6 s 6 t 6 T and every n > T ,

E
[(
ξnj (t)− ξnj (s)

)4]
6 3E

[(
ξnj (t)− ξnj (s)

)2]2
6 3(t− s)2.

Moreover, ξnj (0) = 0. Hence, by Kolmogorov-Chentsov tightness criterion
(see e.g. [Kal02, Corollary 16.9]), the sequence of processes {ξnj }n>1 restricted
to [0, T ] is tight in C[0, T ]. Since T > 0 was arbitrary, we get that {ξnj }n>1

is tight in C[0,∞). Hence, {ξn}n>1 is tight in C[0,∞)N.

Next, let {ξn}n>1 converges in distribution to ξ∞ in C[0,∞)N along a
subsequence N ⊆ N. Then for every t > 0 and j > 1 {ξnj (t)}n>1 converges
in distribution to ξ∞j (t) in R along N . But on the other hand, for each n > t,

E
[
(ξnj (t))2

]
6

t

αnj
→ 0, n→∞,

by (21) and Assumption (O2) in Section 3.4. Hence, ξ∞j (t) = 0 almost surely
for all t > 0 and j > 1. Thus, we have obtained that ξ∞ = 0, and therefore,

ξn
d→ 0 in C[0,∞)N as n→∞.
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To prove that {Rn}n>1 converges to 0, we will use the same argument as
in the proof of Lemma 4.7. So, we start from the tightness of {Rn}.

Lemma 4.8. Under the assumption of Proposition 4.6, the sequence {Rn}n>0

is tight in C[0,∞)N0.

Proof. Again, according to [EK86, Proposition 3.2.4], it is enough to check
that the sequence {Rnj }n>1 is tight in C[0,∞) for every j > 0. For j = 0,
Rn0 = 0 so the result is obvious. So, let j > 1 be �xed. We set

Rn,1j (t) :=
∞∑
k=1

∞∑
l=1

(eyk, hj)L2(hl, e
y
k)L2ξ

n
l (t), t > 0,

and

Rn,2j (t) :=
∞∑
k=1

∞∑
l=1

(eyk, hj)L2(hl, e
y
k)L2

(
1{t>τyk}ξ

n
l (t− τyk )− ξnl (t)

)
, t > 0.

Then Rnj = Rn,1j +Rn,2j . We will prove the tightness separately for {Rn,1j }n>1

and {Rn,2j }n>1.

Tightness of {Rn,1j }n>1. Using the fact that {eyk, k > 1} and {hl, l > 1}
are bases of L0

2, a simple computation shows that almost surely

Γj(ξ̂) :=
∞∑
k=1

∞∑
l=1

(eyk, hj)L2(hl, e
y
k)L2 ξ̂l = ξ̂j .

Due to the absolute continuity of the law of ξn with respect to the law of ξ̂
and the equality Γj(ξ

n) = Rn,1j , we get that Rn,1j = ξnj . Hence it follows from

Lemma 4.7 that Rn,1j converges in distribution to 0 in C[0,∞). In particular,

{Rn,1j }n>1 is tight in C[0,∞), according to Prohorov's theorem.

Tightness of {Rn,2j }n>1.

Step I. For any t ∈ [0, n] the vector

V n
t :=

∞∑
k=1

∞∑
l=1

eyk(e
y
k, hl)L2

(
1{t>τyk}ξ

n
l (t− τyk )− ξnl (t)

)
belongs almost surely to L0

2 and E
[
‖V n

t ‖2L2

]
6
∑∞

k=1(t ∧ τyk ) <∞.

Indeed, by Parseval's equality (with respect to the orthonormal family
{eyk, k > 1}) and by the independence of {ξnl }l>1,

E
[
‖V n

t ‖
2
L2

]
=
∞∑
k=1

∞∑
l=1

(eyk, hl)
2
L2
Enk,l(t), (22)
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where Enk,l(t) := E
[(
1{t>τyk}ξ

n
l (t− τyk )− ξnl (t)

)2
]
. Since ξnl (0) = 0, we

have

Enk,l(t) = 1{t>τyk}E
[(
ξnl (t− τyk )− ξnl (t)

)2]
+ 1{t<τyk}E

[
(ξnl (0)− ξnl (t))2

]
.

(23)
By inequality (21), we can deduce that

Enk,l(t) 6 1{t>τyk}τ
y
k + 1{t<τyk}t = t ∧ τyk . (24)

Therefore,

E
[
‖V n

t ‖
2
L2

]
6
∞∑
k=1

∞∑
l=1

(eyk, hl)
2
L2

(t ∧ τyk ) =

∞∑
k=1

(t ∧ τyk ), (25)

by Parseval's identity (with respect to the orthonormal family {hl, l > 1}).
Moreover,

∑∞
k=1(t∧τyk ) 6 tε

∑∞
k=1(τyk )1−ε <∞. Therefore, for any t ∈ [0, n],

V n
t belongs to L0

2 almost surely. In particular, for every t ∈ [0, n] the inner
product (V n

t , hj)L2 is well-de�ned, and almost surely Rn,2j (t) = (V n
t , hj)L2 .

Step II. Let T > 0. There exists Cy,ε depending on y and ε such that for
all 0 6 s 6 t 6 T and n > T ,

E
[(
Rn,2j (t)−Rn,2j (s)

)2
]
6 Cy,ε(t− s)ε.

Indeed, proceeding as in Step I, we get

E
[(
Rn,2j (t)−Rn,2j (s)

)2
]
6 E

[
‖V n

t − V n
s ‖

2
L2

]
6
∞∑
k=1

∞∑
l=1

(eyk, hl)
2
L2
E
[(
1{t>τyk}ξ

n
l (t− τyk )− ξnl (t)− 1{s>τyk}ξ

n
l (s− τyk ) + ξnl (s)

)2
]

6
∞∑
k=1

∞∑
l=1

(eyk, hl)
2
L2

4
(
(t− s) ∧ τyk

)
= 4

∞∑
k=1

(
(t− s) ∧ τyk

)
6 4(t−s)ε

∞∑
k=1

(τyk )1−ε,

where we use as previously inequality (21). By assumption on y, the series∑∞
k=1(τyk )1−ε converges, so the proof of Step II is achieved.

Step III. There exists α > 0, β > 0 and Cy,ε depending on y and ε such
that for all 0 6 s 6 t 6 T and n > T ,

E
[∣∣∣Rn,2j (t)−Rn,2j (s)

∣∣∣α] 6 Cy,ε(t− s)1+β.

Indeed, for any s 6 t from [0, T ], Rn,2j (t)− Rn,2j (s) is a random variable

with normal distribution N (0, σ2). By Step II, σ2 6 Cy,ε(t− s)ε. Therefore,
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for any p > 1,

E
[∣∣∣Rn,2j (t)−Rn,2j (s)

∣∣∣2p] 6 (2p− 1)!! (σ2)p 6 Cp,y,ε(t− s)εp.

The statement of Step III follows by choosing p larger than 1
ε .

Step IV. By Kolmogorov-Chentsov tightness criterion (see e.g. [Kal02,
Corollary 16.9]), it follows from Step III and the equality Rn,2j (0) = 0, n > 1,

that the sequence of processes {Rn,2j }n>1 restricted to [0, T ] is tight in C[0, T ]

for every T > 0. Hence, {Rn,2j }n>1 is tight in C[0,∞).

Conclusion of the proof. As the sum of two tight sequences, the
sequence {Rnj }n>1 is tight in C[0,∞) for any j > 1. Since C[0,∞)N is
equipped with the product topology, it follows from [EK86, Proposition 3.2.4]
that the sequence {Rn}n>1 is tight in C[0,∞)N.

Lemma 4.9. For every j > 1 and t > 0, E
[
(Rnj (t))2

]
→ 0 as n→∞.

Proof. Let j > 1 and t > 0 be �xed. We recall that Rnj = Rn,1j + Rn,2j .

Remark that Rn,1j = ξnj almost surely. Thus, E
[(
Rn,1j (t)

)2
]
→ 0 follows

immediately from inequality (21).

Due to the equality Rn,2j (t) = (V n
t , hj)L2 , we can estimate for n > t

E
[(
Rn,2j (t)

)2
]
6 E

[
‖V n

t ‖
2
L2

]
=
∞∑
k=1

∞∑
l=1

(eyk, hl)
2
L2
Enk,l(t).

By (23) and (21), we have for every k, l > 1

0 6 Enk,l(t) 6
1

αnl
→ 0, n→∞.

Therefore, inequalities (24) and (25) and the dominated convergence theorem

imply that E
[
‖V n

t ‖
2
L2

]
→ 0. This concludes the proof.

Proof of Proposition 4.6. Lemma 4.8 and Prohorov's theorem yield that the
sequence {Rn}n>1 is relatively compact in C[0,∞)N0 . Moreover, by Lemma 4.9,
we deduce that each weakly convergent subsequence of {Rn}n>1 converges
in distribution to 0. It implies convergence (20), which achives the proof of
the proposition.

Proof of Theorem 3.12. By lemmas 3.5 and B.6, Y belongs almost surely to
Coal and the series

∑∞
k=1(τY

k )1−ε converges almost surely for each ε ∈ (0, 1
2).

Therefore, Proposition 4.6 and the independence of Y and {ξn}n>1 imply



27

that Ψ(Y , ξn), n > 1, converges in distribution to (Y , Ŷ ) in E. By Proposi-
tion 2.3, the same sequence converges in distribution to the conditional law
Law{ξn}(X |T(X ) = 0). Thus Law{ξn}(X |T(X ) = 0) = Law(Y , Ŷ ).

5 Finite dimensional case

Let Wk(t), t > 0, k ∈ [n], be a family of independent Brownian motions
starting at x0

k, k ∈ [n], with di�usion rates σ2
k = 1

mk
, k ∈ [n], where∑n

k=1mk = 1. Without restriction of generality, we may assume that
x0

1 < · · · < x0
n. Let g =

∑n
k=1 x

0
k1π0

k
be the initial condition given by (4).

Then

W g
t :=

n∑
k=1

Wk(t)1π0
k
, t > 0,

is a continuous process taking values in L2(g) and it can be considered as a
cylindrical Wiener process in L2(g) starting at g, taking W g

t (h) = (W g
t , h)L2 .

Let Y be a MMAF obtained as the unique solution to the equation

Yt = g +

∫ t

0
prYs dW g

s , Yt ∈ L↑2, t > 0,

which exists according to Corollary B.8. We remark that X = (Y ,W g) is

now a random element in E := C([0,∞), L↑2(g)) × C([0,∞), L2(g)), where

L↑2(g) := L↑2 ∩ L2(g). Since the space L2(g) is �nite dimensional,

ξ = T(X ) =

n−1∑
k=1

ek(W·+τk , ek)L2

is a random element in F := C([0,∞), L0
2(g)) with L0

2(g) = L0
2 ∩ L2(g),

where the stopping times τk = τY
k , k ∈ [n − 1], and the basis ek = eY

k ,
k ∈ [n − 1] ∪ {0}, of L2(g) are de�ned as in Section 3.3. By equality (18)
and Remark 3.13, we can conclude that the regular conditional probability
of X given T(X ) is de�ned as

p(A, z) = P [X ∈ A|T(X ) = z] = P [(Y , ϕ(Y , z)) ∈ A] , A ∈ B (E) , z ∈ F,

where

ϕ(Y , z) = Y +
n−1∑
k=1

ek1{·>τk}(z·−τk , ek)L2 .

Obviously, the map z 7→ p(·, z) is continuous. Thus p(·, 0) is the value of the
conditional distribution of X to the event {T(X ) = 0} along every direction.
In particular, for every A ∈ B (C([0,∞), L2(g)))

P [W g ∈ A|T(Y ,W g) = 0] = P [ϕ(Y , 0) ∈ A] = P [Y ∈ A] . (26)
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Denote Eg := {x ∈ C ([0,∞), L2(g)) : x0 = g} and

Coalex :=

{
x ∈ Eg :

∀u, v ∈ (0, 1) ∀s > 0, xs(u) = xs(v)
implies xt(u) = xt(v), ∀t > s

}
. (27)

Remark 5.1. Trivially, every function from Coalex satis�es properties (G1)�
(G4) of the de�nition of the set Coal (see De�nition 3.1). So, the only
di�erence between Coal and Coalex is that in elements of Coalex there
could appear more that one coalescence at the same time and the number of
particles does not need to be one for large time.

Lemma 5.2. There exists a map T̄ : Eg → F such that T̄(W g) = T(Y ,W g)
almost surely and T̄−1({0}) = Coalex.

Before the proof of the lemma we introduce a map S : E0 → Coalex

setting S(x) = y for the unique solution from Coalex to the deterministic
equation

yt = g +

∫ t

0
prys dxs, t > 0,

which exists, by Lemma B.7. By the construction of y it is easily seen that
the map S is measurable, where Coalex is considered as a metric space with
the induced topology of E0.

Proof of Lemma 5.2. We are going to de�ne the map T̄ as follows

T̄(x) :=
n−1∑
k=1

1{τyk<∞}e
y
k

(
x·+τyk

, eyk

)
L2

, y = S(x), x ∈ E0. (28)

However, the problem is that the stopping times τyk , k ∈ [n − 1], and the
basis eyk, k ∈ [n − 1] ∪ {0} in L2(g) were de�ned in Section 3.3 only for
y ∈ Coal. The stopping times τyk , k ∈ [n − 1], can be de�ned as in (8)
also for y ∈ Coalex. If τyk = +∞ for some k > 1, the de�nition of the
corresponding eyk does not matter since it does not appear in (28).

Let y ∈ Coalex such that there exists k ∈ [n − 2] and p ∈ [n − k − 1]
such that τyk+p+1 < τyk+p = τyk < τyk−1, where τ

y
0 = +∞ and τyn = 0. This

means that at time τyk there are p + 1 coalescence points, according to the
terminology of Lemma 3.7. Then we de�ne eyk, . . . , e

y
k+p as we would do in the

proof of Lemma 3.7, if those p+ 1 coalescences happened one after another,
in the increasing order of coalescence points. Moreover, the equality

(eyk, yt)L2 = 0, t > τyk , (29)

remains true for y ∈ Coalex.4 Hence the map T̄ is well-de�ned for every x ∈
E0. Since P [Y ∈ Coal] = 1 and S(W g) = Y , we have T̄(W g) = T(Y ,W g)
a.s. This completes the proof of the �rst part of the lemma.

4This equality holds for y ∈ Coal by Lemma 3.7.
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Next, we are going to show that T̄−1({0}) = Coalex. Let x ∈ Coalex.
Then, trivially, y = S(x) = x. Hence, if τyk < ∞, one can conclude that
(xt+τyk

, eyk)L2 = (yt+τyk
, eyk)L2 = 0 for all k ∈ [n − 1], by (29). Consequently,

T̄(x) = 0.

We next assume that T̄(x) = 0. Let y = S(x). We �x t > τyk , for some
k ∈ [n− 1] and deduce from the equality T̄(x) = 0 that (xt, e

y
l )L2 = 0 for all

l ∈ {k, . . . , n− 1}. Consequently, xt ∈ L2(yτyk
) that implies that

pry
τ
y
k

xt = xt for all t > τyk .

For k = n, the above equality follows from the fact that xt ∈ L2(g), t > 0.
Therefore, for all t > 0

yt = g +

∫ t

0
prys dxs = g +

n∑
l=1

∫ τyl−1∧t

τyl ∧t
pry

τ
y
l

dxs = xt.

This implies that x ∈ Coalex. The lemma is proved.

Corollary 5.3. Let W g and Y be de�ned as above and T̄ be given by (28).
Then for every A ∈ B(E0)

P [W g ∈ A|W g ∈ Coalex] = P
[
W g ∈ A|T̄ (W g) = 0

]
= P [Y ∈ A] .

Proof. The corollary directly follows from equality (26) and Lemma 5.2.

Proof of Theorem 1.6. Remark that there exists an isomorphism Ξm be-
tween L2(g) and the Hilbert space Rn furnished with the inner product
(a, b)m =

∑n
k=1 akbkmk, a, b ∈ Rn, de�ned as

Ξm(f) = (fk)
n
k=1,

where f =
∑n

k=1 fk1π0
k
∈ L2(g). We also determine Ξ̃m : C ([0,∞), L2(g))→

C[0,∞)n as
Ξ̃m(y)(t) = Ξm(yt), t > 0.

Set

Coalm := Ξ̃−1
m (Coalex)

=

{
x = (xk)

n
k=1 ∈ C[0,∞)n :

∀k, l ∈ [n], ∀s > 0, xk(s) = xl(s)
implies xk(t) = xl(t), ∀t > s

}
.

We de�ne for y ∈ Coalm the times τyk := τ
Ξ−1(y)
k and vectors eyk = Ξ(e

Ξ−1(y)
k ),

k > 1. Let

T̄m(x) =
((
x(·+ τyk ), eyk

)
L2

)n−1

k=1
, y = (Ξ̃ ◦ S ◦ Ξ̃−1)(x),
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be a map from C[0,∞)n to C[0,∞)n−1.

By the construction of W g, we have that X = (Wk)
n
k=1 = Ξ̃(W g). We

remark that T̄(X) is a standard Brownian motion in Rn−1, according to
Lemma 3.10 and Remark 3.13. De�ne y = (yk)nk=1 := Ξ̃(Y ). Then using the
fact that L2(g) and Rn are isomorphic Hilbert spaces and Corollary 5.3, we
can conclude that for every A ∈ B (C[0,∞)n)

P [X ∈ A|X ∈ Coalm] = P
[
X ∈ A|T̄m(X) = 0

]
= P

[
y ∈ A

]
.

This completes the proof of the theorem.

6 Coupling of MMAF and cylindrical Wiener pro-

cess

We have already seen, in Proposition 3.6 and its proof, that for every MMAF
Y starting at g there exists a cylindrical Wiener process W in L2 starting at
g such that equation (3) holds. However, it is unknown whether equation (3)
has a strong solution. At least, we know that strong well-posedness holds in
�nite dimension, see Section 5.

In Proposition 3.6, we considered a process W de�ned by (7) and we
proved that the pair (Y ,W ) satis�es (3). The reverse statement holds true,
in the following sense.

Proposition 6.1. Let Yt, t > 0, be a MMAF and Wt, t > 0 be a cylindrical

Wiener process in L2 both starting at g and such that (Y ,W ) satis�es (3).
Then there exists a cylindrical Wiener process Bt, t > 0, in L2 starting at 0
independent of (Y ,W ) such that for every h ∈ L2 almost surely

Wt(h) = (Yt, h)L2 +

∫ t

0
pr⊥Ys h · dBs, t > 0. (30)

As a direct consequence, we prove Theorem 1.5.

Proof of Theorem 1.5. By Proposition 6.1, there are cylindrical Wiener pro-
cesses B and B̃ in L2 starting at 0, independent of (Y ,W ) and of (Y , W̃ ),

respectively, such that equation (30) holds for (Y ,W , B) and for (Y , W̃ , B̃),
respectively. Thus (Y , B) and for (Y , B̃) have the same distribution, and

it follows from (30) that (Y ,W ) and for (Y , W̃ ) have the same distribution
too.

In Section 6.1, our goal is to prove Lemma 6.2 and we will show several
auxiliary statements in order to achieve this. Then we will apply Lemma 6.2
to show Proposition 6.1 in Section 6.2. Interestingly, the proofs rely on the
basis {eyk, k > 0} de�ned by Lemma 3.7.
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6.1 Some auxiliary lemmas

Recall that we denote ek := eY
k and τk := τY

k , and that for every k > 1,
the random element ek is FY

τk
-measurable. Let (FX

t )t>0 be the complete
right-continuous �ltration generated by X := (Y ,W ).

For every k > 1 we remark that W k
t := Wt+τk−Wτk , t > 0, is a cylindrical

Wiener process starting at 0 independent of FX
τk
. Moreover, if l > k, then

τl 6 τk almost surely and the random element el is FX
τl
-measurable, hence

also FX
τk
-measurable. Therefore, the process

W k
t (el) :=

∫ t

0
el · dW k

s =

∫ t+τk

τk

el · dWs, t > 0, (31)

is well-de�ned.

Lemma 6.2. The processes Y , W k(ek), k > 1, are independent.

In order to prove that lemma, we start by some auxiliary de�nitions and
results. The process

ζkt :=

∫ t

0
prYτk

dW k
s , t > 0,

is a well-de�ned continuous L2-valued (FX
t+τk

)-martingale, because prYτk
is

FX
τk
-measurable and W k

t , t > 0, is independent of FX
τk
. Let Gk be the complete

σ-algebra generated by X (t ∧ τk) = (Yt∧τk ,Wt∧τk), t > 0, and by ζkt , t > 0.

Lemma 6.3. For every k > 1 the MMAF Y is Gk-measurable as a map from

Ω to C([0,∞), L↑2).

Proof. In order to show the measurability of Y with respect to Gk, it is
enough to show the measurability of Yτk+t, t > 0.

By Corollary B.8, we know that for every g ∈ St and cylindrical Wiener
process W , there exists a unique continuous L↑2-valued process Y such that
almost surely

Yt = g +

∫ t

0
prYs dW g

s , t > 0,

where W g
t =

∫ t
0 prg dWs, t > 0.

Let us consider the equation

Zt = Yτk +

∫ t

0
prZs dζks , t > 0, (32)

where ζkt =
∫ t

0 prYτk
dW k

s . We note that Yτk belongs to St almost surely and

is independent of W k. Furthermore, the process Yτk+t, t > 0, is a strong
solution to (32). Therefore, it is uniquely determined by ζk and Yτk , thus it
is Gk-measurable.
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Lemma 6.4. Let y ∈ Coal and k > 1. Then the processes

W k
t (eyl ) =

∫ t

0
eyl · dW k

s , t > 0, l > k

are independent standard Brownian motions that do not depend on

ζy,kt :=

∫ t

0
pry

τ
y
k

dW k
s , t > 0.

Proof. By Lemma 3.7, the family {eyl , l > 0} is orthonormal. Consequently,
W k(eyl ), l > 0, are independent Brownian motions. Moreover, again by

Lemma 3.7, ζy,kt =
∑k−1

j=0 e
k
jW k

t (eyj ), t > 0, thus it is independent to W k(eyl ),
l > k.

Lemma 6.5. For every k > 1 the processes W k(el), l > k, are independent

Brownian motions and do not depend on Gk. Furthermore, for each l > k,
W l
·∧τk,l(el) is Gk-measurable, where τk,l := τk − τl.

Proof. Let n > k and m > 1 be �xed. Let hj , j > 0, be an arbitrary
orthonormal basis of L2. We consider bounded measurable functions

G0 : C([0,∞), L↑2)× C[0,∞)m → R

G1 : C([0,∞), L2)→ R

Fl : C[0,∞)→ R, l = k, . . . , n.

We then use the independence of W k from FX
τk
.

E := E

[
G0

(
Y·∧τk , (W·∧τk(hj))

m
j=1

)
G1(ζk)

n∏
l=k

Fl

(
W k(el)

)]

= E

[
G0

(
Y·∧τk , (W·∧τk(hj))

m
j=1

)
E

[
G1(ζk)

n∏
l=k

Fl

(
W k(el)

) ∣∣∣∣∣FX
τk

]]

= E

G0

(
Y·∧τk , (W·∧τk(hj))

m
j=1

)
E

[
G1(ζy,k)

n∏
l=k

Fl

(
W k(eyl )

)] ∣∣∣∣∣
y=Y·∧τk

 .
Then we apply Lemma 6.4 and we denote by wl, l = k, . . . , n, a family of
standard independent Brownian motions that do not depend on Y and W .

E = E
[
G0

(
Y·∧τk , (W·∧τk(hj))

m
j=1

)
G1(ζk)

] n∏
l=k

E [Fl (wl)] ,

which achieves the proof of the �rst part of the statement.
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Furthermore, for every l > k, we remark that el and τl are Gk-measurable
because they are FY

τl
-measurable and FY

τl
⊆ FY

τk
⊆ Gk. Then the process

W l
t∧τk,l = W(t∧τk,l)+τl − Wτl , t > 0, is Gk-measurable, and consequently,

W l
·∧τk,l(el) is also Gk-measurable. This �nishes the proof of the second part

of the lemma.

Next, we de�ne the gluing map Gl : C0[0,∞)2 × [0,∞) → C0[0,∞) as
follows

Gl(x1, x2, r)(t) = x1(t ∧ r) + x2

(
(t− r)+

)
, t > 0, (33)

where a+ := a ∨ 0. It is easily seen that the map Gl is continuous and
therefore measurable.

Since almost surely, W k
t (el) = W l

t+τk−τl(el)−W l
τk−τl(el), t > 0, for every

l > k > 1, a simple computation shows that for every l > k > 1 almost
surely

W l(el) = Gl
(

W l
·∧τk,l(el),W k(el), τk,l

)
, (34)

where τk,l := τk − τl.

Proof of Lemma 6.2. In order to prove this lemma, it is enough to show that
for each k > 1, W k(ek) is independent of Y , W l(el), l > k.

Let us denote by Hk be the complete σ-algebra generated by Gk and
W k(el), l > k. By Lemma 6.5, the process W k(ek) is independent of Hk.

Moreover for every l > k, using Lemma 6.3, Y and τk,l are Gk-measurable,
hence they are Hk-measurable. By Lemma 6.5 and by the de�nition of Hk,
we also see that W l

·∧τk,l(el) and W k(el) areHk-measurable. By (34), it follows

that W l(el) is Hk-measurable for every l > k. Therefore Y , W l(el), l > k,
are independent of W k(ek).

6.2 Proof of Proposition 6.1

Let βk, k > 0, be independent standard Brownian motions, independent of
X = (Y ,W ). Recall that pr⊥Yt ek = 1{t>τk}ek, t > 0, is a right-continuous
(FX

t )-adapted process in L2. Thus we can de�ne for every k > 0

Bk(t) := βk(t ∧ τk) +

∫ t

0
1{s>τk}ek · dWs, t > 0. (35)

Since τ0 = +∞, we have in particular B0(t) = β0(t), t > 0.

Lemma 6.6. The processes Bk, k > 0, de�ned by (35), are independent

standard Brownian motions.
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Proof. W is an (FX
t )-cylindrical Wiener process. Since βk, k > 0, are in-

dependent of X , the �ltration (FX
t ) can be extended to the complete right-

continuous �ltration (FX ,β
t )t>0 generated by X and βk, k > 0. Hence, W is an

(FX ,β
t )-cylindrical Wiener process and βk, k > 0, are independent standard

(FX ,β
t )-Brownian motions. Since the L2-valued right-continuous processes

1{t>τk}ek, t > 0, are (FX ,β
t )-adapted, they are (FX ,β

t )-progressively measur-

able, and hence, the processes Bk(t), t > 0, k > 0, are (FX ,β
t )-continuous

martingales. Moreover, the quadratic variations satisfy 〈Bk, Bl〉t = 1{k=l}t
for every k, l > 0 and t > 0. By Lévy's characterization of Brownian mo-
tion [IW89, Theorem II.6.1], Bk, k > 0, are independent (FX ,β

t )-Brownian
motions.

We will now use the result of Lemma 6.2 to prove the following lemma.

Lemma 6.7. The processes Y , Bk, k > 0, are independent.

Proof. Since B0 = β0 is independent of Y by de�nition and of Bk, k > 1,
by Lemma 6.6, it is enough to prove that the processes Y , Bk, k ∈ [n], are
independent, for any given n.

Putting together (31), (33) and (35), we have

Bk = Gl
(
βk,W k(ek), τk

)
, k ∈ [n].

Since βk, k ∈ [n], is independent of (Y ,W ) and using Lemma 6.2, we de-
duce that the processes Y , βk, W k(ek), k ∈ [n], are independent. More-
over, τk, k ∈ [n], are measurable with respect to FY := σ(Y ). Let G0 :

C([0,∞), L↑2) → R, Fk : C[0,∞) → R, k ∈ [n], be bounded measurable
functions. We have

E

[
G0 (Y )

n∏
k=1

Fk (Bk)

]
= E

[
G0 (Y )E

[
n∏
k=1

Fk

(
Gl
(
βk,W k(ek), τk

)) ∣∣∣∣FY

]]

= E

[
G0 (Y )E

[
n∏
k=1

Fk

(
Gl
(
βk,W k(ek), τ

y
k

))] ∣∣∣∣
y=Y

]
.

Note that if w1 and w2 are independent standard Brownian motions and
r > 0, then the process Gl(w1, w2, r) is a standard Brownian motion. It
follows that for any �xed y ∈ Coal, Gl

(
βk,W k(ek), τ

y
k

)
, k ∈ [n], is a family

of independent standard Brownian motions. Thus for every y ∈ Coal,

E

[
n∏
k=1

Fk

(
Gl
(
βk,W k(ek), τ

y
k

))]
=

n∏
k=1

E [Fk (wk)] ,
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where wk, k ∈ [n], denotes an arbitrary family of independent standard
Brownian motions. Therefore,

E

[
G0 (Y )

n∏
k=1

Fk (Bk)

]
= E [G0 (Y )]

n∏
k=1

E [Fk (wk)] ,

which achieves the proof of the lemma because Bk, k ∈ [n], are independent
standard Brownian motions by Lemma 6.6.

Now, we �nish the proof of Proposition 6.1.

Proof of Proposition 6.1. De�ne

Bt(h) :=
∞∑
k=0

(h, ek)L2Bk(t), h ∈ L2.

Since Bk, k > 0, are independent Brownian motions that do not depend on
Y and hence on ek, k > 1, one can show similarly to the proof of Lemma 3.10
that the series converges in C[0,∞) almost surely for every h ∈ L2, and Bt,
t > 0, is a cylindrical Wiener process in L2 starting at 0.

Moreover, B is independent of Y . Indeed, for any n > 1, for any
h1, . . . , hn in L2, for any bounded and measurable functions F : C[0,∞)n →
R and G : C([0,∞), L↑2)→ R,

E [F (B(h1), . . . , B(hn))G (Y )] = E
[
E
[
F (B(h1), . . . , B(hn))

∣∣FY ]G (Y )
]

= E [E [F (w1, . . . , wn)]G (Y )]

= E [F (B(h1), . . . , B(hn))]E [G (Y )] ,

where wk, k ∈ [n], denotes an arbitrary family of independent standard
Brownian motions.

Moreover, since pr⊥Yt ek = 1{t>τk}ek, we easily check that∫ t

0
pr⊥Ys h · dBs =

∫ t

0
pr⊥Ys h · dWs =

∫ t

0
h · dWs −

∫ t

0
prYs h · dWs

= Wt(h)− (g, h)L2 − (Yt − g, h)L2

for all t > 0, which implies equality (30).

A Appendix: Regular conditional probability

A.1 De�nition

Let E be a Polish space and F be a metric space. We consider random
elements X and ξ in E and F, respectively, de�ned on the same probability
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space (Ω,F ,P). Let also B(E) (resp. B(F)) denote the Borel σ-algebra on
E (resp. F) and P(E) be the space of probability measures on (E,B(E))
endowed with the topology of weak convergence.

De�nition A.1. A function p : B(E) × F → [0, 1] is a regular conditional

probability of X given ξ if

(R1) for every z ∈ F, p(·, z) ∈ P(E);

(R2) for every A ∈ B(E), z 7→ p(A, z) is measurable;

(R3) for every A ∈ B(E) and B ∈ B(F),

P [X ∈ A, ξ ∈ B] =

∫
B
p(A, z) Pξ(dz),

where Pξ := P ◦ ξ−1 denotes the law of ξ.

Recall the following existence and uniqueness result (see e.g. [Kal02, The-
orem 6.3]):

Proposition A.2. There exists a regular conditional probability of X given ξ.
Moreover, it is unique in the following sense: if p and p′ are regular condi-

tional probabilities of X given ξ, then

Pξ
[
z ∈ F : p(·, z) = p′(·, z)

]
= 1.

A.2 Proof of Lemma 2.1

We �rst recall that the su�ciency of Lemma 2.1 immediately follows from
the continuous mapping theorem.

We next prove the necessity. We �rst choose a family {fk, k > 1} ⊂
Cb(E) which strongly separate points in E. One can show that such a family
exists since E is separable (see also [BK10, Lemma 2]). By [EK86, Theo-
rem 4.5] (or [BK10, Theorem 6] for weaker assumptions on the space E),
any sequence {µn}n>1 of probability measures on E converges weakly to a
probability measure µ if and only if∫

E
fk(x)µn(dx)→

∫
E
fk(x)µ(dx), n→∞,

for all k > 1.

We de�ne the following sets

Ak,+m =

{
z ∈ F :

∫
E
fk(x)p(dx, z)−

∫
E
fk(x)ν(dx) >

1

m

}
,

Ak,−m =

{
z ∈ F :

∫
E
fk(x)ν(dx)−

∫
E
fk(x)p(dx, z) >

1

m

}
for all k > 1 and m > 1. Let also Akm = Ak,+m ∪Ak,−m .
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Lemma A.3. If for every k > 1 and m > 1 there exists δkm > 0 such that

PT(X)
[
Akm ∩Bk

m

]
= 0, (36)

where Bk
m is the ball in F with center z0 and radius δkm, then p has a version

continuous at z0. Moreover, it can be taken as

p′(·, z) =

{
p(·, z), if z 6∈

⋃∞
k,m=1

(
Akm ∩Bk

m

)
,

ν, otherwise.

Proof. We �rst remark that according to (36), p′ = p PT(X)-a.e. Next, let
zn → z0 in F as n → ∞. Without loss of generality, we may assume that
zn 6∈

⋃∞
k,m=1

(
Akm ∩Bk

m

)
for all n > 1. Let m > 1 and k > 1 be �xed. Then

there exists a number N such that zn ∈ Bk
m for all n > N . Consequently,

zn 6∈ Akm, ∀n > N , that yields∣∣∣∣∫
E
fk(x)p(dx, zn)−

∫
E
fk(x)ν(dx)

∣∣∣∣ < 1

m

for all n > N . This �nishes the proof of the lemma.

We come back to the proof of Lemma 2.1. Let us assume that p has no
version continuous at z0. Then, according to Lemma A.3, there exists k > 1
and m > 1 such that for every δ > 0

PT(X)
[
Akm ∩Bδ

]
> 0,

where Bδ denotes the ball with center z0 and radius δ. Without loss of

generality, we may assume that PT(X)
[
Ak,+m ∩Bδ

]
> 0 for every δ > 0. For

every n > 1, let ξn be a random element in F with distribution

Pξ
n
[A] =

∫
F
qn(z)PT(X)[dz], A ∈ B(F),

where

qn(z) =
1

PT(X)
[
Ak,+m ∩B 1

n

]1
Ak,+m ∩B 1

n

(z), z ∈ F.

By the construction, Pξn � PT(X), n > 1. Moreover, it is easy to see that
ξn → z0 in distribution as n→∞. But

E
[∫

E
fk(x)p(dx, ξn)

]
6→
∫
E
fk(x)ν(dx), n→∞.

Indeed, for every n > 1 the random element ξn takes values almost surely in
Ak,+m , which implies that

E
[∫

E
fk(x)p(dx, ξn)

]
−
∫
E
fk(x)ν(dx) >

1

m
, n > 1.



A.3 One example: Brownian bridge 38

We have obtained the contradiction with assumption (1). This �nishes the
proof of Lemma 2.1.

A.3 One example: Brownian bridge

Let X = {Wt, t ∈ [0, 1]} be a standard Brownian motion, seen as a random
element in E = {x ∈ C[0, 1] : x(0) = 0}. Let F = R and T : E → F be
de�ned by T(x) = x(1). What is the conditional distribution of X to the
event {T(X) = z0}?

We construct a quadruple (G,Ψ, Y, Z) satisfying (P1)-(P4). Set G =
{x ∈ E : x(1) = 0}. The process Y = {Yt, t ∈ [0, 1]} de�ned by Yt :=
Wt − tW1 and the random variable Z := W1 are independent. Moreover, let
Ψ(y, z)(t) = y(t) + tz, t ∈ [0, 1]. It is easily seen that properties (P3) and
(P4) are satis�ed.

Moreover, the map z 7→ Ψ(y, z) is continuous for any �xed y ∈ G.
Therefore, z 7→ p(·, z) is a continuous map from F to P(E). By Lemma 2.1
and Proposition 2.3, we conclude that the law of Ψ(Y, z0) is the conditional
law of the Brownian motion {Wt, t ∈ [0, 1]} to the event {W1 = z0}, along
any sequences {ξn} satisfying (B1) and (B2). This measure is known as the
law of the Brownian bridge from 0 to z0.

B Some properties of MMAF

B.1 Measurability of coalescing set

We recall that the set D((0, 1), C[0,∞)) denotes the space of càdlàg functions
from (0, 1) to C[0,∞) equipped with the Skorokhod distance, which makes
it a Polish space. Set

D↑ := {y ∈ D((0, 1), C[0,∞)) : ∀0 < u < v < 1, yt(u) 6 yt(v) ∀t > 0} .

It is easily seen that D↑ a closed subspace of D((0, 1), C[0,∞)). So, we will
consider D↑ as a Polish subspace of D((0, 1), C[0,∞)). Let

D↑2 : =

{
y ∈ D↑ : ∀T ∈ N, ∃K ∈ N, ∃δ ∈ Q+, max

t∈[ 1
T
,T ]
‖yt‖L2+δ

6 K

}
∩
{
y ∈ D↑ : ‖yt − y0‖L2 → 0, t→ 0

}
=: D1 ∩D2.

Lemma B.1. For every A ∈ B(D↑) the set A ∩ D↑2 is a Borel measurable

subset of CL↑2 := C([0,∞), L↑2).
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Proof. First we are going to show that D↑2 is a subset of CL↑2. So, we take

y ∈ D↑2 and check that y is a continuous L2-valued function. The continuity

of y at 0 follows from the de�nition of D↑2. Let t > 0 and tn → t as n→∞.
Without loss of generality, we may assume that tn ∈ [ 1

T , T ] for some T ∈ N
and all n > 1. We are going to show that ytn → yt in L2, n → ∞. Let us
note that the sequence {ytn}n>1 is relatively compact, according to [Kon17a,

Lemma 5.1] and the fact that ytn ∈ L↑2, n > 1, are uniformly bounded
in L2+δ-norm. This implies that there exists a subsequence N ⊆ N and
f ∈ L↑2 such that ytn → f in L2 along N . On the other hand, ytn →
yt pointwise, that implies the equality f = yt. Moreover, it yields that
every convergent subsequence of {ytn}n>1 converges to yt in L2. Using the
relatively compactness of {ytn}n>1, we can conclude that ytn → yt in L2 as

n→∞. Thus, y ∈ CL↑2.

Next, we will check that the set D↑2 is measurable in D↑. We �x t > 0 and
make the following observation. For every y ∈ D↑ the real-valued function
yt is non-decreasing on (0, 1). This implies that it has at most countable
number of discontinuous points. Hence, by [EK86, Proposition 3.5.3], the
convergence yn → y in D↑ implies the convergence of ynt → yt a.e. (with
respect to the Lebesgue measure on [0, 1]). Using Fatou's lemma, we get
that the set

Λ(t, f,K, p) :=
{
y ∈ D↑ : ‖yt − f‖Lp 6 K

}
is closed in D↑ (37)

for every K > 0, p > 2 and f ∈ Lp. Hence the set

D1 =

∞⋂
T=1

∞⋃
K=1

⋃
δ∈Q+

⋂
t∈[ 1

T
,T ]

Λ(t, 0,K, 2 + δ)

is Borel measurable in D↑. Using the standard argument and (37), one can

check the measurability of D2. So, the set D↑2 = D1∩D2 is Borel measurable
in D↑.

We claim that the identity map Φ : D↑2 → CL
↑
2 is Borel measurable.

Indeed, let

BT
r (y) :=

{
x ∈ CL↑2 : max

t∈[0,T ]
‖xt − yt‖L2 6 r

}
.

Then the preimage

Φ−1
(
BT
r (y)

)
=

⋂
t∈[0,T ]

Λ(t, yt, r, 2)

is a closed set in D↑, by (37). Since the Borel σ-algebra on CL↑2 is generated

by the family
{
BT
r (y), T, r > 0, y ∈ CL↑2

}
, Φ is a Borel measurable func-

tion. Moreover, it is an injective map. So, using the Kuratowski theorem
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(see [Par67, Theorem 3.9]) and the fact that A ∩ D↑2 ∈ B(D↑), we obtain

that the image Φ(A ∩D↑2) = A ∩D↑2 ∈ B(CL↑2) for every A ∈ B(D↑).

Lemma B.2. Let Coal be de�ned in Section 3.1. Then Coal is a Borel

measurable subset of CL↑2.

Proof. Let CoalD consists of all functions from D↑ which satis�es conditions
(G2)-(G5) of the de�nition of Coal in Section 3.1. Since every function
f ∈ St has a �nite Lp-norm for every p > 2, it is easily seen that

CoalD ∩D↑2 = Coal.

Hence, according to Lemma B.1, the statement of the lemma will imme-
diately follow from the measurability of CoalD in D↑. However, this fol-
lows from the fact that the set CoalD can be determined via values of
y(u) ∈ C[0,∞) for u from a countable set U . We leave a detailed proof
for the reader.

B.2 Properties of MMAF

Let {Y (u, t), u ∈ (0, 1), t ∈ [0,∞)} be a MMAF starting at g ∈ L↑2+, and
Yt = Y (·, t), t > 0.

Lemma B.3. If ‖g‖L2+ε < ∞ for some ε > 0, then for every T > 0 and

δ ∈
(

0, ε
2+ε

)
there exists CT,δ such that

E

[
sup
t∈[0,T ]

‖Yt − g‖2+δ
L2+δ

]
6 CT,δ

(
1 + ‖g‖L2+ε

)
.

Proof. In order to check the estimate, one needs to repeat the proof of
[Kon17a, Proposition 4.4] replacing the summation with the integration.

Recall that for every f ∈ St, N(f) denotes the number of steps of f . We
write N(f) = ∞ for each non-decreasing càdlàg function f which does not

belong to St. For any y ∈ C([0,∞), L↑2), de�ne

τyk = inf{t > 0 : N(yt) 6 k}, k > 0.

The following lemma states that a MMAF satis�es almost surely Prop-
erty (G5) of De�nition 3.1.

Lemma B.4. Let Yt, t > 0, be a MMAF starting at g. Then

P
[
∀k < N(g), τY

k+1 < τY
k

]
= 1 and P

[
τY

1 < +∞
]

= 1. (38)
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Proof. The proof of the statement follows from the fact that with probability
one, three or more independent Brownian motions cannot meet at the same
time, and from mathematical induction.

Lemma B.5. For every y ∈ Coal, β > 0 and n > 1 one has

∞∑
k=n

(
τyk
)β

= β

∫ τyn

0
(N(yt)− n)tβ−1dt.

Proof. For simplicity of notation we will omit the superscript y in τyk . We
write for m > n

m∑
k=n

τβk =

m∑
k=n+1

(k − n)
(
τβk−1 − τ

β
k

)
+ (m+ 1− n)τβm

=

m∑
k=n+1

(N(yτk)− n)
(
τβk−1 − τ

β
k

)
+ (N(yτm+1)− n)τβm

=

∫ τn

0

(
N(yt∨τm+1)− n

)
dtβ = β

∫ τn

0

(
N(yt∨τm+1)− n

)
tβ−1dt,

Hence, the statement of the lemma follows from the monotone convergence
theorem.

Lemma B.6. Let Y be a MMAF starting at g ∈ L↑2+. Then for every β > 1
2 ,∑∞

k=1(τY
k )β < +∞ almost surely.

Proof. Let g ∈ L2+ε for some ε > 0. In order to prove the lemma, we will
use the estimate

E [N(Yt)] 6
Cε,T√
t

(
1 + ‖g‖L2+ε

)
, t ∈ (0, T ],

from [Kon17a, Remark 4.6], where Cε,T is a constant depending on ε and
T > 0. Take an arbitrary number T > 0 and estimate for β > 1

2

E

[∫ τY
1 ∧T

0
N(Yt)tβ−1dt

]
6
∫ T

0
E [N(Yt)] tβ−1dt

6 Cε,T
(
1 + ‖g‖L2+ε

) ∫ T

0
tβ−

3
2 dt < +∞.

Thus
∫ τY

1 ∧T
0 N(Yt)tβ−1dt < ∞ almost surely, for all T > 0. Since τY

1 <

∞ almost surely by (38),
∫ τY

1
0 N(Yt)tβ−1dt < ∞ almost surely. Thus, the

statement of the lemma follows directly from Lemma B.5.
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B.3 Uniqueness of solutions to deterministic equation

Let g ∈ St be �xed and N(g) = n. For functions x ∈ C ([0,∞), L2(g)) and
y ∈ Coalex, de�ned by (27), we introduce the integral∫ t

0
prys dxs =

n∑
k=1

(
pry

τ
y
k
∧t
xτyk−1∧t

− pry
τ
y
k
∧t
xτyk∧t

)
. (39)

Lemma B.7. For every x ∈ C ([0,∞), L2(g)), there exists a unique y ∈
Coalex such that

yt = g +

∫ t

0
prys dxs, t > 0. (40)

Proof. Without loss of generality, we assume that x0 = g. The function
y ∈ Coalex can be constructed step by step. First take σ0 = 0 and ỹ0

t = g,
t > 0. Then set

ỹkt := ỹk−1
σk−1

+ prỹk−1
σk−1

xt − prỹk−1
σk−1

xσk−1
, t > σk−1,

and
σk := inf

{
t > σk−1 : dimL2(ỹkt ) < dimL2(ỹk−1

σk−1
)
}

for all k ∈ [n−1]. Remark that dimL2(ỹkσk) ∈ [n−k] for each 0 6 k 6 n−1.
We set σn = +∞. The function y can be de�ned as

yt = ỹkt for t ∈ [σk−1, σk), k ∈ [n].

By construction, y belongs to Coalex, satis�es (40) and is uniquely deter-
mined.

Corollary B.8. Let W be a cylindrical Wiener process in L2(g) starting at
g. Then there exists a unique (FWt )-adapted process Yt, t > 0, such that

Yt = g +

∫ t

0
prYs dWs, Yt ∈ L↑2, t > 0,

where (FWt )t>0 is the �ltration generated by W .

Proof. The statement of the lemma directly follows from Lemma B.7 and
the fact that L↑2-valued continuous martingales starting from g belongs to
Coal almost surely (see [Kon17a, Proposition 2.2]).
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B.4 On map ϕ

In Remark 4.2, we announced the following result.

Lemma B.9. For every y ∈ Coal and z = (zk)k>1 ∈ C0[0,∞)N de�ne

similarly to (15)

ϕt(y, z) = yt +

∞∑
k=1

eyk1{t>τyk}zk(t− τ
y
k ), t > 0,

if the series converges in C([0,∞), L2). Then for each y ∈ Coal, ϕ(y, z)
belongs to Coal if and only if z = 0.

Proof. It is obvious that ϕ(y, 0) = y ∈ Coal.

We assume now that ϕ(y, z) belongs to Coal and prove that z = 0. Set

γ(y, z) =

∞∑
k=1

eyk1{t>τyk}zk(t− τ
y
k ), t > 0,

and show that γ(y, z) = 0. This will immediately imply z = 0.

Step I. Let k > 1 be �xed. By (9), there exist a < b < c such that

eyk =
1√
c− a

(√
c− b
b− a

1[a,b) −
√
b− a
c− b

1[b,c)

)
.

The goal of this step is to show that ϕτyk
(y, z)(u) = yτyk

(u) for every u ∈ [a, c),

in other words, that γτyk
(y, z) is equal to zero on the interval [a, c).

By the construction of τyk and eyk, yτyk
is constant on the interval [a, c).

Furthermore, since ϕ(y, z) ∈ Coal, ϕτyk
(y, z) belongs to L↑2. Hence, we can

deduce that γτyk
(y, z) = ϕτyk

(y, z) − yτyk (y, z) is non-decreasing on [a, c), as
a di�erence of a non-decreasing function and a constant function. Further-
more,

γτyk
(y, z) =

∞∑
l=k

eyl zl(τ
y
k − τ

y
l ) =

∞∑
l=k+1

eyl zl(τ
y
k − τ

y
l ),

since zk(0) = 0. Hence, γτyk
(y, z) belongs to span

{
eyl , l > k + 1

}
, whereas

1[a,b) and 1[a,c) both belong to span
{
eyl , l 6 k

}
. Indeed, 1[a,c) ∈ L2(yτyk

) =

span
{
eyl , l < k

}
, by Lemma 3.7, and 1[a,b) ∈ span

{
1[a,c), e

y
k

}
. Recall that

{eyl , l > 0} is an orthonormal basis of L2. Thus,(
γτyk

(y, z),1[a,b)

)
L2

=
(
γτyk

(y, z),1[a,c)

)
L2

= 0.
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So, we can deduce that u 7→ (γτyk
(y, z),1[a,u))L2 is a convex function on [a, c]

which vanishes at a, b and c. Thus, it is zero everywhere on [a, c]. In particu-
lar, γτyk

(y, z)(u) = 0 for every u ∈ (a, c). Consequently, ϕτyk
(y, z)(u) = yτyk

(u)

for every u ∈ (a, c). The equality also holds for u = a, by the right-continuity
of ϕτyk

(y, z) and yτyk
.

Step II. Now let t > 0 be �xed. By Property (G3) of the de�nition of
Coal in Section 3.1, yt belongs to St, and thus,

yt(u) =

n∑
j=1

yj1[aj ,cj)(u),

for pairwise distinct yj , j ∈ [n]. Fix j ∈ [n]. By coalescence Property (G4),
there exists k > 1 such that u 7→ ys(u) is constant on [aj , cj) for every s > τyk
and non-constant on [aj , cj) for every s < τyk . By Step I, yτyk

= ϕτyk
(y, z)

on [aj , cj). Thus, ϕτyk
(y, z) is constant on [aj , cj). By Property (G4) again,

now applied to ϕ(y, z), ϕt(y, z) is constant on [aj , cj) due to t > τyk . As
the di�erence of two constant functions, γt(y, z) is also constant on [aj , cj).
Moreover, by the construction of γ and Lemma 3.7, γt(y, z) is orthogonal
to L2(yt). Hence γt(y, z) is also orthogonal to 1[aj ,cj). Therefore, we can
conclude that γt(y, z) = 0 on [aj , cj). Since j ∈ [n] and t > 0 were arbitrary,
we deduce that γt(y, z) = 0 on [0, 1) for every t > 0. This �nishes the proof
of the lemma.
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