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Coalescing diffusion particles with masses

WA
%ﬂ %AN%NWW /’“me\ Ww’

E;/“ V’V"w‘*
Lyt
!
T,

'\/MW \W - ”’“ﬁ’“ A M N s
WKWM/'MM W A«/J iWW ,/'W““/h
w”'" ”'Mw\ . WM " M\w

m A M'\NW"\" i
m WWM oo m\\w M ]

System of diffusion particles on the real line that

start from all points of [0, 1];

move independently up to the moment of the meeting;
coalesce;

have mass and diffusion is inversely proportional to mass;

00000

masses add after sticking.




Arratia flow

System of diffusion particles on the real line that
@ start from all points of [0, 1];
@ move independently up to the moment of the meeting;
© coalesce;

Q diffusion is equal to 1;




Existence of Arratia flow

Let Py, .. ., is a distribution of a set of coalescing Brownian particles which start

from uq, ..., uy.
Py, ..., w; €10,1], is a compatible family.
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There exists a random process x(u, ), u € [0,1], with values in C[0,T].
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Existence of Arratia flow

Let Py, .. ., is a distribution of a set of coalescing Brownian particles which start
from uq, ..., uy.
Py, ..., w; €10,1], is a compatible family.
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There exists a random process x(u, ), u € [0,1], with values in C[0,T].
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Modification in Skorochod space D([0, 1], C[0,77])

D([0,1],C[0,T1]) is a space of right continuous functions from [0,1] to C[0, T
with left limits.

The process x(u,-), u € [0,1], has a modification from D([0, 1], C[0,T7).
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Finite system of particles with masses

Let 27 (t), t € [0,T], k =1,...,n, be a system of particles starting from %

)
k=1,...,n, with masses 1.
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Construction of finite system

Let wy(t), t €[0,7], k=1,...,n, be a set of Wiener processes starting from £,

k=1,...,n, with the diffusions %
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Properties of finite system

The processes z(t), t >0, k =1,...,n satisfy the following conditions
1°) 27 (-) is a continuous square integrable martingale with respect to the

filtration
L =o0(x}(s), s<t, i=1,...,n);
2° mﬁOz%,kzl, N
3°) xR (t) < axp(t), k<, t€[0,T]

t)=2#{i: Is <t al(s) =ap(s)h
5°) ek ()27 (1)) =0, <7y,
where 73, ; = inf{¢t : z}(t) = 2] (¢t)}.
Conditions 1°)-5°) uniquely determine the distribution on (C[0,T])".
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One property of finite system

There exists constant C', which doesn't depend on n, such that for all & and
€(0,T]

1 <£
mi(t) ~ Vit

The proof of lemma follows from inequalities

P{mg(t) > r} = ]P’{mﬁ(t) < %,x?(t) —xp(t) > O} <

<r{ (7o) > of = e <7} < 7o

and equality
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One property of finite system

Corollary 4
There exists constant C, which doesn't depend on n, such that for all £k and

te[0,T]

E(zP(-))s = IE/ mgl(s) ds < CVt.
0

This corollary implies that
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Finite system as random element in D(]0, 1], C[0,T7)

Denote

We will interpret {y,(u,-), u € [0,1]} as a random process with values in C[0,T].

Y, is @ random element in D([0,1], C[0,T7).

For all e > 0 and w the sequence {y,(u,t), t € [e,T]}n>1 is tight in Cle, T7.

Foralln e N, u €[0,2], h € [0,u] and A >0

P{llyn (w + Ry ) = yn(u, )| > A {lyn () = yn(u =

Here y, (u,-) = yn(1,-), u € [1,2].
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Tightness in D([0,1],C(0,T7).

For all € > 0 {yn(u,t), u € [0,1], t € [¢,T]} is tight in D([0,1],C[e, T])

See Theorem 3.8.6, Theorem 3.8.8 and Corollary 3.8.9.
Ethier S. N. and Kurtz T. G. Markov processes: Characterization and convergence
(1996), Wiley, New York.
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Tightness in D([0,1],C(0,T7).

For all € > 0 {yn(u,t), u € [0,1], t € [¢,T]} is tight in D([0,1],C[e, T])

See Theorem 3.8.6, Theorem 3.8.8 and Corollary 3.8.9.
Ethier S. N. and Kurtz T. G. Markov processes: Characterization and convergence
(1996), Wiley, New York.

Corollary 8
{yn(u,t), uwe[0,1], ¢t € (0,77} is tight in D([0, 1], C(0,T7).
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Tightness in D([0,1],C(0,T7).

For all € > 0 {yn(u,t), u € [0,1], t € [¢,T]} is tight in D([0,1],C[e, T])

See Theorem 3.8.6, Theorem 3.8.8 and Corollary 3.8.9.
Ethier S. N. and Kurtz T. G. Markov processes: Characterization and convergence
(1996), Wiley, New York.

Corollary 8
{yn(u,t), uwe[0,1], ¢t € (0,77} is tight in D([0, 1], C(0,T7).

There exists a subsequence {n'} such that
{yn'(u,t), w € [0,1], t € (0, 7]} — {y(u,t), we [0,1], ¢t € (0,T]} in distribution.

So, {y(u,t), w e [0,1], t € (0,T]} is a random element in D([0, 1], C(0,T1).
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Prolongation on space D([0, 1], C[0,T])

Next, we will be interested what properties the process y satisfy, especially
y(,t) =7, t—0.

If particles coalesce very soon then we may have the following.

All particles have coalesced for all ¢t > 0

m’— |

y(u,-)
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Prolongation on space D([0, 1], C[0,T])

Lemma 9
Let ¢ be a twice continuously differentiable function that are bounded together
with its derivatives and let

€a(t) = / oyn(u,t))du, t € [0,T)

Then the sequences {¢,(t), t € [0,T]} is tight in C[0,T].

Proof. Let us use Aldous’ tightness criterion.
Take € > 0, a set of stoping times {0}, }»>1 on [0,T] and sequence d,, \, 0.

n

nlon +) — Eulom) = = S lplel (om +1)) — plaf (om))] =

k=1

Estimate E|A(t)| and E|M(t)]

t t

R 1 « P(xp(on +3)) 1

— n + 8))dai(on — ds = M(t) + ZA(t

n;/apxka + 8))dx} (oy + 5) QnX‘Z/ (0w T 5) ()—f—2 (t)
0 0
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Prolongation on space D([0, 1], C[0,T]). Proof of Lemma 9

Define the number of different points z} (o, +t), k =1,...,n by x»(¢). So,

t n
EJA()] < |3IE / xn(5)ds < 16 S B (),
k=1

where ~J(t) =t,
e () = inf{s : af(on +5) = wf_1(on + )} AL, k=2,....m,

are times of free runs of particles z™ on [0y, 0, + t].
Consider

Evi (1) = EE(; (4)1F7,) = EBan(o,) Tk (1)) < E(Bon(o,) 75 (1))

Here 4™ (t) and 5™(t) are times of free runs on [0, t] of particles with mass and of
coalescing Brownian particles respectively. So,

E[A®)] < 121 EEan (o) Tk (1) < CE(a7y(00) — af(00))VE < CVE.
k=1
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Prolongation on space D([0, 1], C[0,T]). Proof of Lemma 9

Similarly

S|

(E|M(1)])? < EM2(t) ( Z/Wk (o0 +59)) dazk(an—i—s)) <
k=1

3\*—‘

SE / (e} (0 + ))ds < [|2]lt
0

k=1
Using the previous estimations and Chebyshev's inequality we obtain

i P{l€n (0 +6n) = €nlom)| > e} =0,
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Prolongation on space D([0, 1], C[0,T])

Proposition 10

Let ¢ be a twice continuously differentiable function that are bounded together
with its derivatives. Then

1 1
/go(y(u, t))du — /cp(u)du in probability, as ¢ — 0.
0 0

Proof. Take a subsequence {n'} such that

/go(yn/(u,'))du 4 ¢() in [0, 7).
0

1
Since the map F,, : D([0,1],R) = R F,(g) = [ ¢(g(u))du is continuous,
0
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Prolongation on space D([0, 1], C[0,T])

Yn(u,-) = y(u,-) in C0,T] ?
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Prolongation on space D([0, 1], C[0,T])

Yn(u,-) = y(u,-) in C0,T] ?

Lemma 11

For all u € [0,1]
P{y(u,-) # y(u—,-)} = 0.

| A

Corollary 12

From Lemma 11 we can conclude that for all u € [0, 1]

Yn(u,-) = y(u,-) in C(0,T] in distribution

22/28



Prolongation on space D([0, 1], C[0,T])

Proposition 13

Set
y(u,0) =u, wuelo,1].

Then {y(u,t), u €[0,1], ¢t € [0,T]} belongs D([0,1],C[0,T]) a.s. Furthermore,

for all u € [0,1] y(u, -) is a square integrable (F;)-martingale, where

Fi=o(y(u,s), uel0,1], s<t).

Next, we want {y(u,t), uw € [0,1], ¢ € [0,T]} to describe the evolution of
particles starting from all points of [0, 1].
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© are diffusion;
Q@ start from all points;

© coalesce;
@ change mass and diffusion;

© move independently up to the moment of the meeting.
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© are diffusion;
Q@ start from all points;

© coalesce;
@ change mass and diffusion;

© move independently up to the moment of the meeting.

Theorem 14
{y(u,t), u€[0,1], t € [0,T]} satisfies

© y(u,-) is a continuous square integrable martingale with respect to

Ft=o(y(u,s), u€[0,1], s <t);
Q y(u,0) =
Q y(u,t) Sy(v,t) if u <wv;
¢
O (i, = [ e,
where m(u,t) = Mv: Is <t y(v,s) =y(u,s)}
° <y(u7 ')’ y(v, ')>t/\7'u,v =0

where 7y, = inf{t: y(u,t) =y(v,t)} AT. 25/ 28




Analog of Ito formula

Theorem 15

For every bounded continuous function ¢ there exists the limit

1

/ / Py (u, 5))dy(u, s)du : hmz / (y @ik, 8))dy i, 5) A

0

in a space of continuous square integrable martingale and the quadratic characteristic of the

limit point is
// (u, 8))duds.

Moreover, for each twice continuously dlfferentlable function ¢ that are bounded together with
its derivatives we have

1 1

[ ewutdu = [ p(,0)du+ / / Py, 9))dy(u, 9)du+ - / /1 LACGCE) N
0 0 O

m
0 0 0
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Open problems

@ Uniqueness of distribution;
@ Asymptotic growth of the particle mass for small ¢;
© Asymptotic behaviour of the particle for small ¢;
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Thank y0u!
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