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Arratia �ow

The system of Brownian particles on the real line that (Arratia R. A. '79)

1 start from all points of R;
2 move independently up to the moment of meeting;

3 coalesce;

4 the di�usion is unchangeable and equals 1.
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Arratia �ow

The Arratia �ow, the mathematical description

{x(u, t), t ≥ 0, u ∈ R} such that

1 x(u, ·) is a Brownian motion;

2 x(u, 0) = u, u ∈ R;
3 x(u, t) ≤ x(v, t), u < v, t ≥ 0;

4 〈x(u, ·), x(v, ·)〉t = 0, t < τu,v,
where τu,v = inf{t : x(u, t) = x(v, t)}.

The process x(u, ·), u ∈ R, has a modi�cation from D(R, C[0,+∞)).
Dorogovtsev A. A. '04
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Main object

The aim of the talk is to build and investigate the system of di�usion
particles on the real line such that particles

1 start from some set of points;

2 move independently up to the moment of the meeting and then coalesce;

3 masses add after coalescing;

4 the di�usion is inversely proportional to the mass;

5 / 28



System of heavy di�usion particles
Stochastic calculus for obtained system

History of the question

Systems of heavy interacting particles

Coalescing Brownian particles which have some masses and these masses vary
by the some law. The mass does not in�uence motion of the particles
Dawson D. A. '01, '04.

Stochastic di�erential equation with interaction{
dx(u, t) = a(x(u, t), µt, t)dt+

∫
R b(x(u, t), µt, t, q)W (dt, dq)

x(u, 0) = u, µt = µ0 ◦ x(·, t)−1.
Dorogovtsev A. A. '07.

The cases of �nite and in�nite numbers of particles with sticking that have
mass and speed and their motion obey the conservation law
Sinai Ya. G. '96.
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Main problems of the construction of our system

a priori we cannot start with a �nite system
(the motion of one particle depends on the whole
system)

in case of continuum starting points
the mass initially is zero⇔ in�nite di�usion
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Steps of construction

1 a �nite number of starting points
(an algebraic construction from independent Wiener
processes)

2 a countable number of starting points
(gaps between independent Wiener processes)

3 the general situation
(weak compactness in a Skorohod space)
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Finite system

Let wk(t), t ≥ 0, k = 1, . . . , n, be a set of independent Wiener processes.
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Countable system

{wk(t), t ≥ 0, k = 0, 1, 2, . . .} is a �xed system of independent Wiener processes,
wk(0) = k, k = 0, 1, 2, . . .
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Countable system

Theorem 1 (K. '11)

There exists a sequence of processes {yk(t), t ≥ 0, k ∈ Z} such that

1◦) yk(·) is a continuous square integrable martingale with respect to

Ft = σ(yi(s), s ≤ t, i ∈ Z);

2◦) yk(0) = k, k ∈ Z;
3◦) yk(t) ≤ yl(t), k < l;

4◦) 〈yk(·)〉t =
t∫
0

1
mk(s)

ds,

where mk(t) = |{i : ∃s ≤ t yi(s) = yk(s)}|;
5◦) 〈yk(·), yl(·)〉t = 0, t < τk,l,

where τk,l = inf{t : yk(t) = yl(t)}.
Conditions 1◦)�5◦) uniquely determine the distribution of {yk(t), t ≥ 0, k ∈ Z}.
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Asymptotic properties of countable system

The estimation of the asymptotic growth of the mass (K. '11)

P
{

lim
t→+∞

mk(t)

4
√
t ln ln t

≤ 1

}
= 1.

The asymptotic behaviour of particles

P
{

lim
t→+∞

|yk(t)|√
2t ln ln t

= 0

}
= 1,

P
{

lim
t→+∞

|yk(t)|
4√
t1−ε

=∞
}

= 1, for all ε ∈ (0, 1).

The asymptotics of the probability of collision time (K. '13)

lim
t→0

t lnP{τ1,n ≤ t} = −n
3−n
24 .
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Continuum system

Theorem 2 (K. '14)

There exists a random element {y(u, t), u ∈ [0, 1], t ∈ [0, T ]} in the Skorohod
space D([0, 1], C[0, T ]) such that

1◦) y(u, ·) is a continuous square integrable martingale with respect to

Ft = σ(y(u, s), u ∈ [0, 1], s ≤ t), t ∈ [0, T ];

2◦) y(u, 0) = u, u ∈ [0, 1];

3◦) y(u, t) ≤ y(v, t), u < v and t ∈ [0, T ] ;

4◦) 〈y(u, ·)〉t =
t∫
0

ds
m(u,s) ,

where m(u, t) = λ{v : ∃s ≤ t y(v, s) = y(u, s)};
5◦) 〈y(u, ·), y(v, ·)〉t = 0, t ≤ τu,v,

where τu,v = inf{t : y(u, t) = y(v, t)} ∧ T .
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Properties of particles system

.

The mass growth (K. '14)

For β ∈
(
0, 32
)

E
1

mβ(u, t)
≤ C

3
√
tβ
.

The number of clasters (K. '14)

EN(t) ≤ C
3√t , where N(t) = #{y(u, t), u ∈ [0, 1]}.

compare with the Arratia �ow (Vovchanskii M. B. '13):

EN ′(t) ≤ C√
t
, where N ′(t) = #{x(u, t), u ∈ [0, 1]}.

The square mean deviation

E(y(u, t)− u)2 ≤ C 3
√
t2.
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Total free time run of particles from the Arratia �ow

Let a set of distinct points {uk, k ∈ N} be dense in [0,1].

τ(uk) = inf

{
t :

k−1∏
l=1

(x(uk, t)− x(ul, t)) = 0

}
∧ T, k ≥ 1.

Theorem 3 (Dorogovtsev A. A. '04).

The sum
∞∑
k=1

τ(uk) is �nite a.s. and does not depend on the set {uk, k ∈ N}.
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Special stochastic integral with respect to Arratia �ow

Theorem 4 (Dorogovtsev A. A. '04).

Let a : R→ R be a measurable bounded function. Then the series

∞∑
n=1

τ(un)∫
0

a(x(un, s))dx(un, s)

is convergent in L2 and its sum independent of the set {uk, k ∈ N}.

Denote

1∫
0

τ(u)∫
0

a(x(u, s))dx(u, s) =

∞∑
n=1

τ(un)∫
0

a(x(un, s))dx(un, s).
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Girsanov theorem for di�usion processes with coalescence

Let a : R→ R be a bounded Lipschitz continuous function

The Arratia �ow with drift

{z(u, t), u ∈ [0, 1], t ∈ [0, T ]} such that

1 M(u, ·) = z(u, ·)−
·∫
0

a(z(u, s))ds is a Brownian motion;

2 z(u, 0) = u, u ∈ [0, 1];

3 z(u, t) ≤ z(v, t), u < v;

4 〈M(u, ·),M(v, ·)〉t = 0, t < σu,v = inf{t : z(u, t) = z(v, t)} ∧ T .

Theorem 5 (Dorogovtsev A. A. '07)

The distribution of z is absolutely continuous with respect to the distribution of x
in the space D([0, 1], C([0, T ])) with the density

p(x) = exp


1∫

0

τ(u)∫
0

a(x(u, s))dx(u, s)− 1

2

1∫
0

τ(u)∫
0

a(x(u, s))ds

 .
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Integral with respect to the stochastic �ow of heavy particles

.

Proposition 1

For each bounded piecewise continuous function ϕ there exists the limit

1∫
0

·∫
0

ϕ(y(u, s))dy(u, s)du := lim
λ→0

n∑
k=1

·∫
0

ϕ(y(uk, s))dy(uk, s)∆uk

in a space of continuous square integrable martingale, and the quadratic
characteristic of the limit is

·∫
0

1∫
0

ϕ2(y(u, s))duds.
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Analog of Ito formula

.

Theorem 6 (K. '14)

For each twice continuously di�erentiable function ϕ : R→ R having bounded
derivatives we have

1∫
0

ϕ(y(u, t))du =

1∫
0

ϕ(u)du+

+

1∫
0

t∫
0

ϕ̇(y(u, s))dy(u, s)du+
1

2

t∫
0

1∫
0

ϕ̈(y(u, s))

m(u, s)
duds, t ∈ [0, T ].
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Comparison with integral introduced by Dorogovtsev A. A.

Proposition 2

Let ϕ be a bounded continuous function. Then a.s.

1∫
0

t∫
0

ϕ(y(u, s))

m(u, s)
dsdu =

1∫
0

τ(u)∧t∫
0

ϕ(y(u, s))ds.
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Local time for Arraria �ow

Let {x(u, t), u ∈ R, t ∈ [0, T ]} be the Arratia �ow and
{uk} be a dense set of R

De�nition (Chernega P. P. '12)

The integral

∫
R

τ(u)∧t∫
0

δ0(x(u, s))ds =

∞∑
k=1

τ(uk)∧t∫
0

δ0(x(uk, s))ds

is called the total local time
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Local time for particles with masses

De�nition

A random process {L(a, t), a ∈ R, t ∈ [0, T ]} is said to be the local time for the
process {y(u, t), u ∈ [0, 1], t ∈ [0, T ]} if
(a) (a, t)→ L(a, t) is a continuous map a.s.;

(b) for every continuous compactly supported function f

1∫
0

τ(u)∧t∫
0

f(y(u, s))ds = 2

+∞∫
−∞

f(a)L(a, t)da.

L(·, t) is a density of

µ(A) =

1∫
0

τ(u)∧t∫
0

IA(y(u, s))ds, A ∈ B(R).
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Existence of local time

Theorem 7 (K. '14)

The local time for the �ow {y(u, t), u ∈ [0, 1], t ∈ [0, T ]} exists. Moreover,

L(a, t) =

1∫
0

(y(u, t)− a)+du−
1∫

0

(u− a)+du−

−
1∫

0

t∫
0

I(a,+∞)(y(u, s))dy(u, s)du.
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Open problems

,

1 Uniqueness of distribution;

2 Asymptotic growth of a particle's mass for small t;

3 Asymptotic behaviour of the particle for small t;

4 Large deviation principle.
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Thank you!
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