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Lattice models: Percolation, Ising, Potts . . .

discrete local degrees of freedom (spins), Z =
∑

{si}
e−βH , H = −∑

n.n. δ(si, sj)

q = 4 Potts cluster

cluster representation

Z =
∑

pE(1 − p)N−EqC

p =
eβ − 1

eβ − 1 + q

=⇒

loop representation:

gas of non-intersecting loops,

boundaries of clusters

=⇒ level lines of

Coulomb gas
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Critical behaviour

- 2. order phase transition at some critical point βc

- self-similarity of cluster/loop ensemble ⇒ fractals

- universal critical exponents: ξ ∼ (β−βc)
−ν , χ ∼ (β−βc)

−γ

- continuum limit of critical system can be constructed and

gives conformal Euclidean field theory

- critical exponents related to:

- conformal weights of operators

- fractal dimensions of geometric objects
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Local interpretation of cluster models

Z =
∑

{cluster}

pE(1 − p)N−EqC

?
=

∑

{local d.o.f. si}

∏

(pos. local terms) =
∑

exp
(

∑

(local terms)
)

- True for q = 2, 3, 4, . . . (Potts model) and for Behara numbers:

q = 4 cos2(
π

n
), n = 2, 3, 4, . . .∞

q = 0, 1, 2, 2.61803, 3, 3.24698, 3.41421, 3.53209, 3.61803, . . . 4

local interpretation as An−1 RSOS model
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Structure of clusters

k-block = can not be separated into disconnected parts by cutting fewer than k vertices

k-bone = set of all points connected to k endpoints by k disjoint paths

- cluster = 1-block

- blue bonds = 2-blocks (blobs)

- red bonds connect blobs to backbone (2-bone)

red
⋃

blue = 2-bone

- current flow picture

- n-block can be decomposed into n+1-blocks, connect-

ing bonds and rest.

- Hausdorff dimensions dk of k-blocks and k-bones are

equal (identify the k endpoints of a k-bone ⇒ k-block)

- generalized Fisher exponents τkn: number of k-blocks

of size s inside n-block scales as N(s) ∼ s−τkn

percolation: d1 = 91
48 ; d2 = 1.6431(2); d3 = 1.20(5) (Paul & Stanley 2002)
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Path Crossing Exponents

annulus geometry

k disjoint crossing paths

a) all in percolating cluster:

monochromatic

b) k1 paths in cluster, k2 in

complement: polychromatic

scaling of probability for path crossing:

Pk(r, R) ∼
( r

R

)x̃k

monochromatic exponents:

r → 0: paths in k-bone

x̃k + dk = D

transfer matrix simulations Jacobsen, Zinn-Justin 2002

x̃2 = 0.3569(6)

polychromatic path crossing exponents:

Aizenman, Duplantier, Aharony 1999

- xk1,k2
depends only on k = k1 + k2, as long as both k1, k2

are nonzero

- xk = 1
12(k2 − 1)

- xk < x̃k < xk+1

- generalization to Potts cluster?

M Hellmund 6



Fractal dimensions

fractal dimension of codimension

d1 clusters x̃1

dn n-bones or n-blocks monochromatic path crossing exponents x̃n

dH cluster hull polychromatic exponent x2

dEP external perimeter x3

dR red bonds x4
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Conformal maps

- complex map z 7→ w(z) where ∂w
∂z̄ = 0

- angle-preserving bijection

- Riemann mapping theorem: arbitrary domain D has conformal map to upper half plane H

- singularities (not angle preserving) at discrete points on boundary
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- electrostatic picture: potential of equilibrium charge distribution on conducting boundary
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Example: Percolation crossing probability

Probability that percolating cluster connects two segments AB and CD of a domain:

Cardy 1992

P =
Γ(2

3 )

Γ(4
3)Γ(1

3 )
η1/3

2F1(
1

3
,
2

3
,
4

3
; η)

with η = (A−B)(C−D)
(A−C)(B−D) .

Carleson 2001: This is inverse of conformal map to equilateral triangle:

P (AB, XC) =
|XC|
|AB|
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Conformal maps and random paths: SLE

Measure µ(γ;D) on random curves γ connecting 2 points on domain D
Critical interfaces of models with local interactions should have this property:

- conformal invariance: (Φ ⋆ µ)(γ;D) = µ(Φ(γ), Φ(D))

- Markov property: µ(γ2|γ1;D) = µ(γ2;D \ γ1)
=⇒ It exists a one-parameter family of

such measures: SLEk

- “grow process” of a random curve γ(t) on H

- At every time t, study the conformal map gt(z) which “unzips the zipper”:

A C

B

−→

gt(z)
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K. Löwner 1923: Untersuchungen über schlichte konforme Abbildungen des Einheitskreises
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- Map g(z) is not unique: impose g(z) = z + O(1/z) for large z.

- Reparametrization of time t: gt(z) = z + 2t
z + O(1/z2)

- γ(t) is called the trace of gt(z).

- simplest example: gt(z) = c +
√

(z − c)2 + 4t
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trace goes from c vertically upwards, height 2t1/2

dgt(z)

dt
=

2

gt(z) − c

- generalization: c ⇒ c(t)

Theorem (O. Schramm 2000): Stochastic Löwner evolution (SLE)

Markov property + conformal invariance =⇒ c(t) is proportional to

a standard one-dimensional Brownian motion c(t) =
√

κB(t)

dgt(z)

dt
=

2

gt(z) −√
κB(t)
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- κ = 0: trace is straight line upwards

- larger κ: trace turns randomly to L and R more frequently

κ = 1.3 κ = 4 κ = 6 κ = 12

κ ≤ 4 simple curve

4 < κ ≤ 8 infinite many self-touchings
dH = 1 + κ

8

8 < κ space-filling dH = 2

SLE duality: For κ > 4, the frontier of the curve is an SLE curve with

κ̃ = 16/κ trace-hull duality

M Hellmund 12



SLE examples

d

κ = 2 loop-erased random walks 1.25

κ = 8
3 self-avoiding walks 1.33

κ = 4 q = 4 Potts cluster boundaries 1.5

κ = 16
3 q = 2 Ising cluster boundaries 1.66

κ = 6 q = 1 percolation cluster boundaries 1.75
q = 4 cos2

(

4π
κ

)

κ = 8 q = 0 boundaries of spanning trees 2
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Outlook

◮ many things not mentioned:

– relation SLE ↔ CFT

– random surfaces (aka “2D quantum gravity” aka “annealed disorder”)

– generalizations: SLE(κ, ρ) (addition of drift forces)

related to Coulomb gas picture

– properties of transfer matrix

– tricritical models

◮ geometric understanding of phase transitions and quantum fields
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