John S. Wilson

E-mail: wilson@math.uni-leipzig.de
What is a profinite group?
– a compact Hausdorff totally disconnected group
– a closed subgroup of a Cartesian product of finite groups
– an inverse limit of finite groups
– a Galois group of an algebraic field extension.

(Totally disconnected: no connected subset has more than one element.

A [locally] compact Hausdorff space is totally disconnected iff its compact open subsets form a base for its topology.)
What is a profinite group a pro-p group?
– a compact Hausdorff totally disconnected group in which $g^{p^n} \to 1$ as $n \to \infty$, for all $g \in G$
– a closed subgroup of a Cartesian product of finite groups of finite p-groups
– an inverse limit of finite groups of finite p-groups
– a Galois group of an algebraic field extension such that each finite subextension has p-power degree.
Where do profinite groups arise?

Profinite groups arise in:

- Analysis, general topological group theory
 (quotients of compact top. groups modulo connected component of the identity)

- Finite group theory
 (encode info. about infinite families, asymptotic properties)

- Infinite group theory
 (examples, completions, etc.)

- Algebraic number theory
 (Galois groups, etc.)

- Model theory, combinatorics
 (groups of automs. of rooted trees & other structures, small index property)
If X, Y are groups, so is $X \times Y$: $(x_1, y_1)(x_2, y_2) = (x_1x_2, y_1y_2)$.

If X, Y are top. spaces so is $X \times Y$: base of open sets

\[\{U \times V \mid U \text{ open in } X, V \text{ open in } Y\} \]

Let G be both a group and a top. space: G is a topological group if both $x \mapsto x^{-1}$ and $(x, y) \mapsto xy$ (from $G \times G$ to G) are continuous.

If X, Y are top. groups, so is $X \times Y$.

Infinite Products. $C = \prod_{\lambda \in \Lambda} X_\lambda$ is the Cartesian product of $(X_\lambda \mid \lambda \in \Lambda)$.

Elements are vectors $(x_\lambda)_{\lambda \in \Lambda}$, entries indexed by Λ.

Projection maps $\pi_\lambda : C \to X_\lambda$.

If each X_λ is a group so is C: $(x_\lambda)(y_\lambda) = (x_\lambda y_\lambda)$.

If each X_λ is a top. space, so is C: subbase of open sets

\[\{\pi_\lambda^{-1}(U_\lambda) \mid \lambda \in \Lambda, U_\lambda \text{ open in } X_\lambda\} \]

If each X_λ is a top. group, so is C.

Tychonoff’s theorem. If each X_λ is compact then so is C.

So if each X_λ is compact Hausdorff, so is each closed subset of C.

If X_λ is a cpct. Haus. top. group, so is each closed subgroup of C.

(E.g., take X_λ finite, with discrete top.)
A directed set is a poset I such that for all $i_1, i_2 \in I$ there is an element $j \in I$ for which $i_1 \leq j$ and $i_2 \leq j$.

(1.1.1) Definition. An inverse system $(X_i, \varphi_{ij})_I$ of top. spaces indexed by a directed set I is a family $(X_i | i \in I)$ of top. spaces with a family $(\varphi_{ij}: X_j \to X_i | i, j \in I, i \leq j)$ of conts. maps such that $\varphi_{ii} = \text{id}_{X_i}$ for each i and $\varphi_{ij}\varphi_{jk} = \varphi_{ik}$ whenever $i \leq j \leq k$.

So for $i \leq j \leq k$ the diagram

\[
\begin{array}{ccc}
X_j & \xrightarrow{\varphi_{ij}} & X_i \\
\downarrow{\varphi_{jk}} & & \downarrow{\varphi_{ik}} \\
X_k & & \\
\end{array}
\]

commutes.

Sets with no specified topology are given the discrete topology. If (X_i, φ_{ij}) consists of top. groups and conts. homoms., (X_i, φ_{ij}) is an inverse system of top. groups; similarly for top. rings.
Inverse limits

Let \((X_i, \varphi_{ij})_I\) be an inverse system of top. spaces, \(Y\) a top. space. A family \((\psi_i: Y \to X_i \mid i \in I)\) of conts. maps is compatible if \(\varphi_{ij}\psi_j = \psi_i\) for \(i \leq j\). That is, each diagram

![Diagram](attachment://diagram.png)

is commutative.
(1.1.3) Definition. An inverse limit \((X, \varphi_i)\) of an inverse system \((X_i, \varphi_{ij})_i\) of top. spaces (resp. groups, rings) is a top. space (resp. group, ring) \(X\) together with a compatible family \((\varphi_i: X \to X_i)\) of conts. maps (resp. conts. homoms.) with the foll. universal property (UP):

for each compatible family \((\psi_i: Y \to X_i)\) of conts. maps from a space \(Y\) (resp. conts. homoms. from a group or ring \(Y\)), there is a unique conts. map (resp. conts. homom.) \(\psi: Y \to X\) such that \(\varphi_i \psi = \psi_i\) for each \(i\).
That is, there is a unique \(\psi\) such that the foll. diagrams are commutative.

\[
\begin{array}{ccc}
Y & \xrightarrow{\psi} & X \\
\downarrow{\psi_i} & & \downarrow{\varphi_i} \\
X_i & & X
\end{array}
\]
(1.1.4) Let \((X_i, \varphi_{ij})\) be an inverse system.

(a) If \((X^{(1)}, \varphi_i^{(1)})\) and \((X^{(2)}, \varphi_i^{(2)})\) are inverse limits, then \(\exists\) isom. \(\bar{\varphi}: X^{(1)} \to X^{(2)}\) such that \(\varphi_i^{(2)} \bar{\varphi} = \varphi_i^{(1)}\) for each \(i\). (If \((X_i, \varphi_{ij})\) is an inverse system of spaces then \(\bar{\varphi}\) is just a homeom.)

(b) Write \(C = \text{Cr}(X_i \mid i \in I)\) and \(\pi_i\) for the projection \(C \to X_i\). Define

\[
X = \{c \in C \mid \varphi_{ij} \pi_j(c) = \pi_i(c) \text{ for all } i, j \text{ with } j \geq i\}
\]

and \(\varphi_i = \pi_i|_X\) for each \(i\). Then \((X, \varphi_i)\) is an inverse limit of \((X_i, \varphi_{ij})\).

(c) If \((X_i, \varphi_{ij})\) is an inverse system of top. groups and conts. homoms., then \(X\) is a top. group and the maps \(\varphi_i\) are conts. homoms.
So the inverse limit of \((X_i, \varphi_{ij})_I\) exists and is unique up to isom. Call it the inverse limit, write \(\lim\leftarrow \leftarrow (X_i, \varphi_{ij})\), or just \(\lim X_i\).
Write \(s \lim X_i\) for the inverse limit constructed above as subgroup of \(C\).

Note. If \((X_i, \varphi_{ij})_I\) is an inverse system of top. groups, then from (b) its inverse limit, as a set, is also the inverse limit of \((X_i, \varphi_{ij})\) as an inverse system of sets.

(0.3.4) Let \((G_\lambda | \lambda \in \Lambda)\) be top. groups, and
\[C = \text{Cr}(G_\lambda | \lambda \in \Lambda). \]
Define multiplication in \(C\) pointwise \((x_\lambda)(y_\lambda) = (x_\lambda y_\lambda)\). Then \(C\) is a topological group, i.e., mult. and inversion are conts. maps.

Proof: definition of product topology plus

Claim. A map \(f: Z \rightarrow C\) is conts. \(\iff\) each \(\pi_\lambda f\) is continuous.
\(\Rightarrow\) klar.
Suppose each \(\pi_\lambda f\) conts. If \(U_i\) is open in \(X_{\lambda_i}\) for \(i = 1, \ldots, n\) then each \((\pi_{\lambda_i} f)^{-1}(U_i)\) is open in \(Z\) so
\[f^{-1}(\cap_{i=1}^n \pi_{\lambda_i}^{-1}(U_i)) = \cap_{i=1}^n (\pi_{\lambda_i} f)^{-1}(U_i) \text{ is open in } Z. \]
If $f : X \to Y$ and $g : Y \to Z$ are conts. so is $gf : X \to Z$.

A bijection $f : X \to Y$ is a homeomorphism iff f, f^{-1} are both conts.

(0.1.2)
(a) Each closed subset of a compact space is compact.
(b) Each compact subset of a Hausdorff space is closed.
(c) If $f : X \to Y$ is continuous and X is compact then $f(X)$ is compact.
(d) If $f : X \to Y$ is continuous and bijective and if X is compact and Y is Hausdorff then f is a homeomorphism.
(e) If $f : X \to Y$ and $g : X \to Y$ are continuous and Y is Hausdorff then $\{x \in X \mid f(x) = g(x)\}$ is closed in X.

(0.1.3) Let X be a totally disconnected space. Then $\{x\}$ is closed in X, for each $x \in X$.
Let \(C = \text{Cr}(X_\lambda \mid \lambda \in \Lambda) \) be the product of spaces \(X_\lambda \). The projection map \(\pi_\lambda \) takes \((x_\lambda) \) to \(x_\lambda \). The open sets in the product top. are the unions of sets

\[
\pi_{\lambda_1}^{-1}(U_1) \cap \cdots \cap \pi_{\lambda_n}^{-1}(U_n)
\]

with \(n \) finite, each \(\lambda_i \) in \(\Lambda \) and \(U_i \) open in \(X_{\lambda_i} \). So each projection \(\pi_\lambda \) is continuous (prod. top. is minimal with this property).

Remark. Let \(a = (a_\lambda) \in C \) and let \(N \) be an open neighbourhood of \(a \) in \(C \). Thus \(N \) contains a set \(S \) of form (\(\ast \)) with \(a \in S \), so there exist \(\lambda_1, \ldots, \lambda_n \in \Lambda \) and open \(U_i \subseteq X_{\lambda_i} \) with \(a_{\lambda_i} \in U_i \) for each \(i \) and with \(\pi_{\lambda_1}^{-1}(U_1) \cap \cdots \cap \pi_{\lambda_n}^{-1}(U_n) \subseteq N \). In particular, \(N \) contains

\[
\{ x \in C \mid \pi_{\lambda_1}(x) = a_{\lambda_1}, \ldots, \pi_{\lambda_n}(x) = a_{\lambda_n} \}.
\]
(0.2.1) Let \((X_\lambda \mid \lambda \in \Lambda)\) be a family of top. spaces, \(C\) their Cartesian product.

(a) If each \(X_\lambda\) is Hausdorff, so is \(C\).
(b) If each \(X_\lambda\) is totally disconnected, so is \(C\).
(c) If each \(X_\lambda\) is compact, so is \(C\).

Proof. (a) and (b) are elementary; in (b), since a conts. image of a connected set is connected, the projection in each \(X_\lambda\) of a non-empty connected set has one element.

(c) is Tychonoff’s Theorem, postponed.
(1.1.5) Let $(X_i, \varphi_{ij})_I$ be an inverse system and write $X = \lim \leftarrow X_i$.

(a) If each X_i is Hausdorff, so is X.
(b) If each X_i is totally disconnected, so is X.
(c) If each X_i is Hausdorff, then $\lim \leftarrow X_i$ is closed in $C = \text{Cr}(X_i \mid i \in I)$.
(d) If each X_i is compact and Hausdorff, so is X.
(e) If each X_i is a non-empty compact Hausdorff space, then $X \neq \emptyset$.

Topology of inverse limits
(1.1.6) Let \((X, \varphi_i)\) be an inverse limit of an inverse system \((X_i, \varphi_{ij})_I\) of non-empty compact Hausdorff spaces. Then
(a) \(\varphi_i(X) = \bigcap_{j \geq i} \varphi_{ij}(X_j)\) for each \(i \in I\).
(b) the sets \(\varphi_i^{-1}(U)\) with \(i \in I\) and \(U\) open in \(X_i\) form a base for the topology on \(X\).
(c) if \(Y \subseteq X\) and \(\varphi_i(Y) = X_i\) for each \(i\) then \(Y\) is dense in \(X\).
(d) If \(Y\) is a top. space and \(\theta\) is a map \(Y \rightarrow X\) then \(\theta\) is conts. iff each \(\varphi_i\theta\) is conts.
(e) If \(A\) is discrete and \(f: X \rightarrow A\) is a conts., then \(f\) factors through some \(X_i\), i.e., \(\exists i\) and conts. \(g: X_i \rightarrow A\) with \(f = g\varphi_i\).
Let \(\rho \) be an equivalence relation on a top. space \(X \). \(X/\rho \) is the quotient set (elements the equiv. classes) \(q \) the quotient map \(X \rightarrow X/\rho \) (maps \(x \in X \) to its equiv. class). The quotient topology on \(X/\rho \) has as open sets all \(V \subseteq X/\rho \) such that \(q^{-1}(V) \) is open in \(X \). Then \(q \) is continuous. Easy to check the following:

if \(f: X \rightarrow Z \) is a continuous map to a space \(Z \) such that \(\rho \)-equiv. elements have the same image under \(f \), then there is a unique continuous map \(f^*: X/\rho \rightarrow Z \) such that \(f = f^*q \).

Call a subspace of a top. clopen if it is closed and open.

(1.1.7) Let \(X \) be a compact Hausdorff totally disconnected space. Then \(X \) is the inverse limit of its discrete quotient spaces.
(1.4.1) Let G be a group, \mathcal{L} a non-empty family of normal subgroups such that if $K_1, K_2 \in \mathcal{L}$ and $K_1 \cap K_2 \leq K_3 \triangleleft G$ then $K_3 \in \mathcal{L}$. Let \mathcal{T} be the family of all unions of sets of cosets Kg with $K \in \mathcal{L}$, $g \in G$. Then

(a) \mathcal{T} is a topology on G and G is a top. group;
(b) \mathcal{L} is the set of open normal subgroups of G wrt this topology.