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What is a profinite group?

– a compact Hausdorff totally disconnected group

– a closed subgroup of a Cartesian product of finite groups

– an inverse limit of finite groups

– a Galois group of an algebraic field extension.

(Totally disconnected: no connected subset has more than one
element.

A [locally] compact Hausdorff space is totally disconnected iff its
compact open subsets form a base for its topology.)



What is a profinite group a pro-p group?———————

– a compact Hausdorff tot. disconnected group in which gpn → 1
as n→∞, for all g ∈ G

– a closed subgroup of a Cartesian product of finite groups of
finite p-groups

——————

– an inverse limit of finite groups of finite p-groups—————

– a Galois group of an algebraic field extension such that each
finite subextension has p-power degree.



                            Where do profinite groups arise?

              analysis, general topological group theory
                  (quotients of compact top. groups modulo
                     connected component of the identity)

finite group theory                                    infinite group theory
(encode info. about                                                (examples,
infinite families,                                                      completions, etc.)
asymptotic properties)

                                         PROFINITE
                              GROUPS

algebraic number theory             model theory, combinatorics
(Galois groups, etc.)                                  (groups of automs. of
                                                                  rooted trees & other
                                                                  structures,
                                                                  small index property)

Techniques from all of these areas have been used to study
profinite groups



If X , Y are groups, so is X × Y : (x1, y1)(x2, y2) = (x1x2, y2y2).
If X ,Y are top. spaces so is X × Y : base of open sets
{U × V | U open in X , V open in Y }.
Let G be both a group and a top. space: G is a topological group if
both x 7→ x−1 and (x , y) 7→ xy (from G ×G to G ) are continuous.
If X , Y are top. groups, so is X × Y .

Infinite Products. C = Crλ∈ΛXλ is the Cartesian product of
(Xλ | λ ∈ Λ).
Elements are vectors (xλ)λ∈Λ, entries indexed by Λ.
Projection maps πλ : C → Xλ.
If each Xλ is a group so is C : (xλ)(yλ) = (xλyλ).
If each Xλ is a top. space, so is C : subbase of open sets
{π−1

λ (Uλ) | λ ∈ Λ,Uλ open in Xλ}.
If each Xλ is a top. group, so is C .

Tychonoff’s theorem. If each Xλ is compact then so is C .

So if each Xλ is compact Hausdorff, so is each closed subset of C .
If Xλ is a cpct. Haus. top. group, so is each closed subgroup of C .
(E.g., take Xλ finite, with discrete top.)



Inverse systems

A directed set is a poset I such that for all i1, i2 ∈ I there is an
element j ∈ I for which i1 6 j and i2 6 j .

(1.1.1) Definition. An inverse system (Xi , ϕij)I of top. spaces
indexed by a directed set I is a family (Xi | i ∈ I ) of top. spaces
with a family (ϕij : Xj → Xi | i , j ∈ I , i 6 j) of conts. maps such
that ϕii = idXi

for each i and ϕijϕjk = ϕik whenever i 6 j 6 k .

So for i 6 j 6 k the diagram
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commutes.

Sets with no specified topology are given the discrete topology.
If (Xi , ϕij) consists of top. groups and conts. homoms., (Xi , ϕij) is
an inverse system of top. groups; similarly for top. rings.



Inverse limits

Let (Xi , ϕij)I be an inverse system of top. spaces, Y a top. space.
A family (ψi : Y → Xi | i ∈ I ) of conts. maps is compatible if
ϕijψj = ψi for i 6 j . That is, each diagram
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is commutative.



(1.1.3) Definition. An inverse limit (X , ϕi ) of an inverse system
(Xi , ϕij)I of top. spaces (resp. groups, rings) is a top. space
(resp. group, ring) X together with a compatible family
(ϕi : X → Xi ) of conts. maps (resp. conts. homoms.) with the foll.
universal property (UP):

for each compatible family (ψi : Y → Xi ) of conts. maps from a
space Y (resp. conts. homoms. from a group or ring Y ), there is a
unique conts. map (resp. conts. homom.) ψ: Y → X such that
ϕiψ = ψi for each i .
That is, there is a unique ψ such that the foll. diagrams are
commutative.
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Existence and ‘uniqueness’

(1.1.4) Let (Xi , ϕij)I be an inverse system.

(a) If (X (1), ϕ
(1)
i ) and (X (2), ϕ

(2)
i ) are inverse limits, then ∃ isom.

ϕ̄ : X (1) → X (2) such that ϕ
(2)
i ϕ̄ = ϕ

(1)
i for each i . (If (Xi , ϕij) is

an inverse system of spaces then ϕ̄ is just a homeom.)
(b) Write C = Cr(Xi | i ∈ I ) and πi for the projection C → Xi .
Define

X = {c ∈ C | ϕijπj(c) = πi (c) for all i , j with j > i}

and ϕi = πi |X for each i . Then (X , ϕi ) is an inverse limit of
(Xi , ϕij).
(c) If (Xi , ϕij) is an inverse system of top. groups and conts.
homoms., then X is a top. group and the maps ϕi are conts.
homoms.



So the inverse limit of (Xi , ϕij)I exists and is unique up to isom.
Call it the inverse limit, write lim

←−
(Xi , ϕij), or just lim

←−
Xi .

Write s lim
←−

Xi for the inverse limit constructed above as subgroup

of C .

Note. If (Xi , ϕij)I is an inverse system of top. groups, then from
(b) its inverse limit, as a set, is also the inverse limit of (Xi , ϕij) as
an inverse system of sets.

(0.3.4) Let (Gλ | λ ∈ Λ) be top. groups, and

C = Cr(Gλ | λ ∈ Λ) .

Define multiplication in C pointwise ( (xλ)(yλ) = (xλyλ)). Then C
is a topological group, i.e., mult. and inversion are conts. maps.

Proof: definition of product topology plus

Claim. A map f : Z → C is conts. ⇔ each πλf is continuous.
⇒ klar.
Suppose each πλf conts. If Ui is open in Xλi

for i = 1, . . . , n then
each (πλi

f )−1(Ui ) is open in Z so
f −1(

⋂n
i=1 π

−1
λi

(Ui )) =
⋂n

i=1 (πλi
f )−1(Ui ) is open in Z .



Topological basics 1

If f : X → Y and g : Y → Z are conts. so is gf : X → Z .
A bijection f : X → Y is a homeomorphism iff f , f −1 are both
conts.

(0.1.2)
(a) Each closed subset of a compact space is compact.
(b) Each compact subset of a Hausdorff space is closed.
(c) If f : X → Y is continuous and X is compact then f (X ) is
compact.
(d) If f : X → Y is continuous and bijective and if X is compact
and Y is Hausdorff then f is a homeomorphism.
(e) If f : X → Y and g : X → Y are continuous and Y is Hausdorff
then {x ∈ X | f (x) = g(x)} is closed in X .

(0.1.3) Let X be a totally disconnected space. Then {x} is closed
in X , for each x ∈ X .



Products of topological spaces

Let C = Cr(Xλ | λ ∈ Λ) be the product of spaces Xλ. The
projection map πλ takes (xλ) to xλ.
The open sets in the product top. are the unions of sets

π−1
λ1

(U1) ∩ · · · ∩ π−1
λn

(Un) (∗)

with n finite, each λi in Λ and Ui open in Xλi
. So each projection

πλ is continuous (prod. top. is minimal with this property).

Remark. Let a = (aλ) ∈ C and let N be an open neighbourhood
of a in C . Thus N contains a set S of form (∗) with a ∈ S , so there
exist λ1, . . . , λn ∈ Λ and open Ui ⊆ Xλi

with aλi
∈ Ui for each i

and with π−1
λ1

(U1) ∩ · · · ∩ π−1
λn

(Un) ⊆ N. In particular, N contains

{x ∈ C | πλ1(x) = aλ1 , . . . , πλn(x) = aλn} .



(0.2.1) Let (Xλ | λ ∈ Λ) be a family of top. spaces, C their
Cartesian product.
(a) If each Xλ is Hausdorff, so is C .
(b) If each Xλ is totally disconnected, so is C .
(c) If each Xλ is compact, so is C .

Proof. (a) and (b) are elementary; in (b), since a conts. image of a
connected set is connected, the projection in each Xλ of a
non-empty connected set has one element.

(c) is Tychonoff’s Theorem, postponed.



Topology of inverse limits

(1.1.5) Let (Xi , ϕij)I be an inverse system and write X = lim
←−

Xi .

(a) If each Xi is Hausdorff, so is X .
(b) If each Xi is totally disconnected, so is X .
(c) If each Xi is Hausdorff, then s lim

←−
Xi is closed in

C = Cr(Xi | i ∈ I ).
(d) If each Xi is compact and Hausdorff, so is X .
(e) If each Xi is a non-empty compact Hausdorff space, then
X 6= ∅.



(1.1.6) Let (X , ϕi ) be an inverse limit of an inverse system
(Xi , ϕij)I of non-empty compact Hausdorff spaces. Then
(a) ϕi (X ) =

⋂
j>i ϕij(Xj) for each i ∈ I .

(b) the sets ϕ−1
i (U) with i ∈ I and U open in Xi form a base for

the topology on X .
(c) if Y ⊆ X and ϕi (Y ) = Xi for each i then Y is dense in X .
(d) If Y is a top. space and θ is a map Y → X then θ is conts. iff
each ϕiθ is conts.
(e) If A is discrete and f : X → A is a conts., then f factors
through some Xi , i.e., ∃ i and conts. g : Xi → A with f = gϕi .



Quotients

Let ρ be an equivalence relation on a top. space X .
X/ρ is the quotient set (elements the equiv. classes)
q the quotient map X → X/ρ ( maps x ∈ X to its equiv. class).
The quotient topology on X/ρ has as open sets all V ⊆ X/ρ such
that q−1(V ) is open in X .
Then q is continuous. Easy to check the following:

if f : X → Z is a continuous map to a space Z such that
ρ-equiv. elements have the same image under f , then there is a
unique continuous map f ∗: X/ρ→ Z such that f = f ∗q.

Call a subspace of a top. clopen if it is closed and open.

(1.1.7) Let X be a compact Hausdorff totally disconnected space.
Then X is the inverse limit of its discrete quotient spaces.



(1.4.1) Let G be a group, L a non-empty family of normal
subgroups such that if K1,K2 ∈ L and K1 ∩ K2 6 K3 / G then
K3 ∈ L. Let T be the family of all unions of sets of cosets Kg with
K ∈ L, g ∈ G . Then
(a) T is a topology on G and G is a top. group;
(b) L is the set of open normal subgroups of G wrt this topology.


