
Algebraische Topologie

Łukasz Grabowski

Sommer 2023 Universität Leipzig



Contents

1



2 CONTENTS

Figure 1: 2-dimensional torus



Lecture 1: Fundamental group functor

1.1 Some general point-set topology

1.1.1 Topological spaces and continuous maps.

If you need a refresher on set theory or general topology, see e.g. [?]. Let us briefly recall
that topological spaces are a generalisation of metric spaces. Given a metric space (X, d),
x ∈ X and r > 0 we let

B(x, r) := {y ∈ X : d(x, y) < r)

be the open ball around x of radius r. Then we proceed to define that a set U ⊂ X is
open if for every u ∈ U there exists r > 0 such that B(u, r) ⊂ U . The collection of all
open sets is called the topology, and X together with this collection is called a topological
space.

While there exist topological spaces which are not metrisable, i.e. do not arise from a
metric in the way described above, in this course we will only be interested in metrisable
topological spaces.

We say that a continuous function f : X → Y between two topological spaces is continu-
ous iff for any open set U ⊂ Y the set f−1(U) is open (if you have not encountered this
definition of continuity, then check as an exercise that our definition is equivalent to any
of the ones you know). We say that f is a homeomorphism if there exists a continuous
function g : Y → X such that fg = idY and gf = idX .

Example 1.1.1. The spaces (0, 1) and R are homeomorphic. Indeed first we check
that (0, 1) and (−1, 1) are homeomorphic, for example using the map s : (0, 1) →
(−1, 1) given by s(x) := 2x − 2. A homeomorphism t : (−1, 1) → R is given for
example by t(x) = tan(π

2
· x).

Given a subset A ⊂ X, we say that A is a retract of X if there exists a continuous map
f : X → A such that f|A = idA. Such an f is called a retraction.

Two typical questions which we try to answer in any topology course are as follows.

(a) Given two topological spaces X and Y , are they homeomorphic?
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(b) Given an inclusion A ⊂ X of topological spaces, is A a retract of X?

1.1.2 Compact, connected and path-connected spaces

We can answer these questions in some cases using some notions from general topology
which the reader already knows. Recall that a topological space A is compact if the
following holds. Suppose that there exists a family Ui, i ∈ K, of open sets such that
A =

⋃
i∈K Ui. Then there exists a finite set of indices L ⊂ K such that A =

⋃
i∈L Ui. We

phrase this property frequently as “every open cover has a finite subcover”.

Exercise 1.1.2. If X is a separable metric space then X is compact if and only if
every sequence of points of X has a convergent subsequence.

We will use the notation I := [0, 1]. A path in a topological space X is a continuous map
α : I → X. We will use the notation α : x p

; y as a shorthand for saying that α is a path
which connects x with y, i.e. α(0) = x and α(1) = y. If x = y then we say that α is a
loop at x. Sometimes it is convenient to informally denote the constant loop at x ∈ X by
the same letter, i.e. we use the letter x also to denote the map constx : I → X defined by
constx(t) := x for all t.

We say that X is connected if the following holds. If A,B ⊂ X are disjoint open sets
and X = A ∪ B then either A = X or B = X. In this course we are mostly interested
in the slightly stronger notion of path-connectedness: we say that X is path-connected if
for any x, y ∈ X there exists a path which connects x with y.

Exercise 1.1.3. Show that if X is path-connected then it is connected. Show that
the reverse implication does not always hold.

The following exercise allows us to answer the questions from the previous subsection in
some cases.

Exercise 1.1.4. Let f : X → Y be a continuous map between topological spaces.
Show that if X is connected, respectively path-connected, respectively compact, then
Y also has the respective property.

Thus for example we see that [0, 1] and (0, 1) are not homeomorphic, since the first space
is compact and the second is not, so in fact there are no surjective continuous maps from
[0, 1] to (0, 1). Similarly we see that [0, 1] ∪ [2, 3] is not a retract of [0, 3] since the first
space is not path-connected and the second is.

1.2 Functors

Using only general-topological notions it would be hard to answer the questions such as
whether S1 := {z ∈ C : |z| = 1} is a retract of D := {z ∈ C : |z| ≤ 1}, or whether
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S2 = {x ∈ R3 : ∥x∥ = 1} is homeomorphic with the torus T 2 := S1 × S1.

We need better invariants to answer such questions. A convenient way to talk about
invariants is with the langauge of functors. We introduce them here only informally, and
more formal definitions will not be necessary to follow this course. However, an interested
reader may consult e.g. [?].

We first fix a category, i.e. a collection of objects such as “all topological spaces” or “all
metrisable topological spaces” or “all pairs (X, x) where X is a topological space and
x ∈ X”. Furthermore we fix what kind of morphisms we look at between those objects,
e.g. “all continuous maps”, “all continuous maps which are homeomorphisms”, “Lipschitz-
continuous maps”, etc. Now a functor F is a way to associate to each object X a group
F (X), and to each morphism f : X → Y a homomorphism F (f) : F (X) → F (Y ), in
such a way that F (idX) = idF (X) for any object X and F (s ◦ t) = F (s) ◦ F (t) for all
composable morphisms s, t.

It follows that if f : X → Y is a homeomorphism then F (f) : F (X) → F (Y ) is an
isomorphism, since if gf = idX implies F (g)F (f) = F (gf) = F (idX) = idF (X) and
similarly F (f)F (g) = idF (Y ). This means that functors can be used to show that two
spaces X and Y are not homeomorphic - a necessary condition for X and Y to be
homeomorphic is that the groups F (X) and F (Y ) should be isomorphic.

Functors can be also used to show that A ⊂ X is not a retract of X. Indeed, if we
have for example F (X) = {0} and F (A) ̸= {0} then there is no retraction from X to
A: indeed consider i : A → X to be the embedding and f : X → A to be a retraction,
then F (idA) = idF (A), so F (idA) is not the 0 endomorphism of F (A). However we have
F (idA) = F (f ◦ i) = F (f) ◦ F (i). Since F (i) : F (A) → F (X) = {0} we see that F (i) is
the 0-homomorphism and hence F (idA) is in fact the 0 endomorphism of F (A), which is
a contradiction.

Remark 1.2.1. We could also demand that F (X) is a e.g. a ring, a field, etc. In
this case it is natural to demand that F (f) should be a ring homomorphism, a field
homomorphism, etc. However throughout the majority of this course we will not
need this greater generality.

1.3 Definition of the fundamental group

1.3.1 Homotopy of paths

Given two paths σ, τ : a p
; b in a topological space X, we say they are homotopic to each

other relative to their ends, written σ ≃ τ rel{0, 1}, if we can find a map F : I × I → X

such that for all x ∈ I we have F (x, 0) = σ(x), F (x, 1) = τ(x), F (0, x) = a, F (x, 0) = b.
We express this frequently using the following diagram.
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ba

τ

σ

This diagram represents the domain of F , i.e. I × I, and it shows what F does on the
edges of the square. We say that F is a homotopy between σ and τ

We say that σ : a p
; a is a contractible loop or a homotopically trivial loop if σ ≃ a rel{0, 1}

(note that by our convention we use the letter a here to denote the constant loop at a).

Lemma 1.3.1. Homotopy relative to ends is an equivalence relation, i.e. if we have
σ, τ, ρ : a

p
; b then

(a) σ ≃ σ rel{0, 1}

(b) σ ≃ τ rel{0, 1} =⇒ τ ≃ σ rel{0, 1}

(c) σ ≃ τ rel{0, 1}, τ ≃ ρ rel{0, 1} =⇒ σ ≃ ρ rel{0, 1}

Proof. We leave the first two properties as exercises. We show how to prove the third
property to illustrate how we will use the homotopy diagrams in the proofs in the future.
The fact that σ ≃ τ rel{0, 1} is illustrated by the diagram

ba

τ

σ

The fact that τ ≃ ρ rel{0, 1} is illustrated by the diagram

ba

ρ

τ

As such we can form the diagram



1.3. DEFINITION OF THE FUNDAMENTAL GROUP 7

ba

ρ

τ

σ

ba

which shows that indeed σ ≃ ρ rel{0, 1}, as claimed. In symbols, we have

(a) a map F : I× I → X such that for all x ∈ X we have F (x, 0) = σ(x), F (x, 1) = τ(x),
F (0, x) = a, F (x, 0) = b.

(b) a map G : I× I → X such that for all x ∈ X we have F (x, 0) = τ(x), F (x, 1) = ρ(x),
G(0, x) = a, G(x, 0) = b.

As such we can form a map H̄ : I × [0, 2] → X by setting

H̄(x, y) := F (x, y) when y ≤ 1

H̄(x, y) := G(x, y − 1) when y ≥ 1,

and finally we let H(x, y) := H̄(x, 2y).

1.3.2 Composition of paths

Given σ : a p
; b and τ : b p

; c we can form the concatenation στ : a
p
; c by first following

σ and then τ , i.e. we let στ(x) := σ(2x) for x ≤ 1
2

and στ(x) := τ(2x − 1) for x ≥ 1
2
.

This operation is compatible with homotopies in the following sense.

Lemma 1.3.2. Suppose σ, σ′ : a
p
; b, τ, τ ′ : b p

; c, and suppose also that σ ≃
σ′ rel{0, 1} and τ ≃ τ ′ rel{0, 1}. Then στ ≃ σ′τ ′ rel{0, 1}.

Proof. We have the diagrams

ba

σ

b c

τ ′

τ

σ′

and so we can form the diagram
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ba

σ

σ′

c

τ ′

τ

which witnesses the fact that στ and σ′τ ′ are homotopic relative to their ends.

Now we are ready to define the fundamental group π1(X, x) of a pair (X, x), where X is
a topological space and x ∈ X, as follows: we let π(X, x) to be the set of all equivalence
classes of loops at x in X. The homotopy class of a loop σ will be denoted by [σ].

We define a binary operation on π1(X, x) by setting [σ] · [τ ] := [στ ]. The previous lemma
shows that this binary operation is well-defined on the elements of π1(X, x). We define
the neutral element in π1(X, x) to be the class of the constant loop [x], and the inverse
is defined as [σ]−1 := [σ−1], where σ−1(x) := σ(1− x).

Theorem 1.3.3. π1(X, x) with the operations defined above is a group.

Proof. Let us check for example that [σ] · [σ]−1 = [x]. Checking the other properties is
left as an exercise.

We need to show that σσ−1 ≃ x rel{0, 1}. This is witnessed by the following diagram:

σ σ−1

x

In symbols, we define a homotopy F : I × I → X between σσ−1 and x as follows.

F (s, t) := σ(2s) when 2s ≤ t

:= σ(t) when t ≤ 2s ≤ 2− t,

:= σ−1(2s− 1) when 2− t ≤ 2s.

Remark 1.3.4. Note that the above argument shows that if σ : a p
; b then σ−1σ is

a loop at a which is contractible.
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1.3.3 Change of basepoint

If X is not path-connected then clearly the isomorphism class of π1(X, x) might depend
on the choice of x ∈ X. However when x and y can be connected by a path then we have
the following lemma.

Lemma 1.3.5. Let α : a p
; b. Then we have an isomorphism α∗ : π1(X, a) →

π1(X, b) given by
α∗ : [σ] 7→ [α−1σα].

Proof. The fact that α∗ is well defined, i.e. if σ ≃ σ′ rel{0, 1} then α−1σα ≃ α−1σ′α rel{0, 1},
follows from Lemma 1.3.2. Thus we need to check that α∗ is a group homomorphism,
i.e. α∗([a]) = [b] and α∗([στ ]) = α∗([σ])α∗([τ ]), and that α∗ is a bijection.

The fact that α∗ is a bijection follows from directly checking that (α−1)∗ is the inverse.
Indeed, we have

α∗(α
−1)∗ : [σ] 7→ [αα−1σαα−1].

By Remark 1.3.4 we see that αα−1 is contractible, and so [αα−1σαα−1] = [σ].

Let us check that α∗([a]) = [b]. Indeed α∗([a]) = [α−1aα]. We need to find a homotopy
from α−1aα to b. But it is clear that α−1aα is homotopic to α−1α, so the statement
follows from Remark 1.3.4 again.

Checking the property α∗([στ ]) = α∗([σ])α∗([τ ]) is left as an exercise.

Corollary 1.3.6. If X is path-connected then the isomorphism class of π1(X, x) does
not depend on the choice of x ∈ X

Remark 1.3.7. This corollary allows us to somewhat informally talk about about the
fundamental group π1(X) of X, without referring to a chosen point of X, whenever
X is path-connected.

1.4 Extending π1 to a functor

We are interested in the category whose objects are pairs (X, a), where a ∈ X, since
π1 is well-defined on (X, a). Between two such objects (X, a) and (Y, b) we look at all
continuous maps f : X → Y such that f(a) = f(b).

In order to extend π1 to a functor on this category, we need to define π1(f) as some
homomorphism between the groups π1(X, a) and π1(Y, b). By convention π1(f) will be
usually denoted by f∗.
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For a loop σ in X at a we define f∗([σ]) := [f ◦ σ]. Let us check that f∗ is well defined: if
F : I × I → X is a homotopy between σ and τ then f ◦ F is a homotopy between f ◦ σ
and f ◦ τ , which is exactly what we need.

The fact that f∗ is a group homomorphism boils down to the facts that i) f ◦ consta =

constb and ii) f ◦ (στ) = (f ◦ σ)(f ◦ τ), which is clear by the definition of concatenation.

This finishes the definition of the fundamental group functor.



Lecture 2: Homotopy of maps

Let’s start by generalising the notion of homotopy between paths to homotopies between
arbitrary continuous maps. Whenever we consider a map F : Y × I → X, we denote with
Ft the map Y → X given as Ft(y) := F (y, t).

Definition 2.0.1. Let f, g : Y → X be continuous maps between topological spaces,
and let A ⊂ Y be such that f|A = g|A. We say that f and g are homotopic relative
to A, written f ≃ g relA, if there exists a continuous map F : Y × I → X such that
F0 = f , F1 = g, and for all t we have Ft|A = f|A.

If A = ∅ then we write f ≃ g. The map F is called a homotopy between f and g.

Exercise 2.0.2. Show that f ≃ g relA is an equivalence relation.

Example 2.0.3. Suppose that X, Y = Rn, f(y) = y , g(y) = 0 for all y ∈ Y . By
considering F (x, t) := tx we see that f and g are homotopic to each other.

If for some topological space X we have that idX ≃ constx for some x ∈ X then we say
that X is contractible. Thus the previous example shows that Rn is contractible. More
generally we have the following example.

Example 2.0.4. Any convex subset Y ⊂ Rn is contractible. Indeed, we may fix
y0 ∈ Y and define F by the formula F (y, t) = (1− t)y + ty0. In particular, the unit
disk Dn := {x ∈ Rn : ∥x∥ ≤ 1} is contractible.

If a space X is path-connected and π1(X) = {0} then we say that X is simply connected.

Proposition 2.0.5. If X is contractible then it is simply connected.

Proof. If F : idX ≃ constx0 is a homotopy then for any y ∈ X we can consider the path
σ : y

p
; x given by σ(t) := F (y, t). This shows that X is path-connected.

11
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Arguing about π1(X) requires us to show that any loop at x0 can be contracted to the
constant loop at x0 while keeping the end points fixed. Let us fix a loop σ : I → X at
x0. As the first step, we can consider the map I × I ∋ (s, t) 7→ F (σ(s), t) ∈ X. In
diagrammatic terms this gives us

σ

α α

x0

where α is the loop at x0 given by α(t) := F (x0, t). This is not quite enough because
this homotopy does not fix the end points. However we can consider the following two
diagrams:

α

x0

x0

α α

α

x0

x0

For example the left one represents the mapG : I×I → X defined as follows: G(s, t) := x0
if t ≥ s, G(s, t) := α(1 + t − s) if t < s. Putting all three together gives us an end-
preserving homotopy between the loop α−1σα and the constant loop at x0. This means
that [α−1σα] = [α]−1[σ][α] is the trivial element in π1(X), and hence also [σ] is the trivial
element of π1(X).

The following exercises give us very important equivalent ways of thinking about con-
tractible loops.

Exercise 2.0.6. Let σ be a loop at x ∈ X. Since σ(0) = x = σ(1), we can consider
σ as a map whose domain is S1. Show that σ ≃ x rel{0, 1} if and only if σ can be
extended to a map D2 → X.

Exercise 2.0.7. Let X be a path-connected topological space. Show that the following
conditions are equivalent.

(a) π1(X) = {0} (i.e. X is simply connected).

(b) ∀f : S1 → X, we have that f can be extended to f̄ : D2 → X.

(c) if σ, τ : a p
; b then σ ≃ τ rel{0, 1}
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2.1 Behaviour of the induced map under homotopies

Now we proceed to investigate how does the homomorphism between fundamental groups
induced by a continuous map changes under the homotopy. This is the content of the
following proposition.

Proposition 2.1.1. Let f, g : Y → X, and suppose that F : Y ×I → X is a homotopy
between f and g. Let y0 ∈ Y , let x0 := f(y0), x1 := g(y0) and let α : x0

p
; x1 be the

path α(t) := F (y0, t). Then we we have

g∗ = α∗ ◦ f∗.

Proof. We need to show that for every loop σ in Y there is a homotopy which looks like
this on the edges:

f ◦ σ

α α

g ◦ σ

It is clear that F (σ(s), t) : I × I → X is exactly such a homotopy.

Corollary 2.1.2. (a) If f, g : Y → X are homotopic then f∗ is an isomorphism if
and only if g∗ is an isomorphism.

(b) Let f, g : Y → X, and suppose that F : Y × I → X is a homotopy between f and
g relative to some y0 ∈ Y and let x0 := f(y0). Then we we have

g∗ = f∗.

Definition 2.1.3. (a) A continuous map f : Y → X is a homotopy equivalence if
there exists a continuous map g : X → Y such that fg ≃ idX , gf ≃ idY .

(b) (Originally introduced in Lecture 3, but fits here better) Given A ⊂ X, we say
that A is a deformation retract of X if there exists a continuous map r : X → A

such that r|A = idA and i ◦ r ≃ idX relA, where i : A → X is the natural
embedding. Such a map r is called a deformation retraction.

We note that a deformation retraction is in particular a homotopy equivalence, since we
can take i : A→ X to be natural embedding of A into X, and clearly we have r ◦ i = idA
and i ◦ r ≃ idX relA.
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Corollary 2.1.4. If f : X → Y is a homotopy equivalence then f∗ : π1(X, x) →
π(Y, f(x)) is an isomorphism.

Proof. We have f∗g∗ = (fg)∗ = (idY )∗ = idπ1(Y ) and similarly g∗f∗ = idπ1(X).

Definition 2.1.5. If (X, x0) and (Y, y0) are two topological spaces then we can define
their wedge X ∨Y as the space X ⊔Y/∼, where the equivalence relation ∼ identifies
the point x0 ∈ X with y0 ∈ Y .

If we consider X ∨ Y as a space with a basepoint then typically we choose the point
which arises from identifying x0 with y0.

Example 2.1.6. Let D be a disk (open or closed) in the torus T 2 := S1 × S1. Then
T 2 \D deformation retracts onto S1 ∨ S1. Indeed, the deformation retraction flows
along the vector field in the following figure.

D

(This picture shows the fundamental domain in R2. To obtain R2/Z2 we need to
identify horizontal and vertical edges, respectively.)

2.2 Computation of π1(S1)

In order to compute π1(S1), we identify it with R/Z, and we use the fact that the quotient
map φ : R → R/Z is a group homomorphism which is a homeomorphism when we restrict
it to the interval (−1

2
, 1
2
).

Let ψ : R/Z \ {1
2
+ Z} → (−1

2
, 1
2
) be the inverse to φ, so that φψ(x) = x for all x ∈

R/Z \ {1
2
+ Z}.

We start with the following lemma.
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Lemma 2.2.1 (“Path lifting property”). Let σ : 0 p
; a be a path in R/Z. Then there

exists a unique path σ̄ in R which starts at 0 and such that φ ◦ σ̄ = σ.

Proof. We have σ : I → R/Z. Since I is compact, the function σ is uniformly continuous,
and so we can find ε > 0 such that |y − y′| < ε implies |σ(y)− σ(y′)| < 1

2
. Thus for such

y, y′ we can consider ψ(σ(y)− σ(y′)).

Now let N be such that 1
N
< ε. We define

σ̄(y) := 0 + ψ

(
σ(

1

N
y)− σ(0)

)
+ ψ

(
σ(

2

N
y)− σ(

1

N
y)

)
+ . . .+ ψ

(
σ(y)− σ(

N − 1

N
y)

)

It is clear that σ̄ is continuous, σ̄(0) = 0, and φσ̄ = σ. The uniqueness of σ̄ can be
argued as follows: if τ̄ : I → R is another path with the same properties then σ̄ − τ̄ is a
continuous map I → R whose image lies in ker(φ) = Z. Since σ̄ − τ̄ is continuous, we
see that its image contains just a single point and therefore this point is σ̄(0)− τ̄(0) = 0.
But this means that σ̄ − τ̄ = 0, so σ̄ = τ̄ .

We also need the following lemma.

Lemma 2.2.2 (“Homotopy lifting property”). Let a ∈ R/Z and let σ, τ : 0 p
; a. Let

σ̄, τ̄ be the paths in R given by the previous lemma. Suppose that F : σ ≃ τ rel{0, 1} is
a homotopy between σ and τ . Then there exists a unique homotopy F̄ : σ̄ ≃ τ̄ rel{0, 1}
such that φ ◦ F̄ = F .

Proof. The proof is very similar to the proof of the previous lemma. We have that
F : I × I → R/Z is uniformly continuous, so we can find ε > 0 such that if |y − y′| < ε

then F (y) − F (y′) < 1. We let N be such that Nε >
√
2 (since the distance between y

and y′ in I × I is bounded by
√
2). We define

F̄ (y) := 0+ψ

(
F (

1

N
y)− F (0)

)
+ψ

(
F (

2

N
y)− F (

1

N
y)

)
+. . .+ψ

(
F (y)− F (

N − 1

N
y)

)
.

It is clear that F̄ is continuous, F̄ (0, 0) = 0, and φF̄ = F . Uniqueness of F̄ with
such properties follows as in the previous proof. Let us finally check that F̄ indeed is a
homotopy between σ̄ and τ̄ , i.e. it can be described by the diagram

0 ā

τ̄

σ̄
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where ā is some point in R such that φ(ā) = a.

The fact that the bottom edge is as claimed follows from the uniqueness part of the
previous lemma. The fact that the vertical edges are constant follows by noting that
φF̄ = F , and the edges in the diagram describing F are constant. This is indeed enough,
since the preimage of a single point under φ is a discrete set and F̄ is continuous. Now in
particular we know that the top-left corner is mapped to 0, and hence the fact that the
top edge is as claimed follows again from the uniqueness part of the previous lemma.

With the previous two lemmas established, we are ready to prove the following theo-
rem.

Theorem 2.2.3. We have π1(S1) ∼= Z. The isomorphism sends [σ] to the endpoint
of σ̄.

Proof. Let us denote the map which sends [σ] to σ̄(1) by χ. By the homotopy lifting
property we have that χ is well-defined. It is clear that the class of the constant loop is
sent to 0, thus we only need to check that

χ([σ]) + χ([τ ]) = χ([στ ]).

Let us denote χ([σ]) = σ̄(1) by m and χ([τ ]) = τ̄(1) by n. Consider the path τ̄ ′ : I → R
defined as τ̄ ′(t) := m + τ(t), and we note that σ̄τ̄ ′ is a lift of στ . Therefore we deduce
that χ([στ ]) = σ̄τ̄ ′(1), which is clearly equal to m+ n. This finishes the proof.

In a very similar fashion we can prove the following more general theorem.

Theorem 2.2.4. Let G be a simply connected topological group and let H � G be
a normal discrete subgroup (i.e. for some open set U ⊂ G we have U ∩ H = {e}.).
Then π1(G/H) ∼= H

Proof. Left as an exercise.

This allows us to deduce for example that π1(S1×S1) ∼= Z2, since S1×S1 is homeomorphic
to R2/Z2. However, this particular result can be also deduced from the following theorem.

Theorem 2.2.5. Let X, Y be topological spaces and let x ∈ X, y ∈ Y . Then we
have an isomorphism

π1(X, x)× π1(Y, y) → π1(X × Y, (x, y))

given as follows: the pair ([σ], [τ ]) is sent to the class of the path (σ, τ).

Proof. Left as an exercise.
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Example 2.2.6. (a) We can now show that S1 is not a retract of D2. Indeed if
there was a retraction r : D2 → S1 then the composition S1 → D2 r−→ S1 would
be the identity map. However the induced map on the fundamental groups is
the 0 map, since it factors through π1(D2) = {0}.

(b) Using the previous example we can show the Brauer fixed point theorem in di-
mension 2, i.e. show that if f : D2 → D2 is a continuous map then for some
x ∈ D2 we have f(x) = x. Indeed if f is a map without fixed points then we
define a new map r : D2 → S1 as follows: we let r(x) to be the point on S1 = ∂D2

which lies on the infinite ray starting from f(x) and passing through x. Since
f is assumed not to have any fixed points, we deduce that r is well-defined.
It is straightforward to check that r is a retraction from D2 to S1, which is a
contradiction.



Lectures 3-4: Van Kampen’s theorem

3.1 Baby case for simply-connected spaces

Let us start with the following proposition, which is a special case of van Kampen’s
theorem.

Proposition 3.1.1. Suppose that X = U ∪ V , where both U and V are simply
connected open sets, and U ∩V is a non-empty path-connected set. Then X is simply
connected.

Proof. Let us fix a base point x ∈ U ∩ V . First let us argue about path-connectedness,
so let u ∈ U and v ∈ V . Then there exists σ : u p

; x and τ : x p
; v, and so στ : u p

; v.

Now let us show that π1(X) = {[x]}. Let us fix a loop σ : I → X with σ(0) = σ(1) = x.
Clearly it is enough to show that σ is homotopic to a product of loops, each of which is
entirely contained either in U or in V . For this we start by expressing σ as a product of
paths, each of which is in either U or V , as follows.

Consider the covering of I by the open sets σ−1(U) and σ−1(V ). Since both these sets
are open we can express them as unions of relatively open intervals. Since I is compact
we deduce that there exist finitely many relatively open intervals I1, I2, . . . , In ⊂ I such
that I =

⋃
Ij and for each j we have either σ(Ij) ⊂ U or σ(Ij) ⊂ V . For each two

of those intervals which intersect, let us choose a point in the intersection, and let us
order those points. If necessary, let us add 0 and 1 to these points, to obtain a sequence
0 = x0 < x1 < . . . < xm = 1.

It is clear by construction that for each j < m we have that σ restricted to [xj, xj+1] is a
path which is entirely contained either in U or in V . Let us call this path σj.

Now for each j < m let us fix a path τj : xj
p
; x. By Remark 1.3.4, the loop σ =

σ0σ1 . . . σm−1 is homotopic to the loop

σ0τ1τ
−1
1 σ1τ2τ

−1
2 . . . σm−2τm−1τ

−1
m−1σm−1.

Now we can write
[σ] = [σ0τ1][τ

−1
1 σ1τ2] . . . [τ

−1
m−1σm−1],

18
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which finishes the proof.

Example 3.1.2. For n ≥ 2 we have π(Sn) = {0}. Indeed let p, q ∈ Sn be the north
and south poles, respectively. Then we have Sn = U ∪ V , where U = Sn \ {p} and
V = Sn \ {q}. Now U and V are contractible, hence simply connected, and their
intersection is path connected (it deformation retracts to Sn−1). As such we can use
the previous proposition to deduce that π(Sn) = {0}.

3.2 Some group theoretic constructions

3.2.1 Free groups

In order to present the general version of van Kampen’s theorem, we need to introduce
some group theoretic constructions. Let us start with the free groups. The free group F2

on two symbols a and b is defined as follows. As a set, we consider F2 to consist of all
reduced words in the four letters a, a−1, b, b−1, where a given word is reduced if it does
not contain a substring of the form aa−1, bb−1, b−1b, a−1a. The neutral element is defined
to be the empty string. The inverse is defined by

(s1 . . . sk)
−1 := s−1

k s−1
k−1 . . . s

−1
1 (3.1)

The binary operation is defined as follows: given ω1, ω2 ∈ F2 we define ω1 · ω2 by first
concatenating these two words, and then reducing them (i.e. successively removing all
occurrences of aa−1, bb−1, b−1b, a−1a). We note that here there is only one possibel order
of applying the reductions, and so this binary operation is well-defined.

Lemma 3.2.1. The above definition makes F2 into a group.

Proof. Let e denote the empty string. The fact that w · e = e · w = w for every w ∈ F2

is clear. Similarly it is clear that w · w−1 = e. The only non-trivial part is to check
associativity. Associativity clearly follows from the following claim: if we start from an
unreduced word w, there is a unique reduced word w̄ such that if we start reducing w
then we arrive at w̄. (In other words, “the order of reductions does not matter”.)

In order to check this claim we consider the rooted 4-regular tree T with oriented edges
labelled by the symbols a and b, such that at each vertex we have exactly one incoming
edge a, one outgoing edge a, one incoming edge b and one outgoing edge b. Let us denote
the root vertex of T with e.

Now every word in the letters a, a−1, b, b−1 can be traced on T starting from e in the
obvious way. We note that reduced words are exactly those such that the traced path
is a geodesic path, i.e. a path of the shortest possible length. Furthermore we note that
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reducing a given word corresponds to shortening the traced path, without altering its
endpoints. As such, the desired claim follows from the fact that T has unique geodesics,
i.e. any two vertices can be joined by a unique geodesic path.

Similarly we can define the free group on an arbitrary (finite or infinite) set of symbols.

3.2.2 Free products

Suppose that A and B are two groups. Then the free product A∗B of A and B is defined
as follows. As a set, we define A ∗ B as the set of all reduced words in the alphabet
(A \ {eA}) ⊔ (B \ {eB}). In this case we say that a word is reduced if for every two
consecutive letters s1, s2, we have that either s1 ∈ A, s2 ∈ B or s2 ∈ B, s1 ∈ A. We
define the neutral element to be the empty string, and the inverses are defined by the
formula (3.1). The binary operation is defined as follows: given ω1 and ω2 we define
ω1 · ω2 by first concatenating these two words, and then reducing them.

Lemma 3.2.2. The above definition makes A ∗B into a group.

Proof. As before, the nontrivial part of the proof is to check associativity, which again
boils down to checking that the order of reductions does not matter. Let KA and KB be
the complete graphs with vertex sets A and B, respectively. We consider them rooted
with the respective neutral elements as the root vertices. Let us build inductively a
sequence of graphs G0, G1, . . ., with V (Gi) ⊂ V (Gi+1). The elements of V (Gi) \ V (Gi−1)

will be called “stage i vertices”. We set G0 = KA, and to construct G1 we attach a copy of
KB at every vertex G0. To construct G2 we attach a copy of KB at every vertex of stage
1, to construct G3 we attach a copy of KA at every vertex of stage 2, and we continue
inductively. We define G as the union of all these graphs.

Now G has all the properties of T from the previous proof: the words in the alphabet
(A \ eA)⊔ (B \ eB) can be traced on G starting at its root, and reduced words are exactly
those such that the traced path is a geodesic path. Furthermore we note that reducing a
given word corresponds to shortening the traced path, without altering its endpoints. As
such the desired claim follows from the fact that the graph G has unique geodesics.

Remark 3.2.3. It is clear that there is a natural isomorphism between the free
group F2 defined in the previous subsection and the free product Z ∗Z, and we often
consider these two groups as the same.

3.2.3 Amalgamated free products

Suppose now that A,B,C are groups and α : C → A, β : C → B are group homomor-
phisms. Then we define the amalgamated free product A ∗C B as the quotient of A ∗ B



3.2. SOME GROUP THEORETIC CONSTRUCTIONS 21

by the normal subgroup generated by the reduced words α(c)β(c−1), c ∈ C \ {eC}. We
note that the notation A ∗C B is ambiguous, since the construction depends on α and β
in the crucial way, nevertheless in all cases it will be clear what α and β to take.

Example 3.2.4. (a) For any group G we have G ∗0 0 ∼= G.

(b) For any group G and a subgroup H we have G ∗H 0 ∼= G/ ⟨⟨H ⟩⟩. This shows
that in general the maps A → A ∗C B and B → A ∗C B are not injections.
However, if both α : C → A and β : C → B are injections then A→ A ∗C B and
B → A ∗C B are injections - this can be shown by constructing a graph similar
to the graph used in the proof of Lemma 3.2.2.

Shortly we will express fundamental groups of surfaces as certain amalgamated free prod-
ucts. Another interesting example, which we however don’t have time to analyse, is the
group SL(2,Z) which is isomorphic to the amalgamated product Z/4 ∗Z/2 Z/6.

3.2.4 Presentations

When dealing with amalgams (i.e. amalgamated free products), and in many other
situations, it is convenient to use the following notation. A presentation is an expression
of the form

⟨g1, g2, . . . | r1, r2, . . .⟩,
where ri are words in the letters g1, g−1

1 , g2, g
−1
2 , . . .. We say that a presentation is finite

if there are only finitely many gi’s and finitely many ri’s. Given a presentation, we
associate to it the group defined as the quotient of the free group on g1, g2, . . . by the
normal subgroup generated by the elements r1, r2, . . ..

Remark 3.2.5. (a) LetG be the group given by a presentation ⟨g1, g2, . . . | r1, r2, . . .⟩.
Suppose that H is another group generated by elements h1, h2, . . ., and suppose
the words s1, s2, . . . ,which arise from r1, r2, . . . by replacing gi’s with hi’s, are all
equal to eH in H. Then there exists a unique surjective homomorphism G→ H

which sends gi to hi for all i.

(b) Similarly suppose that G = A ∗C B, where α : C → A, β : C → B and suppose
that φ : A→ H, ψ : B → H are group homomorphisms such that φ ◦ α = ψ ◦ β.
Then there exists a unique homomorphism ζ : G→ H such that ζ ◦ α and ζ ◦ β
extend φ ◦ α and ψ ◦ β respectively.

Example 3.2.6. ⟨a, b | [a, b]⟩, where [a, b] := aba−1b−1, is a presentation of Z2. We
have a homomorphism

φ : F2 → Z2

which sends a and b to the standard generators of Z2. We have ⟨⟨[a, b] ⟩⟩ ⊂ kerφ,
and we only need to check that ker(φ) = ⟨⟨[a, b] ⟩⟩. Let us assume that for some
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w ∈ F2 we have φ(w) = (0, 0). We can move all the b’s to the front in w, at the cost
of introducing some commutators. For example

abab = abba[a−1, b−1] = bba[a−1, b−1]2a[a−1, b−1].

Now we can move all the a’s to the front using conjugation relation wa = awa, where
wa := a−1wa. Thus for example the above word is equal to

bbaa[a−1, b−1]a[a−1, b−1]a[a−1, b−1].

After these operations we get a word with some bkal at the front followed by a
product of conjugates of [a±1, b±1]±1. Let us argue that all elements of the form
[a±1, b±1]±1 are in ⟨⟨[a, b] ⟩⟩. Indeed, in the quotient group F2/ ⟨⟨[a, b] ⟩⟩ the images
of a and b commute, and so also images of as and bt commute for any s, t ∈ Z. Thus
[ak, bl]±1 ∈ ⟨⟨[a, b] ⟩⟩. This shows that if w ∈ ker(φ) then it is in ⟨⟨[a, b] ⟩⟩, which
shows that φ is indeed injective.

3.3 Van Kampen’s theorem

We are now ready to state and prove van Kampen’s theorem.

Theorem 3.3.1. Suppose that X = U ∪ V , where both U and V are path-connected
open sets, and U ∩ V is a non-empty path-connected set. Then π1(X) is isomorphic
to

π1(U) ∗π1(U∩V ) π1(V )

Proof. Let us fix a base point x ∈ U ∩ V . We have the map φ : π1(U) ∗π1(U∩V ) π1(V ) →
π1(X) given by defining φ([σ1][σ2] . . . [σk]) to be the class of the loop σ1σ2 . . . σk. The fact
that φ is well-defined follows directly from Remark 3.2.5. The fact that φ is surjective is
shown just like in the proof of Proposition 3.1.1.

The most interesting part of this proof is to show that φ is injective. Let us assume that
[σ1][σ2] . . . [σk] ∈ kerφ, where each σi is either a loop entirely in U or entirely in V . Our
aim is to show that [σ1][σ2] . . . [σk] is the trivial element of the group π1(U)∗π1(U∩V )π1(V ).
By assumption we know that σ := σ1σ2 . . . σk is homotopic to the constant loop at x.
Thus let F : I × I → X be a homotopy between σ and constx.

We start by finding a division of I × I into a rectangular grid such that each rectangle is
mapped entirely to U or entirely to V , e.g.
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U V

V

UV

U

U

U

V

x

xx

σ

This can be done as in the proof Proposition 3.1.1: we consider the covering of I×I by the
two open sets F−1(U) and F−1(V ), then we refine this partition so that it consists entirely
of open squares whose edges are parallel to the edges of I × I, and we use compactness
to choose finitely many open squares. It is a simple exercise to show that we can pass
to slightly smaller closed squares whose union is still I × I. Now to obtain the desired
rectangular grid we take all vertical and horizontal lines which contain an edge belonging
to one of these finitely many closed squares.

After subdividing further, we may assume that the end-points corresponding to each σi
are vertices of the grid, e.g.

U V

V

UV

U

U

U

V

x

xx

σ1 σ2

In the second step, we modify F so that each vertex is mapped to x, making sure that
after the modification the top and side edges are as before. Furthermore we want to assure
that the bottom edge of I × I is a concatanation of some loops σ′

1σ
′
2 . . . σ

′
l each of which

is in either in U or V and such that we have the equality [σ1][σ2] . . . [σk] = [σ′
1][σ

′
2] . . . [σ

′
l]

in π1(U) ∗π1(U∩V ) π1(V ).

We first focus on the internal vertices, and then discuss the vertices at the bottom edge.
Suppose that some internal vertex v ∈ I × I is mapped to y. Let us fix a path α : x p

; y,
and we may assume that if y ∈ U ∩ V then α is a path in U ∩ V . Let us take R > 0

such that the closed ball B̄(v,R) does not contain any vertices other than v. Let us
fix a homeomorphism h : B̄(v,R) \ B̄(v,R/2) → B̄(v,R) \ {v} which is identity on the
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boundary of B̄(v,R). Now we define a homotopy F ′ as follows.

F ′(z) := F (z) when z /∈ B̄(v,R)

:= F ◦ h(z) when z ∈ B̄(v,R) \ B̄(v,R/2)

:= α

(
2∥z − v∥

R

)
when z ∈ B̄(v,R/2)

The described operation is schematically depicted on the following figure:

αα

The vertex in the middle is the vertex v. Outside of the red circle we do not modify F at
all. Between the red and the green circle we have “compressed F ”, and this compression
gives us the freedom inside the green circle to radially use the path α, so that the vertex
v gets mapped to x.

Of course this operation does not change anything on the boundary of I × I, as long as
we change only internal vertices.

Now we apply the same operation to the vertices at the bottom edge (the formulas for
F ′ are the same). Let us consider how it changes the σi’s: we replace each σi by a loop
of the form τ1α

−1
1 α1τ2α2−1α2 . . . τm. By construction, if σi is a loop in, say, U , then

also τiα−1
i and αiτi+1 are loops which lie entirely in U . Thus in π1(U) the element [σi]

is equal to the product [τ1α
−1
1 ][α1τ2] . . . [αm−1τm]. As such we deduce the following: if

we denote with σ′
1, σ

′
2, . . . , σ

′
l the loops given by the restriction of F ′ to the intervals

between consecutive vertices of the bottom edge, then the elements [σ1][σ2] . . . [σk] and
[σ′

1][σ
′
2] . . . [σ

′
l] are equal in π1(U) ∗π1(U∩V ) π1(V ). (The argument shows that they are in

fact equal in π1(U) ∗ π1(V ).)

Thus without loss of generality we may assume that every edge of the grid represents a
loop at x, and that σi’s go between consecutive vertices of the bottom edge, like so:
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U V

V

UV

U

U

U

V

x

xx

σ1 σ2 σ3

The final step of the proof consists of proving the following statement: consider any path
from the bottom left corner to the top right corner which goes along the edges of the
grid, always either up or to the right, e.g. the red path here:

U V

V

UV

U

U

U

V

x

xx

σ1 σ2 σ3

Let the loops at the edges of this path be τ1, τ2, . . . , τm. We would like to show that

[σ1][σ2] . . . [σk] = [τ1][τ2] . . . [τm].

in π1(U) ∗π1(U∩V ) π1(V ). This is enough to finish the proof since following the bottom
and right edge gives the element [σ1][σ2] . . . [σk][x] . . . [x] = [σ1][σ2] . . . [σk] (equality in
π1(U) ∗π1(U∩V ) π1(V )) and following the left edge and the top edge gives the element
[x] . . . [x] = [x].

We prove the statement by induction on the number of rectangles under the path. The
case 0 is the path
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U V

V

UV

U

U

U

V

x

xx

σ1 σ2 σ3

The corresponding word is [σ1][σ2] . . . [σk][x][x] . . . [x], so the statement is true. For the
inductive statement we only need to “pass one square”, for example we assume that we
know the statement for the red path, and we need to prove it for the green path:

U V

V

UV

U

U

U

V

x

xx

σ1 σ2 σ3

Let us assume that the word read from the red path is [τ1] . . . [τl]. We note that if the
square we are passing is for example in U , then in the inductive step we replace [τi][τi+1]

with [τ ′i ][τ
′
i+1], such that [τi][τi+1] = [τ ′i ][τ

′
i+1] in π1(U), by Exercise 2.0.7. This shows that

[τ1] . . . [τi][τi+1] . . . [τl] = [τ1] . . . [τ
′
i ][τ

′
i+1] . . . [τl]

in π1(U)∗π1(U∩V )π1(V ), which finishes the proof. (We remark that the need to amalgamate
over π1(U ∩ V ) stems from the following fact: given an edge of the grid which lies in both
U and V in one step of the induction it can be considered as an element of π1(U) and in
another as an element of π1(V ).)

Exercise 3.3.2. Modify the proof of van Kampen’s theorem to show the following
more general version: Suppose that X =

⋃
i∈I Ui is path-connected, and Ui are path-

connected open sets, such that intersection of any two of them and any three of them
is path-connected. Then π1(X) is the quotient of the free product ∗i∈I π1(Ui) by the
normal subgroup generated by all the words of the form s∗(c)t∗(c

−1), where for some
k, l ∈ I we have c ∈ π1(Uk ∩ Ul), and s : Uk ∩ Ul → Uk, t : Uk ∩ Ul → Ul are the
inclusions.
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(Hint: the main modification which needs to be done concerns the choice of the paths
α connecting vertices to the base point. The assumption of the theorem is that triple
intersections of open sets are path-connected, but in the proof as presented above a
single vertex might typically lie in 4 distinct open sets. As such the rectangles in
the proof should be defined in such a way that every iinternal vertex lies in only 3
rectangles instead of 4.)



Lecture 5: Examples for van Kampen’s
theorem, cell complexes

4.1 Abelianisation

In order to distinguish spaces using fundamental groups it is convenient to introduce one
more group-theoretic construction. If G is a group then we let [G,G] be the commutator
subgroup, i.e. the subgroup generated by all the elements of the form [g, h], g, h ∈ G.

Exercise 4.1.1. Show that [G,G] is a normal subgroup.

We let Gab := G/[G,G] be the abelianisation of G. It is the “largest” abelian group onto
which G surjects, which the following exercise makes precise.

Exercise 4.1.2. Show that if A is an abelian group and φ : G → A is a homomor-
phism then there exists a unique ψ : Gab → A such that φ is equal to the composition
G→ Gab ψ−→ A, where G→ Gab is the standard quotient map.

Example 4.1.3. It follows from Example 3.2.6 that F ab
2

∼= Z2. More generally, we
have (∗i∈I Z)ab ∼= ⊕i∈IZ

Exercise 4.1.4. Let G be a group generated by some set S of elements of G. Show
that [G,G] is equal to the normal group generated by all the elements of the form
[s, t] where s, t ∈ S. Deduce that if ⟨g1, g2, . . . |r1, r2, . . .⟩ is a presentation of a group
G then Gab has a presentation ⟨g1, g2, . . . |r1, r2, . . . , [gi, gj], i, j = 1, 2, . . .⟩

Exercise 4.1.5. Suppose that a group G has a presentation ⟨g1, . . . gk|r1, r2, . . .⟩, such
that for all i we have ri ∈ [G,G]. Then Gab is isomorphic to Zk and the natural map
G→ Gab maps gi’s to the generators.

28
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4.2 Ad-hoc examples

The fundamental groups of most of the spaces which we will encouter in this course can
be computed using van Kampen’s theorem. Let’s start with some explicit examples.

Example 4.2.1. (a) Suppose X and Y are topological spaces with base points x, y
such that some neighbourhood of x and some neighbourhood of y are contractible.
Then π1(X ∨Y, (x, y)) ∼= π(X, x)∗π1(Y, y). Indeed, we can write X ∨Y = U ∪V
where U is the union of X together with a contractible neighbourhood of y ∈ Y ,
and similarly V is the union of Y and a contractible neighbourhood of x ∈ X. It
is left as an exercise to check that U and V are homotopy equivalent to X and
Y respectively, and U ∩ V is contractible. With this in mind the claim follows.

(b) A particular case of the previous example is π1(S1∨S1) ∼= Z∗Z. Similar argument
shows that π1(

∨
i∈I S1) ∼= ∗i∈I Z.

Example 4.2.2. We can compute π1(S1 × S1) again, using van Kampen’s theorem
this time. Consider the contractible loops σ and τ at the basepoint as in the following
figure:

σ

τ

b b

a

a

We let U be everything inside the loop σ, and V be everything outside the loop τ .
Then U is contractible, V deformation retracts onto S1 ∨ S1, and U ∩ V deformation
retracts onto the loop σ. Thus in order to use van Kampen’s theorem we need to
understand the map φ : Z ∼= π1(U ∩ V ) → π1(V ) induced by the inclusion U ∩ V ⊂
V . Clearly the loop σ is homotopic to the loop aba−1b−1, and so φ maps [σ] to
[aba−1b−1] ∈ π1(S1 ∨ S1). Thus van Kampen’s theorem shows that π1(S1 × S1)
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is isomorphic to ⟨a, b | [a, b]⟩. We have seen in Example 3.2.6 that this group is
isomorphic to Z2.

Example 4.2.3. In a similar fashion we can compute π1(M2), where M2 is the
surface of genus 2:

We can cut it into two parts along the loop σ to obtain the pieces U ′ and V ′, each of
which can be deformation retracted into S1 ∗S1. We enlarge U ′ and V ′ slightly to get
open sets U and V in M2, such that the intersection U ∩V deformation retracts onto
σ. If we denote the generators of π1(U) by a, b and the generators of π1(V ) by c, d

then we see that [σ] ∈ π1(U ∩V ) is mapped to [a, b] and to [c, d] under the respective
inclusions. It follows that the presentation of π1(M2) is ⟨a, b, c, d | [a, b] = [c, d]⟩,
which is isomorphic to

⟨a, b, c, d | [a, b][c, d]⟩.

By Exercise 4.1.5, we see that π1(M2)
ab ∼= Z4, which shows that M2 is not homotopy

equivalent to M1 = S1 × S1 (in particular M2 is not homeomorphic to M1). Further-
more, we can show that the loop σ is not a retract of M2. Indeed, we have [σ] = [a, b]

in π1(M2), so the composition π1(σ) → π1(M2) → π1(σ) cannot be equal to identity,
since the second map sends all commutators to 0.

4.3 Knots and links

A link is an embedding of disjoint circles in the 3-dimensional Euclidean space. Two links
L1 and L2 are equivalent if there exists a homeomorphism h : R3 → R3 such that h(L1) =

h(L2). As such we see that if L1 and L2 are equivalent then π1(R3 \ L1) ∼= π1(R3 \ L2).
Thus the fundamental group of the complement of a link has a potential to be used to
distinguish non-equivalent links.

Remark 4.3.1. Frequently a stronger definition is used: h should be homotopic
to identity map on R3 through a homotopy Ht such that for all t we ahve that Ht

is a homeomoprhism (h is isotopic to the identity. This corresponds definition of
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equivalence corresponds better to the notion of transforming one knot to another via
a continuous movement.

Example 4.3.2. Let U be an unknot (i.e. S1 embedded in R3 in the unknotted
fashion). Let us show that R3 \ U is homotopy equivalent to S2 ∨ S1. First we show
that R3 \ U deformation retracts onto S2 ∪ D, where D is a fixed diameter of S2

which goes through U . We describe the deformation retraction by describing the
vector field on R3 \ U along which the retraction should flow. Consider any plane P
which contains D. The vector field on P should be as follows:

In this figure, S2 ∩ P is in red, D = D ∩ P is in green, and the two blue points are
U ∩ P .

Thus it remains to show that S2 ∪D is homotopy equivalent to S2 ∨ S1, which is left
as an exercise.

Example 4.3.3. The unlink L consists of two unknots which can be separated by a
plane:
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We can deformation retract Lc to a space homomorphic to U c
1 ∨ U c

2 , were U1 and U2

are two unknots. As such, van Kampent’s theorem implies now that π1(Lc) ∼= F2.

Example 4.3.4. On the other hand, if we take the simplest nontrivial link K (which
is called the Hopf link) we can deformation retract Kc to S2 ∨ T 2, as follows.

(a) We consider K which consists of the red and blue blue circles below , and the
torus T 2 which separates them. We see it inside a ball whose boundary touches
T 2 in a single point.

It follows that π2(Kc) ∼= Z2.

(b) In the first step we deformation retract the inside of the torus minus the blue
circle, onto the surface of the torus, as shows in the foolowing figure
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(c) Now we consider the outside of the torus, and we separately consider the upper
half ball and the lower half ball. In this step we also consider the plane which
cuts the ball in half, as in the figure below.

We note that the upper part is homemorphic to the ball without a diameter,
which in turn can be deformation retracted onto its boundary:
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(d) In the final step we deformation retract the parts of the plane which we added
in the previous step, as follows.

Exercise 4.3.5. (a) Show that the 3-dimensional ball is a union of two solid tori
glued along the boundary.

(b) Compute π1(Trefoil knot), where trefoil knot is show in the following figure:
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. Hint: the first step is to draw the trefoil knot on the torus, as follows:

The second step is to used the previous part. For more hints see Example 1.24
in Hatcher’s book.

4.4 Cell complexes

Definition 4.4.1. A finite-dimensional cell complex C is given by a sequence of
sets C0, C1, C2, . . . , Cd, and for every c ∈ Ci, i = 1, . . . , n, we have a “gluing map”
γc : Si−1 = ∂Di → Xi−1, where Xi, the i-dimensional skeleton, is defined as follows.
We let X0 := C0 with the discrete topology, and for i > 0 we let

Xi =

(
Xi−1 ⊔

⊔
c∈Ci

Di
c

)
/∼,
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where the relation ∼ is the smallest equivalence relation which identifies x ∈ ∂Di
c

with γc(x) ∈ Xi−1.

The number d is called the dimension of the cell complex. The elements of C0 are
called vertices, the elements of C1 are called edges, and in general the elements of Ci
are called i-dimensional faces. The same names can be applied to the images of the
corresponding disks Di in Xd.

Remark 4.4.2. (a) We frequently informally consider C to be the space Xd, forget-
ting about the cell structure. Given a topological space X, we may ask whether
it admits a cell structure, which means finding a cell complex C homeomorphic
with X.

(b) We can also consider infinite-dimensional cell complexes. By construction X0 ⊂
X1 ⊂ X2 ⊂ and so such a complex is a union of finite dimensional cell complexes.

Example 4.4.3. (a) The standard cell structure of S1 × S1 is as follows: we let
C0 = {p}, C1{a, b}, C2 = {f}, The gluing maps γa, γb : S0 → X0 are the only
ones possible, i.e. they send both points of S0 to p. Thus X1 is the wedge of two
circles which we label with a and b. The gluing map γf : S1 → X1 is given by
the loop aba−1b−1.

(b) Finding a small cell structure is sometimes challanging. For example, we chow in
the previous section that the complement of the Hopf link is homotopy equivalent
to S2 ∨ T 2, and so we need one vertex, two edges, and two two cells.

Usually we only care about specifying the gluing maps up to homotopy, because of the
following lemma.

Lemma 4.4.4. Suppose X is a cell complex and suppose δ, γ : Sn−1 → X are ho-
motopic. Let ∼γ and ∼δ be the equivalence relations on X ⊔ Dn which identify
x ∈ Sn−1 = ∂Dn with δ(x) ∈ X and γ(x) ∈ X, respectively. Then the spaces
(X ⊔Dn)/∼δ and (X ⊔Dn)/∼γ are homotopy equivalent.

Proof. Let D := Dn, let E ⊂ D be the closed disk of radius 1
2
, and let F be the closure

of D \ E. Let us consider F as S1 × [0, 1].

Let Gt be a homotopy between δ and γ. We consider the map

f : (X ⊔Dn)/∼δ → (X ⊔Dn)/∼γ

defined as follows:

(a) For x ∈ E inside (X ⊔Dn)/∼δ we map x to 2x ∈ D inside (X ⊔Dn)/∼δ
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(b) for (x, t) ∈ S1 × [0, 1] inside (X ⊔ Dn)/∼δ we map (x, t) to Ft(x) ∈ X inside
(X ⊔Dn)/∼γ

(c) for x ∈ X inside (X ⊔Dn)/∼δ we map it to x ∈ X inside (X ⊔Dn)/∼γ

We leave it as an exercise to check that f is continuous.

We have a similarly defined map

g : (X ⊔Dn)/∼γ → (X ⊔Dn)/∼δ

and we leave it as an exercise to check that fg is homotopic to the identity.



Lecture 6: More about cell complexes,
more examples

5.1 Some standard construction of spaces

Let f : Y → X be a a continuous map between topological spaces.

(a) The mapping cylinder Cyl(f) of f is the space

X ⊔ Y × [0, 1]/ ∼

where the relation ∼ identifies (y, 0) with f(y) for every y ∈ Y .

(b) The mapping cone C(f) of f is the space

X ⊔ Y × [0, 1]/ ∼

where the relation ∼ identifies (y, 0) with f(y) for every y ∈ Y and (y1, 1) with (y2, 1)

for all y1, y2 ∈ Y .

(c) If f : X → X we can also consider the mapping torus M(f) of f defined as

X × [0, 1]/ ∼

where the relation ∼ identifies (x, 1) with (f(x), 0) for all x ∈ X.

Proposition 5.1.1. Let f : Y → X, let us fix a basepoint x0 ∈ X, and let y0 :=

f(x0).

(a) We have that Cyl(f) is homotopy equivalent to X (in fact Cyl(f) deformation
retracts onto the copy of X in Cyl(f))).

(b) C(idX) is contractible (more generally C(f) is contractible if f is a homeomor-
phism)

(c) We have
π1(C(f), y0) ∼= π(X, x0)/N,

38
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where N is the normal subgroup generated by the image of π1(Y ).

(d) Let us assume that Y = X, and furthermore let us assume that f is equal to
identity on some contractible neighbourhood U of x. Then we have

π1(M(f)) ∼= ⟨π1(X), α|αgα−1 = f∗(g)⟩,

where α is represented by the loop t 7→ (x0, t)

Proof. (a) The deformation retraction R : Cyl(f) × I → X sends (y, s) ∈ Y × [0, 1] at
time t to (y, (1− t)s) and x ∈ X to x.

(b) If f is a homeomorphism, we can deformation retract C(f) to the top of the cone,
by setting r : C(f)× I → C(f) as r((x, s), t) := (x, 1− (1− t)s)

(c) This follows by considering the open cover A,B of C(f), where A is the union of X
and the image of Y × [0, 1

2
), and B is the image of Y × (1

4
, 1]. It follows from the

previous item that B is contractible. We also see that A∩B deformation retracts to
a copy of Y , so van Kampen’s theorem shows that

π1(C(f)) ∼= π1(X) ∗π1(Y ) {0},

which is easilly seen to be isomorphic to the claimed group.

(d) We take the open cover A,B of M(f) defined as follows: A is the image of X× (0, 1)

and B is the union of the images of X× [0, 1
2
)∪X×(1

2
, 1] and U× [0, 1]. We note that

A deformation retracts to a copy of X, whereas B deformation retracts to X ∨ S1,
and we identify the generator of S1 with α. Finally we see that A ∩ B is homotopy
equivalent to X ∨X.

The computation of the induced maps and the rest are left as an exercise.

Remark 5.1.2. (a) In the last point above, it is enough to assume that f is homo-
topic to a map which is identity on a contractible neighbourhood of x0.

(b) The group in the last point is an example of an HNN extension. In general,
suppose that we have a group G, subgroup H and a homomoprhism f : H → G.
Then the corresponding HNN extension is the group with the presentation

⟨G, t|tht−1 = f(h), h ∈ H⟩.

Topologically, this general HNN extension corresponds to fixing a subspace W ⊂
X, a continuous map F : W → X and considering X ⊔ W × I/ ∼. where ∼
identifies (w, 0) with w and (w, 1) with f(w).

(c) A particular case is when f : G → G is an automorphism (which is true for
example when the map of spaces is a homeomorphism). Then the corresponidng
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HNN estension is simply the semidirect product G⋉Z. This is perhaps the most
frequently discussed case in the literature, corresponding to the general question
of whether a given topological space “fibers over circle”.

(d) We have frequently seen that in order to use the van Kampen theorem on some
space X it is often convenient to consider two closed set A and B such that
X = A ∪ B. This is fine, as long as A ∩ B has an open neighbourhood which
is homotopy equivalent to A ∩ B and X is a union of that neighbourhood with
interiors of A and B.

5.2 Quotient by a subspace and homotopy extension
property

Another natural operation is as follows: We have a topological space X, a closed subset
A and we consdier X/A to be X/ ∼, where ∼ identifies all the points of A. In general,
instead of this operation it is more convenient to consider the cone C(f), where f is the
inclusion of A into X.

For well behaved pairs (X,A) those two operations result in homotopy equivalent spaces.
This is our first application of the homotopy extension property, defined as follows.

Definition 5.2.1. Let X be a topological space and let A be a subset of X. The
pair (X,A) has the homotopy extension property if for any map f : X ∪A× I → Y

there exists a map F : X × I → Y which agrees with f on the domain of f .

Lemma: equivalence with retraction

Lemma CW pair has it

product of cell complexes

cellular maps

collapsing contractible subcomplex

cell structure on RP n CP n, maybe Hopf bundle?, Klein bottle

cell structure of a surface

presentation complex and fundamental group

fundamental group can be computed from 2-dimensional skeleton. (cory: complement of
discrete subset of R3 is simply connected)

mapping cylinder, mapping torus, mapping cone

two tori glued along figure 8.
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