Exercise list 3

Gromov's Lemma

1. Let X be a simply connected $C^{\prime}\left(\frac{1}{6}\right)$ complex. Show that its 2 -cells are embedded.
2. Let X be a simply connected $C^{\prime}\left(\frac{1}{6}\right)$ complex and let $D \rightarrow X$ be a reduced disc diagram. Show that ∂D has at least as many edges as the biggest 2 -cell in D.
3. Let X be a simply connected $C^{\prime}\left(\frac{1}{6}\right)$ complex. Show that its 2 -cells are isometrically embedded.

Helly property

4. Let X be a simply connected $C^{\prime}\left(\frac{1}{6}\right)$ complex. Let R_{1}, R_{2} and R_{3} be pairwise intersecting 2 -cells of X. Show that $R_{1} \cap R_{2} \cap R_{3}$ is non-empty and connected.
5. Let X be a simply connected $C^{\prime}\left(\frac{1}{6}\right)$ complex and let $\left\{R_{i}\right\}_{i=0, \ldots, n}$ be a finite family of pairwise intersecting 2-cells of X.
(a) Show that $R_{0} \cap\left(R_{1} \cup \ldots \cup R_{n}\right)$ is non-empty and connected.
(b) Conclude that $\cap_{i} R_{i} \neq \emptyset$.
