Exercise list 2

General small cancellation

Definition 1. Let p be a natural number. We say that a 2-complex X satisfies the $C(p)$ small cancellation condition provided that for each 2-cell $R \rightarrow X$ its attaching map $\partial R \rightarrow X$ is not a concatenation of fewer than p pieces in X.

1. Prove that if a 2-complex X satisfies $C^{\prime}\left(\frac{1}{p}\right)$, then it satisfies $C(p+1)$. Is the converse true?
2. Let X be a 2-complex satisfying $C^{\prime}\left(\frac{1}{p}\right)$. Prove that every reduced disc diagram over X satisfies $C^{\prime}\left(\frac{1}{p}\right)$.
3. Show the converse of the previous exercise. That is, if every reduced disc diagram over a 2-complex X satisfies $C^{\prime}\left(\frac{1}{p}\right)$, then X satisfies $C^{\prime}\left(\frac{1}{p}\right)$.
4. Show that the presentation complex of a surface group given by the presentation

$$
\left\langle a_{1}, b_{1}, a_{2}, b_{2}, \ldots a_{g}, b_{g} \mid\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]\right\rangle
$$

satisfies condition $C^{\prime}\left(\frac{1}{4 g-1}\right)$.
5. Prove that if a 2-complex X has a piece of length 2 , then there exist a reduced disc diagram over X with internal vertex of degree 4.
6. Let $\tilde{X} \rightarrow X$ be a covering map. Prove that X satisfies $C^{\prime}\left(\frac{1}{p}\right)$ if and only if \tilde{X} does.
7. Let X be a $C^{\prime}\left(\frac{1}{6}\right)$ and let $D \rightarrow X$ be a reduced disc diagram. Let $\gamma \subseteq \partial D$ be a path mapped to a geodesic in X. Show that there are no 1 -shells, 2 -shells or 3 -shells along γ. What changes if X is $C^{\prime}\left(\frac{1}{5}\right)$? And what about $C(7)$?

Greendlinger Lemma:

8. Let X be a $C(6)$ 2-complex, and let $\varphi: D \rightarrow X$ be a reduced disc diagram. Assume that D^{\prime} is a non-singular component of D consisting of more than a single 2-cell. Let

$$
K=\sum_{1 \text {-shells of } D^{\prime}} 1+\sum_{2 \text {-shells of } D^{\prime}} \frac{2}{3}+\sum_{3 \text {-shells of } D^{\prime}} \frac{1}{3}
$$

Show that $K \geq 2$.
Hint: compare to baby case.
9. Let X be a $C(6)$ 2-complex. Let R_{1} and R_{2} be distinct 2-cells of X. Show that $\partial R_{1} \cap \partial R_{2}$ is connected.
10. A finite presentation $\langle S \mid R\rangle$ is Dehn if every word $w \in F(S)$ representing the trivial element in the presented group has a cyclic subword u such that
(a) u is a cyclic subword of some relator $r \in R$;
(b) $|u|>\frac{1}{2}|r|$.

Show that $C^{\prime}\left(\frac{1}{6}\right)$ presentations are Dehn.
11. (Linear isoperimetric inequality) Let X be a $C^{\prime}\left(\frac{1}{6}\right)$ complex. Show that there exists a constant M such that for any disc diagram $D \rightarrow X$ it holds that:

$$
\#\{2 \text {-cells of } D\} \leq M \#\{1 \text {-cells in } \partial D\}
$$

Comment: this implies that X (with an appropriate metric) is hyperbolic.

