Exercise list 1

Coarse geometry and hyperbolicity

1. Compute the number of geodesics connecting two points in the Cayley graph of \mathbb{Z}^n, with the standard generating set.

2. Draw a part of the Cayley graph of the Baumslag-Solitar group $BS(1,n)$ corresponding to the following presentation: $(a,b \mid ab^n a^{-1} b^{-1})$.

 Definition 1. Let X, Y be metric spaces. A map $f : X \to Y$ is called a quasi isometric embedding if there exist constants $C, D > 0$ such that
 \[C^{-1}d_X(x, y) - D \leq d_Y(f(x), f(y)) \leq Cd_X(x, y) + D \]

3. Show that a composition of quasi-isometric embeddings is again a quasi-isometric embedding. Similarly, prove that a composition of coarse embeddings is again a coarse embedding.

4. Are the metric spaces \mathbb{N} and \mathbb{Z} (with the standard metrics) quasi-isometric?

5. Let T_n denote the infinite tree in which every vertex has degree $n = 2, 3, \ldots$. Let $n \neq m \geq 2$. Are T_n and T_m quasi-isometric?

 Definition 3. Let $\delta > 0$. A geodesic metric space X is δ-hyperbolic if any geodesic triangle in X is δ-thin, i.e. the δ-neighbourhood of any two sides of the triangle contains the third side.

6. Prove that trees are 0-hyperbolic, and that 0-hyperbolic graphs are trees.

 Baby case

 Consider the graph Γ from the picture above, induced by a tiling of the hyperbolic plane by heptagons where every vertex has degree three.

 6. Consider the CW-complex P obtained by gluing a 2-cell to each heptagon of Γ. Let D be a subcomplex of P homeomorphic to a disc. Show that D has at least one 2-cell with four or more edges in ∂D.

 Suggestion: play with the Euler characteristic formula.

6. Let D be a subcomplex of P whose boundary is a geodesic triangle of Γ. Refine the statement of the previous exercise and show that D has no internal 2-cells (meaning 2-cells whose intersection with ∂D is empty).

8. Prove that Γ is hyperbolic.