Exercise list 1

Coarse geometry and hyperbolicity

1. Compute the number of geodesics connecting two points in the Cayley graph of \mathbb{Z}^{n}, with the standard generating set.
2. Draw a part of the Cayley graph of the Baumslag-Solitar group $B S(1, n)$ corresponding to the following presentation: $\left\langle a, b \mid a b^{n} a^{-1} b^{-1}\right\rangle$.

Definition 1. Let X, Y be metric spaces. A map $f: X \rightarrow Y$ is called a quasi isometric embedding if there exist constants $C, D>0$ such that

$$
C^{-1} d_{X}(x, y)-D \leq d_{Y}(f(x), f(y)) \leq C d_{X}(x, y)+D
$$

Definition 2. Let X, Y be metric spaces. A map $f: X \rightarrow Y$ is a coarse embedding if there exist non decreasing functions $\psi_{-}, \psi_{+}:[0, \infty) \rightarrow[0, \infty)$ such that

$$
\lim _{t \rightarrow \infty} \psi_{-}(t)=\infty
$$

and the inequality

$$
\psi_{-}\left(d_{X}(x, y)\right) \leq d_{Y}(f(x), f(y)) \leq \psi_{+}\left(d_{X}(x, y)\right)
$$

3. Show that a composition of quasi-isometric embeddings is again a quasi-isometric embedding. Similarly, prove that a composition of coarse embeddings is again a coarse embedding.
4. Are the metric spaces \mathbb{N} and \mathbb{Z} (with the standard metrics) quasi-isometric?
5. Let T_{n} denote the infinite tree in which every vertex has degree $n=2,3, \ldots$. Let $n \neq m \geq 2$. Are T_{n} and T_{m} quasi-isometric?

Definition 3. Let $\delta>0$. A geodesic metric space X is δ-hyperbolic if any geodesic triangle in X is δ-thin, i.e. the δ-neighbourhood of any two sides of the triangle contains the third side.
6. Prove that trees are 0-hyperbolic, and that 0-hyperbolic graphs are trees.

Baby case

Consider the graph Γ from the picture above, induced by a tiling of the hyperbolic plane by heptagons where every vertex has degree three.
6. Consider the CW-complex P obtained by gluing a 2 -cell to each heptagon of Γ. Let D be a subcomplex of P homeomorphic to a disc. Show that D has at least one 2-cell with four or more edges in ∂D.

Suggestion: play with the Euler characteristic formula.
7. Let D be a subcomplex of P whose boundary is a geodesic triangle of Γ. Refine the statement of the previous exercise and show that D has no internal 2-cells (meaning 2-cells whose intersection with ∂D is empty).
8. Prove that Γ is hyperbolic.

