Exercise list 1

Coarse geometry and hyperbolicity

- 1. Compute the number of geodesics connecting two points in the Cayley graph of \mathbb{Z}^n , with the standard generating set.
- 2. Draw a part of the Cayley graph of the Baumslag-Solitar group BS(1,n) corresponding to the following presentation: $\langle a, b \mid ab^n a^{-1}b^{-1} \rangle$.

Definition 1. Let X, Y be metric spaces. A map $f : X \to Y$ is called a *quasi isometric embedding* if there exist constants C, D > 0 such that

$$C^{-1}d_X(x,y) - D \le d_Y(f(x), f(y)) \le Cd_X(x,y) + D$$

Definition 2. Let X, Y be metric spaces. A map $f : X \to Y$ is a *coarse embedding* if there exist non decreasing functions $\psi_{-}, \psi_{+} : [0, \infty) \to [0, \infty)$ such that

$$\lim_{t \to \infty} \psi_-(t) = \infty$$

and the inequality

$$\psi_{-}(d_X(x,y)) \le d_Y(f(x), f(y)) \le \psi_{+}(d_X(x,y))$$

- 3. Show that a composition of quasi-isometric embeddings is again a quasi-isometric embedding. Similarly, prove that a composition of coarse embeddings is again a coarse embedding.
- 4. Are the metric spaces \mathbb{N} and \mathbb{Z} (with the standard metrics) quasi-isometric?
- 5. Let T_n denote the infinite tree in which every vertex has degree n = 2, 3, ... Let $n \neq m \geq 2$. Are T_n and T_m quasi-isometric?

Definition 3. Let $\delta > 0$. A geodesic metric space X is δ -hyperbolic if any geodesic triangle in X is δ -thin, i.e. the δ -neighbourhood of any two sides of the triangle contains the third side.

6. Prove that trees are 0-hyperbolic, and that 0-hyperbolic graphs are trees.

Baby case

Consider the graph Γ from the picture above, induced by a tiling of the hyperbolic plane by heptagons where every vertex has degree three.

6. Consider the CW-complex P obtained by gluing a 2-cell to each heptagon of Γ . Let D be a subcomplex of P homeomorphic to a disc. Show that D has at least one 2-cell with four or more edges in ∂D .

Suggestion: play with the Euler characteristic formula.

- 7. Let D be a subcomplex of P whose boundary is a geodesic triangle of Γ . Refine the statement of the previous exercise and show that D has no internal 2-cells (meaning 2-cells whose intersection with ∂D is empty).
- 8. Prove that Γ is hyperbolic.