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1 Basics

The rings of integers, rational numbers, real numbers and complex numbers
are denoted, respectively, by Z, Q, R, and C. The natural numbers is the set
N = {0, 1, 2, 3, . . .}. The ring of integers modulo a natural number m ∈ N is
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denoted by Z/m. The set of positive integers is Z+. If R is a ring then R[x] is
the ring of polynomials over R in one variable x. Complex conjugate of a ∈ C
is denoted with a. The set of all k × l matrices over a ring R is denoted with
Mat(k × l, R), and furthermore we let Mat(k,R) := Mat(k × k,R)

1.a Examples of groups

Let us explicitly mention a few examples of groups to have in mind. Neutral
element will be denoted by 1 or e (if the group operation is written multi-
plicatively), or by 0 (if the group operation is written additively).

1. Infinite cyclic group: the underlying additive group of the ring Z, fre-
quently denoted by the same symbol. If we want to use the multiplicative
notation, we will use the symbol C to denote the set

{. . . , t−2, t−1, e, t, t2, . . .}

of all integer powers of an indeterminate t, with the obvious group law.

2. Finite groups. Particular examples are cyclic groups; the cyclic group
of order k is denoted with Ck = {e, t, t2, . . . , tk−1}, and when using
additive notation it is identified with the additive group of the ring Z/k
of integers modulo k

3. Free groups. The free group on two different symbols x and y is denoted
by F2. As a set it consists of all reduced words in the letters x, y, x−1, y−1.
The group operation is “concatenate two words and reduce the result”.
The group Fk, where k is either in Z+ or k =∞, is defined similarly (in
the case k =∞ we consider the free group on countably many symbols)

4. Various matrix groups. Whenever R is a ring (associative with identity,
commutative or not) and k is a positive integer we can define GL(k,R)
to be the group of invertible square k × k matrices with entries in R.
If R is commutative then we can also define the subgroup SL(k,R) of
GL(k,R) of matrices whose determinant is equal to 1.

5. In particular it is sometimes useful to have in mind some more “concrete”
models for the free group F2. For example, the subgroup of SL(2,Z)

generated by the matrices

(
1 2
0 1

)
and

(
1 0
2 1

)
is free. In order to show

this, one needs to invoke the ping-pong lemma, which we don’t cover
here.

6. The subgroup of SL(2,Z[x]) generated by the matrices

(
1 x
0 1

)
and(

1 0
x 1

)
is also free. Of course the fact that this group is free follows
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from the fact that the group generated by

(
1 2
0 1

)
and

(
1 0
2 1

)
is free.

However, it is also easy to show it directly.

7. The discrete Heisenberg group is the subgroup of SL(3,Z) of all the

matrices of the form

1 a c
0 1 b
0 0 1

, where a, b, c ∈ Z. It is an example

of a nilpotent group - we will talk more about such groups in the later
lectures.

1.b Group ring and the `2 space of a countable group

Group Ring Given a countable group Γ and a commutative ring R we let
R[Γ] be the group ring of Γ over R, which is defined as follows. As a set,
we have that R[Γ] consists of all formal finite R-linear combinations of the
elements of Γ.

The addition in the ring R[Γ] is the obvious one, and the multiplication is
induced by the multiplication of elements of Γ.

Remark 1.1. The above definition is hopefully clear, but it is somewhat
informal, because usually the notion of a “formal R-linear combination” is
an informal one (i.e. it does not appear in any of the Bourbaki’s texts). If
we wanted to be more prudent we would say that R[Γ] consists of finitely
supported R-valued functions defined on Γ. The addition of elements of R[Γ]
is then defined as the addition of functions, and the multiplication in R[Γ] is
defined as a convolution product.

Example 1.2. If Γ = C then C[C] consists of all the expressions of the form
ait

i + ai+1t
i+1 + . . .+ ajt

j, where i, j ∈ Z, i 6 j, and for all k we have ak ∈ C
- in other words, the ring C[C] can be identified with the ring of Laurent
polynomials with coefficients in C.

Hilbert spaces and bounded operators Let us recall some basic defi-
nitions about Hilbert spaces. A Hilbert space is a complex vector space H
together with a Hermitian inner product 〈·, ·〉 : H × H → C which is linear
in the first variable and antilinear in the second variable, and such that H is
complete with respect to the norm defined by ‖v‖ := 〈v, v〉.

Remark 1.3. There are three basic examples of Hilbert spaces which we need
to consider:

(i) finite dimensional spaces Ck, where k ∈ Z+ with the standard Hermitian
inner product
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(ii) `2(S), where S is a (typically infinite) set, is the Hilbert space of func-
tions f : S → C such that

∑
s∈S |f(s)|2 < ∞, with Hermitian inner

product 〈f, g〉 :=
∑

s∈S f(s)g(s). The indicator function of s ∈ S will
be denoted by ζs

(iii) L2(X,µ) where (X,µ) is a space with a measure (typically interval with
the Lebesgue measure, or the set S2 of all complex number of modulus
one, also with the Lebesgue measure), whose elements are measurable
functions f : X → C such that

∫
X
|f(x)|2dµ(x) <∞. The inner product

is 〈f, g〉 =
∫
X
f(x)g(x)dµ(x).

A linear map T : K → L between Hilbert spaces is bounded if for some
c <∞ and for all v ∈ K with ‖v‖K = 1 we have ‖Tv‖L 6 c. If T is bounded
then the smallest c which is a witness of it is called the norm (or the operator
norm) of T , and is denoted by ‖T‖.

The adjoint of an operator T : K → L is the unique bounded operator
T ∗ : L → K such that for all v ∈ K and w ∈ L we have

〈T ∗v, w〉 = 〈v, Tw〉.

It is easy to check that T ∗∗ = T and (TS)∗ = S∗T ∗.

If T : K → K then we say that T is self-adjoint if T = T ∗.

Example 1.4. If K = Ck with the standard inner product and T : K → K
is represented in the standard basis by a matrix M then T ∗ is the operator
represented by the matrix MT , where MT denotes the transpose of M . In
particular the condition of being self-adjoint is equivalent to MT = M . Thus
T is self-adjoint if it is represented by a Hermitian matrix in the standard
basis.

Example 1.5. If T : K → K is any bounded operator then T + T ∗, T ∗T and
TT ∗ are all self-adjoint.

We say that a bounded self-adjoint operator T : K → K is positive if for
all v ∈ H we have 〈Tv, v〉 > 0. Note that for any operator T : K → L we have
that T ∗T (and hence also TT ∗) is positive: we have 〈T ∗Tv, v〉 = 〈Tv, Tv〉 =
‖Tv‖ > 0.

`2-space of a group Given a countable group Γ we define `2(Γ) to be the
Hilbert space of all those functions f : Γ→ C such that

∑
γ∈Γ |f(γ)|2 < 0 (i.e.

`2(Γ) is the Hilbert space of all `2-summable functions in Γ). Given γ ∈ Γ,
the function ζγ is defined by demanding that ζγ(γ) = 1 and ζγ(δ) = 0 when
δ 6= γ, i.e. ζγ is the indicator function of γ.
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The scalar product on `2(Γ) is defined by demanding that the functions
ζγ, γ ∈ Γ, form an orthonormal basis, i.e. 〈ζγ, ζγ〉 = 1 for all γ ∈ Γ and
〈ζγ, ζδ〉 = 0 for δ 6= γ. Thus every element of `2(Γ) is a linear combination of
the vectors ζγ, γ ∈ Γ.

We have a natural left action λ : Γ y `2(Γ), which is called the left regular
representation, defined on the basis vector by the formula

λ(γ)ζδ = ζγδ

Similarly we have the right action ρ : Γ y `2(Γ) defined as ρ(γ)ζδ = ζδγ.

Both λ and ρ extend to actions of the group ring C[Γ] by linearity, i.e. if
T ∈ C[Γ] is equal to

∑
γ∈Γ aγγ, then

λ(T )(ζδ) =
∑
γ∈Γ

aγζγδ

and similarly for ρ(T ). In this way λ(T ) and ρ(T ) become bounded linear
operators on `2(Γ). Sometimes we simply say that T ∈ C[Γ] is an operator on
`2(Γ) - in that case we will always mean the left regular representation.

Involution The operation of taking the inverse in Γ extends to an involutive
operation on C[Γ] which we will denote with an asterisk:(∑

γ∈Γ

aγγ

)∗
=
∑
γ∈Γ

aγγ
−1

On the other hand we have the operation of taking the adjoint opera-
tor defined on all bounded operator on `2(Γ) which also denote by ∗, i.e. if
T : `2(Γ)→ `2(Γ) is a bounded operator then T ∗ is the adjoint of T .

The following lemma justifies the choice of notation.

Lemma 1.6. For any T ∈ C[Γ] we have

λ(T ∗) = λ(T )∗

Proof. To prove the claim we need to check that λ(T ) and λ(T ∗) are adjoints
of each other, i.e. for any v, w ∈ `2(Γ) we have

〈λ(T )v, w〉 = 〈v, λ(T ∗)w〉.

By linearity we can just as well assume that for some α, β, γ ∈ Γ and a ∈ C
we have T = aα, v = ζβ and w = ζγ. Then we need to show that

〈aζαβ, ζγ〉 = 〈ζβ, aζα1γ〉

Clearly LHS is equal to a if αβ = γ and to 0 otherwise, and RHS is equal to
a if β = α−1γ and to 0 otherwise, which shows the desired equality.
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Recall that a bounded operator T on a Hilbert space is self-adjoint iff
T = T ∗: note that if T ∈ C[Γ] then the above lemma gives a handy “visual
condition” to recognize if T is a self-adjoint operator. Namely, for every γ ∈ Γ
we need to compare the coefficients of γ and γ−1 in T and check if they are
conjugate to each other.

Example 1.7. If Γ is a finite group then C[Γ] and `2(Γ) are both finite-
dimensional and isometric to each other as Hilbert spaces, by sending the
linear combination 1 · γ to ζγ (If Γ is not finite then this still gives a natural
embedding of C[Γ] into `2(Γ)).

If Γ is finite then the ring C[Γ] can be described as the direct sum of matrix
rings ⊕

π : Γ→GL(Vπ)

Mat(dim(Vπ),C),

where the sum is over all iso-classes π of irreducible linear representations of Γ.
On the other hand the space `2(Γ) can be conveniently described as the direct
sum ⊕πV dimπ

π , i.e. `2(Γ) decomposes as the sum of irreducible representations
of Γ, and an iso-class of dimension k appears exactly k times.

Example 1.8. Particular case of the previous example is when Γ is a finite
abelian group. In that case the space `2(Γ) has a particularly nice orthogonal
basis: the elements of it are characters, i.e. the homomorphisms Γ → S1,
where S1 denotes the set of complex numbers of norm 1. Given such a char-
acter χ ∈ `2(Γ), it can be checked that the action of Γ is as follows: for γ ∈ Γ
we have λ(γ)(χ) = χ(γ)χ, i.e. χ spans a one-dimensional Γ-invariant subspace
of `2(Γ).

If we denote by Γ̃ the set of all characters of Γ, then C[Γ] can be identified

with the set of all complex valued sfunctions on Γ̃, via the map which sends
γ ∈ Γ to the function χ 7→ χ(γ). The above remark implies that under this

map the operator T : `2(Γ) → `2(Γ) corresponds to an operator on `2(Γ̃) of
pointwise multiplication.

The self-adjoint elements of C[Γ] correspond exactly to those functions on

Γ̃ which only take real values.

Example 1.9. We have already seen that C[C] can be identified with the
ring of Laurent polynomials with complex coefficients. On the other hand
Fourier transform gives us an isomorphism of Hilbert spaces `2(C) and L2(S1)
(recall that the latter space is the space of all measurable function f : S1 → C
such that

∫
S1 |f(x)|2dµ(x) < ∞. We normalize the measure µ on S1 so that

µ(S1) = 1) Under this isomorphism the action of C[C] on L2(S1) corresponds
simply to pointwise multiplication of functions on S1. As in the previous
example self-adjoint elements of C[C] correspond to real-valued functions.

This and the previous example can be generalized to arbitrary countable
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abelian groups, using so-called Pontryagin transform in place of the Fourier
transform.

1.c Lemma about operators on Hilbert spaces

Given a bounded operator T on a Hilbert space H, we define ker(T ) := {v ∈
H : T (v) = 0}.

Lemma 1.10. 1. For any bounded operator T : L → M between Hilbert
spaces we have ker(T ) = ker(T ∗T )

2. For any bounded operator S : K → L between Hilbert spaces we have
im(S)⊥ = ker(SS∗)

3. If S : K → L and T : L → M are bounded operators between Hilbert
spaces and im(S) ⊂ ker(T ) then the orthogonal complement of imS in
ker(T ) is equal to ker(SS∗ + T ∗T )

Proof. 1. Clearly we have ker(T ) ⊂ ker(T ∗T ), so let v ∈ ker(T ∗T ). Then
〈T ∗Tv, v〉 = 0, and hence 〈Tv, Tv〉 = 0, and so Tv = 0 as needed.

2. We have v ∈ im(S)⊥ iff for any w ∈ K we have 〈v, S(w)〉 = 0. This is
equivalent to 〈S∗v, w〉 = 0 for all w ∈ K which is equivalent to v ∈ kerS∗,
which by previous point is equivalent to v ∈ kerSS∗.

3. We need to show that ker(T )∩ im(()S)⊥ is equal to ker(SS∗+T ∗T ). By
the previous points it is enouch to show that

ker(T ∗T ) ∩ ker(SS∗) = ker(SS∗ + T ∗T )

The inclusion ⊂ is obvious. For the other inclusion let v ∈ ker(SS∗ +
T ∗T ). Since SS∗ is positive, we must have 〈SS∗v, v〉 = 0, and hence
〈S∗v, S∗v〉 = ‖S∗v‖ = 0, i.e. V ∈ ker(S∗). Similarly v ∈ ker(T ), which
finishes the proof.

1.d von Neumann dimension

The final bit in this section is the definition of the von Neumann dimension.
Let k ∈ Z+ and for i = 1, . . . , k let ζi ∈ (`2(Γ))k be the vector whose i-th
coordinate is ζe and all other coordinates are equal to 0.

Let V ⊂ `2(Γ)
k

be a closed subspace which is ρ(Γ)-invariant, and let

PV : `2(Γ)
k → V be the orthogonal projection onto V . We define the von
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Neumann dimension dimvN(V ) of V to be equal to

k∑
i=1

〈PV ζi, ζi〉

Example 1.11. The way V arises in basic cases concerning `2-invariants
is as follows. Every element M ∈ Mat(k × l,C[Γ]) gives rise (via the left
multiplication) to a bounded operator `2(Γ)k → `2(Γ)l, and as such we have
ker(M) ⊂ `2(Γ)k and similarly im(M) ⊂ `2(Γ)l. It is easy to check that both
ker(M) and im(M) are right-invariant closed subspaces of `2(Γ)k and `2(Γ)l,
respectively.

Example 1.12. The formula simplifies when M ∈ C[Γ] (i.e. M is a 1 × 1
matrix), in which case we have dimvN ker(M) = 〈Pker(M)ζe, ζe〉
Example 1.13. It is very instructive to digest the definition of the von Neu-
mann dimension in the case when Γ is a finite group. For example, let
V ⊂ `2(Γ) be a ρ(Γ)-invariant subspace. From elementary linear algebra
we know that

dimC(V ) = tr(PV ).

On the other hand we have that ζγ, γ ∈ Γ, is an orthonormal basis of `2(Γ),
so we can use it to compute the trace of PV = P in that basis. Thus we have

tr(PV ) =
∑
γ∈Γ

〈Pζγ, ζγ〉

But now since V is ρ(Γ)-invariant, and ρ(γ) is an isometry for every γ ∈ Γ, we
have that P commutes with ρ(γ) for every γ ∈ Γ. Therefore for every γ ∈ Γ
we have

〈Pζγ, ζγ〉 = 〈Pρ(γ)ζe, ρ(γ)ζe〉 = 〈ρ(γ)Pζe, ρ(γ)ζe〉.
Since Γ acts by isometries, the above is equal to 〈Pζe, ζe〉 = dimvN(V ). In
other words, we have

dimvN(V ) = 〈Pζe, ζe〉 =
1

|Γ|
∑
γ∈Γ

〈Pζγ, ζγ〉 =
1

|Γ|
dimC(V )

Example 1.14. Recall that `2(C) is isomorphic to L2(S1) and the action of
C on L2(S1) is by point-wise multiplication (since C is abelian the left action
is equal to the right action). All closed C invariant subspaces of L2(S1) are of
the form L2(U), where U is a measurable subset of S1 (it is clear that these
subspaces are C-invariant, but it takes more effort to show that all C-invariant
subspaces are of this form).

What is the von Neumann dimension of L2(U) ⊂ L2(S1)? The projection
PL2(U) is simply multiplication by the indicator function 1U of U , and ζe is the
constant function 1S1 : S1 → C, and so

dimvN(L2(U)) = 〈PL2(U)ζe, ζe〉 = 〈1U · 1S1 , 1S1〉 =

∫
S1

1U(x)dµ(x) = µ(U),
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i.e. the von Neumann dimension recovers the Lebesgue measure on S1 in this
case.

Example 1.15. If T ∈ C[C] and T 6= 0 then ker(T ) = {0} ⊂ L2(S1) ∼= `2(C)
because there is no non-zero L2-function f on S1 with the property f · g = 0,
when g is a non-zero Laurent polynomial (because such a polynomial has only
finitely many zero on S1). and consequently dimvN ker(T ) = 0.

On the other hand, let M ∈ Mat(k × l,C[C]). In this case im(M) ⊂
`2(C)l can easily be not equal to `2(C)l. However, we will shortly see that
dimvN im(M) is an integer. Let us state the reason for this informally for
now: the ring C[C] lies in the field R(C) of rational functions in one variable,
and in fact R(C) can be identified with the field of fractions of C[C]. Using
Gaussian elimination, we can find a matrix A ∈ GL(k,R(C)) such that AM
is in the row-echelon form.

Similarly to the case of the standard dimension, we have that dimvN im(M) =
dimvN im(AM), and the latter is equal to the number of non-zero rows. This
statement is best proved using affiliated operators, so we will return to it later.

2 Properties of the von Neumann dimension

and its applications

A closed subspace of `2(Γ)
k

which si ρ(Γ)-invariant is called a Hilbert Γ-
module.

Lemma 2.1. For a Hilbert Γ-module A ⊂ `2(Γ)
k

we have dimvN(A) = 0 iff
A = {0}.

Proof. The direction⇐ is obvious, conversely if dimvN(A) = 0 then 〈Pζe, ζe〉 =
0, where P is the projection onto A. Since the action is by unitaries, it fol-
lows that 〈Pζγ, ζγ〉 = 0 for all γ ∈ Γ, and hence also 〈Pv, v〉 = 0 for all

v ∈ `2(Γ)
k
, which shows that 〈P 2v, v〉 = 〈Pv, Pv〉 = 0, and so P = 0 and

hence A = 0.

Recall from Jessie Peterso’s lecture that the bounded ρ(Γ)-invariant oper-
ators on `2(Γ) form, by the bicommutant theorem, the group von Neumann
algebra of Γ which we will denote by L(Γ).

We will say that two Hilbert Γ-modules A ⊂ `2(Γ)
k

and B ⊂ `2(Γ)
l

are
isomorphic if there exists a ρ(Γ)-invariant isometry between them, and that
they are weakly isomorphic if there exists T ∈ Mat(k × l, L(Γ)) which is
injective on A and such that im(TA) = B.

Lemma 2.2. For T ∈ Mat(k, L(Γ)) we have
∑

i〈Tζi, T ζi〉 =
∑

i〈T ∗ζi, T ∗ζi〉.
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Proof. For every γ ∈ Γ and i = 1, . . . ,max(k, l) let ζi,γ ∈ `2(Γ)max k,l be be the
vector whose i-th coordinate is ζγ and all other coordinates are 0.

We now have 〈T ∗ζi,e, ζj,γ〉 = 〈T ∗ζi,γ−1 , ζj,e〉 = 〈ζi,γ−1 , T ζj,e〉 = 〈Tζj,e, ζi,γ−1〉.
In other words, if we write

Tζi =
∑
j,γ

aij,γζγ

and
T ∗ζi =

∑
j,γ

bij,γζγ

for some complex numbers aij,γ and bij,γ then we have aij,γ = bji,γ−1 . Hence∑
i,j,γ

|aij,γ|2 =
∑
i,j,γ

|bij,γ|2

which proves the claim.

Lemma 2.3. If A and B are isomorphic then dimvN(A) = dimvN(B).

Proof. By taking a suitable direct sum we can just as well assume that A,B ⊂
`2(Γ)

k
for some k. Let f : A → B be a Γ-invariant isometry, let P be the

projection onto A, let Q be projection onto B, and let H = fP .

Then H ∈ Mat(k, L(Γ)) and one can check that H∗ = f−1Q. It follows
that HH∗ = Q and H∗H = P . It follows that

dimvN A =
∑
i

〈H∗Hζi, ζi〉 =
∑
〈Hζi, Hζi〉

and similarly

dimvN B =
∑
i

〈H∗ζi, H∗ζi〉.

Now the claim follows from the previous lemma.

Lemma 2.4. If A and B are weakly isomorphic then they are isomorphic.

Proof. By passing to a suitable direct sum we may assume that A,B ⊂ `2(Γ)
k

for some k, and that we have an element T ∈ Mat(k, L(Γ)) such that TA = B
which is injective on A, and which is equal to 0 on the orthogonal complement
of A. In particular we have im(T ∗T ) = A.

On the other hand T ∗T is positive self-adjoint, so by the spectral theorem
we can find a positive self-adjoint f ∈ Mat(k, L(Γ)) with f 2 = T ∗T . This f is
injective on A. Now consider the (unbounded) operator g : im f → A which
is defined as g(f(v)) = v for v ∈ A, and finally let H = T ◦ g : im(f)→ B.
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For v ∈ im(f) we have 〈H◦g(v), H◦g(v)〉 = 〈T ∗Tg(v), g(v)〉 = 〈f 2g(v), g(v)〉
which is equal to 〈f(v), g(v)〉 = 〈v, fg(v)〉 = 〈v, v〉.

Finally we note that im(f) is dense in A since im(T ∗T ) = im(f 2) ⊂ im(f),
and hence we can extend H to an isometry defined on all of A.

Corollary 2.5. For f ∈ Mat(k×l, L(Γ)) we have dimvN ker(f)+dimvN im(f) =
k

Proof. Indeed, f induces a weak isomorphism from ker(f)⊥ to im(f), and it is
easy to check from definitions that dimvN(V )+dimvN(V ⊥) = k for any Hilbert

G-module V ⊂ `2(Γ)
k
,

2.a Kaplansky’s conjecture on direct finiteness

Conjecture 2.6 (Kaplansky). If k is a field, Γ is a group, and S, T ∈ k[Γ]
are such that ST = 1 then we also have TS = 1 (i.e. k[Γ] is directly finite).

Proposition 2.7 (Kaplansky). C[Γ] is directly finite for any group.

Proof. IF ST = 1 then λ(ST )(v) = v for any v ∈ `2(Λ), and hence im(S) =
`2(Γ). Hence dimvN im(S) = 1, so dimvN kerS = 0 and therefore kerS = {0},
i.e. S is an injection.

The rest is routine, for example we can argue as follows: since im(ST ) =
`2(Γ) and S is injective we have Tv = ζe for some v ∈ `2(Γ), and hence
v = STv = Sζe, so TSζe = ζe. The last equality implies that TS = 1 in
C[Γ].

We will return to Kaplansky’s conjecture for arbitrary fields later.

2.b `2-homology and `2-Betti numbers of a simplicial
complex

For simplicity of notation we consider only simplicial complexes, although all
the definitions can be easily generalized to the context of CW-complexes.

Let X be a simplicial complex, let Xi be the set of i-dimensional cells
and let k be a filed. Let k[Xi] be the set of formal k-linear combinations of
elements of Xi.

After we choose some arbitrary orientations on all cells, we get the bound-
ary maps Di : k[Xi] → k[Xi−1] defined on the canonical basis as Di(c) :=∑

d∈∂c±d, where the sign depends on whether the chosen orientation of d in
X agrees with the orientation of d induced from c.
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Then the homology groups of X with coefficients in k are the k-vector
fields

Hi(X, k) := ker(Di)/ im(Di)

To define l2-homology, we assume that X has bounded geometry, i.e. there
exists C ∈ N such that each i-dimensional cell is contained in at most C cells
of dimension i + 1. Recall that l2(Xi) is the Hilbert space of l2-summable
functions on Xi. In particular it is spanned by the indicator functions ζc for
c ∈ Xi.

We define
Di(ζc) =

∑
d∈∂c
±ζd

The l2-homology groups of X are defined as

H
(2)
i (X) := ker(Di)/im(Di+1).

Remark 2.8. In particular, if X is a finite complex then l2-homology is the
same as the standard homology.

However, now let us take a finite simplicial complex X and consider a
normal covering Y of X and denote with Γ the deck transformation group of
Y . We consider the group Γ as acting from the right.

For each cell c of X let us choose a lift ĉ of it in Y . Note that Γ acts on
Yi and the chosen lifts provide an identification of Yi with a disjoint union of
copies of Γ. Thus we also get an isometry `2(Yi) ∼= `2(Γ)

Xi , which sends ζc
to the vector which is equal to ζe on the coordinate corresponding to c, and
which is equal to 0 on all other coordinates.

The boundary maps Di are Γ-equivariant and under the identification
above they induce maps `2(Γ)

Xi → `2(Γ)
Xi−1 given by certain matrices in

Mat(|Xi| × |Xi−1|,Z[Γ]). As such the l2-homology of Y can be naturally seen
as a Hilbert Γ module, namely

H
(2)
i (X) := ker(Di)/im(Di+1) ∼= ker(Di)

⊥ ∩ im(Di+1) ⊂ `2(Γ)|Xi|

and so we can define the `2-Betti numbers of Y with respect to Γ as

β
(2)
i (Y,Γ) := dimvN

(
ker(Di)

⊥ ∩ im(Di+1)
)

3 Examples, basic properties and approxima-

tion of `2-Betti numbers

Example 3.1. Consider the standard square tessellation of R2 as a square
complex Y . There is one C2 orbit of 2-cells, two orbits of 1-cells and one orbit

12



of 0-cells (See Figure 1). So the complex from which we compute l2-homology
is

0
D3−→ `2(C2)

D2−→ `2(C2)2 D1−→ `2(C2)
D0−→ 0

where D3 = 0, D2 =
(
1− s t− 1

)
, D1 =

(
t− 1
s− 1

)
, D0 = 0.

We easily (using Fourier transform to identify `2(C2) with L2((S1)2), or
directly), see that im(D1) is dense in `2(C2) and that ker(D2) = {0}, which

implies that β
(2)
i (Y,C2) = 0 for all i.

e

tf

f

g
h

se
sf

tse

te

Figure 1: Schematics of identifying the cells with group elements, e,f ,g,h
are chosen representatives of orbits; all other cells are translations by group
elements of these cells.

Example 3.2. Consider the Cayley graph Y of the free group F2 (see Fig-
ure 2). The complex from which we compute l2 homology is now

0
D2−→ `2(F 2

2 )2 D1−→ `2(F 2
2 )

D0−→ 0

where D2 = 0, D1 =

(
t− 1
s− 1

)
, D0 = 0. As before we can check that im(D1) is

dense (see the next example), from which it follows that β
(2)
0 = 1 and β

(2)
0 = 0.

13



te

f tft−1ft−2f

g
tg

sg

e

se

t−1e

Figure 2: Schematics of identifying the cells with group elements,e,f ,g are cho-
sen representatives of orbits; all other cells are translations by group elements
of these cells.

More generally, if Yk is the Cayley graph of Fk, k ∈ N then we can show
that β

(2)
0 = 0 and β

(2)
1 = k − 1.

Example 3.3. If Y is a connected simplicial complex with infinite Y0 then
H2

0 (Y ) = {0}. Indeed, we just need to argue that imD1 is dense. For this
we note that for any v, w ∈ Y0 we have ζv − ζw ∈ im(D1). Therefore, any

w ∈ im(D0)
⊥

must be a constant function, and since Y0 is infinite, the only
constant function in l2(Y0) is the 0 function.

Definition 3.4. Suppose that Γ is a group and X is a model of BΓ, i.e. we
have that π1(X) = Γ, and πi = {0} for i > 2. Then we define

β
(2)
i (Γ) = β

(2)
i (Y,Γ),

where Y is the universal cover of Y

Remark 3.5. 1. This definition is sensible because in fact l2-homology is
a homotopy invariant, in the sense that homotopy f of finite complexes
X and X ′ induces a weak isomorphism of H

(2)
i (Y ) and H

(2)
i (Y ′), where

Y and Y ′ are covers corresponding to the same subgroup of π1(X) ∼=f

π1(X ′). For details see [Eck00] (or Thomas Schick’s lectures next week)
It follows that no matter what model for BΓ we take, we get the same
`2-betti numbers.
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2. Note that we have defined β
(2)
i (Γ) only if there is a model for BΓ with

bounded geometry. However β
(2)
i (Γ) can be defined for an arbitrary

group Γ, either via the theory of `2-homology developed by W. Lueck,
or simply by taking exhaustion by finite dimensional complexes of BΓ
(see Gaboriau’s papers for the latter approach). We will not cover this
in these notes.

Also it is worth mentioning that by Gaboriau’s work, many groups (for
example all amenable groups) admit a finite dimensional “measurable
BΓ”, and this is enough to define their `2-Betti numbers in the way
which we do it in these notes.

In particular we have shown that β
(2)
i (C2) = 0 for all i, β

(2)
1 (Fk) = k − 1,

and β
(2)
0 (Γ) = 0 for all infinite groups (we have shown this last statement only

for groups with a model for BΓ of bounded geometry, but it is true in general)

Definition 3.6. The l2-Euler characteristic of Y with respect to Γ is

χ(2)(Y,Γ) :=

dim(Y )∑
i=0

(−1)iβ
(2)
i (Y,Γ).

Using what we already know about the von Neumann dimension, we can
show the following proposition

Proposition 3.7. If X is a finite simplicial complex, and Y is a normal cover
with deck transformation group Γ then χ(X) = χ(2)(Y,Γ)

Proof. Recall that χ(X) = |X0| − |X1| + |X2| − . . .. By additivity of von
Neumann dimension we have

|Xi| = dimvN im(Di) + dimvN ker(Di),

so

χ(X) = 0 + dimvN ker(D0)− (dimvN im(D1) + dimvN ker(D1))

+ (dimvN im(D2) + dimvN ker(D2))− . . .

and by additivity of von Neumann dimension we have β
(2)
i = dimvN ker(Di)−

dimvN im(Di+1). Thus the claim follows.

Finally let us mention that by Lemma 1.10 we can define the Laplacian
∆i = D∗iDi + Di+1D

∗
i+1 and we have H

(2)
i (Y ) = ker(∆i), and so β

(2
i (Y,Γ) =

dimvN ker(∆i).
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3.a Approximation of the `2-Betti numbers

It is natural to ask the following question. Suppose that X is finite simplicial
complex, Γ = π1(X), and Y is the universal cover of X. Suppose that Γ ⊃
Γ1 ⊃ Γ2 ⊃ . . . is a chain of normal subgroup sof Γ such that

⋂
i Γi = {e},

and let Yi be the cover corresponding to Γi,i.e. Yi is the quotient of Y by the
action of Γi. Then we can ask the following question.

Question 3.8. Is it true that for every j we have β
(2)
j (Yi,Γi)→i→∞ β

(2)
j (Y,Γ)

?

The general answer is not known, however the following is a classical the-
orem of Wolfgang Lueck.

Theorem 3.9. The answer is ”yes” if all the groups Γ/Γi are residually finite.

Lueck proved it when Γ/Γi are finite. The above version was proved in a
paper of Jozef Dodziuk, Peter Linnell, Varghese Mathai, Thomas Schick and
Stuart Yates. In fact it is a folklore theorem (or Elek’s theorem? I couldn’t
find a reference immediately) that it is enough to assume that Γ/Γi are sofic
(and the proof is essentially the same).

Later it was noticed by other researchers (as mentioned by Andrei in his
course) that in fact the answer is positive when Γ is sofic, and with a very
similar proof.

Algebraically this corresponds to the following theorem.

Theorem 3.10. Let T ∈ Mat(k,Z[Γ]), and let Ti ∈ Mat(k,Z[Γ]) be sde-
fined by Ti = πi(T ), where π : Z[Γ] → Z[Γ/Γi] is the natural projection
map. If all the groups Γ/Γi is residually finite then we have dimvN ker(T ) =
limi dimvN ker(Ti).

Remark 3.11. Theorem 3.9 follows by taking T to be a Laplacian on Y .

Proof of Theorem 3.10. Since kerT ∗T = kerT and kerT ∗i Ti = kerTi, we can
assume that T is positive and self-adjoint. As such we can consider the spectral
measure µ of T and the spectral measures µi of Ti (here we mean the scalar-
valued spectral measure, i.e. the projection-valued spectral measure composed
with the trace τ , as introduced in Jessie Peterson’s course).

Let c = ‖T‖2
1, i.e.

√
c is the sum of absolute values of the coefficients of

T . If σ : Γ→ ∆ is any group homomorphism then using Cauchy-Schwartz we
can check that the operator norm of σ(T ) is bounded by c.

The next two claims are general statement about so called weak conver-
gence of measures.
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Claim: Let Λ be any countable groups, let Λ ⊃ Λ1 ⊃ Λ2 ⊃ . . . be any
sequence of normal subgroups of Λ with

⋂
Λi = {e}. Let S ∈ C[Λ] and

let σi : Z[Γ] → Z[Γ/Λi]. Let λi be the spectral measure of σi(S). Then
the measures λi converge weakly to the spectral measure λ of S, i.e. for all
continuous functions f on [0, c] we have

∫
fdλi →

∫
fdλ as i→∞.

Indeed, by Weierstrass approximation and linearity it is enough to check
this when f = xk for some k. But for almost all i we have that λi is injective
on the support of T k, and hence the coefficient of the neutral element of Sk

and of Ski is the same, which by definition means that τ(Sk) = τ(Ski ). Since∫
xkdλ = τ(T k) and

∫
xkdλi = τ(T ki ), this finishes the proof.

Claim: Let λi, i ∈ Z+ and λ be probability measures on some interval
[−c, c]. If λi weakly converge to λ then for any open interval I ⊂ R we have
λi(I)→ λ(I) as i→∞

Indeed, let ε > 0 and let f be a non-negative function which is bounded
by 1, equal to 0 outside of I, and such that

∫
fdλ > λ(I) − ε. Since f is

bounded by 1 on I and 0 outside we have λi(I) >
∫
fdλi for all i, so

lim inf λi(I) > lim

∫
fdλi =

∫
fdλ > λ(I)− ε,

and so lim inf λi(I) > λ(I).

In particular we have that the spectral measures µi weakly converge to µ.
In the following claim we will crucially use both that Γ/Γi are residaull finite
and that T ∈ Z[Γ].

Claim: For all 1 > ε > 0 we have µi((0, ε)) 6
log(c)
| log(ε)|

Indeed, since Γ/Γi is residually finite, by the previous claim it is enough
to check to take a finite quotient σ : Γ→ Λ and show that

λ((0, ε)) 6
log(c)

| log(ε)|
,

where λ is the spectral measure of λ(T ).

Let n = |Γ/Λ|, and let α1, . . . , αk be the non-zero eigenvalues of λ(T )
(which are positive real numbers). Note that

∏k
i=1 αi is a coefficient of the

characteristic polynomial of λ(T ), so in particular
∏
λi > 1.

Bounding eigenvalues which are less than ε by ε, and the other ones by c,
we therefore get

εnµλ(T )((0,ε))cn > 1,

which after taking the logarithms shows nµλ(T )((0, ε)) log(ε) + n log(c) > 0.
Since log(ε) < 0, we see that

µλ(T )((0, ε)) 6
log(c)

| log(ε)|
,
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which finishes the proof of the claim.

Now we can finish the proof of the theorem: Because of the previous claim,
we can find a non-negative continuous function f (supported on some small
interval around 0) such that

∫
fdµ ≈ µ({0}) and also for all i we have

∫
fdµi ≈

µi({0}). Therefore the statement follows from the weak convergence.

Remark 3.12. In the proof above with a little bit more care we could have
obtained that

∫
log(x)dµi(x) converges to

∫
log(x)dµ(x) and that the lat-

ter number is finite. This shows in particular that µ((0, ε)) = o( 1
| log(ε)|).

In [Gra15] it is shown that this is not far from optimal: for every δ > 0 there
exists some group Γ and T ∈ Z[Γ] such that µ(0, ε) ≈ 1

| log(ε)|1+δ .

On the other hand, suppose Γ is a group, T ∈ C[Γ] and there is some

function f : R+ → R+ such that f(x)
ε→0−−→ 0. If we have µσ(T )((0, ε)) < f(ε)

for all finite quotients of σ : Γ → Λ, then Lueck approximation holds for T
(with respect to residually finite quotients), by virtue of repeating the proof.
Unfortunately, noone so far has been able to prove the Lueck approximation
over C using this strategy.

3.b Approximation over C in the case of amenable groups

Recall that a countable group Γ is amenable if there exists a sequence F1, F2, . . .

of finite subsets of Γ such that for every γ ∈ Γ we have |γFi\Fi||Fi|
i→∞−−−→ 0. If Γ is

amenable then a sequence witnessing the amenability of Γ is called a Foelner
sequence and its elements are referred to as Foelner sets.

The following is a particular case of a theorem of Gabor Elek (presentation
follows the simplified proof of Daniel Pape). Closely related statements were
proved brefore by Cheeger and Gromov in a more geometric setting.

Theorem 3.13. Let Γ be amenable, let Fi be a Foelner sequence and let
T ∈ C[Γ]. Let Ti : `

2(Fi)→ `2(Γ) be the restriction of T to `2(Fi). Then

dimvN ker(T ) = lim
1

|Fi|
dim ker(Ti)

Proof. Let Σ ⊂ Γ be the support of T . For A ⊂ Γ let us define

∂A = {γ ∈ Γ \ A∃σ ∈ Σ, a ∈ A such that γ = σa}

and
A = A ∪ ∂A.

Note that Ti : `
2(Fi)→ `2(F i), and we extend it to T i : `

2(F i)→ `2(F i) by
declaring T i(ζγ) = 0 for γ ∈ ∂Fi. Note that | dim kerTi−dim kerT i = o(|Fi|),

18



so it is enough to show

dimvN ker(T ) = lim
1

|Fi|
dim ker(Ti)

Let S = T ∗T and let Si = T
∗
i · T i, let µ be the spectral measure of S and

let µi be the spectral measure of Si (i.e. µi is “the set of eigenvalues of Si
with multiplicities”).

Claim 1 The measures µi weakly converge to the spectral measure µ.

Indeed the proof is very similar to the proof of the analogous claim in
Theorem 3.10: we need to show that for a fixed k ∈ N we have

1

|Fi|
τi(S

k
i )

i→∞−−−→ τ(S),

where τi is the standard trace of a finite dimensional matrix.

Let ε > 0. By definition of a Foelner sequence, for almost all i we have

|Σ2kFi \ Fi| < ε|Fi|.

Let
Gi := {γ ∈ Fi : Σ2kγ ⊂ Fi}.

It follows that |Gi| > (1− ε)|Fi|. But if γ ∈ Gi then Ski (ζγ) = Sk(ζγ) so

〈Ski (ζγ), ζγ〉 = 〈Sk(ζγ), ζγ〉 = τ(Sk).

Therefore we have

τi(S
k
i ) =

∑
γ∈Fi

〈Ski ζγ, ζγ〉 =
∑
γ∈Gi
〈Ski ζγ, ζγ〉+

∑
γ∈Fi\Gi

〈Ski ζγ, ζγ〉

which is equal to

|Gi|τ(Sk) +
∑

γ∈Fi\Gi

〈Ski ζγ, ζγ〉

and so

|τ(Sk)− 1

|Gi|
τi(S

k
i )| < 2ε|Fi|‖Ski ‖.

where ‖Ski ‖ is the operator norm of Ski . Since the latter is bounded by the
norm of Sk, it is in paricular independent of i, which implies the claim.

Weak convergence by itself shows that

µ({0}) > lim supµi({0})

by taking a a non-negative continuous function f supported on some interval
around 0 and such that

∫
fdµ ≈ µ({0}).
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Thus we have

dimvN ker(S) = µ({0}) >

> lim supµi({0}) = lim sup
1

|F i|
dim ker(Si) = lim sup

1

|Fi|
dim ker(Si),

and hence we also have

dimvN ker(T ) > lim sup
1

|Fi|
dim ker(Ti).

Claim 2 We have dimvN im(T ) > lim supi
1
|Fi| dim im(Ti).

Indeed, let P : `2(Γ)→ `2(Γ) be the orthogonal projection onto im(T ), and
let Pi : `

2(Γ)→ `2(Fi) be the projection onto imTi. Note that im(Ti) ⊂ im(T )
and so for any v ∈ `2(Γ) we have ‖Pv‖ > ‖Piv‖, which shows that for all
γ ∈ Γ we have τ(P ) = 〈Pζγ, ζγ〉 > 〈Piζγ, ζγ〉. Now the result easily follows,
because

dim im(Ti) =
∑
γ∈Γ

〈Piζγ, ζγ〉

and there are at most |F i| non-zero summands in this sum.

By the additivity of dimensions, claim 2 implies that dimvN ker(T ) 6
lim supi

1
|Fi| dim ker(Ti), which finishes the proof.

Remark 3.14. Using the same proof and slightly more involved notation we
can show the analogous statement for T ∈ Mat(k, L(Γ)). Note that this in
particular shows that if T ∈ Mat(k, L(Γ)), and ker(T ) 6= 0 then there exists
v ∈ ker(T ) which is a finite sum of the vectors ζi,γ (see the proof of Lemma 2.2
for the definition of ζi,γ. Such kernel elements are often referred to as finitely
supported.

Corollary 3.15 (Cheeger-Gromov). If Γ is an amenable group then for all i

we have β
(2)
i (Γ) = 0. In particular χ(Γ) = 0.

Proof. We show it only when there exists a model for BΓ with bounded ge-
ometry. If Y → X = BΓ is the universal cover, thn Y is contractible, and
hence Hi(Y ) = 0. In other words there are no finitely supported elements in
ker ∆i. But then by the previous remark we have that ker ∆i = {0}, which

shows that H
(2)
i (Γ) = {0}.

3.c Remark about approximation in positive character-
istic

Elek and Szabo proved the Kaplansky’s conjecture on direct finiteness for sofic
groups, i.e. they showed the following theorem.
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Theorem 3.16. Let Γ be a sofic group and k be a field. Then k[Γ] is directly
finite, i.e. for all a, b,∈ k[Γ] we have that ab = 1 implies ba = 1.

For lack of time we will not define what sofic groups are. However we note
that they include residually finite and amenable groups.

Proof. We present the argument only in the residually finite case (the sofic
case is done in a very similar way). By passing to the subfield generated by
coefficients of a and b we can just as well assume that k is countable.

Consider a chain Γ1 ⊃ Γ2 ⊃ . . . of finite-index normal subgroups of Γ. By
passing to a subchain (here we use that k is countable) we may assume that
for all T ∈ k[Γ] the limit

rank(T ) :=
1

|Γ : Γk|
dim im(λ(Ti))

exists, where Ti is the image of T in k[Γ/Γi] and λ(Ti) : k[Γ/Γi] → k[Γ/Γi] is
the k-linear map given by left multiplication by T .

Claim: If T ∈ k[Γ] and T 6= 0 then rank(T ) 6= 0.

Indeed, note that supp(T ) is a finite set and let Σ := supp(T )∪supp(T )−1.
Let A be a maximal subset of Γ/Γi such that for α, β ∈ Σ we have supp(T ) ·
α∩supp(T )·β = ∅. By maximality we have that

⋃
a∈A Σ2 ·a = Γ/Γi and hence

|A| > 1
|Σ|2 · |Γ/Γi|. It follows that the vectors λ(Ti)ζγ, γ ∈ A have pair-wise

disjoint supports, and so rank(T ) > 1
|Σ|2 .

But if ab = 1 then clearly aibi = 1 for all i. Since Mat(n, k) is directly
finite for any field k and n ∈ Z+, we deduce that biai = 1 for all i. Thus
rank(ab− 1) = 0, and so ab− 1 = 0. This finishes the proof.

4 Atiyah conjecture for some torsion-free groups

4.a Statement of the Atiyah conjecture for torsion-free
groups

Let us recall a convenient characterisation of affiliated operators from Jessie
Peterson’s course: A closed partially defined operator T : `2(Γ) → `2(Γ) is
an affiliated operator iff there exists a sequence H1 ⊂ H2 ⊂ . . . of Hilbert
Γ-modules such that dimvNHi → 1, dom(T ) =

⋃
iHi, and for each i we have

that T restricted to Hi is equal to an element of LΓ restricted to Hi (note
that it follows from this description that T is densely defined).

The set of all affiliated operators will be denoted by U(Γ). Elements of
Mat(k × l,U(Γ)) will also be called affiliated operators.
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The following is the Peter Linnell’s formulation of the Atiyah conjecture
over C for torsion-free groups:

Conjecture 4.1. If Γ is a torsion-free group then there is a skew field R(Γ) ⊂
U(Γ) which contains C[Γ].

The more classical formulation is the following:

Conjecture 4.2. If Γ is torsion free and M ∈ Mat(k×l,C[Ga]) then dimvN ker(M) ∈
N.

Remark 4.3. The equivalence of these two formulations is a theorem of Pe-
ter Linnell. Using the above characterisation of the affiliated operators it
is easy to argue that if M ∈ Mat(k × l,Z[Γ]) and U ∈ GL(l,U(Γ)) then
dimvN im(UM) = dimvN(im(M)). This can be used to formalize example 1.15,
and in a similar way via Gaussian elimination this easily shows the implication
“Linnel’s formulation ⇒ classical formulation”. The other direction relies on
Cohn’s theory (see [Lin93])

4.b Biorderable groups

Recall that a group Γ is biorderable if there exists a linear order < on Γ such
that for all a, b, c ∈ Γ we have that a < b implies that ac < bc and ca < cb.

Lemma 4.4. If Γ is biorderable then there are no non-zero zero-divisors in
k[Γ].

Proof. Let S, T ∈ k[Γ], let a, b ∈ Γ be the largest elements in supp(S) and
supp(T ) respectively. Then the coefficient of ab in ST is non-zero because the
only pair (x, y) ∈ supp(S)× supp(T ) such that xy = ab is (a, b).

Indeed, for every c ∈ supp(S) with c < a and every d ∈ supp(T ) we have
cd 6 cb < ab, and similarly for every c ∈ supp(S) and every d ∈ supp(T ) with
d < b we have cd 6 ad < ab. This finishes the proof.

Remark 4.5. In fact for the lemma to hold it is enough if Γ is one-sided
orderable (see the excellent monograph [DNR14] for this and more information
about orderable groups)

Let su recall what is a nilpotent group: if Γ is a group then we let Γ1 =
[Γ,Γ], and inductively Γi = [Γ,Γi−1]. Then Γ is said to be nilpotent if for
some k we have Γk.

Proposition 4.6. If Γ is torsion-free nilpotent then Γ is biorderable.
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Proof. (Sketch from [DNR14]) Claim: If A ⊂ B are groups, A is a central
biorderable subgroup of B, and B/A is biorderable, then B is biorderable.

Indeed, let π : B → B/A be the natural projection and let us defined
the order on B by declaring x > y iff π(x) >B/A π(y) or if there’s a tie if
xy−1 >A e. It is straightforward to check that this is a biorder on B.

Now let us define Λi ⊂ Γ as Λi := {γ ∈ Γ: for some k we have γk ∈ Γi}.
If Γl = {e} then we have {e} = Λl ⊂ Λl−1 ⊂ . . . ⊂ Λ1 ⊂ Γ is a chain of
normal subgroups such that [Γ,Λi] ⊂ Λi+1. and such that Γ/Λi is torsion-free
(in particular the smallest non-trivial Λi is a central subgroup of Γ.

Since C is orderable, the claim follows by induction on the length of a
minimal chain of subgroups Λi such that [Γ,Λi] ⊂ Λi+1 and such that Γ/Λi is
torsion-free,

Proposition 4.7. For a torsion free amenable group the Atiyah conjecture is
equivalent to the statement that if S ∈ C[Γ] \ {0} then for all T ∈ C[Γ] \ {0}
we have ST 6= 0 (i.e. to the statement that C[Γ] is a domain).

Proof. (Sketch) Clearly Atiyah conjecture implies that C[Γ] is a domain, so
assume conversely that C[Γ] is a domain.

Claim: We have that C[Γ] fulfils the Ore condition: for all S, T we can
find A,B such that AS = TB.

Indeed, let Fi be a two-sided Foelner sequence, i.e. for all γ ∈ Γ we have
|γFi\Fi|
|Fi|

i→∞−−−→ 0 and |Fiγ\Fi||Fi|
i→∞−−−→ 0. Such a sequence always exists and it is not

very hard to construct it.

Let Σ = supp(S)∪supp(T ). Consider ρ(S) restricted to `2(Fi). Then by as-
sumption dim ker ρ(S) = {0} and so dim im ρ(S) = |Fi|, similarly dim imλ(T ) =
|Fi|. But we have that im ρ(S) and imλ(T ) are both subspaces in `2(F i),
where F i := Fi∪Σ·Fi∪Fi ·Σ. In particular we have dim(`2(F i)) = |Fi|+o(|Fi|)
and hence im ρ(S) ∩ imλ(T ) 6= {0}. This shows the claim.

In particular C[Γ] can be embedded in its classical field of fractions, which
we will denote by Q.

On the other hand Elek’s approximation along a Foelner sequence implies
that if C[Γ] is a domain and Γ is amenable then for each T ∈ C[Γ] \ {0} we
have kerλ(T ) = {0}. As such T has an inverse in U(Γ). Therefore, by the
universal property of Q we have that Q embeds in U(Γ). This finishes the
proof.

Corollary 4.8. Any group which is residually torsion-free nilpotent fulfils the
Atiyah conjecture.

Remark 4.9. Note that we need Andrei’s result that Lueck’s approximation
holds over C to actually obtain this corollary. From the results in these notes
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we can deduce only the Atiyah conjecture over Q, i.e. that for T ∈ Mat(k ×
l,Q[Γ]) we have dimvN ker(T ) ∈ N (or equivalently that there is a skew field
between Q[Γ] and U(Γ)).

Corollary 4.10. Atiyah conjecture holds for the free groups.

Proof. Indeed, it’s enough to argue that F2 is residually torsion-free nilpotent.
One way to quickly check it is to consider the quotients of

F2 =

〈(
1 x
0 1

)
,

(
1 0
x 1

)〉
⊂ SL(2,Z[x])

of the form 〈(
1 x
0 1

)
,

(
1 0
x 1

)〉
⊂ SL(2,Z[x]/(xk)).

These are easy check to be torsion-free nilpotent.
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