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• Unimodular Random Graph is a probability measure on the space of connected rooted
locally finite graphs, such that the operation of moving the root along an edge is
probability-preserving. (Benjamini-Schramm)

• Frequently we consider decorations on edges or vertices. Sometimes it is convenient
to consider higher dimensional simplicial or CW complexes.

• More precisely: We let Graphsd be the set of isomorphism classes of graphs with at
most countable set of vertices, degree at most d, and a distinguished vertex which we
call the root.
▶ We consider Graphsd as a topological space (Cantor space). For every r ∈ N and
every finite clopen rooted graph H we consider the subset U(H) ⊂ Graphsd of
graphs whose r-neighbourhood of the root is isomorphic to H .
▶ URG is a probability measure µ on Graphsd with the following property. Consider
the space Graphsd whose elements are rooted graphs with an edge at the root.
Then µ induces µ on Graphsd by choosing an edge uniformly at random. Let
A ⊂ Graphsd, and let B ⊂ Graphsd arise from A by moving the root along the
chosen edge. Then µ(A) = µ(B).
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Example - percolations

Fix a Cayley graph of a finitely generated group. Fix 0 ⩽ p ⩽ 1, remove every edge of
the Cayley graph uniformly at random with probability p, take the connected
component of the neutral element e, with e as the root.
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Example - Penrose tiling

measure: take a very large square, choose root at random. This gives a probability
measure on Graphsd supported on finite graphs. Take a weak limit of these
probability measures.

Unimodular Random Graphs with Property (T) | Unimodular Random Graphs 5 / 22



Example - Penrose tiling

measure: take a very large square, choose root at random. This gives a probability
measure on Graphsd supported on finite graphs. Take a weak limit of these
probability measures.

Unimodular Random Graphs with Property (T) | Unimodular Random Graphs 5 / 22



Example - Penrose tiling

measure:

take a very large square, choose root at random. This gives a probability
measure on Graphsd supported on finite graphs. Take a weak limit of these
probability measures.

Unimodular Random Graphs with Property (T) | Unimodular Random Graphs 5 / 22



Example - Penrose tiling

measure: take a very large square,

choose root at random. This gives a probability
measure on Graphsd supported on finite graphs. Take a weak limit of these
probability measures.

Unimodular Random Graphs with Property (T) | Unimodular Random Graphs 5 / 22



Example - Penrose tiling

measure: take a very large square, choose root at random.

This gives a probability
measure on Graphsd supported on finite graphs. Take a weak limit of these
probability measures.

Unimodular Random Graphs with Property (T) | Unimodular Random Graphs 5 / 22



Example - Penrose tiling

measure: take a very large square, choose root at random. This gives a probability
measure on Graphsd supported on finite graphs.

Take a weak limit of these
probability measures.

Unimodular Random Graphs with Property (T) | Unimodular Random Graphs 5 / 22



Example - Penrose tiling

measure: take a very large square, choose root at random. This gives a probability
measure on Graphsd supported on finite graphs. Take a weak limit of these
probability measures.

Unimodular Random Graphs with Property (T) | Unimodular Random Graphs 5 / 22



Example - Penrose tiling with some 2-cells

Whenever we see a “5-star”, we glue in five 2-dimensional cells.
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Example - Benjamini-Schramm convergence

• Interesting URGs arise also as weak limits of finite graphs, i.e.: we have a sequence of
finite graphs G1, G2, . . . and we consider the sequence of URGs Gi by sampling the
root in Gi uniformly at random. We take a weakly convergent subsequence.

▶ Example: Sequence of finite graphs Gi with growing girth converges to a URG G
which is a.s. a tree (typically infinite, with varying vertex degrees).

▶ Example: Let G be a finitely generated group. If G = N0 > N1 > . . . is a sequence
of finite index normal subgroups with

⋂
Ni = {e} then the graphs Cay(G/Ni)

converge to Cay(G).

▶ Example: If G = N0 > N1 > . . . is a sequence of finite index subgroups with⋂
Ni = {e} then the URG’s given by the finite graphs Schr(G/Ni) converge to CayG

iff the sequence Ni is Farber.
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Unimodular Random Graphs with Property (T)

1. Unimodular Random Graphs

2. Why URGs?

3. Property (T) for URGs



Generalities

• URG is the “correct” generalisation of the notion of a finite graph, if we care about
statements such as "half of the vertices are black", "the boundary of the black cluster
is small compared to the size of the cluster".

• URG is also a generalisation of Cayley graphs - while typically it’s not periodic, if there
is a subgraph H in G, then WLOG wee see it with a well-defined frequency in G. (we
need to assume that G is ergodic).
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Question about homology growth

• Let n > 0. Consider a sequence of simplicial manifolds Mi of dimension n, and
suppose that injectivity radius grows to infinity. I.e.: for every r > 0 there exists i0
such that for all i > i0 and every vertex x ∈ Mi the simplicial complex induced by the
ball of graph-distance radius r around x is contractible.

• Conjecture: if k ̸= n/2 then
lim
i→∞

bk(Mi)

|Vol(Mi)|
= 0
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• Not known even for 3-manifolds.

• Known when Mi’s are covers of a fixed aspherical manifold M .

▶ By Lück’s Approximation enough to show that β2
1(M̃) = 0

▶ Lott - Lück: β2(M̃) = 0. (Using geometrisation of 3-manifolds).

• What is the limiting Unimodular Random Manifold M for a general sequence Mi?

▶ It is a simplicial structure on a contractible 3-manifold without boundary.

▶ Is it homeomorphic to R3?

▶ Is it true that β2
1(M) = 0? Then above Conjecture is true, i.e. the homology

gradient vanishes for Mi.

▶ Could it be “exotic”? Could it have property (T)?

• Anderson 1980s (answer o question of Dodziuk-Singer): uniformly locally finite
triangulations of R3 with nontrivial l2-homology. (? - phrased in terms of Riemannian
manifolds...)
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URG’s allow to use new tools to study l2-homology.

• Example (Theorem of Gaboriau): Consider a Cayley graph Cay(G) of a group G and a
unimodular random cell complex D such that
▶ cells of D are marked white, black, or both, and every vertex is both black and
white.
▶ White cells form a copy of Cay(G)

▶ Black cells form a contractible complex
▶ Then: β2

k(Black) = β2
k(G) Shocking!!! "Draw a Cayley graph, draw a contractible

complex on the same set of vertices, l2-homoloy of the group can be computed
from this complex.

• This leads to the notion of ergodic dimension of a group: smallest possible dimension
of the black complex.
▶ Surface groups have ergodic dimension 1 (Conley, Gaboriau, Marks, Tucker-Drob).

▶ If you wish, you can now form shameless, scandalous variants of Singer’s
conjecture.
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• Another tool: Cost (introduced by Levitt, theorem of Gaboriau). Consider a Cayley
graph Cay(G) of a group G, and assume that for every ε > 0 we can find URG D with
some vertices coloured black such that

▶ if we forget the colours we obtain Cay(G)

▶ the black vertices induce a connected subgraph of Cay(G).

▶ the amount of black vertices is < ε (“black vertices form small unique clusters”).

• Then cost(G) = 1 and hence β(2)(G) = 0.

• We say G admits “small unique clusters”.

• Example on blackboard
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Take home messages:

• Considering unimodular random objects sheds light onto reasons why l2-homology
vanishes.

• Even if we care only about homology growth in sequences of compact manifolds, we
have to consider unimodular random graphs.

▶ Worthwhile task: generalise group-theoretic properties to unimodular random
graphs, especially those which imply vanishing of l2-Betti numbers.

▶ Example: Property (T) for a group implies β
(2)
1 (G) = 0.

• Equivalent/related notions: countable pmp equivalence relations, graphings,
measured groupoids, Invariant Random Subgroups.
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Unimodular Random Graphs with Property (T)

1. Unimodular Random Graphs

2. Why URGs?

3. Property (T) for URGs



• Consider a uniformly locally finite URG G and consider another URG H with
black/white vertex colouring, such that almost surely H has both black and white
vertices. Suppose that if we forget the vertex colours in H then we obtain G (“H is an
extension of G”).

• We say that G has property (T) if exists ε > 0 such that for any H as above where the
amount B of black vertices is < 3

4 , the size of the boundary of the black clusters is
> ε ·B.

• Picture on blackboard
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• Non-example: 4-regular tree. Process to obtain black/white colouring with small
boundary:

▶ Take an edge percolation, where we remove an edge with small probability ε.

▶ Colour the connected components of the resulting forest black/white.

▶ We consider this as a vertex colouring of the original tree.

▶ The boundary has size ε.

• Example: Cayley graph of a group with property (T) (Connes-Weiss theorem and
Glasner-Weiss theorem).
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• Theorem (G.- Jardon Sanchez - Mellick): Connes-Weiss and Glasner-Weiss theorems
for URGs/equivalence relations: URG G has property (T) iff exists a graphing which
realises G whose underlying equivalence relation has property (T).

▶ Property (T) for equivalence relations has been studied in the context of
groupodids and measured equivalence relations by many people before, in
particular in M. Pichot’s PhD thesis. Francois Le Maitre studied property (T) of the
full group.

• Theorem (G.-Jardon Sanchez - Mellick): Consider a unimodular locally compact group
G with property (T), and a Poisson point process. Connect the vertices to obtain a
connected graph. Then the resulting graph has property (T).

▶ This is a generalisation of a theorem of Kazhdan: Lattices in property (T) groups
have property (T). There are examples of unimodular locally compact groups with
property (T) and no lattices (Pierre-Emmanuel Caprace)
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G with property (T), and a Poisson point process. Connect the vertices to obtain a
connected graph. Then the resulting graph has property (T).

▶ This is a generalisation of a theorem of Kazhdan: Lattices in property (T) groups
have property (T). There are examples of unimodular locally compact groups with
property (T) and no lattices (Pierre-Emmanuel Caprace)
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• Theorem (G. - Jardon Sanchez - Mellick): (Generalisation of Hutchcroft-Pete theorem)
If G is a URG with property (T) then for every ε there exists a black/white colouring
such that G has a.s. a unique black cluster and black vertices have size < ε. (“Small
unique clusters”)
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Sketch of construction of small unique clusters for URG with property (T)

• Fix a URG G with property (T). Enough to show there are almost unique small clusters,
i.e. there exists a black/white colouring such that black vertices have size < ε and the
graph induced by black vertices has finitely many connected components.

• Balanced n-colouring is a colouring of the vertices, such that each colour has size in
the interval [ 1n − 1

n3 ,
1
n + 1

n3 ].

• Given a colouring C of G, we define K(C) as the amount of edges which go between
the colour classes.

• Define K(n) to be the infimum over all K(C), where C is a balanced colouring.

• Lemma: K(n) > 0. Furthermore, there exists a balanced n-colouring Cn such that
K(n) = K(Cn).

▶ We call Cn Kazhdan-optimal.
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• Lemma: If Cn is Kazhdan optimal then one of the colour classes has almost unique
clusters.
▶ This is enough to finish the proof, since the classes have size ⩽ 1

n + 1
n3 .

• Proof of Lemma: assume this is not the case. We find two colours α and β such that
▶ α-vertices have size ⩾ 1

n

▶ β-vertices have size ⩽ 1
n

▶ There are edges between α-vertices and β-vertices. (picture on blackboard)
• For each α-cluster uniformly at random choose a number 0 or 1, where 1 is chosen

with probability 1
n3 .

• Now we obtain new partition as follows:
▶ Colours other than α, β stay the same,
▶ α-vertices which got 0 stay the same
▶ α-vertices which got 1 switch to β

• Clearly this new colouring C′ has K(C′) < K)(Cn) and is still balanced.
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▶ There are edges between α-vertices and β-vertices. (picture on blackboard)
• For each α-cluster uniformly at random choose a number 0 or 1, where 1 is chosen

with probability 1
n3 .

• Now we obtain new partition as follows:
▶ Colours other than α, β stay the same,
▶ α-vertices which got 0 stay the same
▶ α-vertices which got 1 switch to β

• Clearly this new colouring C′ has K(C′) < K)(Cn) and is still balanced.
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What information do we get regarding the motivating conjecture?

• Let X1, X2 be a sequence of 3-dimensional simplicial complexes , such that
Zuk/Ballman-Swiatkowski link criterion is fulfilled on arbitrarily large proportions of
vertices.

▶ Criterion: Link graphs are connected expanders with spectral gap > 1
2 .

• Then limi→∞
b1(Xi)
|X0

i |
= 0.
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