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Categories

• A category is a collection of objects and morphisms.

I Example of objects are: “all topological spaces”, “all metrisable topological
spaces”, “all pairs (X,x) where X is a topological space and x ∈ X”, “all abelian
groups”, “all rings with identity”, etc.

• Morphisms are a collection of functions between the objects, subject to two condition:

I For every object X , we have that the identity idX is a morphism.

I If f : X → Y and g : Y → Z are morphisms then g ◦ f : X → Z is also a morphism.

I Examples: “all continuous maps”, “all continuous maps which are
homeomorphisms”, “Lipschitz-continuous maps”, “group homomorphisms“, “ring
homomorphisms” etc.
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Functors

• a functor F between two categories C and D is a way to associate to each object X of
C an object F (X) of D, and to each morphism f : X → Y a homomorphism
F (f) : F (X)→ F (Y ), such that

I F (idX) = idF (X) for any object X and

I F (s ◦ t) = F (s) ◦ F (t) for all composable morphisms s, t.
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Example

• Let Top be the category of all topological spaces, and let Sets be the category of all
sets.

• We consider the functor π0, which associates to X the set of connected components of
X .

• Note that for a continuous map f : X → Y and a connected component A ⊂ X we
have that f(A) lands in a single connected component of Y .

• This allows us to define π0(f).
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We can phrase the argument that Y := [0, 1] ∪ [2, 3] is not a retract of X := [0, 3] in this
functorial language.

• π0(X) = {a}, π0(Y ) = {b, c},

• If we had a retraction X → Y then consider Y → X → Y

• Apply the functor π0, get {b, c} → {a} → {b, c}, which is identity which is a
contradiction.
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Homotopy of paths

• Given two paths σ, τ : a
p
 b in a topological space X , we say they are homotopic to

each other relative to their ends, written σ ' τ rel{0, 1}, if we can find a map
F : I × I → X such that for all x ∈ I we have F (x, 0) = σ(x), F (x, 1) = τ(x),
F (0, x) = a, F (x, 0) = b.

• We express this frequently using the following diagram.

ba

τ

σ

• This diagram represents the domain of F , i.e. I × I , and it shows what F does on the
edges of the square. We say that F is a homotopy between σ and τ

• We say that σ : a
p
 a is a contractible loop or a homotopically trivial loop if

σ ' a rel{0, 1}
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Lemma. Homotopy relative to ends is an equivalence relation,

i.e. if we have
σ, τ, ρ : a

p
 b then

• σ ' σ rel{0, 1}

• σ ' τ rel{0, 1} ⇒ τ ' σ rel{0, 1}

• σ ' τ rel{0, 1}, τ ' ρ rel{0, 1} ⇒ σ ' ρ rel{0, 1}

Proof. First two properties left as exercises. The fact that σ ' τ rel{0, 1} is illustrated
by the diagram

ba

τ

σ
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The fact that τ ' ρ rel{0, 1} is illustrated by the diagram

ba

ρ

τ

As such we can form the diagram

ba

ρ

τ

σ

ba

which shows that indeed σ ' ρ rel{0, 1}, as claimed.
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Algebraic Topology

1. Recap

2. The fundamental group

3. Change of basepoint

4. Extending π1 to a functor

5. Homotopy of maps



Composition of paths

• Given σ : a
p
 b and τ : b

p
 c we can form the concatenation στ : a

p
 c by first

following σ and then τ .

• In other words we let στ(x) := σ(2x) for x 6 1
2 and στ(x) := τ(2x− 1) for x > 1

2 .
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Composition of paths is compatible with homotopies in the following sense.

Lemma. Suppose σ, σ′ : a p
 b,

τ, τ ′ : b
p
 c, and suppose also that σ ' σ′ rel{0, 1}

and τ ' τ ′ rel{0, 1}. Then στ ' σ′τ ′ rel{0, 1}.

Proof. We have the diagrams

ba

σ

b c

τ ′

τ

σ′

and so we can form the diagram

ba

σ

σ′

c

τ ′

τ
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• Now we are ready to define the fundamental group π1(X,x) of a pair (X,x), where X
is a topological space and x ∈ X ,

• We let π1(X,x) to be the set of all equivalence classes of loops at x in X .

• The homotopy class of a loop σ will be denoted by [σ].

• We define a binary operation on π1(X,x) by setting [σ] · [τ ] := [στ ].

• The previous lemma shows that this binary operation is well-defined on the elements
of π1(X,x).

• We define the neutral element in π1(X,x) to be the class of the constant loop [x],

• The inverse is defined as [σ]−1 := [σ−1], where σ−1(x) := σ(1− x).
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Theorem. π1(X,x) with the operations defined above is a group.

Proof. Let us check for example that [σ] · [σ]−1 = [x].
We need to show that σσ−1 ' x rel{0, 1}. This is witnessed by the following diagram:

σ σ−1

x
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In symbols,

we define a homotopy F : I × I → X between σσ−1 and x as follows.

F (s, t) := σ(2s) when 2s 6 t

:= σ(t) when t 6 2s 6 2− t,
:= σ−1(2s− 1) when 2− t 6 2s.

• Note that the argument in the last proof shows that if σ : a
p
 b then σ−1σ is a loop at a

which is contractible.
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Algebraic Topology

1. Recap

2. The fundamental group

3. Change of basepoint

4. Extending π1 to a functor

5. Homotopy of maps



If X is not path-connected then the isomorphism class of π1(X,x) might depend on
the choice of x ∈ X .

However when x and y can be connected by a path then we have
the following lemma.

Lemma. Let α : a
p
 b. Then we have an isomorphism α∗ : π1(X, a) → π1(X, b)

given by
α∗ : [σ] 7→ [α−1σα].

Proof.

• α∗ is well defined, i.e. if σ ' σ′ rel{0, 1} then α−1σα ' α−1σ′α rel{0, 1}.

• Need to check that

I α∗ is a group homomorphism, i.e. α∗([a]) = [b] and α∗([στ ]) = α∗([σ])α∗([τ ]),

I α∗ is a bijection.
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• α∗ is a bijection since (α−1)∗ is the inverse.

Indeed, we have

α∗(α
−1)∗ : [σ] 7→ [αα−1σαα−1],

and αα−1 is contractible loop. This means [αα−1] = [a], and so
[αα−1σαα−1] = [αα−1][σ][αα−1] = [σ].

• Let us check that α∗([a]) = [b]. Indeed α∗([a]) = [α−1aα]. We need to find a homotopy
from α−1aα to b. But it is clear that α−1aα is homotopic to α−1α, which is homotopic
to b.

• Checking the property α∗([στ ]) = α∗([σ])α∗([τ ]) is left as an exercise.
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Corollary. IfX is path-connected

then the isomorphism class of π1(X,x) does not
depend on the choice of x ∈ X

This corollary allows us to somewhat informally talk about the fundamental group
π1(X) of X , without referring to a chosen point of X , whenever X is path-connected.
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Algebraic Topology

1. Recap

2. The fundamental group

3. Change of basepoint

4. Extending π1 to a functor

5. Homotopy of maps



• Category:

I objects are pairs (X, a), where X is a topological space, and a ∈ X , (since π1 is
well-defined on (X, a)).

I morphisms between (X, a) and (Y, b): all continuous maps f : X → Y such that
f(a) = f(b).

• We extend π1 to a functor on this category: we need to define π1(f) as some
homomorphism between the groups π1(X, a) and π1(Y, b). By convention π1(f) will be
usually denoted by f∗.

• For a loop σ in X at a we define f∗([σ]) := [f ◦ σ].

• f∗ is well defined: if F : I × I → X is a homotopy between σ and τ then f ◦ F is a
homotopy between f ◦ σ and f ◦ τ .

• f∗ is a group homomorphism: f ◦ (στ) = (f ◦ σ)(f ◦ τ), which is clear by the definition
of concatenation.
This finishes the definition of the fundamental group functor.
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• We need to generalise the notion of homotopy between paths to homotopies between
arbitrary continuous maps.

• When F : Y × I → X , we denote with Ft the map Y → X given as Ft(y) := F (y, t).

• Let f, g : Y → X be continuous maps between topological spaces, and let A ⊂ Y be
such that f|A = g|A. We say that f and g are homotopic relative to A, written
f ' g relA, if there exists a continuous map F : Y × I → X such that F0 = f , F1 = g,
and for all t we have Ft|A = f|A.

• If A = ∅ then we write f ' g.

• The map F is called a homotopy between f and g.

• Exercise: Show that f ' g relA is an equivalence relation.
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• Example: Suppose that X,Y = Rn, f(y) = y, g(y) = 0 for all y ∈ Y . By considering
F (x, t) := tx we see that f and g are homotopic to each other.

• If for some topological space X we have that idX ' constx for some x ∈ X then we
say that X is contractible. Thus e.g. Rn is contractible.

• More generally: any convex subset Y ⊂ Rn is contractible. Indeed, we may fix y0 ∈ Y
and define F by the formula F (y, t) := (1− t)y + ty0. In particular, the unit disk
Dn := {x ∈ Rn : ‖x‖ 6 1} is contractible.

• If a space X is path-connected and π1(X) = {0} then we say that X is simply
connected.
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Proposition. If X is contractible then it is simply connected.

Proof.

• Let’s see that X is path-connected. If F : idX ' constx0 is a homotopy then for any
y ∈ X we can consider the path σ : y

p
 x0 given by σ(t) := F (y, t).

• Let us argue that π1(X,x0) = {[x0]}. We need to show that any loop at x0 can be
contracted to the constant loop at x0 while keeping the end points fixed.

• Let us fix a loop σ : I → X at x0. As the first step, we can consider the map
I × I 3 (s, t) 7→ F (σ(s), t) ∈ X . In diagrammatic terms this gives us

σ

α α

x0

where α is the loop at x0 given by α(t) := F (x0, t).
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• We can also consider the following two diagrams:

α

x0

x0

α α

α

x0

x0

• For example the left one represents the map G : I × I → X defined as follows:
G(s, t) := x0 if t > s, G(s, t) := α(1 + t− s) if t < s.

• Putting all three together gives us an end-preserving homotopy between the loop
α−1σα and the constant loop at x0.

• This means that [α−1σα] = [α]−1[σ][α] is the trivial element in π1(X), and hence also
[σ] is the trivial element of π1(X).
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The following exercises give us very important equivalent ways of thinking about
contractible loops.

• Let σ be a loop at x ∈ X . Since σ(0) = x = σ(1), we can consider σ as a map whose
domain is S1. Show that σ ' x rel{0, 1} if and only if σ can be extended to a map
D2 → X .

• Let X be a path-connected topological space. Show that the following conditions are
equivalent.

I π1(X) = {0} (i.e. X is simply connected).

I ∀f : S1 → X , we have that f can be extended to f̄ : D2 → X .

I if σ, τ : a
p
 b then σ ' τ rel{0, 1}
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