Lecture 2 - The fundamental group functor. Homotopy of maps

Algebraic Topology (SS 2023-24)

Łukasz Grabowski
Mathematisches Institut

Overview

\author{

1. Recap
}
2. The fundamental group
3. Change of basepoint
4. Extending π_{1} to a functor
5. Homotopy of maps
6. The fundamental group
7. Change of basepoint
8. Extending π_{1} to a functor

Algebraic Topology
4. Extending π_{1} to a functor

\author{

1. Recap
}

\qquad
2. Homotopy of maps
?
\qquad

O

Categories

Categories

- A category is a collection of objects and morphisms.

Categories

- A category is a collection of objects and morphisms.
- Example of objects are:

Categories

- A category is a collection of objects and morphisms.
- Example of objects are: "all topological spaces",

Categories

- A category is a collection of objects and morphisms.
- Example of objects are: "all topological spaces", "all metrisable topological spaces",

Categories

- A category is a collection of objects and morphisms.
- Example of objects are: "all topological spaces", "all metrisable topological spaces", "all pairs (X, x) where X is a topological space and $x \in X$ ", "all abelian groups", "all rings with identity", etc.

Categories

- A category is a collection of objects and morphisms.
- Example of objects are: "all topological spaces", "all metrisable topological spaces", "all pairs (X, x) where X is a topological space and $x \in X$ ", "all abelian groups", "all rings with identity", etc.
- Morphisms are a collection of functions between the objects, subject to two condition:

Categories

- A category is a collection of objects and morphisms.
- Example of objects are: "all topological spaces", "all metrisable topological spaces", "all pairs (X, x) where X is a topological space and $x \in X$ ", "all abelian groups", "all rings with identity", etc.
- Morphisms are a collection of functions between the objects, subject to two condition:
- For every object X, we have that the identity id_{X} is a morphism.

Categories

- A category is a collection of objects and morphisms.
- Example of objects are: "all topological spaces", "all metrisable topological spaces", "all pairs (X, x) where X is a topological space and $x \in X$ ", "all abelian groups", "all rings with identity", etc.
- Morphisms are a collection of functions between the objects, subject to two condition:
- For every object X, we have that the identity id $_{X}$ is a morphism.
- If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are morphisms then $g \circ f: X \rightarrow Z$ is also a morphism.

Categories

- A category is a collection of objects and morphisms.
- Example of objects are: "all topological spaces", "all metrisable topological spaces", "all pairs (X, x) where X is a topological space and $x \in X$ ", "all abelian groups", "all rings with identity", etc.
- Morphisms are a collection of functions between the objects, subject to two condition:
- For every object X, we have that the identity id_{X} is a morphism.
- If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are morphisms then $g \circ f: X \rightarrow Z$ is also a morphism.
- Examples: "all continuous maps", "all continuous maps which are homeomorphisms", "Lipschitz-continuous maps", "group homomorphisms", "ring homomorphisms" etc.

Functors

Functors

- a functor F between two categories \mathcal{C} and \mathcal{D}

Functors

- a functor F between two categories \mathcal{C} and \mathcal{D} is a way to associate to each object X of \mathcal{C} an object $F(X)$ of \mathcal{D},

Functors

- a functor F between two categories \mathcal{C} and \mathcal{D} is a way to associate to each object X of \mathcal{C} an object $F(X)$ of \mathcal{D}, and to each morphism $f: X \rightarrow Y$ a homomorphism $F(f): F(X) \rightarrow F(Y)$,

Functors

- a functor F between two categories \mathcal{C} and \mathcal{D} is a way to associate to each object X of \mathcal{C} an object $F(X)$ of \mathcal{D}, and to each morphism $f: X \rightarrow Y$ a homomorphism $F(f): F(X) \rightarrow F(Y)$, such that

Functors

- a functor F between two categories \mathcal{C} and \mathcal{D} is a way to associate to each object X of \mathcal{C} an object $F(X)$ of \mathcal{D}, and to each morphism $f: X \rightarrow Y$ a homomorphism $F(f): F(X) \rightarrow F(Y)$, such that
- $F\left(\mathrm{id}_{X}\right)=\mathrm{id}_{F(X)}$ for any object X and

Functors

- a functor F between two categories \mathcal{C} and \mathcal{D} is a way to associate to each object X of \mathcal{C} an object $F(X)$ of \mathcal{D}, and to each morphism $f: X \rightarrow Y$ a homomorphism $F(f): F(X) \rightarrow F(Y)$, such that
- $F\left(\mathrm{id}_{X}\right)=\mathrm{id}_{F(X)}$ for any object X and
- $F(s \circ t)=F(s) \circ F(t)$ for all composable morphisms s, t.

Example

Example

- Let Top be the category of all topological spaces, and let Sets be the category of all sets.

Example

- Let Top be the category of all topological spaces, and let Sets be the category of all sets.
- We consider the functor π_{0}, which associates to X the set of connected components of X.

Example

- Let Top be the category of all topological spaces, and let Sets be the category of all sets.
- We consider the functor π_{0}, which associates to X the set of connected components of X.
- Note that for a continuous map $f: X \rightarrow Y$

Example

- Let Top be the category of all topological spaces, and let Sets be the category of all sets.
- We consider the functor π_{0}, which associates to X the set of connected components of X.
- Note that for a continuous map $f: X \rightarrow Y$ and a connected component $A \subset X$

Example

- Let Top be the category of all topological spaces, and let Sets be the category of all sets.
- We consider the functor π_{0}, which associates to X the set of connected components of X.
- Note that for a continuous map $f: X \rightarrow Y$ and a connected component $A \subset X$ we have that $f(A)$ lands in a single connected component of Y.

Example

- Let Top be the category of all topological spaces, and let Sets be the category of all sets.
- We consider the functor π_{0}, which associates to X the set of connected components of X.
- Note that for a continuous map $f: X \rightarrow Y$ and a connected component $A \subset X$ we have that $f(A)$ lands in a single connected component of Y.
- This allows us to define $\pi_{0}(f)$.

We can phrase the argument that $Y:=[0,1] \cup[2,3]$ is not a retract of $X:=[0,3]$ in this functorial language.

We can phrase the argument that $Y:=[0,1] \cup[2,3]$ is not a retract of $X:=[0,3]$ in this functorial language.

- $\pi_{0}(X)=\{a\}$

We can phrase the argument that $Y:=[0,1] \cup[2,3]$ is not a retract of $X:=[0,3]$ in this functorial language.

- $\pi_{0}(X)=\{a\}, \pi_{0}(Y)=\{b, c\}$,

We can phrase the argument that $Y:=[0,1] \cup[2,3]$ is not a retract of $X:=[0,3]$ in this functorial language.

- $\pi_{0}(X)=\{a\}, \pi_{0}(Y)=\{b, c\}$,
- If we had a retraction $X \rightarrow Y$ then consider $Y \rightarrow X \rightarrow Y$

We can phrase the argument that $Y:=[0,1] \cup[2,3]$ is not a retract of $X:=[0,3]$ in this functorial language.

- $\pi_{0}(X)=\{a\}, \pi_{0}(Y)=\{b, c\}$,
- If we had a retraction $X \rightarrow Y$ then consider $Y \rightarrow X \rightarrow Y$
- Apply the functor π_{0},

We can phrase the argument that $Y:=[0,1] \cup[2,3]$ is not a retract of $X:=[0,3]$ in this functorial language.

- $\pi_{0}(X)=\{a\}, \pi_{0}(Y)=\{b, c\}$,
- If we had a retraction $X \rightarrow Y$ then consider $Y \rightarrow X \rightarrow Y$
- Apply the functor π_{0}, get $\{b, c\} \rightarrow\{a\} \rightarrow\{b, c\}$,

We can phrase the argument that $Y:=[0,1] \cup[2,3]$ is not a retract of $X:=[0,3]$ in this functorial language.

- $\pi_{0}(X)=\{a\}, \pi_{0}(Y)=\{b, c\}$,
- If we had a retraction $X \rightarrow Y$ then consider $Y \rightarrow X \rightarrow Y$
- Apply the functor π_{0}, get $\{b, c\} \rightarrow\{a\} \rightarrow\{b, c\}$, which is identity

We can phrase the argument that $Y:=[0,1] \cup[2,3]$ is not a retract of $X:=[0,3]$ in this functorial language.

- $\pi_{0}(X)=\{a\}, \pi_{0}(Y)=\{b, c\}$,
- If we had a retraction $X \rightarrow Y$ then consider $Y \rightarrow X \rightarrow Y$
- Apply the functor π_{0}, get $\{b, c\} \rightarrow\{a\} \rightarrow\{b, c\}$, which is identity which is a contradiction.

Homotopy of paths

Homotopy of paths

- Given two paths $\sigma, \tau: a \stackrel{p}{\rightsquigarrow} b$ in a topological space X,

Homotopy of paths

- Given two paths $\sigma, \tau: a \stackrel{p}{\rightsquigarrow} b$ in a topological space X, we say they are homotopic to each other relative to their ends,

Homotopy of paths

- Given two paths $\sigma, \tau: a \stackrel{p}{\rightsquigarrow} b$ in a topological space X, we say they are homotopic to each other relative to their ends, written $\sigma \simeq \tau \operatorname{rel}\{0,1\}$,

Homotopy of paths

- Given two paths $\sigma, \tau: a \stackrel{p}{\rightsquigarrow} b$ in a topological space X, we say they are homotopic to each other relative to their ends, written $\sigma \simeq \tau \operatorname{rel}\{0,1\}$, if we can find a map $F: I \times I \rightarrow X$

Homotopy of paths

- Given two paths $\sigma, \tau: a \stackrel{p}{\rightsquigarrow} b$ in a topological space X, we say they are homotopic to each other relative to their ends, written $\sigma \simeq \tau \operatorname{rel}\{0,1\}$, if we can find a map $F: I \times I \rightarrow X$ such that for all $x \in I$ we have $F(x, 0)=\sigma(x), F(x, 1)=\tau(x)$, $F(0, x)=a, F(x, 0)=b$.

Homotopy of paths

- Given two paths $\sigma, \tau: a \stackrel{p}{\rightsquigarrow} b$ in a topological space X, we say they are homotopic to each other relative to their ends, written $\sigma \simeq \tau \operatorname{rel}\{0,1\}$, if we can find a map $F: I \times I \rightarrow X$ such that for all $x \in I$ we have $F(x, 0)=\sigma(x), F(x, 1)=\tau(x)$, $F(0, x)=a, F(x, 0)=b$.
- We express this frequently using the following diagram.

Homotopy of paths

- Given two paths $\sigma, \tau: a \stackrel{p}{\rightsquigarrow} b$ in a topological space X, we say they are homotopic to each other relative to their ends, written $\sigma \simeq \tau \operatorname{rel}\{0,1\}$, if we can find a map $F: I \times I \rightarrow X$ such that for all $x \in I$ we have $F(x, 0)=\sigma(x), F(x, 1)=\tau(x)$, $F(0, x)=a, F(x, 0)=b$.
- We express this frequently using the following diagram.

- This diagram represents the domain of F, i.e. $I \times I$,

Homotopy of paths

- Given two paths $\sigma, \tau: a \stackrel{p}{\rightsquigarrow} b$ in a topological space X, we say they are homotopic to each other relative to their ends, written $\sigma \simeq \tau \operatorname{rel}\{0,1\}$, if we can find a map $F: I \times I \rightarrow X$ such that for all $x \in I$ we have $F(x, 0)=\sigma(x), F(x, 1)=\tau(x)$, $F(0, x)=a, F(x, 0)=b$.
- We express this frequently using the following diagram.

- This diagram represents the domain of F, i.e. $I \times I$, and it shows what F does on the edges of the square.

Homotopy of paths

- Given two paths $\sigma, \tau: a \stackrel{p}{\rightsquigarrow} b$ in a topological space X, we say they are homotopic to each other relative to their ends, written $\sigma \simeq \tau \operatorname{rel}\{0,1\}$, if we can find a map $F: I \times I \rightarrow X$ such that for all $x \in I$ we have $F(x, 0)=\sigma(x), F(x, 1)=\tau(x)$, $F(0, x)=a, F(x, 0)=b$.
- We express this frequently using the following diagram.

- This diagram represents the domain of F, i.e. $I \times I$, and it shows what F does on the edges of the square. We say that F is a homotopy between σ and τ

Homotopy of paths

- Given two paths $\sigma, \tau: a \stackrel{p}{\rightsquigarrow} b$ in a topological space X, we say they are homotopic to each other relative to their ends, written $\sigma \simeq \tau \operatorname{rel}\{0,1\}$, if we can find a map $F: I \times I \rightarrow X$ such that for all $x \in I$ we have $F(x, 0)=\sigma(x), F(x, 1)=\tau(x)$, $F(0, x)=a, F(x, 0)=b$.
- We express this frequently using the following diagram.

- This diagram represents the domain of F, i.e. $I \times I$, and it shows what F does on the edges of the square. We say that F is a homotopy between σ and τ
- We say that $\sigma: a \stackrel{p}{\rightsquigarrow} a$ is a contractible loop or

Homotopy of paths

- Given two paths $\sigma, \tau: a \stackrel{p}{\rightsquigarrow} b$ in a topological space X, we say they are homotopic to each other relative to their ends, written $\sigma \simeq \tau \operatorname{rel}\{0,1\}$, if we can find a map $F: I \times I \rightarrow X$ such that for all $x \in I$ we have $F(x, 0)=\sigma(x), F(x, 1)=\tau(x)$, $F(0, x)=a, F(x, 0)=b$.
- We express this frequently using the following diagram.

- This diagram represents the domain of F, i.e. $I \times I$, and it shows what F does on the edges of the square. We say that F is a homotopy between σ and τ
- We say that $\sigma: a \stackrel{p}{\rightsquigarrow} a$ is a contractible loop or a homotopically trivial loop

Homotopy of paths

- Given two paths $\sigma, \tau: a \stackrel{p}{\rightsquigarrow} b$ in a topological space X, we say they are homotopic to each other relative to their ends, written $\sigma \simeq \tau \operatorname{rel}\{0,1\}$, if we can find a map $F: I \times I \rightarrow X$ such that for all $x \in I$ we have $F(x, 0)=\sigma(x), F(x, 1)=\tau(x)$, $F(0, x)=a, F(x, 0)=b$.
- We express this frequently using the following diagram.

- This diagram represents the domain of F, i.e. $I \times I$, and it shows what F does on the edges of the square. We say that F is a homotopy between σ and τ
- We say that $\sigma: a \stackrel{p}{\rightsquigarrow} a$ is a contractible loop or a homotopically trivial loop if $\sigma \simeq a \operatorname{rel}\{0,1\}$

Lemma. Homotopy relative to ends is an equivalence relation,

Lemma. Homotopy relative to ends is an equivalence relation, i.e. if we have $\sigma, \tau, \rho: a \stackrel{p}{\sim} b$ then

Lemma. Homotopy relative to ends is an equivalence relation, i.e. if we have $\sigma, \tau, \rho: a \stackrel{p}{\rightsquigarrow} b$ then

- $\sigma \simeq \sigma \operatorname{rel}\{0,1\}$

Lemma. Homotopy relative to ends is an equivalence relation, i.e. if we have $\sigma, \tau, \rho: a \stackrel{p}{\rightsquigarrow} b$ then

- $\sigma \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\} \Rightarrow \tau \simeq \sigma \operatorname{rel}\{0,1\}$

Lemma. Homotopy relative to ends is an equivalence relation, i.e. if we have $\sigma, \tau, \rho: a \stackrel{p}{\rightsquigarrow} b$ then

- $\sigma \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\} \Rightarrow \tau \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\}, \tau \simeq \rho \operatorname{rel}\{0,1\} \Rightarrow \sigma \simeq \rho \operatorname{rel}\{0,1\}$

Lemma. Homotopy relative to ends is an equivalence relation, i.e. if we have $\sigma, \tau, \rho: a \stackrel{p}{\rightsquigarrow} b$ then

- $\sigma \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\} \Rightarrow \tau \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\}, \tau \simeq \rho \operatorname{rel}\{0,1\} \Rightarrow \sigma \simeq \rho \operatorname{rel}\{0,1\}$

Proof. First two properties left as exercises.

Lemma. Homotopy relative to ends is an equivalence relation, i.e. if we have $\sigma, \tau, \rho: a \stackrel{p}{\rightsquigarrow} b$ then

- $\sigma \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\} \Rightarrow \tau \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\}, \tau \simeq \rho \operatorname{rel}\{0,1\} \Rightarrow \sigma \simeq \rho \operatorname{rel}\{0,1\}$

Proof. First two properties left as exercises. The fact that $\sigma \simeq \tau \operatorname{rel}\{0,1\}$ is illustrated by the diagram

The fact that $\tau \simeq \rho \operatorname{rel}\{0,1\}$ is illustrated by the diagram

The fact that $\tau \simeq \rho \operatorname{rel}\{0,1\}$ is illustrated by the diagram

As such we can form the diagram

The fact that $\tau \simeq \rho \operatorname{rel}\{0,1\}$ is illustrated by the diagram

As such we can form the diagram

which shows that indeed $\sigma \simeq \rho \operatorname{rel}\{0,1\}$, as claimed.

The fact that $\tau \simeq \rho \operatorname{rel}\{0,1\}$ is illustrated by the diagram

As such we can form the diagram

which shows that indeed $\sigma \simeq \rho \operatorname{rel}\{0,1\}$, as claimed.

```
1. Recap
1. Recap
```

3. Change of basepoint
4. Extending π_{1} to a functor
5. Homotopy of maps

Algebraic Topology
4. Extending 1 to a functor

2. The fundamental group

Composition of paths

Composition of paths

- Given $\sigma: a \stackrel{p}{\rightsquigarrow} b$ and $\tau: b \stackrel{p}{\rightsquigarrow} c$

Composition of paths

- Given $\sigma: a \stackrel{p}{\rightsquigarrow} b$ and $\tau: b \stackrel{p}{\rightsquigarrow} c$ we can form the concatenation $\sigma \tau: a \stackrel{p}{\rightsquigarrow} c$

Composition of paths

- Given $\sigma: a \stackrel{p}{\rightsquigarrow} b$ and $\tau: b \stackrel{p}{\rightsquigarrow} c$ we can form the concatenation $\sigma \tau: a \stackrel{p}{\rightsquigarrow} c$ by first following σ and then τ.

Composition of paths

- Given $\sigma: a \stackrel{p}{\rightsquigarrow} b$ and $\tau: b \stackrel{p}{\rightsquigarrow} c$ we can form the concatenation $\sigma \tau: a \stackrel{p}{\rightsquigarrow} c$ by first following σ and then τ.
- In other words

Composition of paths

- Given $\sigma: a \stackrel{p}{\rightsquigarrow} b$ and $\tau: b \stackrel{p}{\rightsquigarrow} c$ we can form the concatenation $\sigma \tau: a \stackrel{p}{\rightsquigarrow} c$ by first following σ and then τ.
- In other words we let $\sigma \tau(x):=\sigma(2 x)$ for $x \leqslant \frac{1}{2}$

Composition of paths

- Given $\sigma: a \stackrel{p}{\rightsquigarrow} b$ and $\tau: b \stackrel{p}{\rightsquigarrow} c$ we can form the concatenation $\sigma \tau: a \stackrel{p}{\rightsquigarrow} c$ by first following σ and then τ.
- In other words we let $\sigma \tau(x):=\sigma(2 x)$ for $x \leqslant \frac{1}{2}$ and $\sigma \tau(x):=\tau(2 x-1)$ for $x \geqslant \frac{1}{2}$.

Composition of paths is compatible with homotopies in the following sense.

Lemma. Suppose $\sigma, \sigma^{\prime}: a \stackrel{p}{\rightsquigarrow} b$,

Composition of paths is compatible with homotopies in the following sense.
Lemma. Suppose $\sigma, \sigma^{\prime}: a \stackrel{p}{\rightsquigarrow} b, \tau, \tau^{\prime}: b \stackrel{p}{\rightsquigarrow} c$,

Composition of paths is compatible with homotopies in the following sense.
Lemma. Suppose $\sigma, \sigma^{\prime}: a \stackrel{p}{\rightsquigarrow} b, \tau, \tau^{\prime}: b \stackrel{p}{\rightsquigarrow} c$, and suppose also that $\sigma \simeq \sigma^{\prime} \operatorname{rel}\{0,1\}$

Composition of paths is compatible with homotopies in the following sense.

Lemma. Suppose $\sigma, \sigma^{\prime}: a \stackrel{p}{\rightsquigarrow} b, \tau, \tau^{\prime}: b \stackrel{p}{\rightsquigarrow} c$, and suppose also that $\sigma \simeq \sigma^{\prime} \operatorname{rel}\{0,1\}$ and $\tau \simeq \tau^{\prime} \operatorname{rel}\{0,1\}$.

Composition of paths is compatible with homotopies in the following sense.
Lemma. Suppose $\sigma, \sigma^{\prime}: a \stackrel{p}{\rightsquigarrow} b, \tau, \tau^{\prime}: b \stackrel{p}{\rightsquigarrow} c$, and suppose also that $\sigma \simeq \sigma^{\prime} \operatorname{rel}\{0,1\}$ and $\tau \simeq \tau^{\prime} \operatorname{rel}\{0,1\}$. Then $\sigma \tau \simeq \sigma^{\prime} \tau^{\prime} \operatorname{rel}\{0,1\}$.

Composition of paths is compatible with homotopies in the following sense.
Lemma. Suppose $\sigma, \sigma^{\prime}: a \stackrel{p}{\rightsquigarrow} b, \tau, \tau^{\prime}: b \stackrel{p}{\rightsquigarrow} c$, and suppose also that $\sigma \simeq \sigma^{\prime} \operatorname{rel}\{0,1\}$ and $\tau \simeq \tau^{\prime} \operatorname{rel}\{0,1\}$. Then $\sigma \tau \simeq \sigma^{\prime} \tau^{\prime} \operatorname{rel}\{0,1\}$.

Proof. We have the diagrams

Composition of paths is compatible with homotopies in the following sense.
Lemma. Suppose $\sigma, \sigma^{\prime}: a \stackrel{p}{\rightsquigarrow} b, \tau, \tau^{\prime}: b \stackrel{p}{\rightsquigarrow} c$, and suppose also that $\sigma \simeq \sigma^{\prime} \operatorname{rel}\{0,1\}$ and $\tau \simeq \tau^{\prime} \operatorname{rel}\{0,1\}$. Then $\sigma \tau \simeq \sigma^{\prime} \tau^{\prime} \operatorname{rel}\{0,1\}$.

Proof. We have the diagrams

Composition of paths is compatible with homotopies in the following sense.
Lemma. Suppose $\sigma, \sigma^{\prime}: a \stackrel{p}{\rightsquigarrow} b, \tau, \tau^{\prime}: b \stackrel{p}{\rightsquigarrow} c$, and suppose also that $\sigma \simeq \sigma^{\prime} \operatorname{rel}\{0,1\}$ and $\tau \simeq \tau^{\prime} \operatorname{rel}\{0,1\}$. Then $\sigma \tau \simeq \sigma^{\prime} \tau^{\prime} \operatorname{rel}\{0,1\}$.

Proof. We have the diagrams

and so we can form the diagram

Composition of paths is compatible with homotopies in the following sense.
Lemma. Suppose $\sigma, \sigma^{\prime}: a \stackrel{p}{\rightsquigarrow} b, \tau, \tau^{\prime}: b \stackrel{p}{\rightsquigarrow} c$, and suppose also that $\sigma \simeq \sigma^{\prime} \operatorname{rel}\{0,1\}$ and $\tau \simeq \tau^{\prime} \operatorname{rel}\{0,1\}$. Then $\sigma \tau \simeq \sigma^{\prime} \tau^{\prime} \operatorname{rel}\{0,1\}$.

Proof. We have the diagrams

and so we can form the diagram

Composition of paths is compatible with homotopies in the following sense.
Lemma. Suppose $\sigma, \sigma^{\prime}: a \stackrel{p}{\rightsquigarrow} b, \tau, \tau^{\prime}: b \stackrel{p}{\rightsquigarrow} c$, and suppose also that $\sigma \simeq \sigma^{\prime} \operatorname{rel}\{0,1\}$ and $\tau \simeq \tau^{\prime} \operatorname{rel}\{0,1\}$. Then $\sigma \tau \simeq \sigma^{\prime} \tau^{\prime} \operatorname{rel}\{0,1\}$.

Proof. We have the diagrams

and so we can form the diagram

- Now we are ready to define the fundamental group $\pi_{1}(X, x)$ of a pair (X, x),
- Now we are ready to define the fundamental group $\pi_{1}(X, x)$ of a pair (X, x), where X is a topological space and $x \in X$,
- Now we are ready to define the fundamental group $\pi_{1}(X, x)$ of a pair (X, x), where X is a topological space and $x \in X$,
- We let $\pi_{1}(X, x)$ to be the set of all equivalence classes of loops at x in X.
- Now we are ready to define the fundamental group $\pi_{1}(X, x)$ of a pair (X, x), where X is a topological space and $x \in X$,
- We let $\pi_{1}(X, x)$ to be the set of all equivalence classes of loops at x in X.
- The homotopy class of a loop σ will be denoted by $[\sigma]$.
- Now we are ready to define the fundamental group $\pi_{1}(X, x)$ of a pair (X, x), where X is a topological space and $x \in X$,
- We let $\pi_{1}(X, x)$ to be the set of all equivalence classes of loops at x in X.
- The homotopy class of a loop σ will be denoted by $[\sigma]$.
- We define a binary operation on $\pi_{1}(X, x)$
- Now we are ready to define the fundamental group $\pi_{1}(X, x)$ of a pair (X, x), where X is a topological space and $x \in X$,
- We let $\pi_{1}(X, x)$ to be the set of all equivalence classes of loops at x in X.
- The homotopy class of a loop σ will be denoted by $[\sigma]$.
- We define a binary operation on $\pi_{1}(X, x)$ by setting $[\sigma] \cdot[\tau]:=[\sigma \tau]$.
- Now we are ready to define the fundamental group $\pi_{1}(X, x)$ of a pair (X, x), where X is a topological space and $x \in X$,
- We let $\pi_{1}(X, x)$ to be the set of all equivalence classes of loops at x in X.
- The homotopy class of a loop σ will be denoted by $[\sigma]$.
- We define a binary operation on $\pi_{1}(X, x)$ by setting $[\sigma] \cdot[\tau]:=[\sigma \tau]$.
- The previous lemma shows that this binary operation is well-defined on the elements of $\pi_{1}(X, x)$.
- Now we are ready to define the fundamental group $\pi_{1}(X, x)$ of a pair (X, x), where X is a topological space and $x \in X$,
- We let $\pi_{1}(X, x)$ to be the set of all equivalence classes of loops at x in X.
- The homotopy class of a loop σ will be denoted by $[\sigma]$.
- We define a binary operation on $\pi_{1}(X, x)$ by setting $[\sigma] \cdot[\tau]:=[\sigma \tau]$.
- The previous lemma shows that this binary operation is well-defined on the elements of $\pi_{1}(X, x)$.
- We define the neutral element in $\pi_{1}(X, x)$ to be the class of the constant loop $[x]$,
- Now we are ready to define the fundamental group $\pi_{1}(X, x)$ of a pair (X, x), where X is a topological space and $x \in X$,
- We let $\pi_{1}(X, x)$ to be the set of all equivalence classes of loops at x in X.
- The homotopy class of a loop σ will be denoted by $[\sigma]$.
- We define a binary operation on $\pi_{1}(X, x)$ by setting $[\sigma] \cdot[\tau]:=[\sigma \tau]$.
- The previous lemma shows that this binary operation is well-defined on the elements of $\pi_{1}(X, x)$.
- We define the neutral element in $\pi_{1}(X, x)$ to be the class of the constant loop $[x]$,
- The inverse is defined as $[\sigma]^{-1}:=\left[\sigma^{-1}\right]$, where $\sigma^{-1}(x):=\sigma(1-x)$.

Theorem. $\pi_{1}(X, x)$ with the operations defined above is a group.

Theorem. $\pi_{1}(X, x)$ with the operations defined above is a group.
Proof. Let us check for example that $[\sigma] \cdot[\sigma]^{-1}=[x]$.

Theorem. $\pi_{1}(X, x)$ with the operations defined above is a group.
Proof. Let us check for example that $[\sigma] \cdot[\sigma]^{-1}=[x]$. We need to show that $\sigma \sigma^{-1} \simeq x \operatorname{rel}\{0,1\}$.

Theorem. $\pi_{1}(X, x)$ with the operations defined above is a group.
Proof. Let us check for example that $[\sigma] \cdot[\sigma]^{-1}=[x]$.
We need to show that $\sigma \sigma^{-1} \simeq x \operatorname{rel}\{0,1\}$. This is witnessed by the following diagram:

In symbols,

In symbols, we define a homotopy $F: I \times I \rightarrow X$

In symbols, we define a homotopy $F: I \times I \rightarrow X$ between $\sigma \sigma^{-1}$ and x

In symbols, we define a homotopy $F: I \times I \rightarrow X$ between $\sigma \sigma^{-1}$ and x as follows.

In symbols, we define a homotopy $F: I \times I \rightarrow X$ between $\sigma \sigma^{-1}$ and x as follows.

$$
\begin{aligned}
F(s, t) & :=\sigma(2 s) \\
& :=\sigma(t) \\
& :=\sigma^{-1}(2 s-1)
\end{aligned}
$$

when $2 s \leqslant t$
when $t \leqslant 2 s \leqslant 2-t$, when $2-t \leqslant 2 s$.

In symbols, we define a homotopy $F: I \times I \rightarrow X$ between $\sigma \sigma^{-1}$ and x as follows.

$$
\begin{aligned}
F(s, t) & :=\sigma(2 s) \\
& :=\sigma(t) \\
& :=\sigma^{-1}(2 s-1)
\end{aligned}
$$

when $2 s \leqslant t$
when $t \leqslant 2 s \leqslant 2-t$, when $2-t \leqslant 2 s$.

In symbols, we define a homotopy $F: I \times I \rightarrow X$ between $\sigma \sigma^{-1}$ and x as follows.

$$
\begin{aligned}
F(s, t) & :=\sigma(2 s) \\
& :=\sigma(t) \\
& :=\sigma^{-1}(2 s-1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { when } 2 s \leqslant t \\
& \text { when } t \leqslant 2 s \leqslant 2-t \\
& \text { when } 2-t \leqslant 2 s \text {. }
\end{aligned}
$$

- Note that the argument in the last proof shows that if $\sigma: a \stackrel{p}{\rightsquigarrow} b$ then $\sigma^{-1} \sigma$ is a loop at a which is contractible.

```
1. Recap
1. Recap
```

2. The fundamental group
3. Change of basepoint
4. Extending π_{1} to a functor
5. Homotopy of maps

Algebraic Topolog
2. The fundamental group
4. Extending π_{1} to a functor

If X is not path-connected then the isomorphism class of $\pi_{1}(X, x)$ might depend on the choice of $x \in X$.

If X is not path-connected then the isomorphism class of $\pi_{1}(X, x)$ might depend on the choice of $x \in X$. However when x and y can be connected by a path then we have the following lemma.

Lemma. Let $\alpha: a \stackrel{p}{\rightsquigarrow} b$.

If X is not path-connected then the isomorphism class of $\pi_{1}(X, x)$ might depend on the choice of $x \in X$. However when x and y can be connected by a path then we have the following lemma.

Lemma. Let $\alpha: a \stackrel{p}{\rightsquigarrow} b$. Then we have an isomorphism $\alpha_{*}: \pi_{1}(X, a) \rightarrow \pi_{1}(X, b)$

If X is not path-connected then the isomorphism class of $\pi_{1}(X, x)$ might depend on the choice of $x \in X$. However when x and y can be connected by a path then we have the following lemma.

Lemma. Let $\alpha: a \stackrel{p}{\rightsquigarrow} b$. Then we have an isomorphism $\alpha_{*}: \pi_{1}(X, a) \rightarrow \pi_{1}(X, b)$ given by

$$
\alpha_{*}:[\sigma]
$$

If X is not path-connected then the isomorphism class of $\pi_{1}(X, x)$ might depend on the choice of $x \in X$. However when x and y can be connected by a path then we have the following lemma.

Lemma. Let $\alpha: a \stackrel{p}{\rightsquigarrow} b$. Then we have an isomorphism $\alpha_{*}: \pi_{1}(X, a) \rightarrow \pi_{1}(X, b)$ given by

$$
\alpha_{*}:[\sigma] \mapsto\left[\alpha^{-1} \sigma \alpha\right] .
$$

If X is not path-connected then the isomorphism class of $\pi_{1}(X, x)$ might depend on the choice of $x \in X$. However when x and y can be connected by a path then we have the following lemma.

Lemma. Let $\alpha: a \stackrel{p}{\rightsquigarrow} b$. Then we have an isomorphism $\alpha_{*}: \pi_{1}(X, a) \rightarrow \pi_{1}(X, b)$ given by

$$
\alpha_{*}:[\sigma] \mapsto\left[\alpha^{-1} \sigma \alpha\right] .
$$

Proof.

If X is not path-connected then the isomorphism class of $\pi_{1}(X, x)$ might depend on the choice of $x \in X$. However when x and y can be connected by a path then we have the following lemma.

Lemma. Let $\alpha: a \stackrel{p}{\rightsquigarrow} b$. Then we have an isomorphism $\alpha_{*}: \pi_{1}(X, a) \rightarrow \pi_{1}(X, b)$ given by

$$
\alpha_{*}:[\sigma] \mapsto\left[\alpha^{-1} \sigma \alpha\right] .
$$

Proof.

- α_{*} is well defined,

If X is not path-connected then the isomorphism class of $\pi_{1}(X, x)$ might depend on the choice of $x \in X$. However when x and y can be connected by a path then we have the following lemma.

Lemma. Let $\alpha: a \stackrel{p}{\rightsquigarrow} b$. Then we have an isomorphism $\alpha_{*}: \pi_{1}(X, a) \rightarrow \pi_{1}(X, b)$ given by

$$
\alpha_{*}:[\sigma] \mapsto\left[\alpha^{-1} \sigma \alpha\right] .
$$

Proof.

- α_{*} is well defined, i.e. if $\sigma \simeq \sigma^{\prime} \operatorname{rel}\{0,1\}$ then

If X is not path-connected then the isomorphism class of $\pi_{1}(X, x)$ might depend on the choice of $x \in X$. However when x and y can be connected by a path then we have the following lemma.

Lemma. Let $\alpha: a \stackrel{p}{\rightsquigarrow} b$. Then we have an isomorphism $\alpha_{*}: \pi_{1}(X, a) \rightarrow \pi_{1}(X, b)$ given by

$$
\alpha_{*}:[\sigma] \mapsto\left[\alpha^{-1} \sigma \alpha\right] .
$$

Proof.

- α_{*} is well defined, i.e. if $\sigma \simeq \sigma^{\prime} \operatorname{rel}\{0,1\}$ then $\alpha^{-1} \sigma \alpha \simeq \alpha^{-1} \sigma^{\prime} \alpha \operatorname{rel}\{0,1\}$.

If X is not path-connected then the isomorphism class of $\pi_{1}(X, x)$ might depend on the choice of $x \in X$. However when x and y can be connected by a path then we have the following lemma.

Lemma. Let $\alpha: a \stackrel{p}{\rightsquigarrow} b$. Then we have an isomorphism $\alpha_{*}: \pi_{1}(X, a) \rightarrow \pi_{1}(X, b)$ given by

$$
\alpha_{*}:[\sigma] \mapsto\left[\alpha^{-1} \sigma \alpha\right] .
$$

Proof.

- α_{*} is well defined, i.e. if $\sigma \simeq \sigma^{\prime} \operatorname{rel}\{0,1\}$ then $\alpha^{-1} \sigma \alpha \simeq \alpha^{-1} \sigma^{\prime} \alpha \operatorname{rel}\{0,1\}$.
- Need to check that

If X is not path-connected then the isomorphism class of $\pi_{1}(X, x)$ might depend on the choice of $x \in X$. However when x and y can be connected by a path then we have the following lemma.

Lemma. Let $\alpha: a \stackrel{p}{\rightsquigarrow} b$. Then we have an isomorphism $\alpha_{*}: \pi_{1}(X, a) \rightarrow \pi_{1}(X, b)$ given by

$$
\alpha_{*}:[\sigma] \mapsto\left[\alpha^{-1} \sigma \alpha\right] .
$$

Proof.

- α_{*} is well defined, i.e. if $\sigma \simeq \sigma^{\prime} \operatorname{rel}\{0,1\}$ then $\alpha^{-1} \sigma \alpha \simeq \alpha^{-1} \sigma^{\prime} \alpha \operatorname{rel}\{0,1\}$.
- Need to check that
- α_{*} is a group homomorphism,

If X is not path-connected then the isomorphism class of $\pi_{1}(X, x)$ might depend on the choice of $x \in X$. However when x and y can be connected by a path then we have the following lemma.

Lemma. Let $\alpha: a \stackrel{p}{\rightsquigarrow} b$. Then we have an isomorphism $\alpha_{*}: \pi_{1}(X, a) \rightarrow \pi_{1}(X, b)$ given by

$$
\alpha_{*}:[\sigma] \mapsto\left[\alpha^{-1} \sigma \alpha\right] .
$$

Proof.

- α_{*} is well defined, i.e. if $\sigma \simeq \sigma^{\prime} \operatorname{rel}\{0,1\}$ then $\alpha^{-1} \sigma \alpha \simeq \alpha^{-1} \sigma^{\prime} \alpha \operatorname{rel}\{0,1\}$.
- Need to check that
- α_{*} is a group homomorphism, i.e. $\alpha_{*}([a])=[b]$ and

If X is not path-connected then the isomorphism class of $\pi_{1}(X, x)$ might depend on the choice of $x \in X$. However when x and y can be connected by a path then we have the following lemma.

Lemma. Let $\alpha: a \stackrel{p}{\rightsquigarrow} b$. Then we have an isomorphism $\alpha_{*}: \pi_{1}(X, a) \rightarrow \pi_{1}(X, b)$ given by

$$
\alpha_{*}:[\sigma] \mapsto\left[\alpha^{-1} \sigma \alpha\right] .
$$

Proof.

- α_{*} is well defined, i.e. if $\sigma \simeq \sigma^{\prime} \operatorname{rel}\{0,1\}$ then $\alpha^{-1} \sigma \alpha \simeq \alpha^{-1} \sigma^{\prime} \alpha \operatorname{rel}\{0,1\}$.
- Need to check that
- α_{*} is a group homomorphism, i.e. $\alpha_{*}([a])=[b]$ and $\alpha_{*}([\sigma \tau])=\alpha_{*}([\sigma]) \alpha_{*}([\tau])$,

If X is not path-connected then the isomorphism class of $\pi_{1}(X, x)$ might depend on the choice of $x \in X$. However when x and y can be connected by a path then we have the following lemma.

Lemma. Let $\alpha: a \stackrel{p}{\rightsquigarrow} b$. Then we have an isomorphism $\alpha_{*}: \pi_{1}(X, a) \rightarrow \pi_{1}(X, b)$ given by

$$
\alpha_{*}:[\sigma] \mapsto\left[\alpha^{-1} \sigma \alpha\right] .
$$

Proof.

- α_{*} is well defined, i.e. if $\sigma \simeq \sigma^{\prime} \operatorname{rel}\{0,1\}$ then $\alpha^{-1} \sigma \alpha \simeq \alpha^{-1} \sigma^{\prime} \alpha \operatorname{rel}\{0,1\}$.
- Need to check that
- α_{*} is a group homomorphism, i.e. $\alpha_{*}([a])=[b]$ and $\alpha_{*}([\sigma \tau])=\alpha_{*}([\sigma]) \alpha_{*}([\tau])$,
- α_{*} is a bijection.
- α_{*} is a bijection since $\left(\alpha^{-1}\right)_{*}$ is the inverse.
- α_{*} is a bijection since $\left(\alpha^{-1}\right)_{*}$ is the inverse. Indeed, we have
- α_{*} is a bijection since $\left(\alpha^{-1}\right)_{*}$ is the inverse. Indeed, we have

$$
\alpha_{*}\left(\alpha^{-1}\right)_{*}:[\sigma] \mapsto\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right]
$$

- α_{*} is a bijection since $\left(\alpha^{-1}\right)_{*}$ is the inverse. Indeed, we have

$$
\alpha_{*}\left(\alpha^{-1}\right)_{*}:[\sigma] \mapsto\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right]
$$

and $\alpha \alpha^{-1}$ is contractible loop.

- α_{*} is a bijection since $\left(\alpha^{-1}\right)_{*}$ is the inverse. Indeed, we have

$$
\alpha_{*}\left(\alpha^{-1}\right)_{*}:[\sigma] \mapsto\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right]
$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $\left[\alpha \alpha^{-1}\right]=[a]$,

- α_{*} is a bijection since $\left(\alpha^{-1}\right)_{*}$ is the inverse. Indeed, we have

$$
\alpha_{*}\left(\alpha^{-1}\right)_{*}:[\sigma] \mapsto\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right],
$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $\left[\alpha \alpha^{-1}\right]=[a]$, and so [$\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}$]

- α_{*} is a bijection since $\left(\alpha^{-1}\right)_{*}$ is the inverse. Indeed, we have

$$
\alpha_{*}\left(\alpha^{-1}\right)_{*}:[\sigma] \mapsto\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right]
$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $\left[\alpha \alpha^{-1}\right]=[a]$, and so $\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right]=\left[\alpha \alpha^{-1}\right][\sigma]\left[\alpha \alpha^{-1}\right]$

- α_{*} is a bijection since $\left(\alpha^{-1}\right)_{*}$ is the inverse. Indeed, we have

$$
\alpha_{*}\left(\alpha^{-1}\right)_{*}:[\sigma] \mapsto\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right]
$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $\left[\alpha \alpha^{-1}\right]=[a]$, and so $\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right]=\left[\alpha \alpha^{-1}\right][\sigma]\left[\alpha \alpha^{-1}\right]=[\sigma]$.

- α_{*} is a bijection since $\left(\alpha^{-1}\right)_{*}$ is the inverse. Indeed, we have

$$
\alpha_{*}\left(\alpha^{-1}\right)_{*}:[\sigma] \mapsto\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right],
$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $\left[\alpha \alpha^{-1}\right]=[a]$, and so $\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right]=\left[\alpha \alpha^{-1}\right][\sigma]\left[\alpha \alpha^{-1}\right]=[\sigma]$.

- Let us check that $\alpha_{*}([a])=[b]$. Indeed $\alpha_{*}([a])=\left[\alpha^{-1} a \alpha\right]$.
- α_{*} is a bijection since $\left(\alpha^{-1}\right)_{*}$ is the inverse. Indeed, we have

$$
\alpha_{*}\left(\alpha^{-1}\right)_{*}:[\sigma] \mapsto\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right],
$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $\left[\alpha \alpha^{-1}\right]=[a]$, and so $\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right]=\left[\alpha \alpha^{-1}\right][\sigma]\left[\alpha \alpha^{-1}\right]=[\sigma]$.

- Let us check that $\alpha_{*}([a])=[b]$. Indeed $\alpha_{*}([a])=\left[\alpha^{-1} a \alpha\right]$. We need to find a homotopy from $\alpha^{-1} a \alpha$ to b.
- α_{*} is a bijection since $\left(\alpha^{-1}\right)_{*}$ is the inverse. Indeed, we have

$$
\alpha_{*}\left(\alpha^{-1}\right)_{*}:[\sigma] \mapsto\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right],
$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $\left[\alpha \alpha^{-1}\right]=[a]$, and so $\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right]=\left[\alpha \alpha^{-1}\right][\sigma]\left[\alpha \alpha^{-1}\right]=[\sigma]$.

- Let us check that $\alpha_{*}([a])=[b]$. Indeed $\alpha_{*}([a])=\left[\alpha^{-1} a \alpha\right]$. We need to find a homotopy from $\alpha^{-1} a \alpha$ to b. But it is clear that $\alpha^{-1} a \alpha$ is homotopic to $\alpha^{-1} \alpha$,
- α_{*} is a bijection since $\left(\alpha^{-1}\right)_{*}$ is the inverse. Indeed, we have

$$
\alpha_{*}\left(\alpha^{-1}\right)_{*}:[\sigma] \mapsto\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right],
$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $\left[\alpha \alpha^{-1}\right]=[a]$, and so $\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right]=\left[\alpha \alpha^{-1}\right][\sigma]\left[\alpha \alpha^{-1}\right]=[\sigma]$.

- Let us check that $\alpha_{*}([a])=[b]$. Indeed $\alpha_{*}([a])=\left[\alpha^{-1} a \alpha\right]$. We need to find a homotopy from $\alpha^{-1} a \alpha$ to b. But it is clear that $\alpha^{-1} a \alpha$ is homotopic to $\alpha^{-1} \alpha$, which is homotopic to b.
- α_{*} is a bijection since $\left(\alpha^{-1}\right)_{*}$ is the inverse. Indeed, we have

$$
\alpha_{*}\left(\alpha^{-1}\right)_{*}:[\sigma] \mapsto\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right],
$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $\left[\alpha \alpha^{-1}\right]=[a]$, and so $\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right]=\left[\alpha \alpha^{-1}\right][\sigma]\left[\alpha \alpha^{-1}\right]=[\sigma]$.

- Let us check that $\alpha_{*}([a])=[b]$. Indeed $\alpha_{*}([a])=\left[\alpha^{-1} a \alpha\right]$. We need to find a homotopy from $\alpha^{-1} a \alpha$ to b. But it is clear that $\alpha^{-1} a \alpha$ is homotopic to $\alpha^{-1} \alpha$, which is homotopic to b.
- Checking the property $\alpha_{*}([\sigma \tau])=\alpha_{*}([\sigma]) \alpha_{*}([\tau])$ is left as an exercise.
- α_{*} is a bijection since $\left(\alpha^{-1}\right)_{*}$ is the inverse. Indeed, we have

$$
\alpha_{*}\left(\alpha^{-1}\right)_{*}:[\sigma] \mapsto\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right],
$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $\left[\alpha \alpha^{-1}\right]=[a]$, and so $\left[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}\right]=\left[\alpha \alpha^{-1}\right][\sigma]\left[\alpha \alpha^{-1}\right]=[\sigma]$.

- Let us check that $\alpha_{*}([a])=[b]$. Indeed $\alpha_{*}([a])=\left[\alpha^{-1} a \alpha\right]$. We need to find a homotopy from $\alpha^{-1} a \alpha$ to b. But it is clear that $\alpha^{-1} a \alpha$ is homotopic to $\alpha^{-1} \alpha$, which is homotopic to b.
- Checking the property $\alpha_{*}([\sigma \tau])=\alpha_{*}([\sigma]) \alpha_{*}([\tau])$ is left as an exercise.

Corollary. If X is path-connected

Corollary. If X is path-connected then the isomorphism class of $\pi_{1}(X, x)$

Corollary. If X is path-connected then the isomorphism class of $\pi_{1}(X, x)$ does not depend on the choice of $x \in X$

Corollary. If X is path-connected then the isomorphism class of $\pi_{1}(X, x)$ does not depend on the choice of $x \in X$

This corollary allows us to somewhat informally talk about

Corollary. If X is path-connected then the isomorphism class of $\pi_{1}(X, x)$ does not depend on the choice of $x \in X$

This corollary allows us to somewhat informally talk about the fundamental group $\pi_{1}(X)$ of X,

Corollary. If X is path-connected then the isomorphism class of $\pi_{1}(X, x)$ does not depend on the choice of $x \in X$

This corollary allows us to somewhat informally talk about the fundamental group $\pi_{1}(X)$ of X, without referring to a chosen point of X, whenever X is path-connected.

- Category:

- Category:

- objects are pairs (X, a),
- Category:
- objects are pairs (X, a), where X is a topological space,

- Category

- objects are pairs (X, a), where X is a topological space, and $a \in X$,

- Category

- objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_{1} is well-defined on (X, a)).

- Category

- objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_{1} is well-defined on (X, a)).
- morphisms between (X, a) and (Y, b) :

- Category

- objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_{1} is well-defined on (X, a)).
- morphisms between (X, a) and (Y, b) : all continuous maps $f: X \rightarrow Y$ such that $f(a)=f(b)$.

- Category

- objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_{1} is well-defined on (X, a)).
- morphisms between (X, a) and (Y, b) : all continuous maps $f: X \rightarrow Y$ such that $f(a)=f(b)$.
- We extend π_{1} to a functor on this category:

- Category

- objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_{1} is well-defined on ($X, a)$).
- morphisms between (X, a) and (Y, b) : all continuous maps $f: X \rightarrow Y$ such that $f(a)=f(b)$.
- We extend π_{1} to a functor on this category: we need to define $\pi_{1}(f)$ as some homomorphism between the groups $\pi_{1}(X, a)$ and $\pi_{1}(Y, b)$.

- Category

- objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_{1} is well-defined on ($X, a)$).
- morphisms between (X, a) and (Y, b) : all continuous maps $f: X \rightarrow Y$ such that $f(a)=f(b)$.
- We extend π_{1} to a functor on this category: we need to define $\pi_{1}(f)$ as some homomorphism between the groups $\pi_{1}(X, a)$ and $\pi_{1}(Y, b)$. By convention $\pi_{1}(f)$ will be usually denoted by f_{*}.

- Category

- objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_{1} is well-defined on ($X, a)$).
- morphisms between (X, a) and (Y, b) : all continuous maps $f: X \rightarrow Y$ such that $f(a)=f(b)$.
- We extend π_{1} to a functor on this category: we need to define $\pi_{1}(f)$ as some homomorphism between the groups $\pi_{1}(X, a)$ and $\pi_{1}(Y, b)$. By convention $\pi_{1}(f)$ will be usually denoted by f_{*}.
- For a loop σ in X at a we define $f_{*}([\sigma]):=[f \circ \sigma]$.

- Category

- objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_{1} is well-defined on ($X, a)$).
- morphisms between (X, a) and (Y, b) : all continuous maps $f: X \rightarrow Y$ such that $f(a)=f(b)$.
- We extend π_{1} to a functor on this category: we need to define $\pi_{1}(f)$ as some homomorphism between the groups $\pi_{1}(X, a)$ and $\pi_{1}(Y, b)$. By convention $\pi_{1}(f)$ will be usually denoted by f_{*}.
- For a loop σ in X at a we define $f_{*}([\sigma]):=[f \circ \sigma]$.
- f_{*} is well defined:

- Category:

- objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_{1} is well-defined on ($X, a)$).
- morphisms between (X, a) and (Y, b) : all continuous maps $f: X \rightarrow Y$ such that $f(a)=f(b)$.
- We extend π_{1} to a functor on this category: we need to define $\pi_{1}(f)$ as some homomorphism between the groups $\pi_{1}(X, a)$ and $\pi_{1}(Y, b)$. By convention $\pi_{1}(f)$ will be usually denoted by f_{*}.
- For a loop σ in X at a we define $f_{*}([\sigma]):=[f \circ \sigma]$.
- f_{*} is well defined: if $F: I \times I \rightarrow X$ is a homotopy between σ and τ

- Category:

- objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_{1} is well-defined on ($X, a)$).
- morphisms between (X, a) and (Y, b) : all continuous maps $f: X \rightarrow Y$ such that $f(a)=f(b)$.
- We extend π_{1} to a functor on this category: we need to define $\pi_{1}(f)$ as some homomorphism between the groups $\pi_{1}(X, a)$ and $\pi_{1}(Y, b)$. By convention $\pi_{1}(f)$ will be usually denoted by f_{*}.
- For a loop σ in X at a we define $f_{*}([\sigma]):=[f \circ \sigma]$.
- f_{*} is well defined: if $F: I \times I \rightarrow X$ is a homotopy between σ and τ then $f \circ F$ is a homotopy between $f \circ \sigma$ and $f \circ \tau$.

- Category:

- objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_{1} is well-defined on ($X, a)$).
- morphisms between (X, a) and (Y, b) : all continuous maps $f: X \rightarrow Y$ such that $f(a)=f(b)$.
- We extend π_{1} to a functor on this category: we need to define $\pi_{1}(f)$ as some homomorphism between the groups $\pi_{1}(X, a)$ and $\pi_{1}(Y, b)$. By convention $\pi_{1}(f)$ will be usually denoted by f_{*}.
- For a loop σ in X at a we define $f_{*}([\sigma]):=[f \circ \sigma]$.
- f_{*} is well defined: if $F: I \times I \rightarrow X$ is a homotopy between σ and τ then $f \circ F$ is a homotopy between $f \circ \sigma$ and $f \circ \tau$.
- f_{*} is a group homomorphism:

- Category:

- objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_{1} is well-defined on ($X, a)$).
- morphisms between (X, a) and (Y, b) : all continuous maps $f: X \rightarrow Y$ such that $f(a)=f(b)$.
- We extend π_{1} to a functor on this category: we need to define $\pi_{1}(f)$ as some homomorphism between the groups $\pi_{1}(X, a)$ and $\pi_{1}(Y, b)$. By convention $\pi_{1}(f)$ will be usually denoted by f_{*}.
- For a loop σ in X at a we define $f_{*}([\sigma]):=[f \circ \sigma]$.
- f_{*} is well defined: if $F: I \times I \rightarrow X$ is a homotopy between σ and τ then $f \circ F$ is a homotopy between $f \circ \sigma$ and $f \circ \tau$.
- f_{*} is a group homomorphism: $f \circ(\sigma \tau)=(f \circ \sigma)(f \circ \tau)$,

- Category:

- objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_{1} is well-defined on ($X, a)$).
- morphisms between (X, a) and (Y, b) : all continuous maps $f: X \rightarrow Y$ such that $f(a)=f(b)$.
- We extend π_{1} to a functor on this category: we need to define $\pi_{1}(f)$ as some homomorphism between the groups $\pi_{1}(X, a)$ and $\pi_{1}(Y, b)$. By convention $\pi_{1}(f)$ will be usually denoted by f_{*}.
- For a loop σ in X at a we define $f_{*}([\sigma]):=[f \circ \sigma]$.
- f_{*} is well defined: if $F: I \times I \rightarrow X$ is a homotopy between σ and τ then $f \circ F$ is a homotopy between $f \circ \sigma$ and $f \circ \tau$.
- f_{*} is a group homomorphism: $f \circ(\sigma \tau)=(f \circ \sigma)(f \circ \tau)$, which is clear by the definition of concatenation.

- Category:

- objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_{1} is well-defined on ($X, a)$).
- morphisms between (X, a) and (Y, b) : all continuous maps $f: X \rightarrow Y$ such that $f(a)=f(b)$.
- We extend π_{1} to a functor on this category: we need to define $\pi_{1}(f)$ as some homomorphism between the groups $\pi_{1}(X, a)$ and $\pi_{1}(Y, b)$. By convention $\pi_{1}(f)$ will be usually denoted by f_{*}.
- For a loop σ in X at a we define $f_{*}([\sigma]):=[f \circ \sigma]$.
- f_{*} is well defined: if $F: I \times I \rightarrow X$ is a homotopy between σ and τ then $f \circ F$ is a homotopy between $f \circ \sigma$ and $f \circ \tau$.
- f_{*} is a group homomorphism: $f \circ(\sigma \tau)=(f \circ \sigma)(f \circ \tau)$, which is clear by the definition of concatenation.

This finishes the definition of the fundamental group functor.
5. Homotopy of maps

- We need to generalise the notion of homotopy between paths
- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \rightarrow X$,
- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \rightarrow X$, we denote with F_{t} the map
- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \rightarrow X$, we denote with F_{t} the map $Y \rightarrow X$ given as $F_{t}(y):=F(y, t)$.
- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \rightarrow X$, we denote with F_{t} the map $Y \rightarrow X$ given as $F_{t}(y):=F(y, t)$.
- Let $f, g: Y \rightarrow X$ be continuous maps between topological spaces,
- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \rightarrow X$, we denote with F_{t} the map $Y \rightarrow X$ given as $F_{t}(y):=F(y, t)$.
- Let $f, g: Y \rightarrow X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{\mid A}=g_{\mid A}$.
- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \rightarrow X$, we denote with F_{t} the map $Y \rightarrow X$ given as $F_{t}(y):=F(y, t)$.
- Let $f, g: Y \rightarrow X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{\mid A}=g_{\mid A}$. We say that f and g are homotopic relative to A,
- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \rightarrow X$, we denote with F_{t} the map $Y \rightarrow X$ given as $F_{t}(y):=F(y, t)$.
- Let $f, g: Y \rightarrow X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{\mid A}=g_{\mid A}$. We say that f and g are homotopic relative to A, written $f \simeq g \operatorname{rel} A$,
- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \rightarrow X$, we denote with F_{t} the map $Y \rightarrow X$ given as $F_{t}(y):=F(y, t)$.
- Let $f, g: Y \rightarrow X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{\mid A}=g_{\mid A}$. We say that f and g are homotopic relative to A, written $f \simeq g \operatorname{rel} A$, if there exists a continuous map $F: Y \times I \rightarrow X$
- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \rightarrow X$, we denote with F_{t} the map $Y \rightarrow X$ given as $F_{t}(y):=F(y, t)$.
- Let $f, g: Y \rightarrow X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{\mid A}=g_{\mid A}$. We say that f and g are homotopic relative to A, written $f \simeq g \operatorname{rel} A$, if there exists a continuous map $F: Y \times I \rightarrow X$ such that $F_{0}=f, F_{1}=g$,
- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \rightarrow X$, we denote with F_{t} the map $Y \rightarrow X$ given as $F_{t}(y):=F(y, t)$.
- Let $f, g: Y \rightarrow X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{\mid A}=g_{\mid A}$. We say that f and g are homotopic relative to A, written $f \simeq g \operatorname{rel} A$, if there exists a continuous map $F: Y \times I \rightarrow X$ such that $F_{0}=f, F_{1}=g$, and for all t we have $F_{t \mid A}=f_{\mid A}$.
- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \rightarrow X$, we denote with F_{t} the map $Y \rightarrow X$ given as $F_{t}(y):=F(y, t)$.
- Let $f, g: Y \rightarrow X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{\mid A}=g_{\mid A}$. We say that f and g are homotopic relative to A, written $f \simeq g \operatorname{rel} A$, if there exists a continuous map $F: Y \times I \rightarrow X$ such that $F_{0}=f, F_{1}=g$, and for all t we have $F_{t \mid A}=f_{\mid A}$.
- If $A=\emptyset$ then we write $f \simeq g$.
- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \rightarrow X$, we denote with F_{t} the map $Y \rightarrow X$ given as $F_{t}(y):=F(y, t)$.
- Let $f, g: Y \rightarrow X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{\mid A}=g_{\mid A}$. We say that f and g are homotopic relative to A, written $f \simeq g \operatorname{rel} A$, if there exists a continuous map $F: Y \times I \rightarrow X$ such that $F_{0}=f, F_{1}=g$, and for all t we have $F_{t \mid A}=f_{\mid A}$.
- If $A=\emptyset$ then we write $f \simeq g$.
- The map F is called a homotopy between f and g.
- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \rightarrow X$, we denote with F_{t} the map $Y \rightarrow X$ given as $F_{t}(y):=F(y, t)$.
- Let $f, g: Y \rightarrow X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{\mid A}=g_{\mid A}$. We say that f and g are homotopic relative to A, written $f \simeq g \operatorname{rel} A$, if there exists a continuous map $F: Y \times I \rightarrow X$ such that $F_{0}=f, F_{1}=g$, and for all t we have $F_{t \mid A}=f_{\mid A}$.
- If $A=\emptyset$ then we write $f \simeq g$.
- The map F is called a homotopy between f and g.
- Exercise:
- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \rightarrow X$, we denote with F_{t} the map $Y \rightarrow X$ given as $F_{t}(y):=F(y, t)$.
- Let $f, g: Y \rightarrow X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{\mid A}=g_{\mid A}$. We say that f and g are homotopic relative to A, written $f \simeq g \operatorname{rel} A$, if there exists a continuous map $F: Y \times I \rightarrow X$ such that $F_{0}=f, F_{1}=g$, and for all t we have $F_{t \mid A}=f_{\mid A}$.
- If $A=\emptyset$ then we write $f \simeq g$.
- The map F is called a homotopy between f and g.
- Exercise: Show that $f \simeq g$ rel A is an equivalence relation.
- Example: Suppose that $X, Y=\mathbb{R}^{n}, f(y)=y$,
- Example: Suppose that $X, Y=\mathbb{R}^{n}, f(y)=y, g(y)=0$ for all $y \in Y$.
- Example: Suppose that $X, Y=\mathbb{R}^{n}, f(y)=y, g(y)=0$ for all $y \in Y$. By considering $F(x, t):=t x$
- Example: Suppose that $X, Y=\mathbb{R}^{n}, f(y)=y, g(y)=0$ for all $y \in Y$. By considering $F(x, t):=t x$ we see that f and g are homotopic to each other.
- Example: Suppose that $X, Y=\mathbb{R}^{n}, f(y)=y, g(y)=0$ for all $y \in Y$. By considering $F(x, t):=t x$ we see that f and g are homotopic to each other.
- If for some topological space X we have that $\operatorname{id}_{X} \simeq \operatorname{const}_{x}$ for some $x \in X$
- Example: Suppose that $X, Y=\mathbb{R}^{n}, f(y)=y, g(y)=0$ for all $y \in Y$. By considering $F(x, t):=t x$ we see that f and g are homotopic to each other.
- If for some topological space X we have that $\operatorname{id}_{X} \simeq \operatorname{const}_{x}$ for some $x \in X$ then we say that X is contractible.
- Example: Suppose that $X, Y=\mathbb{R}^{n}, f(y)=y, g(y)=0$ for all $y \in Y$. By considering $F(x, t):=t x$ we see that f and g are homotopic to each other.
- If for some topological space X we have that $\operatorname{id}_{X} \simeq \operatorname{const}_{x}$ for some $x \in X$ then we say that X is contractible. Thus e.g. \mathbb{R}^{n} is contractible.
- Example: Suppose that $X, Y=\mathbb{R}^{n}, f(y)=y, g(y)=0$ for all $y \in Y$. By considering $F(x, t):=t x$ we see that f and g are homotopic to each other.
- If for some topological space X we have that $\operatorname{id}_{X} \simeq$ const $_{x}$ for some $x \in X$ then we say that X is contractible. Thus e.g. \mathbb{R}^{n} is contractible.
- More generally:
- Example: Suppose that $X, Y=\mathbb{R}^{n}, f(y)=y, g(y)=0$ for all $y \in Y$. By considering $F(x, t):=t x$ we see that f and g are homotopic to each other.
- If for some topological space X we have that $\mathrm{id}_{X} \simeq \operatorname{const}_{x}$ for some $x \in X$ then we say that X is contractible. Thus e.g. \mathbb{R}^{n} is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^{n}$ is contractible.
- Example: Suppose that $X, Y=\mathbb{R}^{n}, f(y)=y, g(y)=0$ for all $y \in Y$. By considering $F(x, t):=t x$ we see that f and g are homotopic to each other.
- If for some topological space X we have that $\mathrm{id}_{X} \simeq$ const $_{x}$ for some $x \in X$ then we say that X is contractible. Thus e.g. \mathbb{R}^{n} is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^{n}$ is contractible. Indeed, we may fix $y_{0} \in Y$
- Example: Suppose that $X, Y=\mathbb{R}^{n}, f(y)=y, g(y)=0$ for all $y \in Y$. By considering $F(x, t):=t x$ we see that f and g are homotopic to each other.
- If for some topological space X we have that $\mathrm{id}_{X} \simeq$ const $_{x}$ for some $x \in X$ then we say that X is contractible. Thus e.g. \mathbb{R}^{n} is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^{n}$ is contractible. Indeed, we may fix $y_{0} \in Y$ and define F by the formula
- Example: Suppose that $X, Y=\mathbb{R}^{n}, f(y)=y, g(y)=0$ for all $y \in Y$. By considering $F(x, t):=t x$ we see that f and g are homotopic to each other.
- If for some topological space X we have that $\mathrm{id}_{X} \simeq$ const $_{x}$ for some $x \in X$ then we say that X is contractible. Thus e.g. \mathbb{R}^{n} is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^{n}$ is contractible. Indeed, we may fix $y_{0} \in Y$ and define F by the formula $F(y, t):=$
- Example: Suppose that $X, Y=\mathbb{R}^{n}, f(y)=y, g(y)=0$ for all $y \in Y$. By considering $F(x, t):=t x$ we see that f and g are homotopic to each other.
- If for some topological space X we have that $\mathrm{id}_{X} \simeq \operatorname{const}_{x}$ for some $x \in X$ then we say that X is contractible. Thus e.g. \mathbb{R}^{n} is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^{n}$ is contractible. Indeed, we may fix $y_{0} \in Y$ and define F by the formula $F(y, t):=(1-t) y+t y_{0}$.
- Example: Suppose that $X, Y=\mathbb{R}^{n}, f(y)=y, g(y)=0$ for all $y \in Y$. By considering $F(x, t):=t x$ we see that f and g are homotopic to each other.
- If for some topological space X we have that $\mathrm{id}_{X} \simeq \operatorname{const}_{x}$ for some $x \in X$ then we say that X is contractible. Thus e.g. \mathbb{R}^{n} is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^{n}$ is contractible. Indeed, we may fix $y_{0} \in Y$ and define F by the formula $F(y, t):=(1-t) y+t y_{0}$. In particular, the unit disk $\mathbb{D}^{n}:=$
- Example: Suppose that $X, Y=\mathbb{R}^{n}, f(y)=y, g(y)=0$ for all $y \in Y$. By considering $F(x, t):=t x$ we see that f and g are homotopic to each other.
- If for some topological space X we have that $\mathrm{id}_{X} \simeq \operatorname{const}_{x}$ for some $x \in X$ then we say that X is contractible. Thus e.g. \mathbb{R}^{n} is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^{n}$ is contractible. Indeed, we may fix $y_{0} \in Y$ and define F by the formula $F(y, t):=(1-t) y+t y_{0}$. In particular, the unit disk $\mathbb{D}^{n}:=\left\{x \in \mathbb{R}^{n}:\|x\| \leqslant 1\right\}$
- Example: Suppose that $X, Y=\mathbb{R}^{n}, f(y)=y, g(y)=0$ for all $y \in Y$. By considering $F(x, t):=t x$ we see that f and g are homotopic to each other.
- If for some topological space X we have that $\mathrm{id}_{X} \simeq \operatorname{const}_{x}$ for some $x \in X$ then we say that X is contractible. Thus e.g. \mathbb{R}^{n} is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^{n}$ is contractible. Indeed, we may fix $y_{0} \in Y$ and define F by the formula $F(y, t):=(1-t) y+t y_{0}$. In particular, the unit disk $\mathbb{D}^{n}:=\left\{x \in \mathbb{R}^{n}:\|x\| \leqslant 1\right\}$ is contractible.
- Example: Suppose that $X, Y=\mathbb{R}^{n}, f(y)=y, g(y)=0$ for all $y \in Y$. By considering $F(x, t):=t x$ we see that f and g are homotopic to each other.
- If for some topological space X we have that $\mathrm{id}_{X} \simeq$ const $_{x}$ for some $x \in X$ then we say that X is contractible. Thus e.g. \mathbb{R}^{n} is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^{n}$ is contractible. Indeed, we may fix $y_{0} \in Y$ and define F by the formula $F(y, t):=(1-t) y+t y_{0}$. In particular, the unit disk $\mathbb{D}^{n}:=\left\{x \in \mathbb{R}^{n}:\|x\| \leqslant 1\right\}$ is contractible.
- If a space X is path-connected and $\pi_{1}(X)=\{0\}$
- Example: Suppose that $X, Y=\mathbb{R}^{n}, f(y)=y, g(y)=0$ for all $y \in Y$. By considering $F(x, t):=t x$ we see that f and g are homotopic to each other.
- If for some topological space X we have that $\mathrm{id}_{X} \simeq$ const $_{x}$ for some $x \in X$ then we say that X is contractible. Thus e.g. \mathbb{R}^{n} is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^{n}$ is contractible. Indeed, we may fix $y_{0} \in Y$ and define F by the formula $F(y, t):=(1-t) y+t y_{0}$. In particular, the unit disk $\mathbb{D}^{n}:=\left\{x \in \mathbb{R}^{n}:\|x\| \leqslant 1\right\}$ is contractible.
- If a space X is path-connected and $\pi_{1}(X)=\{0\}$ then we say that X is simply connected.

Proposition. If X is contractible then it is simply connected.

Proposition. If X is contractible then it is simply connected.

Proof.

Proposition. If X is contractible then it is simply connected.

Proof.

- Let's see that X is path-connected.

Proposition. If X is contractible then it is simply connected.

Proof.

- Let's see that X is path-connected. If $F: \operatorname{id}_{X} \simeq \operatorname{const}_{x_{0}}$ is a homotopy

Proposition. If X is contractible then it is simply connected.

Proof.

- Let's see that X is path-connected. If $F:$ id $_{X} \simeq \operatorname{const}_{x_{0}}$ is a homotopy then for any $y \in X$ we can consider the path $\sigma: y \xrightarrow{p} x_{0}$

Proposition. If X is contractible then it is simply connected.

Proof.

- Let's see that X is path-connected. If $F:$ id $_{X} \simeq \operatorname{const}_{x_{0}}$ is a homotopy then for any $y \in X$ we can consider the path $\sigma: y \stackrel{p}{\sim} x_{0}$ given by $\sigma(t):=$

Proposition. If X is contractible then it is simply connected.

Proof.

- Let's see that X is path-connected. If $F:$ id $_{X} \simeq \operatorname{const}_{x_{0}}$ is a homotopy then for any $y \in X$ we can consider the path $\sigma: y \stackrel{p}{\leadsto} x_{0}$ given by $\sigma(t):=F(y, t)$.

Proposition. If X is contractible then it is simply connected.

Proof.

- Let's see that X is path-connected. If $F: \operatorname{id}_{X} \simeq$ const $_{x_{0}}$ is a homotopy then for any $y \in X$ we can consider the path $\sigma: y \stackrel{p}{\rightsquigarrow} x_{0}$ given by $\sigma(t):=F(y, t)$.
- Let us argue that $\pi_{1}\left(X, x_{0}\right)=\left\{\left[x_{0}\right]\right\}$. We need to show that any loop at x_{0} can be contracted to the constant loop at x_{0}

Proposition. If X is contractible then it is simply connected.

Proof.

- Let's see that X is path-connected. If $F: \operatorname{id}_{X} \simeq$ const $_{x_{0}}$ is a homotopy then for any $y \in X$ we can consider the path $\sigma: y \stackrel{p}{\rightsquigarrow} x_{0}$ given by $\sigma(t):=F(y, t)$.
- Let us argue that $\pi_{1}\left(X, x_{0}\right)=\left\{\left[x_{0}\right]\right\}$. We need to show that any loop at x_{0} can be contracted to the constant loop at x_{0} while keeping the end points fixed.

Proposition. If X is contractible then it is simply connected.

Proof.

- Let's see that X is path-connected. If $F: \operatorname{id}_{X} \simeq$ const $_{x_{0}}$ is a homotopy then for any $y \in X$ we can consider the path $\sigma: y \stackrel{p}{\rightsquigarrow} x_{0}$ given by $\sigma(t):=F(y, t)$.
- Let us argue that $\pi_{1}\left(X, x_{0}\right)=\left\{\left[x_{0}\right]\right\}$. We need to show that any loop at x_{0} can be contracted to the constant loop at x_{0} while keeping the end points fixed.
- Let us fix a loop $\sigma: I \rightarrow X$ at x_{0}. As the first step, we can consider the map $I \times I \ni(s, t) \mapsto F(\sigma(s), t) \in X$.

Proposition. If X is contractible then it is simply connected.

Proof.

- Let's see that X is path-connected. If $F: \operatorname{id}_{X} \simeq$ const $_{x_{0}}$ is a homotopy then for any $y \in X$ we can consider the path $\sigma: y \xrightarrow{p} x_{0}$ given by $\sigma(t):=F(y, t)$.
- Let us argue that $\pi_{1}\left(X, x_{0}\right)=\left\{\left[x_{0}\right]\right\}$. We need to show that any loop at x_{0} can be contracted to the constant loop at x_{0} while keeping the end points fixed.
- Let us fix a loop $\sigma: I \rightarrow X$ at x_{0}. As the first step, we can consider the map $I \times I \ni(s, t) \mapsto F(\sigma(s), t) \in X$. In diagrammatic terms this gives us

Proposition. If X is contractible then it is simply connected.

Proof.

- Let's see that X is path-connected. If $F: \operatorname{id}_{X} \simeq$ const $_{x_{0}}$ is a homotopy then for any $y \in X$ we can consider the path $\sigma: y \xrightarrow{p} x_{0}$ given by $\sigma(t):=F(y, t)$.
- Let us argue that $\pi_{1}\left(X, x_{0}\right)=\left\{\left[x_{0}\right]\right\}$. We need to show that any loop at x_{0} can be contracted to the constant loop at x_{0} while keeping the end points fixed.
- Let us fix a loop $\sigma: I \rightarrow X$ at x_{0}. As the first step, we can consider the map $I \times I \ni(s, t) \mapsto F(\sigma(s), t) \in X$. In diagrammatic terms this gives us

Proposition. If X is contractible then it is simply connected.

Proof.

- Let's see that X is path-connected. If $F: \operatorname{id}_{X} \simeq$ const $_{x_{0}}$ is a homotopy then for any $y \in X$ we can consider the path $\sigma: y \xrightarrow{p} x_{0}$ given by $\sigma(t):=F(y, t)$.
- Let us argue that $\pi_{1}\left(X, x_{0}\right)=\left\{\left[x_{0}\right]\right\}$. We need to show that any loop at x_{0} can be contracted to the constant loop at x_{0} while keeping the end points fixed.
- Let us fix a loop $\sigma: I \rightarrow X$ at x_{0}. As the first step, we can consider the map $I \times I \ni(s, t) \mapsto F(\sigma(s), t) \in X$. In diagrammatic terms this gives us

where α is the loop at x_{0} given by $\alpha(t):=F\left(x_{0}, t\right)$.
- We can also consider the following two diagrams:
- We can also consider the following two diagrams:

- We can also consider the following two diagrams:

- For example the left one represents the map $G: I \times I \rightarrow X$ defined as follows:
- We can also consider the following two diagrams:

- For example the left one represents the map $G: I \times I \rightarrow X$ defined as follows: $G(s, t):=x_{0}$ if $t \geqslant s$,
- We can also consider the following two diagrams:

- For example the left one represents the map $G: I \times I \rightarrow X$ defined as follows: $G(s, t):=x_{0}$ if $t \geqslant s, G(s, t):=\alpha(1+t-s)$ if $t<s$.
- We can also consider the following two diagrams:

- For example the left one represents the map $G: I \times I \rightarrow X$ defined as follows: $G(s, t):=x_{0}$ if $t \geqslant s, G(s, t):=\alpha(1+t-s)$ if $t<s$.
- Putting all three together gives us an end-preserving homotopy between the loop $\alpha^{-1} \sigma \alpha$ and the constant loop at x_{0}.
- We can also consider the following two diagrams:

- For example the left one represents the map $G: I \times I \rightarrow X$ defined as follows: $G(s, t):=x_{0}$ if $t \geqslant s, G(s, t):=\alpha(1+t-s)$ if $t<s$.
- Putting all three together gives us an end-preserving homotopy between the loop $\alpha^{-1} \sigma \alpha$ and the constant loop at x_{0}.
- This means that $\left[\alpha^{-1} \sigma \alpha\right]=[\alpha]^{-1}[\sigma][\alpha]$ is the trivial element in $\pi_{1}(X)$,
- We can also consider the following two diagrams:

- For example the left one represents the map $G: I \times I \rightarrow X$ defined as follows: $G(s, t):=x_{0}$ if $t \geqslant s, G(s, t):=\alpha(1+t-s)$ if $t<s$.
- Putting all three together gives us an end-preserving homotopy between the loop $\alpha^{-1} \sigma \alpha$ and the constant loop at x_{0}.
- This means that $\left[\alpha^{-1} \sigma \alpha\right]=[\alpha]^{-1}[\sigma][\alpha]$ is the trivial element in $\pi_{1}(X)$, and hence also $[\sigma]$ is the trivial element of $\pi_{1}(X)$.
- We can also consider the following two diagrams:

- For example the left one represents the map $G: I \times I \rightarrow X$ defined as follows: $G(s, t):=x_{0}$ if $t \geqslant s, G(s, t):=\alpha(1+t-s)$ if $t<s$.
- Putting all three together gives us an end-preserving homotopy between the loop $\alpha^{-1} \sigma \alpha$ and the constant loop at x_{0}.
- This means that $\left[\alpha^{-1} \sigma \alpha\right]=[\alpha]^{-1}[\sigma][\alpha]$ is the trivial element in $\pi_{1}(X)$, and hence also $[\sigma]$ is the trivial element of $\pi_{1}(X)$.

The following exercises give us very important equivalent ways of thinking about contractible loops.

The following exercises give us very important equivalent ways of thinking about contractible loops.

- Let σ be a loop at $x \in X$.

The following exercises give us very important equivalent ways of thinking about contractible loops.

- Let σ be a loop at $x \in X$. Since $\sigma(0)=x=\sigma(1)$,

The following exercises give us very important equivalent ways of thinking about contractible loops.

- Let σ be a loop at $x \in X$. Since $\sigma(0)=x=\sigma(1)$, we can consider σ as a map whose domain is \mathbb{S}^{1}.

The following exercises give us very important equivalent ways of thinking about contractible loops.

- Let σ be a loop at $x \in X$. Since $\sigma(0)=x=\sigma(1)$, we can consider σ as a map whose domain is \mathbb{S}^{1}. Show that $\sigma \simeq x$ rel $\{0,1\}$ if and only if σ can be extended to a map $\mathbb{D}^{2} \rightarrow X$.

The following exercises give us very important equivalent ways of thinking about contractible loops.

- Let σ be a loop at $x \in X$. Since $\sigma(0)=x=\sigma(1)$, we can consider σ as a map whose domain is \mathbb{S}^{1}. Show that $\sigma \simeq x$ rel $\{0,1\}$ if and only if σ can be extended to a map $\mathbb{D}^{2} \rightarrow X$.
- Let X be a path-connected topological space.

The following exercises give us very important equivalent ways of thinking about contractible loops.

- Let σ be a loop at $x \in X$. Since $\sigma(0)=x=\sigma(1)$, we can consider σ as a map whose domain is \mathbb{S}^{1}. Show that $\sigma \simeq x \operatorname{rel}\{0,1\}$ if and only if σ can be extended to a map $\mathbb{D}^{2} \rightarrow X$.
- Let X be a path-connected topological space. Show that the following conditions are equivalent.

The following exercises give us very important equivalent ways of thinking about contractible loops.

- Let σ be a loop at $x \in X$. Since $\sigma(0)=x=\sigma(1)$, we can consider σ as a map whose domain is \mathbb{S}^{1}. Show that $\sigma \simeq x$ rel $\{0,1\}$ if and only if σ can be extended to a map $\mathbb{D}^{2} \rightarrow X$.
- Let X be a path-connected topological space. Show that the following conditions are equivalent.
- $\pi_{1}(X)=\{0\}$ (i.e. X is simply connected).

The following exercises give us very important equivalent ways of thinking about contractible loops.

- Let σ be a loop at $x \in X$. Since $\sigma(0)=x=\sigma(1)$, we can consider σ as a map whose domain is \mathbb{S}^{1}. Show that $\sigma \simeq x$ rel $\{0,1\}$ if and only if σ can be extended to a map $\mathbb{D}^{2} \rightarrow X$.
- Let X be a path-connected topological space. Show that the following conditions are equivalent.
- $\pi_{1}(X)=\{0\}$ (i.e. X is simply connected).
- $\forall f: \mathbb{S}^{1} \rightarrow X$, we have that f can be extended to $\bar{f}: \mathbb{D}^{2} \rightarrow X$.

The following exercises give us very important equivalent ways of thinking about contractible loops.

- Let σ be a loop at $x \in X$. Since $\sigma(0)=x=\sigma(1)$, we can consider σ as a map whose domain is \mathbb{S}^{1}. Show that $\sigma \simeq x$ rel $\{0,1\}$ if and only if σ can be extended to a map $\mathbb{D}^{2} \rightarrow X$.
- Let X be a path-connected topological space. Show that the following conditions are equivalent.
- $\pi_{1}(X)=\{0\}$ (i.e. X is simply connected).
- $\forall f: \mathbb{S}^{1} \rightarrow X$, we have that f can be extended to $\bar{f}: \mathbb{D}^{2} \rightarrow X$.
- if $\sigma, \tau: a \stackrel{p}{\rightsquigarrow} b$ then $\sigma \simeq \tau \operatorname{rel}\{0,1\}$

THANK YOU FOR YOUR ATTENTION!

Łukasz Grabowski

Mathematisches Institut
grabowski@math.uni-leipzig.de

