

Lecture 2 - The fundamental group functor. Homotopy of maps

Algebraic Topology (SS 2023-24)

Łukasz Grabowski

Mathematisches Institut

Overview

- 1. Recap
- 2. The fundamental group
- 3. Change of basepoint
- 4. Extending π_1 to a functor
- 5. Homotopy of maps

Algebraic Topology

1. Recap

2. The fundamental group

3. Change of basepoint

4. Extending π_1 to a functor

5. Homotopy of maps

• A category is a collection of objects and morphisms.

- A category is a collection of objects and morphisms.
 - ► Example of objects are:

- A category is a collection of objects and morphisms.
 - ► Example of objects are: "all topological spaces",

- A category is a collection of objects and morphisms.
 - Example of objects are: "all topological spaces", "all metrisable topological spaces",

- A category is a collection of objects and morphisms.
 - Example of objects are: "all topological spaces", "all metrisable topological spaces", "all pairs (X, x) where X is a topological space and $x \in X$ ", "all abelian groups", "all rings with identity", etc.

- A category is a collection of objects and morphisms.
 - Example of objects are: "all topological spaces", "all metrisable topological spaces", "all pairs (X, x) where X is a topological space and $x \in X$ ", "all abelian groups", "all rings with identity", etc.
- Morphisms are a collection of functions between the objects, subject to two condition:

- A category is a collection of objects and morphisms.
 - Example of objects are: "all topological spaces", "all metrisable topological spaces", "all pairs (X, x) where X is a topological space and $x \in X$ ", "all abelian groups", "all rings with identity", etc.
- Morphisms are a collection of functions between the objects, subject to two condition:
 - For every object X, we have that the identity id_X is a morphism.

- A category is a collection of objects and morphisms.
 - Example of objects are: "all topological spaces", "all metrisable topological spaces", "all pairs (X, x) where X is a topological space and $x \in X$ ", "all abelian groups", "all rings with identity", etc.
- Morphisms are a collection of functions between the objects, subject to two condition:
 - For every object X, we have that the identity id_X is a morphism.
 - ▶ If $f: X \to Y$ and $g: Y \to Z$ are morphisms then $g \circ f: X \to Z$ is also a morphism.

- A category is a collection of objects and morphisms.
 - Example of objects are: "all topological spaces", "all metrisable topological spaces", "all pairs (X, x) where X is a topological space and $x \in X$ ", "all abelian groups", "all rings with identity", etc.
- Morphisms are a collection of functions between the objects, subject to two condition:
 - For every object X, we have that the identity id_X is a morphism.
 - ▶ If $f: X \to Y$ and $g: Y \to Z$ are morphisms then $g \circ f: X \to Z$ is also a morphism.
 - ► Examples: "all continuous maps", "all continuous maps which are homeomorphisms", "Lipschitz-continuous maps", "group homomorphisms", "ring homomorphisms" etc.

Algebraic Topology | Recap

- a functor F between two categories ${\mathcal C}$ and ${\mathcal D}$

• a functor F between two categories C and D is a way to associate to each object X of C an object F(X) of D,

• a functor F between two categories C and D is a way to associate to each object X of C an object F(X) of D, and to each morphism $f \colon X \to Y$ a homomorphism $F(f) \colon F(X) \to F(Y)$,

• a functor F between two categories C and D is a way to associate to each object X of C an object F(X) of D, and to each morphism $f \colon X \to Y$ a homomorphism $F(f) \colon F(X) \to F(Y)$, such that

- a functor F between two categories C and D is a way to associate to each object X of C an object F(X) of D, and to each morphism $f \colon X \to Y$ a homomorphism $F(f) \colon F(X) \to F(Y)$, such that
 - ▶ $F(id_X) = id_{F(X)}$ for any object X and

- a functor F between two categories C and D is a way to associate to each object X of C an object F(X) of D, and to each morphism $f \colon X \to Y$ a homomorphism $F(f) \colon F(X) \to F(Y)$, such that
 - ▶ $F(id_X) = id_{F(X)}$ for any object X and
 - ▶ $F(s \circ t) = F(s) \circ F(t)$ for all composable morphisms s, t.

• Let *Top* be the category of all topological spaces, and let Sets be the category of all sets.

- Let *Top* be the category of all topological spaces, and let Sets be the category of all sets.
- We consider the functor π_0 , which associates to X the set of connected components of X.

- Let *Top* be the category of all topological spaces, and let Sets be the category of all sets.
- We consider the functor π_0 , which associates to X the set of connected components of X.
- Note that for a continuous map $f\colon X\to Y$

- Let *Top* be the category of all topological spaces, and let Sets be the category of all sets.
- We consider the functor π_0 , which associates to X the set of connected components of X.
- Note that for a continuous map $f\colon X\to Y\,$ and a connected component $A\subset X$

- Let *Top* be the category of all topological spaces, and let Sets be the category of all sets.
- We consider the functor π_0 , which associates to X the set of connected components of X.
- Note that for a continuous map $f: X \to Y$ and a connected component $A \subset X$ we have that f(A) lands in a single connected component of Y.

- Let *Top* be the category of all topological spaces, and let Sets be the category of all sets.
- We consider the functor π_0 , which associates to X the set of connected components of X.
- Note that for a continuous map $f: X \to Y$ and a connected component $A \subset X$ we have that f(A) lands in a single connected component of Y.
- This allows us to define $\pi_0(f)$.

• $\pi_0(X) = \{a\},\$

• $\pi_0(X) = \{a\}, \ \pi_0(Y) = \{b, c\},\$

- $\pi_0(X) = \{a\}, \ \pi_0(Y) = \{b, c\},\$
- If we had a retraction $X \to Y$ then consider $Y \to X \to Y$

- $\pi_0(X) = \{a\}, \ \pi_0(Y) = \{b, c\},\$
- If we had a retraction $X \to Y$ then consider $Y \to X \to Y$
- Apply the functor π_0 ,

- $\pi_0(X) = \{a\}, \ \pi_0(Y) = \{b, c\},\$
- If we had a retraction $X \to Y$ then consider $Y \to X \to Y$
- Apply the functor π_0 , get $\{b,c\} \rightarrow \{a\} \rightarrow \{b,c\}$,

- $\pi_0(X) = \{a\}, \ \pi_0(Y) = \{b, c\},\$
- If we had a retraction $X \to Y$ then consider $Y \to X \to Y$
- Apply the functor π_0 , get $\{b, c\} \rightarrow \{a\} \rightarrow \{b, c\}$, which is identity

- $\pi_0(X) = \{a\}, \ \pi_0(Y) = \{b, c\},\$
- If we had a retraction $X \to Y$ then consider $Y \to X \to Y$
- Apply the functor π_0 , get $\{b, c\} \rightarrow \{a\} \rightarrow \{b, c\}$, which is identity which is a contradiction.

Homotopy of paths

• Given two paths $\sigma, \tau \colon a \xrightarrow{p} b$ in a topological space X,

• Given two paths $\sigma, \tau : a \xrightarrow{p} b$ in a topological space X, we say they are homotopic to each other relative to their ends,

• Given two paths $\sigma, \tau : a \xrightarrow{p} b$ in a topological space X, we say they are homotopic to each other relative to their ends, written $\sigma \simeq \tau \operatorname{rel}\{0, 1\}$,

• Given two paths $\sigma, \tau \colon a \xrightarrow{p} b$ in a topological space X, we say they are *homotopic* to each other relative to their ends, written $\sigma \simeq \tau \operatorname{rel}\{0,1\}$, if we can find a map $F \colon I \times I \to X$

• Given two paths $\sigma, \tau : a \xrightarrow{p} b$ in a topological space X, we say they are homotopic to each other relative to their ends, written $\sigma \simeq \tau$ rel $\{0, 1\}$, if we can find a map $F : I \times I \to X$ such that for all $x \in I$ we have $F(x, 0) = \sigma(x)$, $F(x, 1) = \tau(x)$, F(0, x) = a, F(x, 0) = b.

- Given two paths $\sigma, \tau : a \xrightarrow{p} b$ in a topological space X, we say they are homotopic to each other relative to their ends, written $\sigma \simeq \tau$ rel $\{0, 1\}$, if we can find a map $F : I \times I \to X$ such that for all $x \in I$ we have $F(x, 0) = \sigma(x)$, $F(x, 1) = \tau(x)$, F(0, x) = a, F(x, 0) = b.
- We express this frequently using the following diagram.

- Given two paths $\sigma, \tau : a \xrightarrow{p} b$ in a topological space X, we say they are homotopic to each other relative to their ends, written $\sigma \simeq \tau$ rel $\{0, 1\}$, if we can find a map $F : I \times I \to X$ such that for all $x \in I$ we have $F(x, 0) = \sigma(x)$, $F(x, 1) = \tau(x)$, F(0, x) = a, F(x, 0) = b.
- We express this frequently using the following diagram.

• This diagram represents the domain of F, i.e. $I \times I$,

- Given two paths $\sigma, \tau : a \xrightarrow{p} b$ in a topological space X, we say they are homotopic to each other relative to their ends, written $\sigma \simeq \tau$ rel $\{0, 1\}$, if we can find a map $F : I \times I \to X$ such that for all $x \in I$ we have $F(x, 0) = \sigma(x)$, $F(x, 1) = \tau(x)$, F(0, x) = a, F(x, 0) = b.
- We express this frequently using the following diagram.

• This diagram represents the domain of F, i.e. $I \times I$, and it shows what F does on the edges of the square.

- Given two paths $\sigma, \tau : a \xrightarrow{p} b$ in a topological space X, we say they are homotopic to each other relative to their ends, written $\sigma \simeq \tau$ rel $\{0, 1\}$, if we can find a map $F : I \times I \to X$ such that for all $x \in I$ we have $F(x, 0) = \sigma(x)$, $F(x, 1) = \tau(x)$, F(0, x) = a, F(x, 0) = b.
- We express this frequently using the following diagram.

• This diagram represents the domain of F, i.e. $I \times I$, and it shows what F does on the edges of the square. We say that F is a homotopy between σ and τ

- Given two paths $\sigma, \tau : a \xrightarrow{p} b$ in a topological space X, we say they are homotopic to each other relative to their ends, written $\sigma \simeq \tau$ rel $\{0, 1\}$, if we can find a map $F : I \times I \to X$ such that for all $x \in I$ we have $F(x, 0) = \sigma(x)$, $F(x, 1) = \tau(x)$, F(0, x) = a, F(x, 0) = b.
- We express this frequently using the following diagram.

- This diagram represents the domain of F, i.e. $I \times I$, and it shows what F does on the edges of the square. We say that F is a homotopy between σ and τ
- We say that $\sigma : a \stackrel{p}{\leadsto} a$ is a *contractible loop* or

- Given two paths $\sigma, \tau : a \xrightarrow{p} b$ in a topological space X, we say they are homotopic to each other relative to their ends, written $\sigma \simeq \tau \operatorname{rel}\{0,1\}$, if we can find a map $F: I \times I \to X$ such that for all $x \in I$ we have $F(x,0) = \sigma(x)$, $F(x,1) = \tau(x)$, F(0,x) = a, F(x,0) = b.
- We express this frequently using the following diagram.

- This diagram represents the domain of F, i.e. $I \times I$, and it shows what F does on the edges of the square. We say that F is a homotopy between σ and τ
- We say that $\sigma: a \stackrel{p}{\rightsquigarrow} a$ is a contractible loop or a homotopically trivial loop

- Given two paths $\sigma, \tau : a \xrightarrow{p} b$ in a topological space X, we say they are homotopic to each other relative to their ends, written $\sigma \simeq \tau \operatorname{rel}\{0,1\}$, if we can find a map $F: I \times I \to X$ such that for all $x \in I$ we have $F(x,0) = \sigma(x)$, $F(x,1) = \tau(x)$, F(0,x) = a, F(x,0) = b.
- We express this frequently using the following diagram.

- This diagram represents the domain of F, i.e. $I \times I$, and it shows what F does on the edges of the square. We say that F is a homotopy between σ and τ
- We say that $\sigma: a \xrightarrow{p} a$ is a contractible loop or a homotopically trivial loop if $\sigma \simeq a \operatorname{rel}\{0,1\}$

Lemma. Homotopy relative to ends is an equivalence relation,

• $\sigma \simeq \sigma \operatorname{rel}\{0,1\}$

- $\sigma \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\} \Rightarrow \tau \simeq \sigma \operatorname{rel}\{0,1\}$

- $\sigma \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\} \Rightarrow \tau \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\}, \tau \simeq \rho \operatorname{rel}\{0,1\} \Rightarrow \sigma \simeq \rho \operatorname{rel}\{0,1\}$

- $\sigma \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\} \Rightarrow \tau \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\}, \tau \simeq \rho \operatorname{rel}\{0,1\} \Rightarrow \sigma \simeq \rho \operatorname{rel}\{0,1\}$

Proof. First two properties left as exercises.

- $\sigma \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\} \Rightarrow \tau \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\}, \tau \simeq \rho \operatorname{rel}\{0,1\} \Rightarrow \sigma \simeq \rho \operatorname{rel}\{0,1\}$

Proof. First two properties left as exercises. The fact that $\sigma \simeq \tau \operatorname{rel}\{0,1\}$ is illustrated by the diagram

As such we can form the diagram

As such we can form the diagram

which shows that indeed $\sigma \simeq \rho \operatorname{rel}\{0,1\}$, as claimed.

As such we can form the diagram

which shows that indeed $\sigma \simeq \rho \operatorname{rel}\{0,1\}$, as claimed.

Algebraic Topology

1. Recap

2. The fundamental group

3. Change of basepoint

4. Extending π_1 to a functor

5. Homotopy of maps

• Given $\sigma \colon a \xrightarrow{p} b$ and $\tau \colon b \xrightarrow{p} c$

• Given $\sigma : a \xrightarrow{p} b$ and $\tau : b \xrightarrow{p} c$ we can form the *concatenation* $\sigma \tau : a \xrightarrow{p} c$

• Given $\sigma: a \xrightarrow{p} b$ and $\tau: b \xrightarrow{p} c$ we can form the *concatenation* $\sigma\tau: a \xrightarrow{p} c$ by first following σ and then τ .

- Given $\sigma: a \xrightarrow{p} b$ and $\tau: b \xrightarrow{p} c$ we can form the *concatenation* $\sigma\tau: a \xrightarrow{p} c$ by first following σ and then τ .
- In other words

- Given $\sigma: a \xrightarrow{p} b$ and $\tau: b \xrightarrow{p} c$ we can form the *concatenation* $\sigma\tau: a \xrightarrow{p} c$ by first following σ and then τ .
- In other words we let $\sigma \tau(x) := \sigma(2x)$ for $x \leq \frac{1}{2}$

- Given $\sigma: a \xrightarrow{p} b$ and $\tau: b \xrightarrow{p} c$ we can form the *concatenation* $\sigma\tau: a \xrightarrow{p} c$ by first following σ and then τ .
- In other words we let $\sigma \tau(x) := \sigma(2x)$ for $x \leq \frac{1}{2}$ and $\sigma \tau(x) := \tau(2x-1)$ for $x \geq \frac{1}{2}$.

Lemma. Suppose $\sigma, \sigma' \colon a \xrightarrow{p} b$,

Lemma. Suppose $\sigma, \sigma' \colon a \xrightarrow{p} b$, $\tau, \tau' \colon b \xrightarrow{p} c$,

Lemma. Suppose $\sigma, \sigma' \colon a \xrightarrow{p} b$, $\tau, \tau' \colon b \xrightarrow{p} c$, and suppose also that $\sigma \simeq \sigma' \operatorname{rel}\{0, 1\}$

Lemma. Suppose $\sigma, \sigma' : a \xrightarrow{p} b$, $\tau, \tau' : b \xrightarrow{p} c$, and suppose also that $\sigma \simeq \sigma' \operatorname{rel}\{0, 1\}$ and $\tau \simeq \tau' \operatorname{rel}\{0, 1\}$.

Lemma. Suppose $\sigma, \sigma': a \xrightarrow{p} b$, $\tau, \tau': b \xrightarrow{p} c$, and suppose also that $\sigma \simeq \sigma' \operatorname{rel}\{0, 1\}$ and $\tau \simeq \tau' \operatorname{rel}\{0, 1\}$. Then $\sigma \tau \simeq \sigma' \tau' \operatorname{rel}\{0, 1\}$.

Lemma. Suppose $\sigma, \sigma': a \xrightarrow{p} b$, $\tau, \tau': b \xrightarrow{p} c$, and suppose also that $\sigma \simeq \sigma' \operatorname{rel}\{0, 1\}$ and $\tau \simeq \tau' \operatorname{rel}\{0, 1\}$. Then $\sigma \tau \simeq \sigma' \tau' \operatorname{rel}\{0, 1\}$.

Proof. We have the diagrams

Lemma. Suppose $\sigma, \sigma' : a \xrightarrow{p} b$, $\tau, \tau' : b \xrightarrow{p} c$, and suppose also that $\sigma \simeq \sigma' \operatorname{rel}\{0, 1\}$ and $\tau \simeq \tau' \operatorname{rel}\{0, 1\}$. Then $\sigma \tau \simeq \sigma' \tau' \operatorname{rel}\{0, 1\}$.

Proof. We have the diagrams

Lemma. Suppose $\sigma, \sigma' : a \xrightarrow{p} b$, $\tau, \tau' : b \xrightarrow{p} c$, and suppose also that $\sigma \simeq \sigma' \operatorname{rel}\{0, 1\}$ and $\tau \simeq \tau' \operatorname{rel}\{0, 1\}$. Then $\sigma \tau \simeq \sigma' \tau' \operatorname{rel}\{0, 1\}$.

Proof. We have the diagrams

and so we can form the diagram

Lemma. Suppose $\sigma, \sigma' : a \xrightarrow{p} b$, $\tau, \tau' : b \xrightarrow{p} c$, and suppose also that $\sigma \simeq \sigma' \operatorname{rel}\{0, 1\}$ and $\tau \simeq \tau' \operatorname{rel}\{0, 1\}$. Then $\sigma \tau \simeq \sigma' \tau' \operatorname{rel}\{0, 1\}$.

Proof. We have the diagrams

and so we can form the diagram

Lemma. Suppose $\sigma, \sigma' : a \xrightarrow{p} b$, $\tau, \tau' : b \xrightarrow{p} c$, and suppose also that $\sigma \simeq \sigma' \operatorname{rel}\{0, 1\}$ and $\tau \simeq \tau' \operatorname{rel}\{0, 1\}$. Then $\sigma \tau \simeq \sigma' \tau' \operatorname{rel}\{0, 1\}$.

Proof. We have the diagrams

and so we can form the diagram

• Now we are ready to define the fundamental group $\pi_1(X, x)$ of a pair (X, x),

• Now we are ready to define the fundamental group $\pi_1(X, x)$ of a pair (X, x), where X is a topological space and $x \in X$,

- Now we are ready to define the fundamental group $\pi_1(X, x)$ of a pair (X, x), where X is a topological space and $x \in X$,
- We let $\pi_1(X, x)$ to be the set of all equivalence classes of loops at x in X.

- Now we are ready to define the fundamental group $\pi_1(X, x)$ of a pair (X, x), where X is a topological space and $x \in X$,
- We let $\pi_1(X, x)$ to be the set of all equivalence classes of loops at x in X.
- The homotopy class of a loop σ will be denoted by $[\sigma]$.

- Now we are ready to define the fundamental group $\pi_1(X, x)$ of a pair (X, x), where X is a topological space and $x \in X$,
- We let $\pi_1(X, x)$ to be the set of all equivalence classes of loops at x in X.
- The homotopy class of a loop σ will be denoted by $[\sigma]$.
- We define a binary operation on $\pi_1(X, x)$

- Now we are ready to define the fundamental group $\pi_1(X, x)$ of a pair (X, x), where X is a topological space and $x \in X$,
- We let $\pi_1(X, x)$ to be the set of all equivalence classes of loops at x in X.
- The homotopy class of a loop σ will be denoted by $[\sigma]$.
- We define a binary operation on $\pi_1(X, x)$ by setting $[\sigma] \cdot [\tau] := [\sigma \tau]$.

- Now we are ready to define the fundamental group $\pi_1(X, x)$ of a pair (X, x), where X is a topological space and $x \in X$,
- We let $\pi_1(X, x)$ to be the set of all equivalence classes of loops at x in X.
- The homotopy class of a loop σ will be denoted by $[\sigma]$.
- We define a binary operation on $\pi_1(X, x)$ by setting $[\sigma] \cdot [\tau] := [\sigma \tau]$.
- The previous lemma shows that this binary operation is well-defined on the elements of $\pi_1(X, x)$.

- Now we are ready to define the fundamental group $\pi_1(X, x)$ of a pair (X, x), where X is a topological space and $x \in X$,
- We let $\pi_1(X, x)$ to be the set of all equivalence classes of loops at x in X.
- The homotopy class of a loop σ will be denoted by $[\sigma]$.
- We define a binary operation on $\pi_1(X, x)$ by setting $[\sigma] \cdot [\tau] := [\sigma \tau]$.
- The previous lemma shows that this binary operation is well-defined on the elements of $\pi_1(X, x)$.
- We define the neutral element in $\pi_1(X, x)$ to be the class of the constant loop [x],

- Now we are ready to define the fundamental group $\pi_1(X, x)$ of a pair (X, x), where X is a topological space and $x \in X$,
- We let $\pi_1(X, x)$ to be the set of all equivalence classes of loops at x in X.
- The homotopy class of a loop σ will be denoted by $[\sigma]$.
- We define a binary operation on $\pi_1(X, x)$ by setting $[\sigma] \cdot [\tau] := [\sigma \tau]$.
- The previous lemma shows that this binary operation is well-defined on the elements of $\pi_1(X, x)$.
- We define the neutral element in $\pi_1(X, x)$ to be the class of the constant loop [x],
- The inverse is defined as $[\sigma]^{-1} := [\sigma^{-1}]$, where $\sigma^{-1}(x) := \sigma(1-x)$.

Proof. Let us check for example that $[\sigma] \cdot [\sigma]^{-1} = [x]$.

Proof. Let us check for example that $[\sigma] \cdot [\sigma]^{-1} = [x]$.

We need to show that $\sigma \sigma^{-1} \simeq x \operatorname{rel}\{0, 1\}$.

Proof. Let us check for example that $[\sigma] \cdot [\sigma]^{-1} = [x]$.

We need to show that $\sigma\sigma^{-1} \simeq x \operatorname{rel}\{0,1\}$. This is witnessed by the following diagram:

In symbols,

In symbols, we define a homotopy $F \colon I \times I \to X$

$$\begin{split} F(s,t) &:= \sigma(2s) & \text{when } 2s \leqslant t \\ &:= \sigma(t) & \text{when } t \leqslant 2s \leqslant 2-t, \\ &:= \sigma^{-1}(2s-1) & \text{when } 2-t \leqslant 2s. \end{split}$$

$$\begin{split} F(s,t) &:= \sigma(2s) & \text{when } 2s \leqslant t \\ &:= \sigma(t) & \text{when } t \leqslant 2s \leqslant 2 - t, \\ &:= \sigma^{-1}(2s-1) & \text{when } 2 - t \leqslant 2s. \end{split}$$

$F(s,t) := \sigma(2s)$	when $2s \leqslant t$
$:= \sigma(t)$	when $t \leqslant 2s \leqslant 2-t$,
$:= \sigma^{-1}(2s - 1)$	when $2 - t \leq 2s$.

• Note that the argument in the last proof shows that if $\sigma : a \xrightarrow{p} b$ then $\sigma^{-1}\sigma$ is a loop at a which is contractible.

Algebraic Topology

1. Recap

2. The fundamental group

3. Change of basepoint

4. Extending π_1 to a functor

5. Homotopy of maps

If X is not path-connected then the isomorphism class of $\pi_1(X, x)$ might depend on the choice of $x \in X$.

Lemma. Let $\alpha : a \stackrel{p}{\rightsquigarrow} b$.

Lemma. Let $\alpha : a \xrightarrow{p} b$. Then we have an isomorphism $\alpha_* : \pi_1(X, a) \to \pi_1(X, b)$

Lemma. Let $\alpha : a \xrightarrow{p} b$. Then we have an isomorphism $\alpha_* : \pi_1(X, a) \to \pi_1(X, b)$ given by $\alpha_* : [\sigma]$

Lemma. Let $\alpha : a \xrightarrow{p} b$. Then we have an isomorphism $\alpha_* : \pi_1(X, a) \to \pi_1(X, b)$ given by $\alpha_* : [\sigma] \mapsto [\alpha^{-1} \sigma \alpha].$

17 / 27

Algebraic Topology | Change of basepoint

Lemma. Let $\alpha : a \xrightarrow{p} b$. Then we have an isomorphism $\alpha_* : \pi_1(X, a) \to \pi_1(X, b)$ given by

 $\alpha_* \colon [\sigma] \mapsto [\alpha^{-1} \sigma \alpha].$

Proof.

Algebraic Topology | Change of basepoint

Lemma. Let $\alpha : a \xrightarrow{p} b$. Then we have an isomorphism $\alpha_* : \pi_1(X, a) \to \pi_1(X, b)$ given by

$$\alpha_* \colon [\sigma] \mapsto [\alpha^{-1} \sigma \alpha].$$

Proof.

• α_* is well defined,

Algebraic Topology | Change of basepoint

Lemma. Let $\alpha : a \xrightarrow{p} b$. Then we have an isomorphism $\alpha_* : \pi_1(X, a) \to \pi_1(X, b)$ given by

$$\alpha_* \colon [\sigma] \mapsto [\alpha^{-1} \sigma \alpha].$$

Proof.

• α_* is well defined, i.e. if $\sigma \simeq \sigma' \operatorname{rel}\{0, 1\}$ then

Lemma. Let $\alpha : a \xrightarrow{p} b$. Then we have an isomorphism $\alpha_* : \pi_1(X, a) \to \pi_1(X, b)$ given by

$$\alpha_* \colon [\sigma] \mapsto [\alpha^{-1} \sigma \alpha].$$

Proof.

• α_* is well defined, i.e. if $\sigma \simeq \sigma' \operatorname{rel}\{0,1\}$ then $\alpha^{-1}\sigma\alpha \simeq \alpha^{-1}\sigma'\alpha \operatorname{rel}\{0,1\}$.

Lemma. Let $\alpha : a \xrightarrow{p} b$. Then we have an isomorphism $\alpha_* : \pi_1(X, a) \to \pi_1(X, b)$ given by

$$\alpha_* \colon [\sigma] \mapsto [\alpha^{-1} \sigma \alpha].$$

Proof.

- α_* is well defined, i.e. if $\sigma \simeq \sigma' \operatorname{rel}\{0,1\}$ then $\alpha^{-1}\sigma\alpha \simeq \alpha^{-1}\sigma'\alpha \operatorname{rel}\{0,1\}$.
- Need to check that

Lemma. Let $\alpha : a \xrightarrow{p} b$. Then we have an isomorphism $\alpha_* : \pi_1(X, a) \to \pi_1(X, b)$ given by

$$\alpha_* \colon [\sigma] \mapsto [\alpha^{-1} \sigma \alpha].$$

Proof.

- α_* is well defined, i.e. if $\sigma \simeq \sigma' \operatorname{rel}\{0,1\}$ then $\alpha^{-1}\sigma\alpha \simeq \alpha^{-1}\sigma'\alpha \operatorname{rel}\{0,1\}$.
- Need to check that
 - α_* is a group homomorphism,

Lemma. Let $\alpha : a \xrightarrow{p} b$. Then we have an isomorphism $\alpha_* : \pi_1(X, a) \to \pi_1(X, b)$ given by

$$\alpha_* \colon [\sigma] \mapsto [\alpha^{-1} \sigma \alpha].$$

Proof.

- α_* is well defined, i.e. if $\sigma \simeq \sigma' \operatorname{rel}\{0,1\}$ then $\alpha^{-1}\sigma\alpha \simeq \alpha^{-1}\sigma'\alpha \operatorname{rel}\{0,1\}$.
- Need to check that
 - ▶ α_* is a group homomorphism, i.e. $\alpha_*([a]) = [b]$ and

Lemma. Let $\alpha : a \xrightarrow{p} b$. Then we have an isomorphism $\alpha_* : \pi_1(X, a) \to \pi_1(X, b)$ given by

$$\alpha_* \colon [\sigma] \mapsto [\alpha^{-1} \sigma \alpha].$$

Proof.

- α_* is well defined, i.e. if $\sigma \simeq \sigma' \operatorname{rel}\{0,1\}$ then $\alpha^{-1}\sigma\alpha \simeq \alpha^{-1}\sigma'\alpha \operatorname{rel}\{0,1\}$.
- Need to check that
 - α_* is a group homomorphism, i.e. $\alpha_*([a]) = [b]$ and $\alpha_*([\sigma\tau]) = \alpha_*([\sigma])\alpha_*([\tau])$,

Lemma. Let $\alpha : a \xrightarrow{p} b$. Then we have an isomorphism $\alpha_* : \pi_1(X, a) \to \pi_1(X, b)$ given by

$$\alpha_* \colon [\sigma] \mapsto [\alpha^{-1} \sigma \alpha].$$

Proof.

- α_* is well defined, i.e. if $\sigma \simeq \sigma' \operatorname{rel}\{0,1\}$ then $\alpha^{-1}\sigma\alpha \simeq \alpha^{-1}\sigma'\alpha \operatorname{rel}\{0,1\}$.
- Need to check that
 - α_* is a group homomorphism, i.e. $\alpha_*([a]) = [b]$ and $\alpha_*([\sigma\tau]) = \alpha_*([\sigma])\alpha_*([\tau])$,
 - α_* is a bijection.

• α_* is a bijection since $(\alpha^{-1})_*$ is the inverse.

$$\alpha_*(\alpha^{-1})_* \colon [\sigma] \mapsto [\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}],$$

$$\alpha_*(\alpha^{-1})_* \colon [\sigma] \mapsto [\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}],$$

and $\alpha \alpha^{-1}$ is contractible loop.

$$\alpha_*(\alpha^{-1})_* \colon [\sigma] \mapsto [\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}],$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $[\alpha \alpha^{-1}] = [a]$,

$$\alpha_*(\alpha^{-1})_* \colon [\sigma] \mapsto [\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}],$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $[\alpha \alpha^{-1}] = [a]$, and so $[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}]$

$$\alpha_*(\alpha^{-1})_* \colon [\sigma] \mapsto [\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}],$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $[\alpha \alpha^{-1}] = [a]$, and so $[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}] = [\alpha \alpha^{-1}][\sigma][\alpha \alpha^{-1}]$

$$\alpha_*(\alpha^{-1})_* \colon [\sigma] \mapsto [\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}],$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $[\alpha \alpha^{-1}] = [a]$, and so $[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}] = [\alpha \alpha^{-1}][\sigma][\alpha \alpha^{-1}] = [\sigma]$.

$$\alpha_*(\alpha^{-1})_* \colon [\sigma] \mapsto [\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}],$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $[\alpha \alpha^{-1}] = [a]$, and so $[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}] = [\alpha \alpha^{-1}][\sigma][\alpha \alpha^{-1}] = [\sigma]$.

• Let us check that $\alpha_*([a]) = [b]$. Indeed $\alpha_*([a]) = [\alpha^{-1}a\alpha]$.

$$\alpha_*(\alpha^{-1})_* \colon [\sigma] \mapsto [\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}],$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $[\alpha \alpha^{-1}] = [a]$, and so $[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}] = [\alpha \alpha^{-1}][\sigma][\alpha \alpha^{-1}] = [\sigma]$.

• Let us check that $\alpha_*([a]) = [b]$. Indeed $\alpha_*([a]) = [\alpha^{-1}a\alpha]$. We need to find a homotopy from $\alpha^{-1}a\alpha$ to b.

$$\alpha_*(\alpha^{-1})_* \colon [\sigma] \mapsto [\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}],$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $[\alpha \alpha^{-1}] = [a]$, and so $[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}] = [\alpha \alpha^{-1}][\sigma][\alpha \alpha^{-1}] = [\sigma]$.

• Let us check that $\alpha_*([a]) = [b]$. Indeed $\alpha_*([a]) = [\alpha^{-1}a\alpha]$. We need to find a homotopy from $\alpha^{-1}a\alpha$ to b. But it is clear that $\alpha^{-1}a\alpha$ is homotopic to $\alpha^{-1}\alpha$,

$$\alpha_*(\alpha^{-1})_* \colon [\sigma] \mapsto [\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}],$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $[\alpha \alpha^{-1}] = [a]$, and so $[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}] = [\alpha \alpha^{-1}][\sigma][\alpha \alpha^{-1}] = [\sigma]$.

• Let us check that $\alpha_*([a]) = [b]$. Indeed $\alpha_*([a]) = [\alpha^{-1}a\alpha]$. We need to find a homotopy from $\alpha^{-1}a\alpha$ to b. But it is clear that $\alpha^{-1}a\alpha$ is homotopic to $\alpha^{-1}\alpha$, which is homotopic to b.

$$\alpha_*(\alpha^{-1})_* \colon [\sigma] \mapsto [\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}],$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $[\alpha \alpha^{-1}] = [a]$, and so $[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}] = [\alpha \alpha^{-1}][\sigma][\alpha \alpha^{-1}] = [\sigma]$.

- Let us check that $\alpha_*([a]) = [b]$. Indeed $\alpha_*([a]) = [\alpha^{-1}a\alpha]$. We need to find a homotopy from $\alpha^{-1}a\alpha$ to b. But it is clear that $\alpha^{-1}a\alpha$ is homotopic to $\alpha^{-1}\alpha$, which is homotopic to b.
- Checking the property $\alpha_*([\sigma\tau]) = \alpha_*([\sigma])\alpha_*([\tau])$ is left as an exercise.

$$\alpha_*(\alpha^{-1})_* \colon [\sigma] \mapsto [\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}],$$

and $\alpha \alpha^{-1}$ is contractible loop. This means $[\alpha \alpha^{-1}] = [a]$, and so $[\alpha \alpha^{-1} \sigma \alpha \alpha^{-1}] = [\alpha \alpha^{-1}][\sigma][\alpha \alpha^{-1}] = [\sigma]$.

- Let us check that $\alpha_*([a]) = [b]$. Indeed $\alpha_*([a]) = [\alpha^{-1}a\alpha]$. We need to find a homotopy from $\alpha^{-1}a\alpha$ to b. But it is clear that $\alpha^{-1}a\alpha$ is homotopic to $\alpha^{-1}\alpha$, which is homotopic to b.
- Checking the property $\alpha_*([\sigma\tau]) = \alpha_*([\sigma])\alpha_*([\tau])$ is left as an exercise.

Corollary. If X is path-connected

Corollary. If X is path-connected then the isomorphism class of $\pi_1(X, x)$

This corollary allows us to somewhat informally talk about

This corollary allows us to somewhat informally talk about the fundamental group $\pi_1(X)$ of $X_{\text{\tiny F}}$

This corollary allows us to somewhat informally talk about the fundamental group $\pi_1(X)$ of X, without referring to a chosen point of X, whenever X is path-connected.

Algebraic Topology

1. Recap

2. The fundamental group

3. Change of basepoint

4. Extending π_1 to a functor

5. Homotopy of maps

Algebraic Topology | Extending π_1 to a functor

• Category:

Algebraic Topology | Extending π_1 to a functor

- Category:
 - objects are pairs (X, a),

- Category:
 - objects are pairs (X, a), where X is a topological space,

- Category:
 - ▶ objects are pairs (X, a), where X is a topological space, and $a \in X$,

- Category:
 - ▶ objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_1 is well-defined on (X, a)).

- Category:
 - ▶ objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_1 is well-defined on (X, a)).
 - morphisms between (X, a) and (Y, b):

- Category:
 - ▶ objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_1 is well-defined on (X, a)).
 - ▶ morphisms between (X, a) and (Y, b): all continuous maps $f: X \to Y$ such that f(a) = f(b).

- Category:
 - ▶ objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_1 is well-defined on (X, a)).
 - ▶ morphisms between (X, a) and (Y, b): all continuous maps $f: X \to Y$ such that f(a) = f(b).
- We extend π_1 to a functor on this category:

- Category:
 - ▶ objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_1 is well-defined on (X, a)).
 - ▶ morphisms between (X, a) and (Y, b): all continuous maps $f: X \to Y$ such that f(a) = f(b).
- We extend π_1 to a functor on this category: we need to define $\pi_1(f)$ as some homomorphism between the groups $\pi_1(X, a)$ and $\pi_1(Y, b)$.

- Category:
 - ▶ objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_1 is well-defined on (X, a)).
 - ▶ morphisms between (X, a) and (Y, b): all continuous maps $f: X \to Y$ such that f(a) = f(b).
- We extend π_1 to a functor on this category: we need to define $\pi_1(f)$ as some homomorphism between the groups $\pi_1(X, a)$ and $\pi_1(Y, b)$. By convention $\pi_1(f)$ will be usually denoted by f_* .

- Category:
 - ▶ objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_1 is well-defined on (X, a)).
 - ▶ morphisms between (X, a) and (Y, b): all continuous maps $f: X \to Y$ such that f(a) = f(b).
- We extend π_1 to a functor on this category: we need to define $\pi_1(f)$ as some homomorphism between the groups $\pi_1(X, a)$ and $\pi_1(Y, b)$. By convention $\pi_1(f)$ will be usually denoted by f_* .
- For a loop σ in X at a we define $f_*([\sigma]) := [f \circ \sigma]$.

- Category:
 - ▶ objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_1 is well-defined on (X, a)).
 - ▶ morphisms between (X, a) and (Y, b): all continuous maps $f: X \to Y$ such that f(a) = f(b).
- We extend π_1 to a functor on this category: we need to define $\pi_1(f)$ as some homomorphism between the groups $\pi_1(X, a)$ and $\pi_1(Y, b)$. By convention $\pi_1(f)$ will be usually denoted by f_* .
- For a loop σ in X at a we define $f_*([\sigma]) := [f \circ \sigma]$.
- *f*_{*} is well defined:

- Category:
 - ▶ objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_1 is well-defined on (X, a)).
 - ▶ morphisms between (X, a) and (Y, b): all continuous maps $f: X \to Y$ such that f(a) = f(b).
- We extend π_1 to a functor on this category: we need to define $\pi_1(f)$ as some homomorphism between the groups $\pi_1(X, a)$ and $\pi_1(Y, b)$. By convention $\pi_1(f)$ will be usually denoted by f_* .
- For a loop σ in X at a we define $f_*([\sigma]) := [f \circ \sigma]$.
- f_* is well defined: if $F \colon I \times I \to X$ is a homotopy between σ and τ

- Category:
 - ▶ objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_1 is well-defined on (X, a)).
 - ▶ morphisms between (X, a) and (Y, b): all continuous maps $f: X \to Y$ such that f(a) = f(b).
- We extend π_1 to a functor on this category: we need to define $\pi_1(f)$ as some homomorphism between the groups $\pi_1(X, a)$ and $\pi_1(Y, b)$. By convention $\pi_1(f)$ will be usually denoted by f_* .
- For a loop σ in X at a we define $f_*([\sigma]) := [f \circ \sigma]$.
- f_* is well defined: if $F: I \times I \to X$ is a homotopy between σ and τ then $f \circ F$ is a homotopy between $f \circ \sigma$ and $f \circ \tau$.

- Category:
 - ▶ objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_1 is well-defined on (X, a)).
 - ▶ morphisms between (X, a) and (Y, b): all continuous maps $f: X \to Y$ such that f(a) = f(b).
- We extend π_1 to a functor on this category: we need to define $\pi_1(f)$ as some homomorphism between the groups $\pi_1(X, a)$ and $\pi_1(Y, b)$. By convention $\pi_1(f)$ will be usually denoted by f_* .
- For a loop σ in X at a we define $f_*([\sigma]) := [f \circ \sigma]$.
- f_* is well defined: if $F: I \times I \to X$ is a homotopy between σ and τ then $f \circ F$ is a homotopy between $f \circ \sigma$ and $f \circ \tau$.
- f_* is a group homomorphism:

- Category:
 - ▶ objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_1 is well-defined on (X, a)).
 - ▶ morphisms between (X, a) and (Y, b): all continuous maps $f: X \to Y$ such that f(a) = f(b).
- We extend π_1 to a functor on this category: we need to define $\pi_1(f)$ as some homomorphism between the groups $\pi_1(X, a)$ and $\pi_1(Y, b)$. By convention $\pi_1(f)$ will be usually denoted by f_* .
- For a loop σ in X at a we define $f_*([\sigma]) := [f \circ \sigma]$.
- f_* is well defined: if $F: I \times I \to X$ is a homotopy between σ and τ then $f \circ F$ is a homotopy between $f \circ \sigma$ and $f \circ \tau$.
- f_* is a group homomorphism: $f \circ (\sigma \tau) = (f \circ \sigma)(f \circ \tau)$,

- Category:
 - ▶ objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_1 is well-defined on (X, a)).
 - ▶ morphisms between (X, a) and (Y, b): all continuous maps $f: X \to Y$ such that f(a) = f(b).
- We extend π_1 to a functor on this category: we need to define $\pi_1(f)$ as some homomorphism between the groups $\pi_1(X, a)$ and $\pi_1(Y, b)$. By convention $\pi_1(f)$ will be usually denoted by f_* .
- For a loop σ in X at a we define $f_*([\sigma]) := [f \circ \sigma]$.
- f_* is well defined: if $F: I \times I \to X$ is a homotopy between σ and τ then $f \circ F$ is a homotopy between $f \circ \sigma$ and $f \circ \tau$.
- f_* is a group homomorphism: $f \circ (\sigma \tau) = (f \circ \sigma)(f \circ \tau)$, which is clear by the definition of concatenation.

- Category:
 - ▶ objects are pairs (X, a), where X is a topological space, and $a \in X$, (since π_1 is well-defined on (X, a)).
 - ▶ morphisms between (X, a) and (Y, b): all continuous maps $f: X \to Y$ such that f(a) = f(b).
- We extend π_1 to a functor on this category: we need to define $\pi_1(f)$ as some homomorphism between the groups $\pi_1(X, a)$ and $\pi_1(Y, b)$. By convention $\pi_1(f)$ will be usually denoted by f_* .
- For a loop σ in X at a we define $f_*([\sigma]) := [f \circ \sigma]$.
- f_* is well defined: if $F: I \times I \to X$ is a homotopy between σ and τ then $f \circ F$ is a homotopy between $f \circ \sigma$ and $f \circ \tau$.
- f_* is a group homomorphism: $f \circ (\sigma \tau) = (f \circ \sigma)(f \circ \tau)$, which is clear by the definition of concatenation.

This finishes the definition of the fundamental group functor. Algebraic Topology | Extending π_1 to a functor

Algebraic Topology

1. Recap

2. The fundamental group

3. Change of basepoint

4. Extending π_1 to a functor

5. Homotopy of maps

• We need to generalise the notion of homotopy between paths

• We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.

- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F \colon Y \times I \to X$,

- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \rightarrow X$, we denote with F_t the map

- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \to X$, we denote with F_t the map $Y \to X$ given as $F_t(y) := F(y, t)$.

- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \to X$, we denote with F_t the map $Y \to X$ given as $F_t(y) := F(y, t)$.
- Let $f, g \colon Y \to X$ be continuous maps between topological spaces,

- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \to X$, we denote with F_t the map $Y \to X$ given as $F_t(y) := F(y, t)$.
- Let $f, g: Y \to X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{|A} = g_{|A}$.

- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \to X$, we denote with F_t the map $Y \to X$ given as $F_t(y) := F(y, t)$.
- Let $f, g: Y \to X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{|A} = g_{|A}$. We say that f and g are homotopic relative to A,

- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \to X$, we denote with F_t the map $Y \to X$ given as $F_t(y) := F(y, t)$.
- Let $f, g: Y \to X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{|A} = g_{|A}$. We say that f and g are *homotopic relative to* A, written $f \simeq g \operatorname{rel} A$,

- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \to X$, we denote with F_t the map $Y \to X$ given as $F_t(y) := F(y, t)$.
- Let $f, g: Y \to X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{|A} = g_{|A}$. We say that f and g are *homotopic relative to* A, written $f \simeq g \operatorname{rel} A$, if there exists a continuous map $F: Y \times I \to X$

- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \to X$, we denote with F_t the map $Y \to X$ given as $F_t(y) := F(y, t)$.
- Let $f, g: Y \to X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{|A} = g_{|A}$. We say that f and g are *homotopic relative to* A, written $f \simeq g \operatorname{rel} A$, if there exists a continuous map $F: Y \times I \to X$ such that $F_0 = f$, $F_1 = g$,

- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \to X$, we denote with F_t the map $Y \to X$ given as $F_t(y) := F(y, t)$.
- Let $f, g: Y \to X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{|A} = g_{|A}$. We say that f and g are *homotopic relative to* A, written $f \simeq g \operatorname{rel} A$, if there exists a continuous map $F: Y \times I \to X$ such that $F_0 = f$, $F_1 = g$, and for all t we have $F_{t|A} = f_{|A}$.

- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \to X$, we denote with F_t the map $Y \to X$ given as $F_t(y) := F(y, t)$.
- Let $f, g: Y \to X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{|A} = g_{|A}$. We say that f and g are *homotopic relative to* A, written $f \simeq g \operatorname{rel} A$, if there exists a continuous map $F: Y \times I \to X$ such that $F_0 = f$, $F_1 = g$, and for all t we have $F_{t|A} = f_{|A}$.
- If $A = \emptyset$ then we write $f \simeq g$.

- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \to X$, we denote with F_t the map $Y \to X$ given as $F_t(y) := F(y, t)$.
- Let $f, g: Y \to X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{|A} = g_{|A}$. We say that f and g are *homotopic relative to* A, written $f \simeq g \operatorname{rel} A$, if there exists a continuous map $F: Y \times I \to X$ such that $F_0 = f$, $F_1 = g$, and for all t we have $F_{t|A} = f_{|A}$.
- If $A = \emptyset$ then we write $f \simeq g$.
- The map F is called a *homotopy* between f and g.

- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \to X$, we denote with F_t the map $Y \to X$ given as $F_t(y) := F(y,t)$.
- Let $f, g: Y \to X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{|A} = g_{|A}$. We say that f and g are *homotopic relative to* A, written $f \simeq g \operatorname{rel} A$, if there exists a continuous map $F: Y \times I \to X$ such that $F_0 = f$, $F_1 = g$, and for all t we have $F_{t|A} = f_{|A}$.
- If $A = \emptyset$ then we write $f \simeq g$.
- The map F is called a *homotopy* between f and g.
- Exercise:

- We need to generalise the notion of homotopy between paths to homotopies between arbitrary continuous maps.
- When $F: Y \times I \to X$, we denote with F_t the map $Y \to X$ given as $F_t(y) := F(y, t)$.
- Let $f, g: Y \to X$ be continuous maps between topological spaces, and let $A \subset Y$ be such that $f_{|A} = g_{|A}$. We say that f and g are *homotopic relative to* A, written $f \simeq g \operatorname{rel} A$, if there exists a continuous map $F: Y \times I \to X$ such that $F_0 = f$, $F_1 = g$, and for all t we have $F_{t|A} = f_{|A}$.
- If $A = \emptyset$ then we write $f \simeq g$.
- The map F is called a *homotopy* between f and g.
- Exercise: Show that $f \simeq g \operatorname{rel} A$ is an equivalence relation.

• Example:

• Example: Suppose that $X, Y = \mathbb{R}^n$,

• Example: Suppose that $X, Y = \mathbb{R}^n$, f(y) = y,

• Example: Suppose that $X, Y = \mathbb{R}^n$, f(y) = y, g(y) = 0 for all $y \in Y$.

• Example: Suppose that $X, Y = \mathbb{R}^n$, f(y) = y, g(y) = 0 for all $y \in Y$. By considering F(x,t) := tx

• Example: Suppose that $X, Y = \mathbb{R}^n$, f(y) = y, g(y) = 0 for all $y \in Y$. By considering F(x,t) := tx we see that f and g are homotopic to each other.

- Example: Suppose that $X, Y = \mathbb{R}^n$, f(y) = y, g(y) = 0 for all $y \in Y$. By considering F(x,t) := tx we see that f and g are homotopic to each other.
- If for some topological space X we have that $id_X \simeq const_x$ for some $x \in X$

- Example: Suppose that $X, Y = \mathbb{R}^n$, f(y) = y, g(y) = 0 for all $y \in Y$. By considering F(x,t) := tx we see that f and g are homotopic to each other.
- If for some topological space X we have that $id_X \simeq const_x$ for some $x \in X$ then we say that X is *contractible*.

- Example: Suppose that $X, Y = \mathbb{R}^n$, f(y) = y, g(y) = 0 for all $y \in Y$. By considering F(x,t) := tx we see that f and g are homotopic to each other.
- If for some topological space X we have that $id_X \simeq const_x$ for some $x \in X$ then we say that X is *contractible*. Thus e.g. \mathbb{R}^n is contractible.

- Example: Suppose that $X, Y = \mathbb{R}^n$, f(y) = y, g(y) = 0 for all $y \in Y$. By considering F(x,t) := tx we see that f and g are homotopic to each other.
- If for some topological space X we have that $id_X \simeq const_x$ for some $x \in X$ then we say that X is *contractible*. Thus e.g. \mathbb{R}^n is contractible.
- More generally:

- Example: Suppose that $X, Y = \mathbb{R}^n$, f(y) = y, g(y) = 0 for all $y \in Y$. By considering F(x,t) := tx we see that f and g are homotopic to each other.
- If for some topological space X we have that $id_X \simeq const_x$ for some $x \in X$ then we say that X is *contractible*. Thus e.g. \mathbb{R}^n is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^n$ is contractible.

- Example: Suppose that $X, Y = \mathbb{R}^n$, f(y) = y, g(y) = 0 for all $y \in Y$. By considering F(x,t) := tx we see that f and g are homotopic to each other.
- If for some topological space X we have that $id_X \simeq const_x$ for some $x \in X$ then we say that X is *contractible*. Thus e.g. \mathbb{R}^n is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^n$ is contractible. Indeed, we may fix $y_0 \in Y$

- Example: Suppose that $X, Y = \mathbb{R}^n$, f(y) = y, g(y) = 0 for all $y \in Y$. By considering F(x,t) := tx we see that f and g are homotopic to each other.
- If for some topological space X we have that $id_X \simeq const_x$ for some $x \in X$ then we say that X is *contractible*. Thus e.g. \mathbb{R}^n is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^n$ is contractible. Indeed, we may fix $y_0 \in Y$ and define F by the formula

- Example: Suppose that $X, Y = \mathbb{R}^n$, f(y) = y, g(y) = 0 for all $y \in Y$. By considering F(x,t) := tx we see that f and g are homotopic to each other.
- If for some topological space X we have that $id_X \simeq const_x$ for some $x \in X$ then we say that X is *contractible*. Thus e.g. \mathbb{R}^n is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^n$ is contractible. Indeed, we may fix $y_0 \in Y$ and define F by the formula F(y,t) :=

- Example: Suppose that $X, Y = \mathbb{R}^n$, f(y) = y, g(y) = 0 for all $y \in Y$. By considering F(x,t) := tx we see that f and g are homotopic to each other.
- If for some topological space X we have that $id_X \simeq const_x$ for some $x \in X$ then we say that X is *contractible*. Thus e.g. \mathbb{R}^n is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^n$ is contractible. Indeed, we may fix $y_0 \in Y$ and define F by the formula $F(y,t) := (1-t)y + ty_0$.

- Example: Suppose that $X, Y = \mathbb{R}^n$, f(y) = y, g(y) = 0 for all $y \in Y$. By considering F(x,t) := tx we see that f and g are homotopic to each other.
- If for some topological space X we have that $id_X \simeq const_x$ for some $x \in X$ then we say that X is *contractible*. Thus e.g. \mathbb{R}^n is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^n$ is contractible. Indeed, we may fix $y_0 \in Y$ and define F by the formula $F(y,t) := (1-t)y + ty_0$. In particular, the unit disk $\mathbb{D}^n :=$

- Example: Suppose that $X, Y = \mathbb{R}^n$, f(y) = y, g(y) = 0 for all $y \in Y$. By considering F(x,t) := tx we see that f and g are homotopic to each other.
- If for some topological space X we have that $id_X \simeq const_x$ for some $x \in X$ then we say that X is *contractible*. Thus e.g. \mathbb{R}^n is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^n$ is contractible. Indeed, we may fix $y_0 \in Y$ and define F by the formula $F(y,t) := (1-t)y + ty_0$. In particular, the unit disk $\mathbb{D}^n := \{x \in \mathbb{R}^n : ||x|| \leq 1\}$

- Example: Suppose that $X, Y = \mathbb{R}^n$, f(y) = y, g(y) = 0 for all $y \in Y$. By considering F(x,t) := tx we see that f and g are homotopic to each other.
- If for some topological space X we have that $id_X \simeq const_x$ for some $x \in X$ then we say that X is *contractible*. Thus e.g. \mathbb{R}^n is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^n$ is contractible. Indeed, we may fix $y_0 \in Y$ and define F by the formula $F(y,t) := (1-t)y + ty_0$. In particular, the unit disk $\mathbb{D}^n := \{x \in \mathbb{R}^n : ||x|| \leq 1\}$ is contractible.

- Example: Suppose that $X, Y = \mathbb{R}^n$, f(y) = y, g(y) = 0 for all $y \in Y$. By considering F(x,t) := tx we see that f and g are homotopic to each other.
- If for some topological space X we have that $id_X \simeq const_x$ for some $x \in X$ then we say that X is *contractible*. Thus e.g. \mathbb{R}^n is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^n$ is contractible. Indeed, we may fix $y_0 \in Y$ and define F by the formula $F(y,t) := (1-t)y + ty_0$. In particular, the unit disk $\mathbb{D}^n := \{x \in \mathbb{R}^n : ||x|| \leq 1\}$ is contractible.
- If a space X is path-connected and $\pi_1(X) = \{0\}$

- Example: Suppose that $X, Y = \mathbb{R}^n$, f(y) = y, g(y) = 0 for all $y \in Y$. By considering F(x,t) := tx we see that f and g are homotopic to each other.
- If for some topological space X we have that $id_X \simeq const_x$ for some $x \in X$ then we say that X is *contractible*. Thus e.g. \mathbb{R}^n is contractible.
- More generally: any convex subset $Y \subset \mathbb{R}^n$ is contractible. Indeed, we may fix $y_0 \in Y$ and define F by the formula $F(y,t) := (1-t)y + ty_0$. In particular, the unit disk $\mathbb{D}^n := \{x \in \mathbb{R}^n : ||x|| \leq 1\}$ is contractible.
- If a space X is path-connected and $\pi_1(X) = \{0\}$ then we say that X is simply connected.

Algebraic Topology | Homotopy of maps

Proof.

• Let's see that *X* is path-connected.

Proof.

• Let's see that X is path-connected. If $F: \operatorname{id}_X \simeq \operatorname{const}_{x_0}$ is a homotopy

Proof.

• Let's see that X is path-connected. If $F: \operatorname{id}_X \simeq \operatorname{const}_{x_0}$ is a homotopy then for any $y \in X$ we can consider the path $\sigma: y \xrightarrow{p} x_0$

Proof.

• Let's see that X is path-connected. If $F: \operatorname{id}_X \simeq \operatorname{const}_{x_0}$ is a homotopy then for any $y \in X$ we can consider the path $\sigma: y \xrightarrow{p} x_0$ given by $\sigma(t) :=$

Proof.

• Let's see that X is path-connected. If $F: \operatorname{id}_X \simeq \operatorname{const}_{x_0}$ is a homotopy then for any $y \in X$ we can consider the path $\sigma: y \xrightarrow{p} x_0$ given by $\sigma(t) := F(y, t)$.

- Let's see that X is path-connected. If $F: \operatorname{id}_X \simeq \operatorname{const}_{x_0}$ is a homotopy then for any $y \in X$ we can consider the path $\sigma: y \xrightarrow{p} x_0$ given by $\sigma(t) := F(y, t)$.
- Let us argue that $\pi_1(X, x_0) = \{[x_0]\}$. We need to show that any loop at x_0 can be contracted to the constant loop at x_0

- Let's see that X is path-connected. If $F: \operatorname{id}_X \simeq \operatorname{const}_{x_0}$ is a homotopy then for any $y \in X$ we can consider the path $\sigma: y \xrightarrow{p} x_0$ given by $\sigma(t) := F(y, t)$.
- Let us argue that $\pi_1(X, x_0) = \{[x_0]\}$. We need to show that any loop at x_0 can be contracted to the constant loop at x_0 while keeping the end points fixed.

- Let's see that X is path-connected. If $F: \operatorname{id}_X \simeq \operatorname{const}_{x_0}$ is a homotopy then for any $y \in X$ we can consider the path $\sigma: y \xrightarrow{p} x_0$ given by $\sigma(t) := F(y, t)$.
- Let us argue that $\pi_1(X, x_0) = \{[x_0]\}$. We need to show that any loop at x_0 can be contracted to the constant loop at x_0 while keeping the end points fixed.
- Let us fix a loop $\sigma: I \to X$ at x_0 . As the first step, we can consider the map $I \times I \ni (s,t) \mapsto F(\sigma(s),t) \in X$.

- Let's see that X is path-connected. If $F: \operatorname{id}_X \simeq \operatorname{const}_{x_0}$ is a homotopy then for any $y \in X$ we can consider the path $\sigma: y \xrightarrow{p} x_0$ given by $\sigma(t) := F(y, t)$.
- Let us argue that $\pi_1(X, x_0) = \{[x_0]\}$. We need to show that any loop at x_0 can be contracted to the constant loop at x_0 while keeping the end points fixed.
- Let us fix a loop $\sigma: I \to X$ at x_0 . As the first step, we can consider the map $I \times I \ni (s,t) \mapsto F(\sigma(s),t) \in X$. In diagrammatic terms this gives us

- Let's see that X is path-connected. If $F: \operatorname{id}_X \simeq \operatorname{const}_{x_0}$ is a homotopy then for any $y \in X$ we can consider the path $\sigma: y \xrightarrow{p} x_0$ given by $\sigma(t) := F(y, t)$.
- Let us argue that $\pi_1(X, x_0) = \{[x_0]\}$. We need to show that any loop at x_0 can be contracted to the constant loop at x_0 while keeping the end points fixed.
- Let us fix a loop $\sigma: I \to X$ at x_0 . As the first step, we can consider the map $I \times I \ni (s,t) \mapsto F(\sigma(s),t) \in X$. In diagrammatic terms this gives us

Proof.

- Let's see that X is path-connected. If $F: \operatorname{id}_X \simeq \operatorname{const}_{x_0}$ is a homotopy then for any $y \in X$ we can consider the path $\sigma: y \xrightarrow{p} x_0$ given by $\sigma(t) := F(y, t)$.
- Let us argue that $\pi_1(X, x_0) = \{[x_0]\}$. We need to show that any loop at x_0 can be contracted to the constant loop at x_0 while keeping the end points fixed.
- Let us fix a loop $\sigma: I \to X$ at x_0 . As the first step, we can consider the map $I \times I \ni (s,t) \mapsto F(\sigma(s),t) \in X$. In diagrammatic terms this gives us

where α is the loop at x_0 given by $\alpha(t) := F(x_0, t)$.

Algebraic Topology | Homotopy of maps

Algebraic Topology | Homotopy of maps

- For example the left one represents the map $G \colon I \times I \to X$ defined as follows:

• For example the left one represents the map $G \colon I \times I \to X$ defined as follows: $G(s,t) := x_0$ if $t \ge s$,

• For example the left one represents the map $G : I \times I \to X$ defined as follows: $G(s,t) := x_0$ if $t \ge s$, $G(s,t) := \alpha(1+t-s)$ if t < s.

- For example the left one represents the map $G \colon I \times I \to X$ defined as follows: $G(s,t) := x_0$ if $t \ge s$, $G(s,t) := \alpha(1+t-s)$ if t < s.
- Putting all three together gives us an end-preserving homotopy between the loop $\alpha^{-1}\sigma\alpha$ and the constant loop at x_0 .

- For example the left one represents the map $G \colon I \times I \to X$ defined as follows: $G(s,t) := x_0$ if $t \ge s$, $G(s,t) := \alpha(1+t-s)$ if t < s.
- Putting all three together gives us an end-preserving homotopy between the loop $\alpha^{-1}\sigma\alpha$ and the constant loop at x_0 .
- This means that $[\alpha^{-1}\sigma\alpha] = [\alpha]^{-1}[\sigma][\alpha]$ is the trivial element in $\pi_1(X)$,

- For example the left one represents the map $G : I \times I \to X$ defined as follows: $G(s,t) := x_0$ if $t \ge s$, $G(s,t) := \alpha(1+t-s)$ if t < s.
- Putting all three together gives us an end-preserving homotopy between the loop $\alpha^{-1}\sigma\alpha$ and the constant loop at x_0 .
- This means that $[\alpha^{-1}\sigma\alpha] = [\alpha]^{-1}[\sigma][\alpha]$ is the trivial element in $\pi_1(X)$, and hence also $[\sigma]$ is the trivial element of $\pi_1(X)$.

Algebraic Topology | Homotopy of maps

- For example the left one represents the map $G : I \times I \to X$ defined as follows: $G(s,t) := x_0$ if $t \ge s$, $G(s,t) := \alpha(1+t-s)$ if t < s.
- Putting all three together gives us an end-preserving homotopy between the loop $\alpha^{-1}\sigma\alpha$ and the constant loop at x_0 .
- This means that $[\alpha^{-1}\sigma\alpha] = [\alpha]^{-1}[\sigma][\alpha]$ is the trivial element in $\pi_1(X)$, and hence also $[\sigma]$ is the trivial element of $\pi_1(X)$.

Algebraic Topology | Homotopy of maps

• Let σ be a loop at $x \in X$.

• Let σ be a loop at $x \in X$. Since $\sigma(0) = x = \sigma(1)$,

• Let σ be a loop at $x \in X$. Since $\sigma(0) = x = \sigma(1)$, we can consider σ as a map whose domain is \mathbb{S}^1 .

• Let σ be a loop at $x \in X$. Since $\sigma(0) = x = \sigma(1)$, we can consider σ as a map whose domain is \mathbb{S}^1 . Show that $\sigma \simeq x \operatorname{rel}\{0,1\}$ if and only if σ can be extended to a map $\mathbb{D}^2 \to X$.

- Let σ be a loop at $x \in X$. Since $\sigma(0) = x = \sigma(1)$, we can consider σ as a map whose domain is \mathbb{S}^1 . Show that $\sigma \simeq x \operatorname{rel}\{0,1\}$ if and only if σ can be extended to a map $\mathbb{D}^2 \to X$.
- Let *X* be a path-connected topological space.

- Let σ be a loop at $x \in X$. Since $\sigma(0) = x = \sigma(1)$, we can consider σ as a map whose domain is \mathbb{S}^1 . Show that $\sigma \simeq x \operatorname{rel}\{0,1\}$ if and only if σ can be extended to a map $\mathbb{D}^2 \to X$.
- Let \boldsymbol{X} be a path-connected topological space. Show that the following conditions are equivalent.

- Let σ be a loop at $x \in X$. Since $\sigma(0) = x = \sigma(1)$, we can consider σ as a map whose domain is \mathbb{S}^1 . Show that $\sigma \simeq x \operatorname{rel}\{0,1\}$ if and only if σ can be extended to a map $\mathbb{D}^2 \to X$.
- Let X be a path-connected topological space. Show that the following conditions are equivalent.

•
$$\pi_1(X) = \{0\}$$
 (i.e. X is simply connected).

- Let σ be a loop at $x \in X$. Since $\sigma(0) = x = \sigma(1)$, we can consider σ as a map whose domain is \mathbb{S}^1 . Show that $\sigma \simeq x \operatorname{rel}\{0,1\}$ if and only if σ can be extended to a map $\mathbb{D}^2 \to X$.
- Let X be a path-connected topological space. Show that the following conditions are equivalent.
 - $\pi_1(X) = \{0\}$ (i.e. X is simply connected).
 - $\forall f \colon \mathbb{S}^1 \to X$, we have that f can be extended to $\bar{f} \colon \mathbb{D}^2 \to X$.

- Let σ be a loop at $x \in X$. Since $\sigma(0) = x = \sigma(1)$, we can consider σ as a map whose domain is \mathbb{S}^1 . Show that $\sigma \simeq x \operatorname{rel}\{0,1\}$ if and only if σ can be extended to a map $\mathbb{D}^2 \to X$.
- Let X be a path-connected topological space. Show that the following conditions are equivalent.

•
$$\pi_1(X) = \{0\}$$
 (i.e. X is simply connected).

- ▶ $\forall f : \mathbb{S}^1 \to X$, we have that f can be extended to $\overline{f} : \mathbb{D}^2 \to X$.
- if $\sigma, \tau \colon a \stackrel{p}{\rightsquigarrow} b$ then $\sigma \simeq \tau \operatorname{rel}\{0, 1\}$

UNIVERSITÄT LEIPZIG

THANK YOU FOR YOUR ATTENTION!

Łukasz Grabowski

Mathematisches Institut

grabowski@math.uni-leipzig.de

