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» If f: X Y andg: Y — Z are morphisms thengo f: X — Z is also a morphism.

Algebraic Topology | Recap 3/27



Categories

« A category is a collection of objects and morphisms.

» Example of objects are: “all topological spaces”, “all metrisable topological
spaces”, “all pairs (X, x) where X is a topological space and = € X", “all abelian
all rings with identity”, etc.

” u

groups”,

« Morphisms are a collection of functions between the objects, subject to two condition:

» For every object X, we have that the identity idx is a morphism.

» If f: X Y andg: Y — Z are morphisms thengo f: X — Z is also a morphism.

» Examples: “all continuous maps”, “all continuous maps which are
n u

homeomorphisms”, “Lipschitz-continuous maps”, “group homomorphisms®, “ring
homomorphisms” etc.
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Functors

« afunctor F between two categories C and D is a way to associate to each object X of
C an object F(X) of D,
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I Functors

« afunctor F between two categories C and D is a way to associate to each object X of
C an object F(X) of D, and to each morphism f: X — Y a homomorphism
B(f): F(X) = F(Y),
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I Functors

« afunctor F between two categories C and D is a way to associate to each object X of
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I Functors

« a functor I between two categories C and D is a way to associate to each object X of
C an object F(X) of D, and to each morphism f: X — Y a homomorphism
F(f): F(X) — F(Y), such that

» F(idx) = idp(x) for any object X and
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I Functors

« a functor I between two categories C and D is a way to associate to each object X of
C an object F(X) of D, and to each morphism f: X — Y a homomorphism
F(f): F(X) — F(Y), such that

» F(idx) = idp(x) for any object X and

» F(sot) = F(s)o F(t) for all composable morphisms s, t.
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Example

« Let T'op be the category of all topological spaces, and let Sets be the category of all
sets.
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Example

« Let T'op be the category of all topological spaces, and let Sets be the category of all
sets.

« We consider the functor my, which associates to X the set of connected components of
X.

 Note that for a continuous map f: X - Y
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sets.
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Example

« Let T'op be the category of all topological spaces, and let Sets be the category of all
sets.

« We consider the functor my, which associates to X the set of connected components of
X.

+ Note that for a continuous map f: X — Y and a connected component A C X we
have that f(A) lands in a single connected component of Y.
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Example

« Let T'op be the category of all topological spaces, and let Sets be the category of all
sets.

« We consider the functor my, which associates to X the set of connected components of
X.

 Note that for a continuous map f: X — Y and a connected component A ¢ X we
have that f(A) lands in a single connected component of Y.

« This allows us to define 7y (f).
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We can phrase the argument that Y := [0, 1] U [2, 3] is not a retract of X := [0, 3] in this
functorial language.
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We can phrase the argument that Y := [0, 1] U [2, 3] is not a retract of X := [0, 3] in this
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+ |f we had a retraction X — Y then considerY - X —» Y
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+ Apply the functor my, get {b,c} — {a} — {b,c}, which is identity

Algebraic Topology | Recap 6/27



We can phrase the argument that Y := [0, 1] U [2, 3] is not a retract of X := [0, 3] in this
functorial language.

« mo(X) = {a}, mo(Y) = {b,c},
+ |f we had a retraction X — Y then considerY - X —» Y

+ Apply the functor my, get {b,c} — {a} — {b,c}, which is identity whichisa
contradiction.
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Homotopy of paths

- Given two paths o, 7: a < b in a topological space X, we say they are homotopic to
each other relative to their ends, written o ~ T rel{0, 1}, if we can find a map
F:1IxI— X suchthatforall z € I we have F(z,0) =o(x), F(x,1) = 7(x),

F(0,z) = a, F(z,0) =b.

« We express this frequently using the following diagram.

T

a

« This diagram represents the domain of F, i.e. I x I, and it shows what F' does on the
edges of the square.
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Homotopy of paths

- Given two paths o, 7: a < b in a topological space X, we say they are homotopic to
each other relative to their ends, written o ~ T rel{0, 1}, if we can find a map
F:1IxI— X suchthatforall z € I we have F(z,0) =o(x), F(x,1) = 7(x),

F(0,z) = a, F(z,0) =b.

« We express this frequently using the following diagram.

T

a

« This diagram represents the domain of F, i.e. I x I, and it shows what F' does on the
edges of the square. We say that F' is a homotopy between o and

- We say that o: a % a is a contractible loop or a homotopically trivial loop if
o~arel{0,1}
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Lemma. Homotopy relative to ends is an equivalence relation, i.e. if we have
o, T,p: Q L b then

« o~orel{0,1}
c o~7rel{0,1} = 7 ~orel{0,1}
« o~7rel{0,1},7 ~ prel{0,1} = o ~ prel{0,1}

Proof. First two properties left as exercises.
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Lemma. Homotopy relative to ends is an equivalence relation, i.e. if we have
o, T,p: Q L b then

« o~orel{0,1}
c o~7rel{0,1} = 7 ~orel{0,1}
« o~7rel{0,1},7 ~ prel{0,1} = o ~ prel{0,1}

Proof. First two properties left as exercises. The fact that o ~ 7 rel{0, 1} is illustrated
by the diagram
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The fact that 7 ~ prel{0, 1} is illustrated by the diagram

0
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The fact that 7 ~ prel{0, 1} is illustrated by the diagram

0

As such we can form the diagram

o

which shows that indeed o ~ prel{0, 1}, as claimed.
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The fact that 7 ~ prel{0, 1} is illustrated by the diagram

0

a b
T
As such we can form the diagram
P
a b
a b
which shows that indeed o ~ prel{0, 1}, as claimed. O
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Composition of paths

- Giveno:a-*bandr: b4 ¢
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Composition of paths
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following o and then 7.
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Composition of paths

- Giveno:a % band 7: b % ¢ we can form the concatenation o7: a + ¢ by first
following o and then 7.

» In other words we let o7(z) := o(2z) forz < 3
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Composition of paths

- Giveno:a % band 7: b % ¢ we can form the concatenation o7: a + ¢ by first
following o and then 7.

» In other words we let o7(z) := o(2z) forz < § and o7(z) := 7(2z — 1) for z > 1.
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Composition of paths is compatible with homotopies in the following sense.

Lemma. Suppose 7,0’ : a < b,
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Composition of paths is compatible with homotopies in the following sense.

Lemma. Suppose 0,0’: a ~» b, 7,7': b~ ¢, and suppose also that o ~ ¢’ rel{0,1}
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Lemma. Suppose 0,0’: a ~» b, 7,7': b~ ¢, and suppose also that o ~ ¢’ rel{0,1}
and 7 ~ 7' rel{0,1}. Then ot ~ o'7'rel{0,1}.

Proof. We have the diagrams

Algebraic Topology | The fundamental group 12/27



Composition of paths is compatible with homotopies in the following sense.

Lemma. Suppose 0,0’: a ~» b, 7,7': b~ ¢, and suppose also that o ~ ¢’ rel{0,1}
and 7 ~ 7' rel{0,1}. Then ot ~ o'7'rel{0,1}.

Proof. We have the diagrams

Algebraic Topology | The fundamental group 12/27



Composition of paths is compatible with homotopies in the following sense.

Lemma. Suppose 0,0’: a ~» b, 7,7': b~ ¢, and suppose also that o ~ ¢’ rel{0,1}
and 7 ~ 7' rel{0,1}. Then ot ~ o'7'rel{0,1}.

Proof. We have the diagrams

and so we can form the diagram

Algebraic Topology | The fundamental group 12/27



Composition of paths is compatible with homotopies in the following sense.

Lemma. Suppose 0,0’: a ~» b, 7,7': b~ ¢, and suppose also that o ~ ¢’ rel{0,1}
and 7 ~ 7' rel{0,1}. Then ot ~ o'7'rel{0,1}.

Proof. We have the diagrams

and so we can form the diagram

Algebraic Topology | The fundamental group 12/27



Composition of paths is compatible with homotopies in the following sense.

Lemma. Suppose 0,0’: a ~» b, 7,7': b~ ¢, and suppose also that o ~ ¢’ rel{0,1}
and 7 ~ 7' rel{0,1}. Then ot ~ o'7'rel{0,1}.

Proof. We have the diagrams

and so we can form the diagram

Algebraic Topology | The fundamental group 12/27



Algebraic Topology | The fundamental group 13/27



« Now we are ready to define the fundamental group = (X, x) of a pair (X, z),
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« Now we are ready to define the fundamental group 71 (X, z) of a pair (X, z), where X
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« Now we are ready to define the fundamental group 71 (X, z) of a pair (X, z), where X
is a topological space and z € X,

« We let 71 (X, z) to be the set of all equivalence classes of loops at z in X.
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« Now we are ready to define the fundamental group 71 (X, z) of a pair (X, z), where X
is a topological space and z € X,

« We let 71 (X, z) to be the set of all equivalence classes of loops at z in X.
« The homotopy class of a loop o will be denoted by [o].

+ We define a binary operation on 7 (X, )
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« We let 71 (X, z) to be the set of all equivalence classes of loops at z in X.
« The homotopy class of a loop o will be denoted by [o].

+ We define a binary operation on 71 (X, z) by setting [o] - [7] := [o7].
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« Now we are ready to define the fundamental group 71 (X, z) of a pair (X, z), where X
is a topological space and z € X,

« We let 71 (X, z) to be the set of all equivalence classes of loops at z in X.
« The homotopy class of a loop o will be denoted by [o].
+ We define a binary operation on 71 (X, z) by setting [o] - [7] := [o7].

+ The previous lemma shows that this binary operation is well-defined on the elements
of (X, z).
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« Now we are ready to define the fundamental group 71 (X, z) of a pair (X, z), where X
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« We let 71 (X, z) to be the set of all equivalence classes of loops at z in X.
« The homotopy class of a loop o will be denoted by [o].
+ We define a binary operation on 71 (X, z) by setting [o] - [7] := [o7].
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of (X, z).

+ We define the neutral element in 71 (X, x) to be the class of the constant loop [z],
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« Now we are ready to define the fundamental group 71 (X, z) of a pair (X, z), where X
is a topological space and z € X,

« We let 71 (X, z) to be the set of all equivalence classes of loops at z in X.
« The homotopy class of a loop o will be denoted by [o].
+ We define a binary operation on 71 (X, z) by setting [o] - [7] := [o7].

+ The previous lemma shows that this binary operation is well-defined on the elements
of (X, z).

+ We define the neutral element in 71 (X, x) to be the class of the constant loop [z],

« The inverse is defined as [¢] 7! := [07!], where 0! (2) := o(1 — 2).
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Theorem. (X, z) with the operations defined above is a group.
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Theorem. (X, z) with the operations defined above is a group.

Proof. Let us check for example that [o] - [o] ! = [z].
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Theorem. (X, z) with the operations defined above is a group.

Proof. Let us check for example that [o] - [o] ! = [z].

We need to show that oo~ ! ~ x rel{0,1}.
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Theorem. (X, z) with the operations defined above is a group.

Proof. Let us check for example that [o] - [o] ! = [z].

We need to show that oo—! ~ 2 rel{0,1}. This is witnessed by the following diagram:

g 0_1
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In symbols,
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In symbols, we define a homotopy F': I x I — X
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In symbols, we define a homotopy F: I x I — X betweenoo~' and z
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In symbols, we define a homotopy F: I x I — X between co~! and = as follows.

Algebraic Topology | The fundamental group 15/27



In symbols, we define a homotopy F: I x I — X between co~! and = as follows.

F(s,t) :==o(2s) when 2s <t
=o(t) whent <2s <2 —t,
=0 (25— 1) when 2 — ¢ < 2s.
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In symbols, we define a homotopy F: I x I — X between co~! and = as follows.

F(s,t) :==o(2s) when 2s <t
= o(t) whent <2s <2 —t,
=0 (25— 1) when 2 — ¢ < 2s.

O]

- Note that the argument in the last proof shows that if o: a ~» bthen o 'o is a loop at a
which is contractible.
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3. Change of basepoint




If X is not path-connected then the isomorphism class of 71 (X, z) might depend on
the choice of z € X.
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given by
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Proof.
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* « is a bijection since (a~!), is the inverse.
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.« is a bijection since (a7 !), is the inverse. Indeed, we have
ax(a™),: [o] = [aa toaa™l,
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.« is a bijection since (a7 !), is the inverse. Indeed, we have
ax(a™),: [o] = [aa toaa™l,

and aa~! is contractible loop. This means [aa~!] = [a], and so
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Corollary. If X is path-connected
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Corollary. If X is path-connected then the isomorphism class of 7 (X, z) does not
depend on the choice of z € X
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Corollary. If X is path-connected then the isomorphism class of 7 (X, z) does not
depend on the choice of z € X

This corollary allows us to somewhat informally talk about the fundamental group
m(X) of X, without referring to a chosen point of X, whenever X is path-connected.
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» objects are pairs (X,a), where X is a topological space, and a € X, (since 7 is
well-defined on (X, a)).

» morphisms between (X, a) and (Y,b): all continuous maps f: X — Y such that

fla) = f(b).

« We extend 7 to a functor on this category: we need to define 71 (f) as some
homomorphism between the groups 71 (X, a) and 71 (Y, ). By convention m;(f) will be
usually denoted by f..

« Foraloop o in X at a we define f.([o]) := [f o o]

« f.iswell defined: if F: I x I — X is a homotopy between o and 7 then fo Fisa
homotopy between f oo and for.

* f«isagroup homomorphism: fo(o7) = (foo)(for), whichis clear by the definition
of concatenation.
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+ Category:

» objects are pairs (X,a), where X is a topological space, and a € X, (since 7 is
well-defined on (X, a)).

» morphisms between (X, a) and (Y,b): all continuous maps f: X — Y such that

fla) = f(b).

« We extend 7 to a functor on this category: we need to define 71 (f) as some
homomorphism between the groups 71 (X, a) and 71 (Y, ). By convention m;(f) will be
usually denoted by f..

« Foraloop o in X at a we define f.([o]) := [f o o]

« f.iswell defined: if F: I x I — X is a homotopy between o and 7 then fo Fisa
homotopy between f oo and for.

* f«isagroup homomorphism: fo(o7) = (foo)(for), whichis clear by the definition
of concatenation.

This finishes the definition of the fundamental group functor.
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« We need to generalise the notion of homotopy between paths to homotopies between
arbitrary continuous maps.

« When F: Y x I — X, we denote with F; the map Y — X given as Fi(y) := F(y,t).

- Let f,g: Y — X be continuous maps between topological spaces, and let A C Y be
such that f|4 = gj4. We say that f and g are homotopic relative to A, written
f ~ grel A, if there exists a continuous map F: Y x I —+ X suchthat Fy = f, F| = g,
and for all ¢ we have Fy 4 = f4.

« If A= () then we write f ~ g.
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« We need to generalise the notion of homotopy between paths to homotopies between
arbitrary continuous maps.

« When F: Y x I — X, we denote with F; the map Y — X given as Fi(y) := F(y,t).

- Let f,g: Y — X be continuous maps between topological spaces, and let A C Y be
such that f|4 = gj4. We say that f and g are homotopic relative to A, written
f ~ grel A, if there exists a continuous map F: Y x I —+ X suchthat Fy = f, F| = g,
and for all ¢ we have Fy 4 = f4.

« If A= () then we write f ~ g.

« The map F'is called a homotopy between f and g.
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« We need to generalise the notion of homotopy between paths to homotopies between
arbitrary continuous maps.

« When F: Y x I — X, we denote with F; the map Y — X given as Fi(y) := F(y,t).

- Let f,g: Y — X be continuous maps between topological spaces, and let A C Y be
such that f|4 = gj4. We say that f and g are homotopic relative to A, written
f ~ grel A, if there exists a continuous map F: Y x I —+ X suchthat Fy = f, F| = g,
and for all ¢ we have Fy 4 = f4.

« If A= () then we write f ~ g.
« The map F'is called a homotopy between f and g.

- Exercise: Show that f ~ grel A is an equivalence relation.
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« Example:
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« Example: Suppose that X, Y = R",
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- Example: Supposethat X,Y =R", f(y) =y,
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« Example: Supposethat X, Y =R", f(y) =v, g(y) =0forally e Y.
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« Example: Suppose that X, Y =R", f(y) =y, g(y) =0forally € Y. By considering
F(x,t):=tx
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« Example: Suppose that X, Y =R", f(y) =y, g(y) =0forally € Y. By considering
F(xz,t) := tz we see that f and g are homotopic to each other.
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« Example: Suppose that X, Y =R", f(y) =y, g(y) =0forally € Y. By considering
F(xz,t) := tz we see that f and g are homotopic to each other.

« If for some topological space X we have that idx ~ const, for some z € X
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« Example: Suppose that X, Y =R", f(y) =y, g(y) =0forally € Y. By considering
F(xz,t) := tz we see that f and g are homotopic to each other.

« If for some topological space X we have that idx ~ const, for some x € X then we
say that X is contractible. Thus e.g. R" is contractible.

« More generally: any convex subset Y C R™ is contractible.
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F(xz,t) := tz we see that f and g are homotopic to each other.

« If for some topological space X we have that idx ~ const, for some x € X then we
say that X is contractible. Thus e.g. R" is contractible.

« More generally: any convex subset Y C R" is contractible. Indeed, we may fix yg € Y
and define F' by the formula F(y,t) := (1 —t)y + tyo.
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« Example: Suppose that X, Y =R", f(y) =y, g(y) =0forally € Y. By considering
F(xz,t) := tz we see that f and g are homotopic to each other.

« If for some topological space X we have that idx ~ const, for some x € X then we
say that X is contractible. Thus e.g. R" is contractible.

« More generally: any convex subset Y C R" is contractible. Indeed, we may fix yg € Y
and define F' by the formula F(y,t) := (1 —t)y + tyo. In particular, the unit disk
D" :={zx e R™: ||z| < 1}
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« Example: Suppose that X, Y =R", f(y) =y, g(y) =0forally € Y. By considering
F(xz,t) := tz we see that f and g are homotopic to each other.

« If for some topological space X we have that idx ~ const, for some x € X then we
say that X is contractible. Thus e.g. R" is contractible.

« More generally: any convex subset Y C R" is contractible. Indeed, we may fix yg € Y
and define F' by the formula F(y,t) := (1 —t)y + tyo. In particular, the unit disk
D" := {x € R™: ||z|| < 1} is contractible.

« If a space X is path-connected and 7;(X) = {0}
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« Example: Suppose that X, Y =R", f(y) =y, g(y) =0forally € Y. By considering
F(xz,t) := tz we see that f and g are homotopic to each other.

« If for some topological space X we have that idx ~ const, for some x € X then we
say that X is contractible. Thus e.g. R" is contractible.

« More generally: any convex subset Y C R" is contractible. Indeed, we may fix yg € Y
and define F' by the formula F(y,t) := (1 —t)y + tyo. In particular, the unit disk
D" := {x € R™: ||z|| < 1} is contractible.

- If a space X is path-connected and 7;(X) = {0} then we say that X is simply
connected.
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Proposition. If X is contractible then it is simply connected.
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+ Let's see that X is path-connected. If F': idx ~ const,, isa homotopy then for any
y € X we can consider the path o: y % z
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Proposition. If X is contractible then it is simply connected.

Proof.

+ Let's see that X is path-connected. If F': idx ~ const,, isa homotopy then for any
y € X we can consider the path o: y < ¢ given by o(t) := F(y, t).

* Let us argue that m (X, z9) = {[z0]}. We need to show that any loop at z( can be
contracted to the constant loop at zg
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« Letusfixaloopo: I — X at z. As the first step, we can consider the map
I xI>(s,t)— F(o(s),t) € X.
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Proposition. If X is contractible then it is simply connected.

Proof.

+ Let's see that X is path-connected. If F': idx ~ const,, isa homotopy then for any
y € X we can consider the path o: y < ¢ given by o(t) := F(y, t).

* Let us argue that m (X, z9) = {[z0]}. We need to show that any loop at z( can be
contracted to the constant loop at =y while keeping the end points fixed.

« Letusfixaloopo: I — X at z. As the first step, we can consider the map
I x1I>(s,t)— F(o(s),t) € X. Indiagrammatic terms this gives us

Zg

a

where « is the loop at z( given by a(t) := F(xq, t).
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« We can also consider the following two diagrams:
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« We can also consider the following two diagrams:

Lo

Zo

Lo

+ For example the left one represents the map G: I x I — X defined as follows:
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« We can also consider the following two diagrams:

Lo

Zo

Lo

+ For example the left one represents the map G: I x I — X defined as follows:

G(s,t):=xgift > s,
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« We can also consider the following two diagrams:

Lo

Zo

Lo

+ For example the left one represents the map G: I x I — X defined as follows:
G(s,t) :=xoift = s, G(s,t):=a(l+t—s)ift <s.
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« We can also consider the following two diagrams:

Zq Lo

+ For example the left one represents the map G: I x I — X defined as follows:
G(s,t) :=xoift = s, G(s,t):=a(l+t—s)ift <s.

« Putting all three together gives us an end-preserving homotopy between the loop
a~'oa and the constant loop at .
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« We can also consider the following two diagrams:

Zq Lo

X (8% 0% Zo

+ For example the left one represents the map G: I x I — X defined as follows:
G(s,t) :=xoift = s, G(s,t):=a(l+t—s)ift <s.

« Putting all three together gives us an end-preserving homotopy between the loop
a~'oa and the constant loop at .

« This means that [a~'oa] = [a]![o][a] is the trivial element in 71 (X),
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+ For example the left one represents the map G: I x I — X defined as follows:
G(s,t) :=xoift = s, G(s,t):=a(l+t—s)ift <s.

« Putting all three together gives us an end-preserving homotopy between the loop
a~'oa and the constant loop at .

« This means that [« loa] = [a]7[o][c] is the trivial element in 71 (X), and hence also
[o] is the trivial element of 71 (X).
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+ For example the left one represents the map G: I x I — X defined as follows:
G(s,t) :=xoift = s, G(s,t):=a(l+t—s)ift <s.

« Putting all three together gives us an end-preserving homotopy between the loop
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« This means that [« loa] = [a]7[o][c] is the trivial element in 71 (X), and hence also
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The following exercises give us very important equivalent ways of thinking about
contractible loops.
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domain is S'.
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The following exercises give us very important equivalent ways of thinking about
contractible loops.

« Leto bealoopatz € X. Since o(0) =2 = o(1), we can consider o as a map whose

domain is S'. Show that o ~ zrel{0, 1} if and only if & can be extended to a map
D? — X.
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« Leto bealoopatz € X. Since o(0) =2 = o(1), we can consider o as a map whose
domain is S'. Show that o ~ zrel{0, 1} if and only if & can be extended to a map
D? - X.

+ Let X be a path-connected topological space. Show that the following conditions are
equivalent.

» m1(X) = {0} (i.e. X is simply connected).
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« Leto bealoopatz € X. Since o(0) =2 = o(1), we can consider o as a map whose
domain is S'. Show that o ~ zrel{0, 1} if and only if & can be extended to a map
D? - X.

+ Let X be a path-connected topological space. Show that the following conditions are
equivalent.

» m1(X) = {0} (i.e. X is simply connected).

» Vf:S' = X, we have that f can be extended to f: D? — X.
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The following exercises give us very important equivalent ways of thinking about
contractible loops.

« Leto bealoopatz € X. Since o(0) =2 = o(1), we can consider o as a map whose
domain is S'. Show that o ~ zrel{0, 1} if and only if & can be extended to a map
D? - X.

+ Let X be a path-connected topological space. Show that the following conditions are
equivalent.

» m1(X) = {0} (i.e. X is simply connected).
» Vf:S' = X, we have that f can be extended to f: D? — X.

» ifo,7:a % btheno ~ rrel{0,1}
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