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Topological spaces and continuous maps.

• Topological spaces are a generalisation of metric spaces.

• Given a metric space (X, d), x ∈ X and r > 0 we let

B(x, r) := {y ∈ X : d(x, y) < r)

“open ball around x of radius r”

• U ⊂ X is open if for every u ∈ U there exists r > 0 such that B(u, r) ⊂ U .

• The collection of all open sets is called the topology

I X together with this collection is called a topological space.

• There exist topological spaces which are not metrisable, i.e. do not arise from a metric
in the way described above. In this course we will only be interested in metrisable
topological spaces.
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Continuous maps

• f : X → Y between two topological spaces is continuous i� for any open set U ⊂ Y
the set f−1(U) is open.

I If you have not encountered this definition of continuity, then check as an
exercise that our definition is equivalent to any of the ones you know.

• We say that f is a homeomorphism if there exists a continuous function g : Y → X
such that fg = idY and gf = idX .

• Example: The spaces (0, 1) and R are homeomorphic.

I First we check that (0, 1) and (−1, 1) are homeomorphic: s : (0, 1)→ (−1, 1) given
by s(x) := 2x− 2.

I A homeomorphism t : (−1, 1)→ R: for example t(x) := tan(π2 · x).
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• Given a subset A ⊂ X , we say that A is a retract of X if there exists a continuous map
f : X → A such that f|A = idA.

I Such an f is called a retraction.

• Typical questions in any topology course:

I Given two topological spaces X and Y , are they homeomorphic?

I Given an inclusion A ⊂ X of topological spaces, is A a retract of X?
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Compact, connected and path-connected spaces

• A topological space A is compact if the following holds. Suppose that there exists a
family Ui, i ∈ K, of open sets such that A =

⋃
i∈K Ui. Then there exists a finite set of

indices L ⊂ K such that A =
⋃
i∈L Ui.

I We phrase this property frequently as “every open cover has a finite subcover”.

• Exercise: If X is a separable metric space then X is compact if and only if every
sequence of points of X has a convergent subsequence.

• We will use the notation I := [0, 1].

• A path in a topological space X is a continuous map α : I → X .

I We will use the notation α : x
p
 y as a shorthand for saying that α is a path

which connects x with y, i.e. α(0) = x and α(1) = y.
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• If x = y then we say that α is a loop at x.

I Notation: Sometimes it is convenient to informally denote the constant loop at
x ∈ X by the same letter, i.e. we use the letter x also to denote the map
constx : I → X defined by constx(t) := x for all t.

• We say that X is connected if the following holds. If A,B ⊂ X are disjoint open sets
and X = A ∪B then either A = X or B = X . We say that X is path-connected if for
any x, y ∈ X there exists a path which connects x with y.

I Exercise: Show that if X is path-connected then it is connected. Show that the
reverse implication does not always hold.
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• Exercise: Let f : X → Y be a continuous map between topological spaces. Show that
if X is connected, respectively path-connected, respectively compact, then Y also has
the respective property.
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• Motivation:

I Using only general-topological notions hard to decide if S1 := {z ∈ C : |z| = 1} is
a retract of D := {z ∈ C : |z| 6 1},

I or whether S2 = {x ∈ R3 : ‖x‖ = 1} is homeomorphic with the torus
T 2 := S1 × S1.

• We need better invariants,

• A convenient way to talk about invariants is with the language of categories and
functors.
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• A category is a collection of objects and morphisms.

I Example of objects are: “all topological spaces”, “all metrisable topological
spaces”, “all pairs (X,x) where X is a topological space and x ∈ X”, “all abelian
groups”, “all rings with identity”, etc.

• Morphisms are a collection of functions between the objects, subject to two condition:

I For every object X , we have that the identity idX is a morphism.

I If f : X → Y and g : Y → Z are morphisms then g ◦ f : X → Z is also a morphism.

I Examples: “all continuous maps”, “all continuous maps which are
homeomorphisms”, “Lipschitz-continuous maps”, “group homomorphisms“, “ring
homomorphisms” etc.
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• a functor F between two categories C and D is a way to associate to each object X of
C an object F (X) of D, and to each morphism f : X → Y a homomorphism
F (f) : F (X)→ F (Y ), such that

I F (idX) = idF (X) for any object X and

I F (s ◦ t) = F (s) ◦ F (t) for all composable morphisms s, t.

• In this course most of the time D is AbelianGroups.
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• Note that if f : X → Y is a homeomorphism then F (f) : F (X)→ F (Y ) is an
isomorphism.

I If gf = idX then F (g)F (f) = F (gf) = F (idX) = idF (X) and similarly
F (f)F (g) = idF (Y ).

• This means that functors can be used to show that two spaces X and Y are not
homeomorphic. A necessary condition for X and Y to be homeomorphic is that the
objects F (X) and F (Y ) should be isomorphic.
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• Functors can be also used to show that A ⊂ X is not a retract of X .

I If we have for example F (X) = {0} and F (A) 6= {0} then there is no retraction
from X to A:

I Indeed consider i : A→ X to be the embedding and f : X → A to be a retraction,
then F (idA) = idF (A), so F (idA) is not the 0 endomorphism of F (A). However we
have F (idA) = F (f ◦ i) = F (f) ◦ F (i). Since F (i) : F (A)→ F (X) = {0} we see that
F (i) is the 0-homomorphism and hence F (idA) is in fact the 0 endomorphism of
F (A), which is a contradiction.
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Example.

• Let Top be the category of all topological spaces, and let Sets be the category of all
sets.

• We consider the function π0, which associates to X the set of connected components
of X .

• Note that for a continuous map f : X → Y and a connected component A ⊂ X we
have that f(A) lands in a single connected component of Y .

• This allows us to define π0(f).
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We can phrase the argument that Y := [0, 1] ∪ [2, 3] is not a retract of X := [0, 3] in this
functorial language.

• π0(X) = {a}, π0(Y ) = {b, c},

• If we had a retraction X → Y then consider Y → X → Y

• Apply the functor π0, get {b, c} → {a} → {b, c}, which is identity which is a
contradiction.
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Algebraic Topology

1. Some general point-set topology

2. Categories and functors

3. Definition of the fundamental group functor



Homotopy of paths

• Given two paths σ, τ : a
p
 b in a topological space X , we say they are homotopic to

each other relative to their ends, written σ ' τ rel{0, 1}, if we can find a map
F : I × I → X such that for all x ∈ I we have F (x, 0) = σ(x), F (x, 1) = τ(x),
F (0, x) = a, F (x, 0) = b.

• We express this frequently using the following diagram.

ba

τ

σ

• This diagram represents the domain of F , i.e. I × I , and it shows what F does on the
edges of the square. We say that F is a homotopy between σ and τ

• We say that σ : a
p
 a is a contractible loop or a homotopically trivial loop if

σ ' a rel{0, 1}
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Lemma. Homotopy relative to ends is an equivalence relation,

i.e. if we have
σ, τ, ρ : a

p
 b then

• σ ' σ rel{0, 1}

• σ ' τ rel{0, 1} ⇒ τ ' σ rel{0, 1}

• σ ' τ rel{0, 1}, τ ' ρ rel{0, 1} ⇒ σ ' ρ rel{0, 1}

Proof. First two properties left as exercises. The fact that σ ' τ rel{0, 1} is illustrated
by the diagram

ba

τ

σ
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The fact that τ ' ρ rel{0, 1} is illustrated by the diagram

ba

ρ

τ

As such we can form the diagram

ba

ρ

τ

σ

ba

which shows that indeed σ ' ρ rel{0, 1}, as claimed.

Algebraic Topology | Definition of the fundamental group functor 20 / 21



The fact that τ ' ρ rel{0, 1} is illustrated by the diagram

ba

ρ

τ

As such we can form the diagram

ba

ρ

τ

σ

ba

which shows that indeed σ ' ρ rel{0, 1}, as claimed.

Algebraic Topology | Definition of the fundamental group functor 20 / 21



The fact that τ ' ρ rel{0, 1} is illustrated by the diagram

ba

ρ

τ

As such we can form the diagram

ba

ρ

τ

σ

ba

which shows that indeed σ ' ρ rel{0, 1}, as claimed.
Algebraic Topology | Definition of the fundamental group functor 20 / 21



In symbols, we have

I a map F : I × I → X such that for all x ∈ X we have F (x, 0) = σ(x),
F (x, 1) = τ(x), F (0, x) = a, F (x, 0) = b.

I a map G : I × I → X such that for all x ∈ X we have F (x, 0) = τ(x),
F (x, 1) = ρ(x), G(0, x) = a, G(x, 0) = b.
As such we can form a map H̄ : I × [0, 2]→ X by setting

H̄(x, y) := F (x, y) when y 6 1

H̄(x, y) := G(x, y − 1) when y > 1,

and finally we let H(x, y) := H̄(x, 2y).
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