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Algebraic Topology

1. Some general point-set topology
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Topological spaces and continuous maps.

- Topological spaces are a generalisation of metric spaces.
+ Given a metric space (X,d), x € X andr > 0 we let
B(z,r):={y € X:d(z,y) <)
“open ball around x of radius r”
« U C X isopen if for every u € U there exists r > 0 such that B(u,r) C U.
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» X together with this collection is called a topological space.

- There exist topological spaces which are not metrisable, i.e. do not arise from a metric
in the way described above.

Algebraic Topology | Some general point-set topology 3/21



Topological spaces and continuous maps.

- Topological spaces are a generalisation of metric spaces.
+ Given a metric space (X,d), x € X andr > 0 we let
B(z,r):={y € X:d(z,y) <)
“open ball around x of radius r”
« U C X isopen if for every u € U there exists r > 0 such that B(u,r) C U.
« The collection of all open sets is called the topology
» X together with this collection is called a topological space.

- There exist topological spaces which are not metrisable, i.e. do not arise from a metric
in the way described above. In this course we will only be interested in metrisable
topological spaces.
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Continuous maps
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Continuous maps

- f: X — Y between two topological spaces is continuous iff for any opensetU C Y
the set f~1(U) is open.

» If you have not encountered this definition of continuity, then check as an
exercise that our definition is equivalent to any of the ones you know.

- We say that f is a homeomorphism if there exists a continuous functiong: ¥ — X
such that fg =idy and ¢f = idx.

« Example: The spaces (0,1) and R are homeomorphic.

» First we check that (0,1) and (—1,1) are homeomorphic: s: (0,1) — (—1,1) given
by s(x) := 2z — 2.

» Ahomeomorphismt: (—1,1) — R: for example t(z) := tan(% - z).
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« Given a subset A C X,
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« Given a subset A C X, we say that A is a retract of X if there exists a continuous map
f:X—=A
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« Given a subset A C X, we say that A is a retract of X if there exists a continuous map
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« Given a subset A C X, we say that A is a retract of X if there exists a continuous map
f: X — A such that f|4 = ida.

» Suchan fis called a retraction.
- Typical questions in any topology course:
» Given two topological spaces X and Y, are they homeomorphic?
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« Atopological space A is compact if the following holds. Suppose that there exists a
family U;, i € K, of open sets such that A = | J,. U;. Then there exists a finite set of
indices L C K suchthat A = J,., U.
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sequence of points of X has a convergent subsequence.

+ We will use the notation I := [0, 1].
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Compact, connected and path-connected spaces

« Atopological space A is compact if the following holds. Suppose that there exists a
family U;, i € K, of open sets such that A = | J,. U;. Then there exists a finite set of
indices L C K suchthat A = J,., U.

» We phrase this property frequently as “every open cover has a finite subcover”.

 Exercise: If X is a separable metric space then X is compact if and only if every
sequence of points of X has a convergent subsequence.

+ We will use the notation I := [0, 1].
« A path in a topological space X is a continuous map a: I — X.
» We will use the notation a: = % y as a shorthand for saying that « is a path

which connects z with y, i.e. «(0) = z and a(1) = .
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 If z = y then we say that « is a loop at x.
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 If z = y then we say that « is a loop at x.

» Notation: Sometimes it is convenient to informally denote the constant loop at
x € X by the same letter, i.e. we use the letter x
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» Notation: Sometimes it is convenient to informally denote the constant loop at
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const,: I — X defined by const, (¢) := « for all ¢.
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Algebraic Topology | Some general point-set topology 7/21



 If z = y then we say that « is a loop at x.
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 If z = y then we say that « is a loop at x.

» Notation: Sometimes it is convenient to informally denote the constant loop at
x € X by the same letter, i.e. we use the letter 2 also to denote the map
const,: I — X defined by const, (¢) := « for all ¢.

« We say that X is connected if the following holds. If A, B C X are disjoint open sets
and X = AU B then either A = X or B = X. We say that X is path-connected if for
anyxz,y € X
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» Notation: Sometimes it is convenient to informally denote the constant loop at
x € X by the same letter, i.e. we use the letter 2 also to denote the map
const,: I — X defined by const, (¢) := « for all ¢.
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any z,y € X there exists a path which connects = with y.
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 If z = y then we say that « is a loop at x.

» Notation: Sometimes it is convenient to informally denote the constant loop at
x € X by the same letter, i.e. we use the letter 2 also to denote the map
const,: I — X defined by const, (¢) := « for all ¢.

« We say that X is connected if the following holds. If A, B C X are disjoint open sets
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» Notation: Sometimes it is convenient to informally denote the constant loop at
x € X by the same letter, i.e. we use the letter 2 also to denote the map
const,: I — X defined by const, (¢) := « for all ¢.

« We say that X is connected if the following holds. If A, B C X are disjoint open sets
and X = AU B then either A = X or B = X. We say that X is path-connected if for
any z,y € X there exists a path which connects = with y.

» Exercise: Show that if X is path-connected then it is connected. Show that the
reverse implication does not always hold.

Algebraic Topology | Some general point-set topology 7/21



Algebraic Topology | Some general point-set topology 8/21



« Exercise: Let f: X — Y be a continuous map between topological spaces.
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continuous map from [0, 1] to (0,1)).
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« Exercise: Let f: X — Y be a continuous map between topological spaces. Show that
if X is connected, respectively path-connected, respectively compact, then Y also has
the respective property.

- Example: [0,1] and (0, 1) are not homeomorphic (in fact there is no surjective
continuous map from [0, 1] to (0,1)).

« [0,1] U [2, 3] is not a retract of [0, 3]
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« Motivation:

» Using only general-topological notions hard to decide if S':={z € C: |z| =1} is
aretractof D:={z e C: |z| <1},

» or whether $? = {x € R?: ||z|| = 1} is homeomorphic with the torus
T? := S' x S1.

+ We need better invariants,

« A convenient way to talk about invariants is with the language of categories and
functors.
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« A category is a collection of objects and morphisms.

”n "

» Example of objects are: “all topological spaces”, “all metrisable topological

spaces”, “all pairs (X, z) where X is a topological space and = € X", “all abelian

groups”, “all rings with identity”, etc.

« Morphisms are a collection of functions between the objects, subject to two condition:

» For every object X, we have that the identity idx is @ morphism.

» If f: X Y andg: Y — Z are morphisms thengo f: X — Z is also a morphism.

” u

» Examples: “all continuous maps”, “all continuous maps which are
”n u “ou

homeomorphisms”, “Lipschitz-continuous maps”, “group homomorphisms*, “ring
homomorphisms” etc.
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« a functor F' between two categories C and D is a way to associate to each object X of
C an object F(X) of D, and to each morphism f: X — Y a homomorphism
F(f): F(X) — F(Y), such that

» F(idx) = idp(x) for any object X and

» F(sot) = F(s)o F(t) for all composable morphisms s, t.
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« a functor F' between two categories C and D is a way to associate to each object X of
C an object F(X) of D, and to each morphism f: X — Y a homomorphism

F(f): F(X) — F(Y), such that
» F(idx) = idp(x) for any object X and
» F(sot) = F(s)o F(t) for all composable morphisms s, t.

In this course most of the time D is AbelianGroups.
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+ Note thatif f: X — Y isa homeomorphism then F(f): F(X) — F(Y)isan
isomorphism.

» Ifgf =idx then F(g)F(f) = F(gf) = F(idx) = idp(x) and similarly
F(f)F(g) = idpy)-

+ This means that functors can be used to show that two spaces X and Y are not
homeomorphic.
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+ Note thatif f: X — Y isa homeomorphism then F(f): F(X) — F(Y)isan
isomorphism.

» Ifgf =idx then F(g)F(f) = F(gf) = F(idx) = idp(x) and similarly
F(f)F(g) = idpy)-

+ This means that functors can be used to show that two spaces X and Y are not
homeomorphic. A necessary condition for X and Y to be homeomorphic is that the
objects F(X) and F(Y) should be isomorphic.
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from X to A:
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F(A),

Algebraic Topology | Categories and functors 1421



» Functors can be also used to show that A C X is not a retract of X.

» If we have for example F(X) = {0} and F(A) # {0} then there is no retraction
from X to A:

» Indeed consideri: A — X to be the embeddingand f: X — A to be a retraction,
then F(ida) = idp(4), S0 F(id4) is not the 0 endomorphism of F'(4). However we
have F(ids) = F(f oi) = F(f) o F(i). Since F(i): F(A) — F(X) = {0} we see that
F (i) is the 0-homomorphism and hence F(idy4) is in fact the 0 endomorphism of
F(A), which is a contradiction.
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Example.

« Let T'op be the category of all topological spaces, and let Sets be the category of all
sets.

« We consider the function my, which associates to X the set of connected components
of X.

 Note that for a continuous map f: X — Y and a connected component A ¢ X we
have that f(A) lands in a single connected component of Y.
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Example.

« Let T'op be the category of all topological spaces, and let Sets be the category of all
sets.

« We consider the function my, which associates to X the set of connected components
of X.

 Note that for a continuous map f: X — Y and a connected component A ¢ X we
have that f(A) lands in a single connected component of Y.

« This allows us to define 7y (f).
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We can phrase the argument that Y := [0, 1] U [2, 3] is not a retract of X := [0, 3] in this
functorial language.
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+ |f we had a retraction X — Y then considerY - X —» Y
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functorial language.
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Algebraic Topology | Categories and functors 16/ 21



We can phrase the argument that Y := [0, 1] U [2, 3] is not a retract of X := [0, 3] in this
functorial language.

« mo(X) = {a}, mo(Y) = {b,c},
+ |f we had a retraction X — Y then considerY - X —» Y

+ Apply the functor my, get {b,c} — {a} — {b,c}, which is identity
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We can phrase the argument that Y := [0, 1] U [2, 3] is not a retract of X := [0, 3] in this
functorial language.

« mo(X) = {a}, mo(Y) = {b,c},
+ |f we had a retraction X — Y then considerY - X —» Y

+ Apply the functor my, get {b,c} — {a} — {b,c}, which is identity whichisa
contradiction.
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« This diagram represents the domain of F, i.e. I x I,
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Homotopy of paths

- Given two paths o, 7: a < b in a topological space X, we say they are homotopic to
each other relative to their ends, written o ~ T rel{0, 1}, if we can find a map
F:1IxI— X suchthatforall z € I we have F(z,0) =o(x), F(x,1) = 7(x),

F(0,z) = a, F(z,0) =b.

« We express this frequently using the following diagram.

T

a

« This diagram represents the domain of F, i.e. I x I, and it shows what F' does on the
edges of the square.
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Homotopy of paths

- Given two paths o, 7: a < b in a topological space X, we say they are homotopic to
each other relative to their ends, written o ~ T rel{0, 1}, if we can find a map
F:1IxI— X suchthatforall z € I we have F(z,0) =o(x), F(x,1) = 7(x),

F(0,z) = a, F(z,0) =b.

« We express this frequently using the following diagram.

T

a

« This diagram represents the domain of F, i.e. I x I, and it shows what F' does on the
edges of the square. We say that F' is a homotopy between o and
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The fact that 7 ~ prel{0, 1} is illustrated by the diagram
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The fact that 7 ~ prel{0, 1} is illustrated by the diagram

P

As such we can form the diagram

2

which shows that indeed o ~ prel{0, 1}, as claimed.

Algebraic Topology | Definition of the fundamental group functor 20/ 21



In symbols, we have

Algebraic Topology | Definition of the fundamental group functor 21/ 21



In symbols, we have

» amap F: I x I — X such that for all z € X we have F(z,0) = o(x),

Algebraic Topology | Definition of the fundamental group functor 21/ 21



In symbols, we have

» amap F: I x I — X such that for all z € X we have F(z,0) = o(x),
F(z,1) =71(x),

Algebraic Topology | Definition of the fundamental group functor 21/ 21



In symbols, we have

» amap F: I x I — X such that for all z € X we have F(z,0) = o(x),
F(z,1) =71(x), F(0,z) = q,

Algebraic Topology | Definition of the fundamental group functor 21/ 21



In symbols, we have

» amap F: I x I — X such that for all z € X we have F(z,0) = o(x),
F(z,1) =7(x), F(0,2) = a, F(x,0)=b.

Algebraic Topology | Definition of the fundamental group functor 21/ 21



In symbols, we have

» amap F: I x I — X such that for all z € X we have F(z,0) = o(x),
F(z,1) =7(x), F(0,2) = a, F(x,0)=b.

» amap G: I x I — X such that forall z € X we have F(z,0) = 7(z),

Algebraic Topology | Definition of the fundamental group functor 21/ 21



In symbols, we have

» amap F: I x I — X such that for all z € X we have F(z,0) = o(x),
F(z,1) =7(x), F(0,2) = a, F(x,0)=b.

» amap G: I x I — X such that forall z € X we have F(z,0) = 7(z),
Bz, 1) = p(x),

Algebraic Topology | Definition of the fundamental group functor 21/ 21



In symbols, we have

» amap F: I x I — X such that for all z € X we have F(z,0) = o(x),
F(z,1) =7(x), F(0,2) = a, F(x,0)=b.

» amap G: I x I — X such that forall z € X we have F(z,0) = 7(z),
F(z,1) = p(z), G(0,z) = q,

Algebraic Topology | Definition of the fundamental group functor 21/ 21



In symbols, we have

» amap F: I x I — X such that for all z € X we have F(z,0) = o(x),
F(z,1) =7(x), F(0,2) = a, F(x,0)=b.

» amap G: I x I — X such that forall z € X we have F(z,0) = 7(z),
F(z,1) = p(z), G(0,z) = a, G(z,0) =b.

Algebraic Topology | Definition of the fundamental group functor 21/ 21



In symbols, we have

» amap F: I x I — X such that for all z € X we have F(z,0) = o(x),
F(z,1) =7(x), F(0,2) = a, F(x,0)=b.

» amap G: I x I — X such that forall z € X we have F(z,0) = 7(z),
F(z,1) = p(z), G(0,z) = a, G(z,0) =b.

As such we can formamap H: I x [0,2] — X by setting

Algebraic Topology | Definition of the fundamental group functor 21/ 21



In symbols, we have

» amap F: I x I — X such that for all z € X we have F(z,0) = o(x),
F(z,1) =7(x), F(0,2) = a, F(x,0)=b.

» amap G: I x I — X such that forall z € X we have F(z,0) = 7(z),
F(z,1) = p(z), G(0,z) = a, G(z,0) =b.

As such we can formamap H: I x [0,2] — X by setting

H(z,y) := F(z,y) wheny<1
A(r,y) == Gla,y—1) wheny> 1,

Algebraic Topology | Definition of the fundamental group functor 21/ 21



In symbols, we have

» amap F: I x I — X such that for all z € X we have F(z,0) = o(x),

F(z,1) =7(x), F(0,2) = a, F(x,0)=b.

» amap G: I x I — X such that forall z € X we have F(z,0) = 7(z),

F(z,1) = p(z), G(0,z) = a, G(z,0) =b.
As such we can formamap H: I x [0,2] — X by setting

H(w,y) == F(z,y) wheny <1
H(z,y):=G(z,y—1) wheny>1,

and finally we let H(z,y) := H(x,2y).

Algebraic Topology | Definition of the fundamental group functor

21/ 21



In symbols, we have

» amap F: I x I — X such that for all z € X we have F(z,0) = o(x),
F(z,1) =7(x), F(0,2) = a, F(x,0)=b.

» amap G: I x I — X such that forall z € X we have F(z,0) = 7(z),
F(z,1) = p(z), G(0,z) = a, G(z,0) =b.

As such we can formamap H: I x [0,2] — X by setting

H(w,y) == F(z,y) wheny <1
H(z,y):=G(z,y—1) wheny>1,

and finally we let H(z,y) := H(x,2y). O

Algebraic Topology | Definition of the fundamental group functor 21/ 21



UNIVERSITAT
LEIPZIG

THANK YOU FOR YOUR ATTENTION!

tukasz Grabowski
Mathematisches Institut

grabowski@math.uni-leipzig.de



mailto:grabowski@math.uni-leipzig.de

	Some general point-set topology
	Categories and functors
	Definition of the fundamental group functor

