

Lecture 1 - Fundamental Group Functor

# Algebraic Topology (SS 2023-24)

Łukasz Grabowski

Mathematisches Institut

## Overview

1. Some general point-set topology

2. Categories and functors

3. Definition of the fundamental group functor

#### **Algebraic Topology**

Algebraic Topology

1. Some general point-set topology

2. Categories and functors

3. Definition of the fundamental group functor



• Topological spaces are a generalisation of metric spaces.

- Topological spaces are a generalisation of metric spaces.
- Given a metric space (X, d),

- Topological spaces are a generalisation of metric spaces.
- Given a metric space (X, d),  $x \in X$

- Topological spaces are a generalisation of metric spaces.
- Given a metric space (X, d),  $x \in X$  and r > 0

- Topological spaces are a generalisation of metric spaces.
- Given a metric space (X, d),  $x \in X$  and r > 0 we let

- Topological spaces are a generalisation of metric spaces.
- Given a metric space (X, d),  $x \in X$  and r > 0 we let

$$B(x,r) :=$$

- Topological spaces are a generalisation of metric spaces.
- Given a metric space (X, d),  $x \in X$  and r > 0 we let

 $B(x,r) := \{y \in X \colon d(x,y) < r)$ 

- Topological spaces are a generalisation of metric spaces.
- Given a metric space (X, d),  $x \in X$  and r > 0 we let

 $B(x,r) := \{ y \in X \colon d(x,y) < r \}$ 

- Topological spaces are a generalisation of metric spaces.
- Given a metric space (X, d),  $x \in X$  and r > 0 we let

 $B(x,r) := \{ y \in X \colon d(x,y) < r \}$ 

"open ball around x of radius r"

•  $U \subset X$  is open

- Topological spaces are a generalisation of metric spaces.
- Given a metric space (X, d),  $x \in X$  and r > 0 we let

$$B(x,r) := \{ y \in X \colon d(x,y) < r \}$$

"open ball around x of radius r"

•  $U \subset X$  is open if for every  $u \in U$ 

- Topological spaces are a generalisation of metric spaces.
- Given a metric space (X, d),  $x \in X$  and r > 0 we let

 $B(x,r) := \{ y \in X \colon d(x,y) < r \}$ 

"open ball around x of radius r"

•  $U \subset X$  is open if for every  $u \in U$  there exists r > 0

- Topological spaces are a generalisation of metric spaces.
- Given a metric space (X, d),  $x \in X$  and r > 0 we let

$$B(x,r) := \{ y \in X \colon d(x,y) < r \}$$

"open ball around x of radius r"

•  $U \subset X$  is open if for every  $u \in U$  there exists r > 0 such that  $B(u, r) \subset U$ .

- Topological spaces are a generalisation of metric spaces.
- Given a metric space (X, d),  $x \in X$  and r > 0 we let

$$B(x,r) := \{ y \in X \colon d(x,y) < r \}$$

- $U \subset X$  is open if for every  $u \in U$  there exists r > 0 such that  $B(u, r) \subset U$ .
- The collection of all open sets is called

- Topological spaces are a generalisation of metric spaces.
- Given a metric space (X, d),  $x \in X$  and r > 0 we let

 $B(x,r) := \{ y \in X \colon d(x,y) < r \}$ 

- $U \subset X$  is open if for every  $u \in U$  there exists r > 0 such that  $B(u, r) \subset U$ .
- The collection of all open sets is called the *topology*

- Topological spaces are a generalisation of metric spaces.
- Given a metric space (X, d),  $x \in X$  and r > 0 we let

 $B(x,r) := \{ y \in X \colon d(x,y) < r \}$ 

- $U \subset X$  is open if for every  $u \in U$  there exists r > 0 such that  $B(u, r) \subset U$ .
- The collection of all open sets is called the *topology* 
  - ► X together with this collection is called a *topological space*.

- Topological spaces are a generalisation of metric spaces.
- Given a metric space (X, d),  $x \in X$  and r > 0 we let

 $B(x,r) := \{ y \in X \colon d(x,y) < r \}$ 

- $U \subset X$  is open if for every  $u \in U$  there exists r > 0 such that  $B(u, r) \subset U$ .
- The collection of all open sets is called the *topology* 
  - ► X together with this collection is called a *topological space*.
- There exist topological spaces which are not metrisable,

- Topological spaces are a generalisation of metric spaces.
- Given a metric space (X, d),  $x \in X$  and r > 0 we let

 $B(x,r) := \{ y \in X \colon d(x,y) < r \}$ 

"open ball around x of radius r"

- $U \subset X$  is open if for every  $u \in U$  there exists r > 0 such that  $B(u, r) \subset U$ .
- The collection of all open sets is called the *topology* 
  - ► X together with this collection is called a *topological space*.
- There exist topological spaces which are not *metrisable*, i.e. do not arise from a metric in the way described above.

- Topological spaces are a generalisation of metric spaces.
- Given a metric space (X, d),  $x \in X$  and r > 0 we let

 $B(x,r) := \{ y \in X \colon d(x,y) < r \}$ 

"open ball around x of radius r"

- $U \subset X$  is open if for every  $u \in U$  there exists r > 0 such that  $B(u, r) \subset U$ .
- The collection of all open sets is called the *topology* 
  - ► X together with this collection is called a *topological space*.
- There exist topological spaces which are not *metrisable*, i.e. do not arise from a metric in the way described above. In this course we will only be interested in metrisable topological spaces.

\*  $f: X \to Y$  between two topological spaces is *continuous* 

+  $f: X \to Y$  between two topological spaces is *continuous* iff for any open set  $U \subset Y$ 

•  $f: X \to Y$  between two topological spaces is *continuous* iff for any open set  $U \subset Y$  the set  $f^{-1}(U)$  is open.

- $f: X \to Y$  between two topological spaces is *continuous* iff for any open set  $U \subset Y$  the set  $f^{-1}(U)$  is open.
  - If you have not encountered this definition of continuity, then check as an exercise that our definition is equivalent to any of the ones you know.

- $f: X \to Y$  between two topological spaces is *continuous* iff for any open set  $U \subset Y$  the set  $f^{-1}(U)$  is open.
  - If you have not encountered this definition of continuity, then check as an exercise that our definition is equivalent to any of the ones you know.
- We say that f is a homeomorphism

- $f: X \to Y$  between two topological spaces is *continuous* iff for any open set  $U \subset Y$  the set  $f^{-1}(U)$  is open.
  - If you have not encountered this definition of continuity, then check as an exercise that our definition is equivalent to any of the ones you know.
- We say that f is a homeomorphism  $% f(x) \in X$  if there exists a continuous function  $g \colon Y \to X$  such that

- $f: X \to Y$  between two topological spaces is *continuous* iff for any open set  $U \subset Y$  the set  $f^{-1}(U)$  is open.
  - If you have not encountered this definition of continuity, then check as an exercise that our definition is equivalent to any of the ones you know.
- We say that f is a homeomorphism if there exists a continuous function  $g: Y \to X$ such that  $fg = id_Y$  and  $gf = id_X$ .

- $f: X \to Y$  between two topological spaces is *continuous* iff for any open set  $U \subset Y$  the set  $f^{-1}(U)$  is open.
  - ► If you have not encountered this definition of continuity, then check as an exercise that our definition is equivalent to any of the ones you know.
- We say that f is a homeomorphism if there exists a continuous function  $g: Y \to X$ such that  $fg = id_Y$  and  $gf = id_X$ .
- Example:

- $f: X \to Y$  between two topological spaces is *continuous* iff for any open set  $U \subset Y$  the set  $f^{-1}(U)$  is open.
  - ► If you have not encountered this definition of continuity, then check as an exercise that our definition is equivalent to any of the ones you know.
- We say that f is a homeomorphism if there exists a continuous function  $g: Y \to X$ such that  $fg = id_Y$  and  $gf = id_X$ .
- Example: The spaces (0,1) and  $\mathbb{R}$  are homeomorphic.

- $f: X \to Y$  between two topological spaces is *continuous* iff for any open set  $U \subset Y$  the set  $f^{-1}(U)$  is open.
  - ► If you have not encountered this definition of continuity, then check as an exercise that our definition is equivalent to any of the ones you know.
- We say that f is a homeomorphism if there exists a continuous function  $g: Y \to X$ such that  $fg = id_Y$  and  $gf = id_X$ .
- Example: The spaces (0,1) and  $\mathbb{R}$  are homeomorphic.
  - First we check that (0,1) and (-1,1) are homeomorphic:

- $f: X \to Y$  between two topological spaces is *continuous* iff for any open set  $U \subset Y$  the set  $f^{-1}(U)$  is open.
  - ► If you have not encountered this definition of continuity, then check as an exercise that our definition is equivalent to any of the ones you know.
- We say that f is a homeomorphism if there exists a continuous function  $g: Y \to X$ such that  $fg = id_Y$  and  $gf = id_X$ .
- Example: The spaces (0,1) and  $\mathbb{R}$  are homeomorphic.

First we check that (0,1) and (-1,1) are homeomorphic:  $s: (0,1) \rightarrow (-1,1)$  given by s(x) := 2x - 2.

- $f: X \to Y$  between two topological spaces is *continuous* iff for any open set  $U \subset Y$  the set  $f^{-1}(U)$  is open.
  - ► If you have not encountered this definition of continuity, then check as an exercise that our definition is equivalent to any of the ones you know.
- We say that f is a homeomorphism if there exists a continuous function  $g: Y \to X$ such that  $fg = id_Y$  and  $gf = id_X$ .
- Example: The spaces (0,1) and  $\mathbb{R}$  are homeomorphic.
  - First we check that (0,1) and (-1,1) are homeomorphic:  $s: (0,1) \rightarrow (-1,1)$  given by s(x) := 2x 2.
  - ▶ A homeomorphism  $t: (-1, 1) \rightarrow \mathbb{R}$ :

- $f: X \to Y$  between two topological spaces is *continuous* iff for any open set  $U \subset Y$  the set  $f^{-1}(U)$  is open.
  - If you have not encountered this definition of continuity, then check as an exercise that our definition is equivalent to any of the ones you know.
- We say that f is a homeomorphism if there exists a continuous function  $g: Y \to X$ such that  $fg = id_Y$  and  $gf = id_X$ .
- Example: The spaces (0,1) and  $\mathbb{R}$  are homeomorphic.
  - First we check that (0,1) and (-1,1) are homeomorphic:  $s: (0,1) \rightarrow (-1,1)$  given by s(x) := 2x 2.
  - A homeomorphism  $t: (-1, 1) \to \mathbb{R}$ : for example  $t(x) := \tan(\frac{\pi}{2} \cdot x)$ .

• Given a subset  $A \subset X$ ,

• Given a subset  $A \subset X$ , we say that A is a *retract* of X

• Given a subset  $A \subset X$ , we say that A is a *retract* of X if there exists a continuous map  $f: X \to A$ 

• Given a subset  $A \subset X$ , we say that A is a *retract* of X if there exists a continuous map  $f: X \to A$  such that  $f|_A = id_A$ .

- Given a subset  $A \subset X$ , we say that A is a *retract* of X if there exists a continuous map  $f: X \to A$  such that  $f_{|A} = id_A$ .
  - ► Such an *f* is called a *retraction*.

- Given a subset  $A \subset X$ , we say that A is a *retract* of X if there exists a continuous map  $f: X \to A$  such that  $f_{|A} = id_A$ .
  - ► Such an *f* is called a *retraction*.
- Typical questions in any topology course:

- Given a subset  $A \subset X$ , we say that A is a *retract* of X if there exists a continuous map  $f: X \to A$  such that  $f_{|A} = id_A$ .
  - ► Such an *f* is called a *retraction*.
- Typical questions in any topology course:
  - Given two topological spaces X and Y,

- Given a subset  $A \subset X$ , we say that A is a *retract* of X if there exists a continuous map  $f: X \to A$  such that  $f|_A = id_A$ .
  - ► Such an *f* is called a *retraction*.
- Typical questions in any topology course:
  - ▶ Given two topological spaces *X* and *Y*, are they homeomorphic?

- Given a subset  $A \subset X$ , we say that A is a *retract* of X if there exists a continuous map  $f: X \to A$  such that  $f_{|A} = id_A$ .
  - ► Such an *f* is called a *retraction*.
- Typical questions in any topology course:
  - ▶ Given two topological spaces *X* and *Y*, are they homeomorphic?
  - Given an inclusion  $A \subset X$  of topological spaces,

- Given a subset  $A \subset X$ , we say that A is a *retract* of X if there exists a continuous map  $f: X \to A$  such that  $f|_A = id_A$ .
  - ► Such an *f* is called a *retraction*.
- Typical questions in any topology course:
  - ► Given two topological spaces *X* and *Y*, are they homeomorphic?
  - Given an inclusion  $A \subset X$  of topological spaces, is A a retract of X?

• A topological space *A* is *compact* if the following holds.

• A topological space A is *compact* if the following holds. Suppose that there exists a family  $U_i$ ,  $i \in K$ , of open sets such that  $A = \bigcup_{i \in K} U_i$ .

• A topological space A is *compact* if the following holds. Suppose that there exists a family  $U_i$ ,  $i \in K$ , of open sets such that  $A = \bigcup_{i \in K} U_i$ . Then there exists a finite set of indices  $L \subset K$  such that  $A = \bigcup_{i \in L} U_i$ .

- A topological space A is *compact* if the following holds. Suppose that there exists a family  $U_i$ ,  $i \in K$ , of open sets such that  $A = \bigcup_{i \in K} U_i$ . Then there exists a finite set of indices  $L \subset K$  such that  $A = \bigcup_{i \in L} U_i$ .
  - ► We phrase this property frequently as

- A topological space A is compact if the following holds. Suppose that there exists a family  $U_i$ ,  $i \in K$ , of open sets such that  $A = \bigcup_{i \in K} U_i$ . Then there exists a finite set of indices  $L \subset K$  such that  $A = \bigcup_{i \in L} U_i$ .
  - ▶ We phrase this property frequently as "every open cover has a finite subcover".

- A topological space A is compact if the following holds. Suppose that there exists a family  $U_i$ ,  $i \in K$ , of open sets such that  $A = \bigcup_{i \in K} U_i$ . Then there exists a finite set of indices  $L \subset K$  such that  $A = \bigcup_{i \in L} U_i$ .
  - ▶ We phrase this property frequently as "every open cover has a finite subcover".
- Exercise:

- A topological space A is compact if the following holds. Suppose that there exists a family  $U_i$ ,  $i \in K$ , of open sets such that  $A = \bigcup_{i \in K} U_i$ . Then there exists a finite set of indices  $L \subset K$  such that  $A = \bigcup_{i \in L} U_i$ .
  - ▶ We phrase this property frequently as "every open cover has a finite subcover".
- Exercise: If X is a separable metric space then X is compact

- A topological space A is compact if the following holds. Suppose that there exists a family  $U_i$ ,  $i \in K$ , of open sets such that  $A = \bigcup_{i \in K} U_i$ . Then there exists a finite set of indices  $L \subset K$  such that  $A = \bigcup_{i \in L} U_i$ .
  - ▶ We phrase this property frequently as "every open cover has a finite subcover".
- Exercise: If X is a separable metric space then X is compact if and only if

- A topological space A is compact if the following holds. Suppose that there exists a family  $U_i$ ,  $i \in K$ , of open sets such that  $A = \bigcup_{i \in K} U_i$ . Then there exists a finite set of indices  $L \subset K$  such that  $A = \bigcup_{i \in L} U_i$ .
  - ▶ We phrase this property frequently as "every open cover has a finite subcover".
- Exercise: If X is a separable metric space then X is compact if and only if every sequence of points of X has a convergent subsequence.

- A topological space A is compact if the following holds. Suppose that there exists a family  $U_i$ ,  $i \in K$ , of open sets such that  $A = \bigcup_{i \in K} U_i$ . Then there exists a finite set of indices  $L \subset K$  such that  $A = \bigcup_{i \in L} U_i$ .
  - ▶ We phrase this property frequently as "every open cover has a finite subcover".
- Exercise: If X is a separable metric space then X is compact if and only if every sequence of points of X has a convergent subsequence.
- We will use the notation I := [0, 1].

- A topological space A is compact if the following holds. Suppose that there exists a family  $U_i$ ,  $i \in K$ , of open sets such that  $A = \bigcup_{i \in K} U_i$ . Then there exists a finite set of indices  $L \subset K$  such that  $A = \bigcup_{i \in L} U_i$ .
  - ▶ We phrase this property frequently as "every open cover has a finite subcover".
- Exercise: If X is a separable metric space then X is compact if and only if every sequence of points of X has a convergent subsequence.
- We will use the notation I := [0, 1].
- A path in a topological space X

- A topological space A is compact if the following holds. Suppose that there exists a family  $U_i$ ,  $i \in K$ , of open sets such that  $A = \bigcup_{i \in K} U_i$ . Then there exists a finite set of indices  $L \subset K$  such that  $A = \bigcup_{i \in L} U_i$ .
  - ▶ We phrase this property frequently as "every open cover has a finite subcover".
- Exercise: If X is a separable metric space then X is compact if and only if every sequence of points of X has a convergent subsequence.
- We will use the notation I := [0, 1].
- A path in a topological space X is a continuous map  $\alpha \colon I \to X$ .

- A topological space A is compact if the following holds. Suppose that there exists a family  $U_i$ ,  $i \in K$ , of open sets such that  $A = \bigcup_{i \in K} U_i$ . Then there exists a finite set of indices  $L \subset K$  such that  $A = \bigcup_{i \in L} U_i$ .
  - ▶ We phrase this property frequently as "every open cover has a finite subcover".
- Exercise: If X is a separable metric space then X is compact if and only if every sequence of points of X has a convergent subsequence.
- We will use the notation I := [0, 1].
- A path in a topological space X is a continuous map  $\alpha \colon I \to X$ .
  - ▶ We will use the notation  $\alpha \colon x \xrightarrow{p} y$

- A topological space A is compact if the following holds. Suppose that there exists a family  $U_i$ ,  $i \in K$ , of open sets such that  $A = \bigcup_{i \in K} U_i$ . Then there exists a finite set of indices  $L \subset K$  such that  $A = \bigcup_{i \in L} U_i$ .
  - ▶ We phrase this property frequently as "every open cover has a finite subcover".
- Exercise: If X is a separable metric space then X is compact if and only if every sequence of points of X has a convergent subsequence.
- We will use the notation I := [0, 1].
- A path in a topological space X is a continuous map  $\alpha \colon I \to X$ .
  - We will use the notation  $\alpha \colon x \stackrel{p}{\rightsquigarrow} y$  as a shorthand for saying that

- A topological space A is compact if the following holds. Suppose that there exists a family  $U_i$ ,  $i \in K$ , of open sets such that  $A = \bigcup_{i \in K} U_i$ . Then there exists a finite set of indices  $L \subset K$  such that  $A = \bigcup_{i \in L} U_i$ .
  - ▶ We phrase this property frequently as "every open cover has a finite subcover".
- Exercise: If X is a separable metric space then X is compact if and only if every sequence of points of X has a convergent subsequence.
- We will use the notation I := [0, 1].
- A path in a topological space X is a continuous map  $\alpha \colon I \to X$ .

• We will use the notation  $\alpha \colon x \xrightarrow{p} y$  as a shorthand for saying that  $\alpha$  is a path which connects x with y,

- A topological space A is compact if the following holds. Suppose that there exists a family  $U_i$ ,  $i \in K$ , of open sets such that  $A = \bigcup_{i \in K} U_i$ . Then there exists a finite set of indices  $L \subset K$  such that  $A = \bigcup_{i \in L} U_i$ .
  - ▶ We phrase this property frequently as "every open cover has a finite subcover".
- Exercise: If X is a separable metric space then X is compact if and only if every sequence of points of X has a convergent subsequence.
- We will use the notation I := [0, 1].
- A path in a topological space X is a continuous map  $\alpha \colon I \to X$ .

▶ We will use the notation  $\alpha : x \xrightarrow{p} y$  as a shorthand for saying that  $\alpha$  is a path which connects x with y, i.e.  $\alpha(0) = x$  and  $\alpha(1) = y$ .

• If x = y then we say that  $\alpha$  is a *loop at x*.

- If x = y then we say that  $\alpha$  is a *loop at x*.
  - ► Notation:

- If x = y then we say that  $\alpha$  is a *loop at x*.
  - ▶ Notation: Sometimes it is convenient to informally denote the constant loop at  $x \in X$  by the same letter,

- If x = y then we say that  $\alpha$  is a *loop at x*.
  - ▶ Notation: Sometimes it is convenient to informally denote the constant loop at  $x \in X$  by the same letter, i.e. we use the letter x

- If x = y then we say that  $\alpha$  is a *loop at x*.
  - ▶ Notation: Sometimes it is convenient to informally denote the constant loop at  $x \in X$  by the same letter, i.e. we use the letter x also to denote the map  $const_x \colon I \to X$

- If x = y then we say that  $\alpha$  is a *loop at x*.
  - ▶ Notation: Sometimes it is convenient to informally denote the constant loop at  $x \in X$  by the same letter, i.e. we use the letter x also to denote the map  $const_x: I \to X$  defined by  $const_x(t) := x$  for all t.

• If x = y then we say that  $\alpha$  is a *loop at x*.

▶ Notation: Sometimes it is convenient to informally denote the constant loop at  $x \in X$  by the same letter, i.e. we use the letter x also to denote the map  $const_x: I \to X$  defined by  $const_x(t) := x$  for all t.

• We say that *X* is *connected* if the following holds.

- If x = y then we say that  $\alpha$  is a *loop at x*.
  - ▶ Notation: Sometimes it is convenient to informally denote the constant loop at  $x \in X$  by the same letter, i.e. we use the letter x also to denote the map  $const_x: I \to X$  defined by  $const_x(t) := x$  for all t.
- We say that X is *connected* if the following holds. If  $A, B \subset X$  are disjoint open sets

- If x = y then we say that  $\alpha$  is a *loop at x*.
  - ▶ Notation: Sometimes it is convenient to informally denote the constant loop at  $x \in X$  by the same letter, i.e. we use the letter x also to denote the map  $const_x: I \to X$  defined by  $const_x(t) := x$  for all t.
- We say that X is connected if the following holds. If  $A,B\subset X$  are disjoint open sets and  $X=A\cup B$

- If x = y then we say that  $\alpha$  is a *loop at x*.
  - ▶ Notation: Sometimes it is convenient to informally denote the constant loop at  $x \in X$  by the same letter, i.e. we use the letter x also to denote the map  $const_x: I \to X$  defined by  $const_x(t) := x$  for all t.
- We say that X is connected if the following holds. If  $A, B \subset X$  are disjoint open sets and  $X = A \cup B$  then either A = X or B = X.

- If x = y then we say that  $\alpha$  is a *loop at x*.
  - ▶ Notation: Sometimes it is convenient to informally denote the constant loop at  $x \in X$  by the same letter, i.e. we use the letter x also to denote the map  $const_x: I \to X$  defined by  $const_x(t) := x$  for all t.
- We say that X is connected if the following holds. If  $A, B \subset X$  are disjoint open sets and  $X = A \cup B$  then either A = X or B = X. We say that X is path-connected

- If x = y then we say that  $\alpha$  is a *loop at x*.
  - ▶ Notation: Sometimes it is convenient to informally denote the constant loop at  $x \in X$  by the same letter, i.e. we use the letter x also to denote the map  $const_x: I \to X$  defined by  $const_x(t) := x$  for all t.
- We say that X is *connected* if the following holds. If  $A, B \subset X$  are disjoint open sets and  $X = A \cup B$  then either A = X or B = X. We say that X is *path-connected* if for any  $x, y \in X$

- If x = y then we say that  $\alpha$  is a *loop at x*.
  - ▶ Notation: Sometimes it is convenient to informally denote the constant loop at  $x \in X$  by the same letter, i.e. we use the letter x also to denote the map  $const_x: I \to X$  defined by  $const_x(t) := x$  for all t.
- We say that X is *connected* if the following holds. If  $A, B \subset X$  are disjoint open sets and  $X = A \cup B$  then either A = X or B = X. We say that X is *path-connected* if for any  $x, y \in X$  there exists a path which connects x with y.

- If x = y then we say that  $\alpha$  is a *loop at x*.
  - ▶ Notation: Sometimes it is convenient to informally denote the constant loop at  $x \in X$  by the same letter, i.e. we use the letter x also to denote the map  $const_x: I \to X$  defined by  $const_x(t) := x$  for all t.
- We say that X is *connected* if the following holds. If  $A, B \subset X$  are disjoint open sets and  $X = A \cup B$  then either A = X or B = X. We say that X is *path-connected* if for any  $x, y \in X$  there exists a path which connects x with y.
  - ► Exercise: Show that if *X* is path-connected then it is connected.

- If x = y then we say that  $\alpha$  is a *loop at x*.
  - ▶ Notation: Sometimes it is convenient to informally denote the constant loop at  $x \in X$  by the same letter, i.e. we use the letter x also to denote the map  $const_x: I \to X$  defined by  $const_x(t) := x$  for all t.
- We say that X is *connected* if the following holds. If  $A, B \subset X$  are disjoint open sets and  $X = A \cup B$  then either A = X or B = X. We say that X is *path-connected* if for any  $x, y \in X$  there exists a path which connects x with y.
  - ► Exercise: Show that if X is path-connected then it is connected. Show that the reverse implication does not always hold.

Algebraic Topology | Some general point-set topology

- Exercise: Let  $f \colon X \to Y$  be a continuous map between topological spaces.

Algebraic Topology | Some general point-set topology

• Exercise: Let  $f: X \to Y$  be a continuous map between topological spaces. Show that if X is connected, respectively path-connected, respectively compact,

• Exercise: Let  $f: X \to Y$  be a continuous map between topological spaces. Show that if X is connected, respectively path-connected, respectively compact, then Y also has the respective property.

- Exercise: Let  $f: X \to Y$  be a continuous map between topological spaces. Show that if X is connected, respectively path-connected, respectively compact, then Y also has the respective property.
- Example:

- Exercise: Let  $f: X \to Y$  be a continuous map between topological spaces. Show that if X is connected, respectively path-connected, respectively compact, then Y also has the respective property.
- Example: [0,1] and (0,1) are not homeomorphic

- Exercise: Let  $f: X \to Y$  be a continuous map between topological spaces. Show that if X is connected, respectively path-connected, respectively compact, then Y also has the respective property.
- Example: [0,1] and (0,1) are not homeomorphic (in fact there is no surjective continuous map from [0,1] to (0,1)).

- Exercise: Let  $f: X \to Y$  be a continuous map between topological spaces. Show that if X is connected, respectively path-connected, respectively compact, then Y also has the respective property.
- Example: [0,1] and (0,1) are not homeomorphic (in fact there is no surjective continuous map from [0,1] to (0,1)).
- +  $[0,1] \cup [2,3]$  is not a retract of [0,3]

Algebraic Topology

1. Some general point-set topology

2. Categories and functors

3. Definition of the fundamental group functor



• Motivation:

- Motivation:
  - ► Using only general-topological notions

- Motivation:
  - ▶ Using only general-topological notions hard to decide if

- Motivation:
  - Using only general-topological notions hard to decide if  $S^1 := \{z \in \mathbb{C} : |z| = 1\}$

- Motivation:
  - ▶ Using only general-topological notions hard to decide if  $S^1 := \{z \in \mathbb{C} : |z| = 1\}$  is a retract of

- Motivation:
  - ▶ Using only general-topological notions hard to decide if  $S^1 := \{z \in \mathbb{C} : |z| = 1\}$  is a retract of  $D := \{z \in \mathbb{C} : |z| \leq 1\}$ ,

- Motivation:
  - ▶ Using only general-topological notions hard to decide if  $S^1 := \{z \in \mathbb{C} : |z| = 1\}$  is a retract of  $D := \{z \in \mathbb{C} : |z| \leq 1\}$ ,
  - or whether  $S^2 = \{x \in \mathbb{R}^3 : ||x|| = 1\}$  is homeomorphic

- Motivation:
  - ▶ Using only general-topological notions hard to decide if  $S^1 := \{z \in \mathbb{C} : |z| = 1\}$  is a retract of  $D := \{z \in \mathbb{C} : |z| \leq 1\}$ ,
  - or whether  $S^2 = \{x \in \mathbb{R}^3 : ||x|| = 1\}$  is homeomorphic with the torus  $T^2 := S^1 \times S^1$ .

- Motivation:
  - ▶ Using only general-topological notions hard to decide if  $S^1 := \{z \in \mathbb{C} : |z| = 1\}$  is a retract of  $D := \{z \in \mathbb{C} : |z| \leq 1\}$ ,
  - or whether  $S^2 = \{x \in \mathbb{R}^3 : ||x|| = 1\}$  is homeomorphic with the torus  $T^2 := S^1 \times S^1$ .
- · We need better invariants,

- Motivation:
  - ▶ Using only general-topological notions hard to decide if  $S^1 := \{z \in \mathbb{C} : |z| = 1\}$  is a retract of  $D := \{z \in \mathbb{C} : |z| \leq 1\}$ ,
  - or whether  $S^2 = \{x \in \mathbb{R}^3 : ||x|| = 1\}$  is homeomorphic with the torus  $T^2 := S^1 \times S^1$ .
- We need better invariants,
- A convenient way to talk about invariants is with the language of categories and functors.

• A category is a collection of objects and morphisms.

- A category is a collection of objects and morphisms.
  - ► Example of objects are:

- A category is a collection of objects and morphisms.
  - ► Example of objects are: "all topological spaces",

- A category is a collection of objects and morphisms.
  - Example of objects are: "all topological spaces", "all metrisable topological spaces",

- A category is a collection of objects and morphisms.
  - Example of objects are: "all topological spaces", "all metrisable topological spaces", "all pairs (X, x) where X is a topological space and  $x \in X$ ", "all abelian groups", "all rings with identity", etc.

- A category is a collection of objects and morphisms.
  - Example of objects are: "all topological spaces", "all metrisable topological spaces", "all pairs (X, x) where X is a topological space and  $x \in X$ ", "all abelian groups", "all rings with identity", etc.
- Morphisms are a collection of functions between the objects, subject to two condition:

- A category is a collection of objects and morphisms.
  - Example of objects are: "all topological spaces", "all metrisable topological spaces", "all pairs (X, x) where X is a topological space and  $x \in X$ ", "all abelian groups", "all rings with identity", etc.
- Morphisms are a collection of functions between the objects, subject to two condition:
  - For every object X, we have that the identity  $id_X$  is a morphism.

- A category is a collection of objects and morphisms.
  - Example of objects are: "all topological spaces", "all metrisable topological spaces", "all pairs (X, x) where X is a topological space and  $x \in X$ ", "all abelian groups", "all rings with identity", etc.
- Morphisms are a collection of functions between the objects, subject to two condition:
  - For every object X, we have that the identity  $id_X$  is a morphism.
  - ▶ If  $f: X \to Y$  and  $g: Y \to Z$  are morphisms then  $g \circ f: X \to Z$  is also a morphism.

- A category is a collection of objects and morphisms.
  - Example of objects are: "all topological spaces", "all metrisable topological spaces", "all pairs (X, x) where X is a topological space and  $x \in X$ ", "all abelian groups", "all rings with identity", etc.
- Morphisms are a collection of functions between the objects, subject to two condition:
  - For every object X, we have that the identity  $id_X$  is a morphism.
  - ▶ If  $f: X \to Y$  and  $g: Y \to Z$  are morphisms then  $g \circ f: X \to Z$  is also a morphism.
  - ► Examples: "all continuous maps", "all continuous maps which are homeomorphisms", "Lipschitz-continuous maps", "group homomorphisms", "ring homomorphisms" etc.

- a functor F between two categories  ${\mathcal C}$  and  ${\mathcal D}$ 

• a functor F between two categories C and D is a way to associate to each object X of C an object F(X) of D,

• a functor F between two categories C and D is a way to associate to each object X of C an object F(X) of D, and to each morphism  $f \colon X \to Y$  a homomorphism  $F(f) \colon F(X) \to F(Y)$ ,

• a functor F between two categories C and D is a way to associate to each object X of C an object F(X) of D, and to each morphism  $f: X \to Y$  a homomorphism  $F(f): F(X) \to F(Y)$ , such that

- a functor F between two categories C and D is a way to associate to each object X of C an object F(X) of D, and to each morphism  $f: X \to Y$  a homomorphism  $F(f): F(X) \to F(Y)$ , such that
  - ▶  $F(id_X) = id_{F(X)}$  for any object X and

- a functor F between two categories C and D is a way to associate to each object X of C an object F(X) of D, and to each morphism  $f: X \to Y$  a homomorphism  $F(f): F(X) \to F(Y)$ , such that
  - ▶  $F(id_X) = id_{F(X)}$  for any object X and
  - ▶  $F(s \circ t) = F(s) \circ F(t)$  for all composable morphisms s, t.

- a functor F between two categories C and D is a way to associate to each object X of C an object F(X) of D, and to each morphism  $f: X \to Y$  a homomorphism  $F(f): F(X) \to F(Y)$ , such that
  - ▶  $F(id_X) = id_{F(X)}$  for any object X and
  - ▶  $F(s \circ t) = F(s) \circ F(t)$  for all composable morphisms s, t.
- In this course most of the time  $\ensuremath{\mathcal{D}}$  is AbelianGroups.

• Note that if  $f \colon X \to Y$  is a homeomorphism

- Note that if  $f: X \to Y$  is a homeomorphism then  $F(f): F(X) \to F(Y)$  is an isomorphism.
  - ▶ If  $gf = id_X$  then F(g)F(f) =

▶ If 
$$gf = id_X$$
 then  $F(g)F(f) = F(gf) =$ 

▶ If 
$$gf = id_X$$
 then  $F(g)F(f) = F(gf) = F(id_X) =$ 

• If 
$$gf = \operatorname{id}_X$$
 then  $F(g)F(f) = F(gf) = F(\operatorname{id}_X) = \operatorname{id}_{F(X)}$ 

- Note that if  $f: X \to Y$  is a homeomorphism then  $F(f): F(X) \to F(Y)$  is an isomorphism.
  - ▶ If  $gf = id_X$  then  $F(g)F(f) = F(gf) = F(id_X) = id_{F(X)}$  and similarly  $F(f)F(g) = id_{F(Y)}$ .

▶ If 
$$gf = id_X$$
 then  $F(g)F(f) = F(gf) = F(id_X) = id_{F(X)}$  and similarly  $F(f)F(g) = id_{F(Y)}$ .

• This means that functors can be used to show that two spaces X and Y are not homeomorphic.

▶ If 
$$gf = id_X$$
 then  $F(g)F(f) = F(gf) = F(id_X) = id_{F(X)}$  and similarly  $F(f)F(g) = id_{F(Y)}$ .

• This means that functors can be used to show that two spaces X and Y are not homeomorphic. A necessary condition for X and Y to be homeomorphic is that the objects F(X) and F(Y) should be isomorphic.

• Functors can be also used to show that  $A \subset X$  is not a retract of X.

- Functors can be also used to show that  $A \subset X$  is not a retract of X.
  - ▶ If we have for example  $F(X) = \{0\}$  and  $F(A) \neq \{0\}$

- Functors can be also used to show that  $A \subset X$  is not a retract of X.
  - ▶ If we have for example  $F(X) = \{0\}$  and  $F(A) \neq \{0\}$  then there is no retraction from X to A:

- Functors can be also used to show that  $A \subset X$  is not a retract of X.
  - ▶ If we have for example  $F(X) = \{0\}$  and  $F(A) \neq \{0\}$  then there is no retraction from X to A:
  - Indeed consider  $i: A \to X$  to be the embedding and  $f: X \to A$  to be a retraction,

- Functors can be also used to show that  $A \subset X$  is not a retract of X.
  - ▶ If we have for example  $F(X) = \{0\}$  and  $F(A) \neq \{0\}$  then there is no retraction from X to A:
  - ▶ Indeed consider  $i: A \to X$  to be the embedding and  $f: X \to A$  to be a retraction, then  $F(id_A) = id_{F(A)}$ ,

- Functors can be also used to show that  $A \subset X$  is not a retract of X.
  - ▶ If we have for example  $F(X) = \{0\}$  and  $F(A) \neq \{0\}$  then there is no retraction from X to A:
  - ▶ Indeed consider  $i: A \to X$  to be the embedding and  $f: X \to A$  to be a retraction, then  $F(id_A) = id_{F(A)}$ , so  $F(id_A)$  is not the 0 endomorphism of F(A).

- Functors can be also used to show that  $A \subset X$  is not a retract of X.
  - ▶ If we have for example  $F(X) = \{0\}$  and  $F(A) \neq \{0\}$  then there is no retraction from X to A:
  - ▶ Indeed consider  $i: A \to X$  to be the embedding and  $f: X \to A$  to be a retraction, then  $F(id_A) = id_{F(A)}$ , so  $F(id_A)$  is not the 0 endomorphism of F(A). However we have  $F(id_A) =$

- Functors can be also used to show that  $A \subset X$  is not a retract of X.
  - ▶ If we have for example  $F(X) = \{0\}$  and  $F(A) \neq \{0\}$  then there is no retraction from X to A:
  - ▶ Indeed consider  $i: A \to X$  to be the embedding and  $f: X \to A$  to be a retraction, then  $F(id_A) = id_{F(A)}$ , so  $F(id_A)$  is not the 0 endomorphism of F(A). However we have  $F(id_A) = F(f \circ i) =$

- Functors can be also used to show that  $A \subset X$  is not a retract of X.
  - ▶ If we have for example  $F(X) = \{0\}$  and  $F(A) \neq \{0\}$  then there is no retraction from X to A:
  - ▶ Indeed consider  $i: A \to X$  to be the embedding and  $f: X \to A$  to be a retraction, then  $F(id_A) = id_{F(A)}$ , so  $F(id_A)$  is not the 0 endomorphism of F(A). However we have  $F(id_A) = F(f \circ i) = F(f) \circ F(i)$ .

- Functors can be also used to show that  $A \subset X$  is not a retract of X.
  - ▶ If we have for example  $F(X) = \{0\}$  and  $F(A) \neq \{0\}$  then there is no retraction from X to A:
  - ▶ Indeed consider  $i: A \to X$  to be the embedding and  $f: X \to A$  to be a retraction, then  $F(id_A) = id_{F(A)}$ , so  $F(id_A)$  is not the 0 endomorphism of F(A). However we have  $F(id_A) = F(f \circ i) = F(f) \circ F(i)$ . Since  $F(i): F(A) \to F(X) = \{0\}$  we see that F(i) is the 0-homomorphism

- Functors can be also used to show that  $A \subset X$  is not a retract of X.
  - ▶ If we have for example  $F(X) = \{0\}$  and  $F(A) \neq \{0\}$  then there is no retraction from X to A:
  - ▶ Indeed consider  $i: A \to X$  to be the embedding and  $f: X \to A$  to be a retraction, then  $F(id_A) = id_{F(A)}$ , so  $F(id_A)$  is not the 0 endomorphism of F(A). However we have  $F(id_A) = F(f \circ i) = F(f) \circ F(i)$ . Since  $F(i): F(A) \to F(X) = \{0\}$  we see that F(i) is the 0-homomorphism and hence  $F(id_A)$  is in fact the 0 endomorphism of F(A),

- Functors can be also used to show that  $A \subset X$  is not a retract of X.
  - ▶ If we have for example  $F(X) = \{0\}$  and  $F(A) \neq \{0\}$  then there is no retraction from X to A:
  - ▶ Indeed consider  $i: A \to X$  to be the embedding and  $f: X \to A$  to be a retraction, then  $F(id_A) = id_{F(A)}$ , so  $F(id_A)$  is not the 0 endomorphism of F(A). However we have  $F(id_A) = F(f \circ i) = F(f) \circ F(i)$ . Since  $F(i): F(A) \to F(X) = \{0\}$  we see that F(i) is the 0-homomorphism and hence  $F(id_A)$  is in fact the 0 endomorphism of F(A), which is a contradiction.

## Example.

## Example.

• Let *Top* be the category of all topological spaces, and let Sets be the category of all sets.

- Let *Top* be the category of all topological spaces, and let Sets be the category of all sets.
- We consider the function  $\pi_0$ , which associates to X the set of connected components of X.

- Let *Top* be the category of all topological spaces, and let Sets be the category of all sets.
- We consider the function  $\pi_0$ , which associates to X the set of connected components of X.
- Note that for a continuous map  $f\colon X\to Y$

- Let *Top* be the category of all topological spaces, and let Sets be the category of all sets.
- We consider the function  $\pi_0$ , which associates to X the set of connected components of X.
- Note that for a continuous map  $f \colon X \to Y$  and a connected component  $A \subset X$

- Let *Top* be the category of all topological spaces, and let Sets be the category of all sets.
- We consider the function  $\pi_0$ , which associates to X the set of connected components of X.
- Note that for a continuous map  $f: X \to Y$  and a connected component  $A \subset X$  we have that f(A) lands in a single connected component of Y.

- Let *Top* be the category of all topological spaces, and let Sets be the category of all sets.
- We consider the function  $\pi_0$ , which associates to X the set of connected components of X.
- Note that for a continuous map  $f: X \to Y$  and a connected component  $A \subset X$  we have that f(A) lands in a single connected component of Y.
- This allows us to define  $\pi_0(f)$ .

•  $\pi_0(X) = \{a\},\$ 

•  $\pi_0(X) = \{a\}, \ \pi_0(Y) = \{b, c\},\$ 

- $\pi_0(X) = \{a\}, \ \pi_0(Y) = \{b, c\},\$
- If we had a retraction  $X \to Y$  then consider  $Y \to X \to Y$

- $\pi_0(X) = \{a\}, \ \pi_0(Y) = \{b, c\},\$
- If we had a retraction  $X \to Y$  then consider  $Y \to X \to Y$
- Apply the functor  $\pi_0$ ,

- $\pi_0(X) = \{a\}, \ \pi_0(Y) = \{b, c\},\$
- If we had a retraction  $X \to Y$  then consider  $Y \to X \to Y$
- Apply the functor  $\pi_0$ , get  $\{b,c\} \rightarrow \{a\} \rightarrow \{b,c\}$ ,

- $\pi_0(X) = \{a\}, \ \pi_0(Y) = \{b, c\},\$
- If we had a retraction  $X \to Y$  then consider  $Y \to X \to Y$
- Apply the functor  $\pi_0$ , get  $\{b, c\} \rightarrow \{a\} \rightarrow \{b, c\}$ , which is identity

- $\pi_0(X) = \{a\}, \ \pi_0(Y) = \{b, c\},\$
- If we had a retraction  $X \to Y$  then consider  $Y \to X \to Y$
- Apply the functor  $\pi_0$ , get  $\{b, c\} \rightarrow \{a\} \rightarrow \{b, c\}$ , which is identity which is a contradiction.

Algebraic Topology

1. Some general point-set topology

2. Categories and functors

3. Definition of the fundamental group functor



• Given two paths  $\sigma, \tau \colon a \xrightarrow{p} b$  in a topological space X,

• Given two paths  $\sigma, \tau : a \xrightarrow{p} b$  in a topological space X, we say they are homotopic to each other relative to their ends,

• Given two paths  $\sigma, \tau : a \xrightarrow{p} b$  in a topological space X, we say they are homotopic to each other relative to their ends, written  $\sigma \simeq \tau \operatorname{rel}\{0, 1\}$ ,

• Given two paths  $\sigma, \tau \colon a \xrightarrow{p} b$  in a topological space X, we say they are *homotopic to* each other relative to their ends, written  $\sigma \simeq \tau \operatorname{rel}\{0,1\}$ , if we can find a map  $F \colon I \times I \to X$ 

• Given two paths  $\sigma, \tau : a \xrightarrow{p} b$  in a topological space X, we say they are homotopic to each other relative to their ends, written  $\sigma \simeq \tau$  rel $\{0, 1\}$ , if we can find a map  $F : I \times I \to X$  such that for all  $x \in I$  we have  $F(x, 0) = \sigma(x)$ ,  $F(x, 1) = \tau(x)$ , F(0, x) = a, F(x, 0) = b.

- Given two paths  $\sigma, \tau : a \xrightarrow{p} b$  in a topological space X, we say they are homotopic to each other relative to their ends, written  $\sigma \simeq \tau$  rel $\{0, 1\}$ , if we can find a map  $F : I \times I \to X$  such that for all  $x \in I$  we have  $F(x, 0) = \sigma(x)$ ,  $F(x, 1) = \tau(x)$ , F(0, x) = a, F(x, 0) = b.
- We express this frequently using the following diagram.



- Given two paths  $\sigma, \tau : a \xrightarrow{p} b$  in a topological space X, we say they are homotopic to each other relative to their ends, written  $\sigma \simeq \tau$  rel $\{0, 1\}$ , if we can find a map  $F : I \times I \to X$  such that for all  $x \in I$  we have  $F(x, 0) = \sigma(x)$ ,  $F(x, 1) = \tau(x)$ , F(0, x) = a, F(x, 0) = b.
- We express this frequently using the following diagram.



- This diagram represents the domain of F , i.e.  $I \times I$  ,

- Given two paths  $\sigma, \tau : a \xrightarrow{p} b$  in a topological space X, we say they are homotopic to each other relative to their ends, written  $\sigma \simeq \tau$  rel $\{0, 1\}$ , if we can find a map  $F : I \times I \to X$  such that for all  $x \in I$  we have  $F(x, 0) = \sigma(x)$ ,  $F(x, 1) = \tau(x)$ , F(0, x) = a, F(x, 0) = b.
- We express this frequently using the following diagram.



• This diagram represents the domain of F, i.e.  $I \times I$ , and it shows what F does on the edges of the square.

- Given two paths  $\sigma, \tau : a \xrightarrow{p} b$  in a topological space X, we say they are homotopic to each other relative to their ends, written  $\sigma \simeq \tau$  rel $\{0, 1\}$ , if we can find a map  $F : I \times I \to X$  such that for all  $x \in I$  we have  $F(x, 0) = \sigma(x)$ ,  $F(x, 1) = \tau(x)$ , F(0, x) = a, F(x, 0) = b.
- We express this frequently using the following diagram.



• This diagram represents the domain of F, i.e.  $I \times I$ , and it shows what F does on the edges of the square. We say that F is a homotopy between  $\sigma$  and  $\tau$ 

- Given two paths  $\sigma, \tau : a \xrightarrow{p} b$  in a topological space X, we say they are homotopic to each other relative to their ends, written  $\sigma \simeq \tau$  rel $\{0, 1\}$ , if we can find a map  $F : I \times I \to X$  such that for all  $x \in I$  we have  $F(x, 0) = \sigma(x)$ ,  $F(x, 1) = \tau(x)$ , F(0, x) = a, F(x, 0) = b.
- We express this frequently using the following diagram.



- This diagram represents the domain of F, i.e.  $I \times I$ , and it shows what F does on the edges of the square. We say that F is a homotopy between  $\sigma$  and  $\tau$
- We say that  $\sigma : a \stackrel{p}{\leadsto} a$  is a *contractible loop* or

- Given two paths  $\sigma, \tau : a \xrightarrow{p} b$  in a topological space X, we say they are homotopic to each other relative to their ends, written  $\sigma \simeq \tau$  rel $\{0, 1\}$ , if we can find a map  $F : I \times I \to X$  such that for all  $x \in I$  we have  $F(x, 0) = \sigma(x)$ ,  $F(x, 1) = \tau(x)$ , F(0, x) = a, F(x, 0) = b.
- We express this frequently using the following diagram.



- This diagram represents the domain of F, i.e.  $I \times I$ , and it shows what F does on the edges of the square. We say that F is a homotopy between  $\sigma$  and  $\tau$
- We say that  $\sigma: a \stackrel{p}{\rightsquigarrow} a$  is a contractible loop or a homotopically trivial loop

- Given two paths  $\sigma, \tau : a \xrightarrow{p} b$  in a topological space X, we say they are homotopic to each other relative to their ends, written  $\sigma \simeq \tau \operatorname{rel}\{0,1\}$ , if we can find a map  $F: I \times I \to X$  such that for all  $x \in I$  we have  $F(x,0) = \sigma(x)$ ,  $F(x,1) = \tau(x)$ , F(0,x) = a, F(x,0) = b.
- We express this frequently using the following diagram.



- This diagram represents the domain of F, i.e.  $I \times I$ , and it shows what F does on the edges of the square. We say that F is a homotopy between  $\sigma$  and  $\tau$
- We say that  $\sigma: a \xrightarrow{p} a$  is a contractible loop or a homotopically trivial loop if  $\sigma \simeq a \operatorname{rel}\{0,1\}$

## Lemma. Homotopy relative to ends is an equivalence relation,

•  $\sigma \simeq \sigma \operatorname{rel}\{0,1\}$ 

- $\sigma \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\} \Rightarrow \tau \simeq \sigma \operatorname{rel}\{0,1\}$

- $\sigma \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\} \Rightarrow \tau \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\}, \tau \simeq \rho \operatorname{rel}\{0,1\} \Rightarrow \sigma \simeq \rho \operatorname{rel}\{0,1\}$

- $\sigma \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\} \Rightarrow \tau \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\}, \tau \simeq \rho \operatorname{rel}\{0,1\} \Rightarrow \sigma \simeq \rho \operatorname{rel}\{0,1\}$

**Proof.** First two properties left as exercises.

- $\sigma \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\} \Rightarrow \tau \simeq \sigma \operatorname{rel}\{0,1\}$
- $\sigma \simeq \tau \operatorname{rel}\{0,1\}, \tau \simeq \rho \operatorname{rel}\{0,1\} \Rightarrow \sigma \simeq \rho \operatorname{rel}\{0,1\}$

**Proof.** First two properties left as exercises. The fact that  $\sigma \simeq \tau \operatorname{rel}\{0,1\}$  is illustrated by the diagram



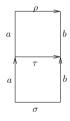
The fact that  $\tau \simeq \rho \operatorname{rel}\{0,1\}$  is illustrated by the diagram



The fact that  $\tau \simeq \rho \operatorname{rel}\{0,1\}$  is illustrated by the diagram



As such we can form the diagram



which shows that indeed  $\sigma \simeq \rho \operatorname{rel}\{0,1\}$ , as claimed.

Algebraic Topology | Definition of the fundamental group functor

▶ a map  $F \colon I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \sigma(x)$ ,

▶ a map  $F: I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \sigma(x)$ ,  $F(x, 1) = \tau(x)$ ,

▶ a map  $F: I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \sigma(x)$ ,  $F(x, 1) = \tau(x)$ , F(0, x) = a,

▶ a map  $F: I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \sigma(x)$ ,  $F(x, 1) = \tau(x)$ , F(0, x) = a, F(x, 0) = b.

- ▶ a map  $F: I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \sigma(x)$ ,  $F(x, 1) = \tau(x)$ , F(0, x) = a, F(x, 0) = b.
- ▶ a map  $G \colon I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \tau(x)$ ,

- ▶ a map  $F: I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \sigma(x)$ ,  $F(x, 1) = \tau(x)$ , F(0, x) = a, F(x, 0) = b.
- ▶ a map  $G \colon I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \tau(x)$ ,  $F(x, 1) = \rho(x)$ ,

- ▶ a map  $F: I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \sigma(x)$ ,  $F(x, 1) = \tau(x)$ , F(0, x) = a, F(x, 0) = b.
- ▶ a map  $G: I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \tau(x)$ ,  $F(x, 1) = \rho(x)$ , G(0, x) = a,

- ▶ a map  $F: I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \sigma(x)$ ,  $F(x, 1) = \tau(x)$ , F(0, x) = a, F(x, 0) = b.
- ▶ a map  $G: I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \tau(x)$ ,  $F(x, 1) = \rho(x)$ , G(0, x) = a, G(x, 0) = b.

- ▶ a map  $F: I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \sigma(x)$ ,  $F(x, 1) = \tau(x)$ , F(0, x) = a, F(x, 0) = b.
- ▶ a map  $G: I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \tau(x)$ ,  $F(x, 1) = \rho(x)$ , G(0, x) = a, G(x, 0) = b.

As such we can form a map  $\overline{H} \colon I \times [0,2] \to X$  by setting

- ▶ a map  $F: I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \sigma(x)$ ,  $F(x, 1) = \tau(x)$ , F(0, x) = a, F(x, 0) = b.
- ▶ a map  $G: I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \tau(x)$ ,  $F(x, 1) = \rho(x)$ , G(0, x) = a, G(x, 0) = b.

As such we can form a map  $\overline{H} \colon I \times [0,2] \to X$  by setting

$$ar{H}(x,y):=F(x,y) \quad \mbox{when } y\leqslant 1 \ ar{H}(x,y):=G(x,y-1) \quad \mbox{when } y\geqslant 1,$$

Algebraic Topology | Definition of the fundamental group functor

- ▶ a map  $F: I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \sigma(x)$ ,  $F(x, 1) = \tau(x)$ , F(0, x) = a, F(x, 0) = b.
- ▶ a map  $G: I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \tau(x)$ ,  $F(x, 1) = \rho(x)$ , G(0, x) = a, G(x, 0) = b.

As such we can form a map  $\overline{H} \colon I \times [0,2] \to X$  by setting

$$ar{H}(x,y):=F(x,y) \quad \mbox{when } y\leqslant 1 \ ar{H}(x,y):=G(x,y-1) \quad \mbox{when } y\geqslant 1,$$

and finally we let  $H(x, y) := \overline{H}(x, 2y)$ .

- ▶ a map  $F: I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \sigma(x)$ ,  $F(x, 1) = \tau(x)$ , F(0, x) = a, F(x, 0) = b.
- ▶ a map  $G: I \times I \to X$  such that for all  $x \in X$  we have  $F(x, 0) = \tau(x)$ ,  $F(x, 1) = \rho(x)$ , G(0, x) = a, G(x, 0) = b.

As such we can form a map  $\overline{H} \colon I \times [0,2] \to X$  by setting

$$ar{H}(x,y):=F(x,y) \quad \mbox{when } y\leqslant 1 \ ar{H}(x,y):=G(x,y-1) \quad \mbox{when } y\geqslant 1,$$

and finally we let  $H(x, y) := \overline{H}(x, 2y)$ .



## UNIVERSITÄT LEIPZIG

# THANK YOU FOR YOUR ATTENTION!

# Łukasz Grabowski

Mathematisches Institut

grabowski@math.uni-leipzig.de

