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1 Introduction

The main subject of this thesis is the study of some finer arithmetic properties of
a certain theta lift from GU(2,Q) (or equivalently GL2(Q)) to GU(3,Q), where
GU(n) denotes the quasi-split unitary similitude group in n variables with respect
to a fixed imaginary quadratic field extension K/Q. The lifting considered here was
first studied by Kudla [Kul, Ku2]: it takes holomorphic elliptic modular forms of
level D (the negative of the discriminant of K') and character wg /g (the quadratic
Dirichlet character associated to the extension K/Q) to holomorphic, in general
vector valued, modular forms of level one on GU(3).

After integrality (away from the discriminant) of the suitably normalized lifting
is demonstrated, it makes sense to reduce it mod £ for a prime ¢, unramified in K.
The main result is a precise determination of the kernel of the reduction mod ¢ in
the case where £ splits in K, and the lifting goes to scalar modular forms, under the
weak technical restriction ¢ f2hg. Since Eisenstein series go to Eisenstein series
under the lifting, as an application a criterion on congruences between Eisenstein
series and cusp forms is obtained.

These results depend mainly on a careful study of the Fourier-Jacobi expansion
of the lifting. A closed expression for the Fourier-Jacobi expansion is derived from
Kudla’s work, and its coefficients are then decomposed into primitive components
as defined by Shintani [Shin]. The resulting formula may be of some independent
interest, but it also allows to prove the cruical non-vanishing (modulo ¢) of the lift-
ing away from the expected kernel. As a second main ingredient a characteristic £
non-vanishing result on theta functions is proved, which is an analogue of a theorem
of Washington [W2, Si2] on non-divisibility of Bernoulli numbers (special values of
Dirichlet L-functions). In fact, by the work of Yang [Y] our result implies corre-
sponding non-divisibility statements for special values of anticyclotomic L-functions
of the field K.

To give a more detailed account, let K = Q(v/—D) C C be the imaginary
quadratic field of discriminant —D and § = +/—D fixed to have positive imaginary
part. The skew-hermitian matrix

0
0
-1

01

R= 5 0
0 0
defines a hermitian form (-, -) of signature (1,2) on V = K3 by (z,y) = -6~ 1z" Ry
for z,y € V. Let ox be the ring of integers of K and fix the standard ox-lattice
L=0o%inV.

We consider the group G = GU (V) = GU(R) of unitary similitudes with respect
to (-,-), an algebraic group defined over Q with group of Q-points

G(Q) ={g € GLs(K) | 3" Rg = u(9)R, u(g) € Q*}.

For simplicity let us assume (only for this introduction) that K has class number
one, such that we may easily work in an entirely classical setting. Also we consider
for the moment only scalar modular forms on G. The group G(R) operates on the
symmetric domain

D ={3=(z,w) € Cn() = (+ — 2)/6 — [w]* > 0},

if we identify © with the space of positive lines in P?(C) by 3 —~ (2 : w : 1).
The function

J1(9,3) = 9312+ 92w + 933, 9= (9i;) € GR), €D,



is a holomorphic factor of automorphy for G. An automorphic form of weight &k
with respect to the level one discrete subgroup I' = {g € G(Q) | gL = L} is defined
as a holomorphic function F' : ® — C fulfilling the usual relation

F(’Y(?’)) = .71('773)kF(3)7 3 € 97 S I.

The space of these automorphic forms is denoted by A(k,T’). Obviously, it can be
non-zero only if wg, the number of units in K, divides k.

Kudla defined for each k > 6 a lifting £ from the space My_(T'o(D),wk/q) of
elliptic modular forms to the space A(k,T') [Kul]. We have

L)) = / oy Oy

(here 7 = z + 4y) with the theta kernel function

0(r,3) = zk—lp—k/2y2 Z (X, P+(3)77(3)_1)’“.32”(2"3“7(3)_ [(X,P4(3))] +f(X7X)),
XeL

where we put

for 3 = (z,w) € D.

Each automorphic form F' € A(k,T') has a Fourier expansion whose coefficients
are theta functions, a so-called Fourier-Jacobi expansion. The first part of our work,
contained in Chapter 2, deals with the computation of the Fourier-Jacobi expansion
of a lifted form £(f) in terms of f. Based on Kudla’s work we obtain in Theorem
2.5 a first explicit formula for the Fourier coefficients. In the special case treated
here it looks as follows: £(f)(3) = Yo, 9-(w)q", ¢ = €™, with

(2122;i1))k!wKL(Xk, k/2) Trro(D)\st(z)(f(T)ﬁ(O,T))|

gr(w) = T (Trry(p)\sLaz)(f(7)3(réw, 7)))|
where 79 € §) is such that ox = Z + Z79, and ¢ is the theta function

’19(’11),T) — Z e27ri(N(a)T+aw)

acoK

9o

T—400 ’

T=T79 "’

associated to o0x. The Hecke character x; of K is defined by xx((z)) = (z/|z|)*.

An integral structure on M}, 1(I'o(D),wk/q), which also allows the considera-
tion of modular forms mod ¢ for a prime ¢, is given by looking at the lattice of
forms with integral Fourier coefficients. The ”g-expansion principle” explains why
this is a good notion: the integral forms correspond to sections of a suitable sheaf
on the moduli scheme, at least if we disregard primes dividing D. For A(k,T") the
corresponding notion is given by considering modular forms whose Fourier-Jacobi
coefficients are integral theta functions. Here, in a way analogous to Shimura’s def-
inition of arithmetic theta functions [Shim4], a theta function g, is declared to be
integral if e~ 7VDlwl’ gr(w) is an algebraic integer for all w € K. The existence of
a good compactified moduli scheme (away from primes dividing D) in the unitary
group case is known from work of Larsen [Larl, Lar2], and we have therefore an
analogous geometric interpretation of integrality.



Integrality of the lifting and reduction mod ¢ are discussed in the second part,
Chapter 3. From our expression for g, it may be deduced that the arithmetic
variant £2 = Qg*L of the lifting, where Qo = 7(70)? is a period associated to
the lattice ok, is integral away from D except for the constant term, i. e. for
f € My_1(To(D),wrk/q; Z[1/D]) the Fourier-Jacobi coefficients g* of L3 (f) are
integral away from D for all positive r. The corresponding general result is Theorem
3.5. Fixing a prime £ /D, and embeddings i, : Q — C and i, : Q — C;, we may
(at least for £ > 5) consequently consider the theta lift on the level of modular forms
mod ¢:

C: Mk_l(ro(D),wK/Q;Fg) — A(k,F;Fg),

in case (£ —1) fk; otherwise we have to restrict to cusp forms because the constant
term may have a power of £ in its denominator.

In a first step it is not very difficult to determine a subspace of the space
My_1(To(D),wk/q; Fe) contained in the kernel of £. This is the object of Section
3.2. Introducing the Hecke involution Wp on the modular curve I'g(D)\ ), we have
L(f) = 0 for every modular form f € My_1(To(D),wk q;Fe), such that the Fourier
coefficients a,, of f|Wp with wg/g(n) = —1 vanish. This is due to the fact that,
roughly speaking, the trace Trp,(p)\sw,z)(f(7)9(réw, 7)) already vanishes under
these conditions.

It is much harder to show that for £ > 5 split in K (in the general case we
have to assume in addition £ fhg) this subspace is already the entire kernel. The
proof occupies the remainder of Chapter 3 along with Chapter 4. The strategy is
to look more closely at the Fourier-Jacobi expansion and to use Shintani’s theory
of primitive theta functions. This is the object of Sections 2.3 and 2.4. Shintani
introduced an action of the group of ideals prime to rD on the space of all Fourier-
Jacobi-coefficients (of degree r > 0, say), which leads to a decomposition of this
space into eigenspaces parametrized by Hecke characters x* of K, whose restriction
to Q is the quadratic character wk /. The eigenspaces contained in the subspace
of primitive theta functions are one-dimensional. The Fourier-Jacobi coefficients
of a Hecke eigenform are determined by the primitive components and the Hecke
eigenvalues.

Proceeding from our closed formula for the Fourier coefficients g,., we can com-
pute the component of g, in each of these subspaces. We give the result in the
simplest case of a primitive theta function J, representing the eigenspace of a char-
acter k* with exact conductor 7D. Consider the form f as a function of pairs (L, z),
where L is a lattice in C and z € L/DL of order D. Then we have

Onge) = 25002 Y f(La+DD) (&) R (o)

(L2) 2]

Here L ranges over all lattices of index r in ox and for each L one considers all
sublattices L' with L/L' ~ Z/DZ and oxL' = ox and chooses a vector z € L'
prime to rD. A more general statement can be found in Theorem 2.12. By the
result of Yang mentioned above, the value ¥,(0) is connected to the L-function of
n*x;z, see Proposition 2.11.

Getting back to the main task, how is it possible to show that for a modular
form f over Fy not in the ”trivial kernel” described above, we have g, # 0 for some
r > 0, where g, are the Fourier-Jacobi coefficients of £(f)? Assuming £ fr, from the
canonical scalar product (-,-) one may easily construct a symmetric bilinear form
bar, which is £-integral for ¢-integral arguments, and may therefore be reduced mod
£. Rewriting our formula yields (letting bars denote reduction mod ¢ via iyi3!):

k—2 _ _
5 =) P(f, ),

= r

l_)ar(’ﬂna gr) =

4



where ¥, is an integral representative of the x-eigenspace, and the character n; of
(ox/rDok)* (with reduction 7;) is given by

) = (@) )

||

The sum P is defined by reducing the sum above:

P(f,a5) = Y. f(B/(DH'),#*@,m(Q))is(zq) ™ -
H'=(Q)

Here E is the reduction mod £ of the elliptic curve E ~ C/2miQook and @ the
invariant differential obtained by reducing w = dz. The sum ranges over all cyclic
subgroups H' = (Q) of order rD of E[rD] which generate E[rD] as an ox-module;
for each H' we have the canonical isogeny 7 : E — E/(DH') of degree r (with dual
#), and to @ € E[rD] corresponds g € ok /rDog by the analytic parametrization
of E.

Take now an ”auxilary prime” p, split in K, with £ fp(p—1), and consider r = p™
with m > 0 and the set of all primitive Shintani eigenfunctions 9, in this infinite
tower of spaces corresponding to characters x* of conductor p™D. Equivalently, we
have finitely many choices for the D-component and are varying the p-component
of k* freely (among anticyclotomic characters). Because of our conditions on £, the
correspondence between a character k* and the Fy-valued Dirichlet character 7y is
one-to-one, and Shintani theory works mod /, i. e. there exists a decomposition into
eigenspaces compatible with reduction mod £. If we show the statements,

1. that P(f,7y) # 0 for infinitely many 7; corresponding to characters x* in our
set, and

2. that there exists a representative Y% (in the space of theta functions mod /)
with 9% (0) # 0 for almost all (all but finitely many) primitive eigenspaces,

the non-vanishing of some g, with r equal to a power of p follows from the above.

As for the first (rather weak) statement, its violation would imply an infinite
number of strong relations for the values of a modular form closely related to f at
elliptic curves with complex multiplication by an order (of p-power conductor) in
K. This yields easily to a contradiction. See Theorem 3.21 below for more details.

The second statement is proved by applying ideas of Sinnott [Sil, Si2], who gave
an algebraic proof of the theorem of Washington mentioned above, to the different
situation considered here. Chapter 4 is devoted to this topic. Washington’s theorem
says that for a prime p # ¢, an integer n > 1 and a Dirichlet character x (of the
rational integers) the set of all Dirichlet characters v of p-power conductor, such
that x¥(—1) = (—1)" and

Wiviod (3101 = m,x¥))) > 0

(i¢ and iy as above, and v denoting a valuation on Q) is finite. Instead of dealing
with rational functions like Sinnott, the proof of our statement depends on making
use of the algebro-geometric nature of theta functions. Assuming the existence of
some character k* of large conductor contradicting the statement, by considering
all Galois conjugates we finally arrive at an algebraic relation. An infinite set of
points would have to be contained in a certain subvariety D of the abelian variety
E@-1/wk Tt follows by a density argument that D has to contain a translate of
a large abelian variety, from which it is possible to derive a contradiction. Com-
bining our theorem with the work of Yang, we get as Corollary 4.7 a non-vanishing
statement for anticyclotomic L-functions in characteristic £.



Having obtained this result, it may be applied to the case of Eisenstein series,
since the lifting of the standard Eisenstein series Ex_1,, , is the Eisenstein series
&k in A(k,T). This is done in Chapter 5. Assuming £ odd, split in K, (¢ — 1) fk
(this is not a restriction) as above, and in addition (£ — 1) f(k — 2), it is easy to
see that Ej 1., , modulo £ does not lie in the kernel of £, as described above.

Therefore, the arithmetic variant Q k€, is non-trivial mod £. Using the geometry
of the moduli surface, we see the existence of an {-integral form h in A(k,T') with
constant term one. Consequently, if now the constant term Q, kg of the arithmetic
Eisenstein series (which from the above is essentially a product of the L-functions
L(xx,k/2) and L(2 — k,wk/q)) is divisible by £, the Eisenstein series is congruent
mod £ to a cusp form, since we may subtract a suitable multiple of A. By the
Deligne-Serre lemma, there exists then a Hecke eigenform in A(k,T"), whose Hecke
eigenvalues are congruent to those of the Eisenstein series modulo a prime above £.

To conclude, let us mention other possible applications and open problems which
arise in this context. As a first application, the explicit Fourier coefficient formulas
and the integrality theorem should allow us to interpolate the lifting ¢-adically, i. e.
to construct a lifting of /-adic and A-adic modular forms.

Another topic is the ¢-adic behaviour of a generalized lifting with additional
level structure. Here new difficulties are to expected, since the lifting vanishes
(even in characteristic zero) for certain supersingular local components by Gelbart-
Rogawski-Soudry [GeRS]. Also, it would certainly be interesting to consider the
case of inert primes £. The kernel behaves here rather differently, and I do not have
a precise result as in the split case (see the remarks at the end of Section 3.2). For
Eisenstein series it seems that a different normalization of the lifting £ is needed.
Explicit computations indicate the existence of modular forms mod £ different from
the Eisenstein series but with the same Hecke eigenvalues.

A very interesting problem is to obtain a criterion on congruences between stable
and endoscopic forms on GU(3). Let us sketch a possible strategy: we consider £
and the "lift back” L' going from A(k,T) to My_1(To(D),wk/q) (or better to
a certain subspace, or ”trivial image”) constructed from the same theta kernel.
A Fourier coefficient formula and arithmeticity and integrality properties for this
lift may be established (in fact it is much easier in this case, since we do not
have to deal with theta functions). Now for a normalized Hecke eigenform f €
My_1(To(D),wk/q), by means of the Rallis inner product formula it seems to be
not difficult to express £1(Lf) in terms of the twisted L-value L(fx ® x} ', k/2)
(see [Tanl, Tan2]). The non-triviality (under natural conditions) of the reduction of
L(f) modulo a split prime £ is shown here, but to complete the scheme we need to
know the surjectivity (mod ¢) of £f. This would allow us to conclude the existence
of a congruence in the case where the cruical L-value is divisible by £, or equivalently
LT(Lf) = 0, by the same method as in the case of Eisenstein series. Unfortunately,
a Fourier coefficient formula seems to be unsuited to demonstrate a surjectivity
property of this kind.

I would like to thank Fritz Grunewald for his support. He suggested the study
of congruences between Eisenstein series and cusp forms on GU(3) to me. Parts
of this work were done during a stay at UCLA in the academic year 1997/98. I
thank Haruzo Hida, Jon Rogawski and Eric Urban from UCLA for many interesting
discussions, and Michael Larsen for giving me access to his unpublished work [Lar3].
Finally, special thanks are due to Don Blasius, who gave helpful suggestions at
cruical points in Chapters 4 and 5.

Notation We keep the notation introduced above but drop the class number one
assumption. For each prime p (or generally prime ideal p of a number field) we let
vp (resp. vy) be the associated additive valuation. A (resp. Ag) will denote the



ring of adeles of Q (resp. K) and Ay (resp. Ak, s) the ring of finite adeles. We
write an idele a € A* like a = aay as a product of its infinite and finite part.

By | - |a we denote the norm on A*. Ik denotes the group of fractional ideals
of K. For each idele a € Ag ; let (ay) € Ik be the associated ideal. In this

way A};’ f /ox ~ Ix. The ideal class group of K is denoted by Clx and its order,
the class number of K, by hx. The subgroup of ideal classes invariant under
complex conjugation (the genus class group) is denoted by Clg"; by genus theory
Clg = Cl% x CIE¥, and CIZ¥ has order 2”~! if v is the number of different prime
divisors of D. Let h% = hx/2"~! be the order of Cli. wg is the number of units
in K.

We have Ay /ox KXK* ~ Clg as above. Ik (a) for an integral ideal a of K
denotes the group of ideals of K prime to a. By Pk, C Ikx(a) we mean the
principal congruence subgroup of level a. We say a (unitary) Hecke character x of
K has weight k, if it has infinity type xoo(z) = (z/|z|) 7.

2 Fourier-Jacobi coefficients of the theta lift

2.1 Awutomorphic forms on GU(3) and theta lifts

This section sets up the context we will work in: we define holomorphic automorphic
forms on G in a semi-classical way following Shintani and formulate Kudla’s lifting
in this context. For more details see [Shim4, Shin, Kul]. In general we use Shintani’s
conventions.

The group G Let us first describe some standard subgroups of the group G. Let
B be the Borel subgroup of all upper triangular matrices in G, which is also the
stabilizer of the point (1 : 0 : 0) in P?(K). Its unipotent radical is denoted by H
and is isomorphic to the Heisenberg group of a two-dimensional Q-vector space. We
write the elements of H as (w,u) with w € Resx/qG, and u € G, by

1 6w u+dww/2
(wyuy=1 0 1 w . (1)
0 0 1

The center of H is the group of all elements (0, u), and therefore isomorphic to G, .

The maximal torus T of G contained in B (the group of diagonal matrices in G)
may be written as a direct product T = Z(G)A, where Z(G) ~ Resk/gG, is the
center of G and A may be identified with Resx /oG, by a — diag(a, 1,a7l). We
have B = Z(G)AH and set M := AH = HA.

Automorphy factors We now explain some functions associated to the action
of G(R) on its symmetric domain ®. For each point 3 € © we define in addition to
P, (3) the matrix

Ppy=| o o @)
0 1

and set P(3) = (P_(3),P.(3)) € C3**3. The columns of P_(3) span the two-
dimensional subspace of Vo = V ®k C orthogonal to the line spanned by Py (3)
and (-,-) is negative, resp. positive definite on these spaces. The canonical holo-
morphic factors of automorphy for G are then given by

gP(3) = P(g3) < K(%"”) jl(g,z) ) 3€D, gedlR). (3)



Explicitly

k(9,3) = —0g21w + Gaz  6(G212 + Go3)
’ —gs1w+6 G2 gaiz+Jss '

We follow Shintani in setting j»(g,3) = (u(9)71(g,3)) " (det g)k(g,3) for the factor
of automorphy with values in GL2. We have det j2(g,3) = (det 9)j1(g,3) *.

Automorphic forms An automorphic form on G may be considered as a function
on the coset space G(Q)\G(A). We consider forms of level one, i. e. require them
to be right-invariant under the stabilizer G(L); of L®Z in G(A;), which is an open
compact subgroup of this group. To fix the infinity type let p be an irreducible
rational representation of GLy(C) x C* on a complex vector space V. Such a
representation determines a factor of automorphy J with values in GL(V) by

J(9,3) := p(j2(g,3), det g).

Since the center of G is the group of scalar matrices, i. e. isomorphic to Resx/q(Gm ),
by taking g to be an element z of the center of G(R) we get from J a character ¢,
of C*. Finally, fix a point 39 € D.

Now let A(p, L) be the space of V-valued functions F' on the double coset space
G(Q\G(A)/G(L)y such that for each gf € G(Ay) the function

I(go0,30)¢p(1(goc) ) F (go07)

of goo € G(R) depends only upon 3 = gooj0 and is holomorphic in 3. (We denote
this function on ® by Fj,.) For a Hecke character x of K, let A(p,L,x) be the
space of functions in A(p, L) with central character x. For this to be non-zero, x
has to be unramified and have infinity type X(200) = ¢p(|200|/%00) for 200 € C*.
For a description of the space A(p, L) in classical language, see [Shin, p. 18].

An automorphic form F' € A(p, L) is called a cusp form, if for every gy € G(Ay)
the function Fy;, goes to zero for 3 = (z,w), 2 = ico. The space of cusp forms is
denoted by Ag(p, L) (resp. by Ao(p, L, x) if we consider forms with central character

X)-

Definition of the lifting We consider now theta liftings £ from the spaces
M, (To(D),wk/q) to certain A(p,L,x). Take m > 5 and choose a pair of inte-
gers (v, u) with m = y — v — 1 which determines a representation p as follows: let
S, be the space of homogeneous polynominals of degree v in two variables with GL,
acting by (g9¢)(v) = ¢¥(vg) for ¥ € S,.. Then p = p,, is defined on the dual space
VY = S} (which carries a GLy-action by the contragredient representation) by

(p(z,y))¥" = y¥(det )" Faep”, (4)

and therefore

J(9,3)¢* = j1(9,38)" (u(9) ' K(g,3))¥*.

To fix the lifting, choose an unramified Hecke character x of weight » + u and
an additional unramified character £ of weight zero (i. e. a character of the ideal
class group Clg). We define the theta kernel 6 = 6,,,,;. , on § x G(A) by

0r,g) = Y. e(detg)IN®)u(gp)ly ™2 Ex B 59)  (5)
(b)eClx



(b goes over a system of representatives for Clg in Ag ¢) with

Ou(rg;9) = 241D PRy n(30) H pu(geo)
Y. (X900 Xo0) (X, 90 Y0)

Xebg; L

2N u(op) | (2iy 2 X0 7 (x, X)) (6)

for ¢ € S,. Here (X,Y) = —§ 1X¥RY for a 3 x 2-matrix Y, Xo = Py (30),
Yy = P_(30). We may easily check that 8,(7,g) = A\*t#8(7,9), A € K*, so that
6(7, g) is well-defined. The function # takes values in the antilinear dual S* and 4
takes values in S.

The following proposition is nothing more than a translation of Kudla’s results
in [Kul] to our slightly different setting.

Proposition 2.1. 1. The function 0 is automorphic in the argument 7, i. e. for
T €% and v € T'y(D) we have

0(v(7), 9) = wk(7)i(y, 7)™0(r, 9).
Moreover, it is rapidly decreasing in this argument.
2. 0 is a smooth function on G(Q)\G(A)/G(L)s in the argument g.
3. Define the lifting L = L, ;e 5 by

£(f)g) = / oy STy

for f € My, (To(D),wk/q). Then L(f) is an element of A(puyu,L,x). If f is
a cusp form, so is L(f).

Proof. The first assertion follows from results of Shintani (see [Kul, p. 7]). The
second assertion is easily checked from the definitions. The remaining assertions
may without difficulties be reduced to the results of Kudla: let FF = L£(f) and
gf € G(Ay). Then

F,,(3) = e(det g;)|u(gy) “*‘”/"’ZN “H (B3N (0)Fy, (), (7)

where Fy ., is the scalar product of f and ©,, p, which is defined by

Qg 6(myas9) = 27D N (X, Pi(3)Pn(3) T (X, P-(5)))
XebgysL
e2miN(0) ™ (g s) |a (2iyn(3) ™1 (X, P4 (3))*+7(X,X)) (8)

This theta kernel function is of the type considered by Kudla. The holomorphy of

F,, and the cusp form property follow from his results.

Eisenstein series The theta lifting takes Eisenstein series to Eisenstein series.
To be more precise, let

em,u)K/Q(T) = Z wK/Q(’Y)](’Y’T)_m

Y€l \T'o(D)

1One only has to check that the restriction ¢ = 0(2) made in Theorem 2.2 there is actually
unnecessary.



(T denotes the stabilizer of ico in T'g(D)) be the standard Eisenstein series for
To(D) of character wk /g, normalized to have constant term one. Then the lifting
F =L, e x(€muwy,q) is given by

(N—l)! -3
F(g9) = ——=—wkL(xe >, (p —v)/2) f(v9),
20rVDy weB(@Z)\G(@)
with
Flg;0) = e(detg)|u(a)lY ™" (9 er, Xo) #d((goc €1, Yo))

(xe™*)(e(g5))N(e(gs)) )72,

where ¢(gy) is the inverse of the ideal generated by the entries of g;lel. The function
f, which may easily be written as a product of local factors, has the property

£(bg) = x(2)(x'&)(@)IN(@)|™"* £ (g)

for b = zdiag(a, 1,a !)u € B(A). So our results contain the computation of Fourier-
Jacobi coefficients of Eisenstein series as a special case.

We shortly remark on how to prove our statement. The integral over I'o(D)\$
of €m,wx,, against 6(7, g) may be unfolded to get

F(g) = / o(, g)ymfzdmdy
0o \ 9

and the easy evaluation of this integral yields

Flo) = %s(wgug ) 5 NGl 00
> (X, 9o X0) (X, goo Y0))-

Xebgy L, X#0, (X,X)=0
From this we may deduce the final result by using the transitivity of the operation
of G(Q) on the cone of all X € K3\{0} with (X,X) =0.

Hecke operators We may compute the action of Hecke operators on the lifting.
Let us define for each prime ideal p of 0k (lying above the prime p of Q) a Hecke
operator T}, acting on A(p, L, x) by

T,F(g) = F(gz)dz
Sp
where S, is a subset of G(Q,) defined as follows (see [Shin, p. 19]): if p = p,
Sp={9€ G(Q) | 9(L ®Zp) C (L ®Zy), vp(u(g)) = vp(N(p))},
and if p splits in K,
Sp={9€G(Q) |9(L®Zy) C(LRZLy), detg € pp* ® Zp}.

If F is a Hecke eigenform with central character x and eigenvalues A(p), Shintani
defined an associated L-function ((F,¢,s) for a Hecke character £ of K [Shin, p.

81]: ((F,&,5) = IT, Py (E(pN(p) V)" with

L= A@)x(p) Ntz + Ap)x(p) "N 12® — x(pp )23, p#h,
(1-2)(1 +(N1/2 Ap)x(p) "Nt + 2?), p = pox,
(1—2)1+ (N = Ap)x(p) )Ntz +2?), p|dox.

Pp($)=
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(Here N = N(p).) For a description of ¢ as an automorphic L-function with respect
to a representation of the L-group of G, see [Ku2, p. 340].

The following proposition is again essentially due to Kudla [Ku2]. A general
result was obtained by Gelbart and Rogawski [GeR, p. 469]. Let Wp be the Hecke
involution on M,,(T'o(D),wk /) given by the action of the matrix ( _OD (1] ) (cf.
Section 3.2 below).

Proposition 2.2. If f € M,,(To(D),wk/q) is a Hecke eigenform with eigenvalues
ap, fI\Wp has eigenvalues @p, and the lifting L, e (f) is non-zero, it is again a
Hecke eigenform with eigenvalues

P e (p)ay + p(xe)B),  p#P
Ap) =1 P~ 2(p) (ap + @p) + p(xe™2)(F), pldox,
p*H a2 + 2p% + p, p = poxk,

and we have the relation

CL(f), € 8) = L(fx ®ex '&,s + (u—v)/2)L(e %, s + 1),
where fx denotes the base change of f to GL(2, K).

If f is a cusp form, it is well known that a, = a,. We omit the proof of this
proposition, since it is completely analogous to Kudla’s arguments in [Ku2] for the
special case K = Q(4).

2.2 Fourier-Jacobi expansions

In this section we compute the Fourier-Jacobi expansion of a theta lift of the type
defined above. Let us first recall the relevant definitions from Shintani.

Fourier-Jacobi coefficients Let A be the additive character of A/Q normalized
by AM(2o) = €2™=_ Then the Fourier-Jacobi coefficients of a form F € A(p, L, x)
are given by integration against the center of H:

F.(g9) = o F((0,u)g)\(—ru)du, F(g) =) F(g)
reQ

[Shin, p. 27], [GeR, p. 451]. The form F is determined by the restriction of the F.
to M(A).

The ”classical” Fourier-Jacobi coefficients may be extracted out of this functions
as follows: set for wo, € C and a € Ay

gr,a(woo) =p (( 680 51200 ) ,doo/aoo> Fr((’woo,O)G)C_Wiré(la&|2+|w°°|2). (9)

This depends only on a = (ay) (in particular, not on a. at all) and we, and is
a holomorphic V-valued function in this variable. Indeed it belongs to a space of
generalized theta functions in the sense of Shimura [Shim4]. More precisely, we may
define for a (fractional) ideal a of 0x and an element r € Q=°, such that rN(a) is
integral, the space T} 4, as the space of V-valued holomorphic functions ¥ on C
satisfying the functional equation

ow-+1) = w2 Y ) o), 1ea (o)
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where 1(I) = (—1)"PI'1* is a semi-character on a. Then 9r,a € Ty a;p whenever r >0
and rN(a) is integral, and vanishes otherwise. Moreover, replacing a by Aa with
A € K* we have the relation

9r/N(N),\a ()\U)) = p(dlag(j\a ]-)a S‘/A)QT,a(w)' (11)

We will often write g,.o = gr,q for a = (ay).

Our Fourier-Jacobi coefficients are therefore parametrized by pairs (a,d) con-
sisting of a fractional ideal a of 0x and a non-negative integer d = rN(a). We may
define the space 75, of Fourier-Jacobi coefficients of degree d as the space of all
vectors (ta) € [[acr, Td/N(a),a;0, Such that

tra(Aw) = p(diag(X, 1), X/A)ta(w)-

Obviously always gq = (9a/N(a),a) € Ta,p- After choosing a system of representatives
A for the ideal classes of K we get an isomorphism

Ta,p = @ le/N(a),a;p’
acA

where T C Ty a;, denotes the subspace of theta functions ¢ invariant under the

action of the roots of unity:
I(ww) = p(diag(w™,1),w ?)I(w), w€ok.

The coefficient gy , is the constant term of F' at the cusp corresponding to a. It
is an element of the one-dimensional space Tj,q;p; for p = p,, this space consists
of the constant functions which are multiples of the functional ¥ — (0,1) on S,.
Consequently, 7g,, has dimension hg.

It is easy to extend these considerations to automorphic forms F € A(p, L)
without central character. In this case we define F, as above, and set for a,b € Ax:

gr,a,b(woo) — (( 6_1,80 5’11_100 ) ,C_loo/aoo) Fr(b(woo’O)G)e—wz’ré(\awp-i-lwm‘z)’

where we regard b as an element of the center of G(A). In b this function depends
only upon by, and b = (bs), and the dependence on the infinity component is
described by gr.a.b..6 = €p(|boo|/boc)Gr,a,b fOr bog € C*. We may therefore restrict
tob € Ag . and write g a6 = gr,a,6 for a = (as), b = (by). Except for the additional
parameter b there are no changes, and we get Fourier-Jacobi coefficients gg4,, € 7g,,-
If F has central character x, we have g, 4 v = x(b)gr,q-

For some purposes (operation of Hecke and Shintani operators) it is important
to split the spaces 7g,, into naturally defined subspaces. We have the natural exact
sequence of genus theory

1 — Cl% — Clg — N(Ix)/N(K*) — 1,

so choosing C € N(Ix)/N(K™*) yields a subspace Vg,¢;, of T4, by restricting the
index a to the preimage of C. Obviously 7g,, is the direct sum of this subspaces. It
is not difficult to see that Vg4 ¢;, is canonically isomorphic to Shintani’s adelically
defined space V;,.(p, c) for any representative ¢ of C'in Q* [Shin, p. 29)].

For later use we recall the action of the Heisenberg group on V-valued functions
and the scalar products on T} 4, and 7g,,. For [ € C and f : C — V define

(f)w) =i (0 ) s ). (12)

12



For ! € a* = (rN(a)D) 'a, the dual lattice, 4; is an endomorphism of T} 4,,; it acts
by multiplication with (1), if [ € a.

To define a scalar product on T} q;,, take a scalar product (-,-)y on V such that
p(diag(t,1),1) acts as a unitary operator for |t| = 1 and set

2
O,02) = = [ ((Au02)(0), (Au02) (0w (13)
\/EN(CI) C/a
(Actually, a semi-definite hermitian product on V may suffice, see below.) The A4;
are unitary operators with respect to this scalar product.
To get a scalar product on 7y ,, fix a scalar product (-,-); fulfilling the condition
above and set (z,y)q := (p(diag(a, 1), 1)z, p(diag(a, 1),1)y);. Then set

<ga h) = Z(gaa hu)N(a)—l/2

a

for g = (ga), h = (hq) € 74,5, where a runs over a system of representatives for the
ideal classes of K. In the case of scalar modular forms we always choose (z,y)1 = Zy,
of course.

Ordinary and generalized theta functions The generalized theta functions
introduced in the last paragraph are closely connected to ordinary (scalar valued)
theta functions (cf. [Shim4, p. 580], [Shim3]). Assume (without any loss of gener-
ality) that the representation p is such that V = S, and p(n, 1) acts on V by the
1 =z
01
sentation defined in Section 2.1). For ¢* € V and 0 <! < v write ¢} = *(XV~'Y").
Fix a rational number r > 0. Define now for every A with 0 < A < v a linear dif-
ferential operator d,) from holomorphic functions on C to V-valued holomorphic
functions on C by

(o[ i(u) ={ () (5 4) 7 Fw), 13 A "

0, otherwise.

canonical GLy-action for all n = ( ) (this is certainly the case for the repre-

For a fractional ideal a such that rN(a) is integral, we consider the spaces 7} ,
and T, q;, (here, and in the following, we skip p in T} 4,,, if we are dealing with
scalar modular forms).

Proposition 2.3. The operators d,» have the following properties.

1. d,x commutes with the action of the Heisenberg group, i. e. dyxAq = Ag;pdun
foraeC.

2. d,» is an injection of Ty o into T} q;p.

3. Ty q;p is the orthogonal direct sum of the images of the d,».

4. dyx is compatible with the natural inner products:
(dyraf1,dyr2) = Cux(r)(1,92).

Here the constant C,x(r) is determined in terms of the inner product (-,-)y

onV as
v n/n (v
=2 .
Con(r) =7 lge,,eoW(A) (%) ,

where e; € V is defined by e;(XV~FY*) = §y.
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We remark that it suffices from the above to take a semi-definite hermitian
product (-,-)y with {(e,,e,)y > 0 to obtain a positive definite inner product on
T a5p-

Proof. The first assertion is just a computation from the definitions and the
second is an immediate consequence (take a € a). To show that T, 4, is the direct
sum of the images of d,», we prove by descending induction on [ the statement: the
sum of imd, ) for [ < A < v is the space of all © € T ,;, with ©,, =0 for n < . To
begin, the case [ = v + 1 is trivial, and taking © with all components below [ zero,
the /-th component is an element ¥ of T} ,. So subtracting rid,;9 deletes the I-th
component and we have reduced the statement for [ to the statement for [ + 1.

It remains to show the orthogonality of the imd,,» and the scalar product formula.
For this purpose, let © € T} o, and ¥ € T}, ;. We compute

A dAD — ! —mird|ul? Li = 9 27ird|u|?
(Audirdi(0) =~ )e o) e

1 —éu

for [ > A. Setting p(u) = p(( 0 1

) ,1)O(u), we obtain

2 ~ 1
<@,d,,,\19> WZ(el,eﬁyr <)\)

|

S

21\3
—

a
N

[+
N
Q
“('b
N
<

3
N
> o~
N——

1—) I—X
(3¢ w(u>=%<§—f) or(w),

and therefore we get

<®a duA'ﬁ) = TACV)\(T)i/ ¢A(u)19(u)e27fi’r‘§|u|2du.
C/a

2
v DN(a)

From this we may read off that for ©® € imd, x»» with A’ > X the scalar product
vanishes, since we have ¢y (u) = 0 then. For © = d,,9' we have ¢y (u) = r~*¢'(u)
and the scalar product formula is proven.

Considering p = p,,,, as defined in Section 2.1, we may also define operators

dyx 7717P0,u+>‘ - 7—d,Puy
using the operation of d,, on the components. We have

(dvat1, dvad2) = Cua(d)(V1,92)

for all9; € T3

PO+ "
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Differential operators of Maass and Shimura In this paragraph we recall
some properties of the differential operators Dy studied by Maass and Shimura.
For more information see [Hid, p. 310ff.], for example.
The operator D = Dy, on C*°-modular forms of weight k on the upper half-plane
$ is defined as
1,0 k

D= —(=— + —
b 27ri(07+2iy

)- (15)

It maps forms of weight k£ to forms of weight k + 2 and its n-th power is therefore
defined by D} := Dy 3(n—1) - Dni2Dp. For these powers we have the formula

The adjoint of Dy, with respect to the usual Petersson inner product (-, -) of modular
forms is given by the operator € = (27i)~'y?0/87, which takes modular forms of
weight k to forms of weight k — 2:

<Dkf7 g>k+2 = <f’ €g>k7

for f and g of weights k£ and k + 2, respectively, if at least one of them is rapidly
decreasing.

Intrinsic theta functions Before stating the main result of this section we need
to define the intrinsic theta functions (in the sense of Shimura, cf. [Shim2, Shim4])
associated to K. For a fractional ideal a of K and an integer k > 0 we set

_ k

a w i “IN(a)T+aw

Yap(w,7) = Z (W + %> e2miN(@) T N(a)raw), (17)
aca

for w € C and 7 € . This defines a C°-function on C x £, holomorphic in the
first variable. The special case a = 0k, kK = 0 was considered in the introduction.
The properties of these functions are summarized in the following proposition.

Proposition 2.4. The functions 94,1 fulfill the following functional equations.
1. For X\ € K* we have 9xq 1 (w,7) = A %9, 1, Ow, 7).
2. For «y € T'g(D) we have

Pa (57, 7) 7w, ¥(7)) = Wiy (N (1,7 ak (w, 7). (18)

3. For T € HN K the function V4 (considered as a function of the first variable
w) is a theta function with respect to the ideal L = (1—7)a Y (oxNd~171ok).
More precisely, 9q,(-,7) € Ty, withr = N(a)d 1 (7 — 1) L.

Proof. The first assertion is trivial. To prove the second assertion, we compute
the Taylor expansion in w of ¥, ;. Define for I > 0 the theta functions

ﬁgl) _ Zale%riN(a)_lN(a)T (19)

aca

on ). By results of Hecke (see [P, p. 237, (B.19)]), 9 is a modular form of weight
I + 1 and character wg/q for the group I'¢(D). Furthermore,

2mi O

(N(C‘) 0 ) ,l9l(1l)(7_) _ Zal—i-naneZniN(u)_lN(a)T' (20)

aca
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We may express ¥q,;; in terms of these modular forms as follows:

oo

ﬁak’lHT

9 M) (!

=k
k— 1
J k(DJ,lQ(k J))( ) . (21)

Jj=

This formula is easily proved by expanding the exponential in (17) with respect
to w and using (16) and (20) to express the resulting Taylor coefficients in terms
of the 19&1). Now the second assertion results, since the j-th Taylor coefficient is a
C*°-modular form of weight k + 7 + 1. The third assertion is proved by an easy
argument involving changing the variable a to a + ¢ with ¢ € a in (17). We skip the
details here, since a similiar argument will appear in the proof of Lemma, 2.14.

Fourier-Jacobi expansion of the lifting We give now our first result on the
Fourier-Jacobi expansion of a theta lift. To give an expression for the constant
term, we have to introduce the following partial L-functions: for an element ¢ of
the genus class group CI%" set

x(a)
— N(a)*’

where the sum ranges over all non-zero integral ideals a such that the ideal class of
a is ¢ times a square, or equivalently N(a) € N(¢)N(K*). This implies the relation
L(xo,s) = ZCQCIiKnV o(c)L(x, s). for all ideal class characters o of order two.

Theorem 2.5. Let v and p be integers with m = y—v —1 > 5, f a modular
form in My, (To(D),wk/q) and & and x Hecke characters of weight zero and v + p,
respectively. Then for the Fourier-Jacobi coefficients gr,q of Lo pie,x(f) the following
holds true:

gO,a("/’) = ¢(0’1)6V(Qﬁzz;il)L!wK(EX1)(a)N(a)(V_“)/2
S Lixe %, (1= 1)/2)e Te(f(Maco(0, 7)), i (22)
cECl“‘"

and

gr/N(a),a('w) = ¢(d/a) Z (ESX—l)(b)N(b)(u+u)/2 Z(s)\—u
A=0

beClyk

dun (T (T(DX )50 A 00D ) - (29)

Here b ranges over a system of representatives for the ideal classes of K such that
ab = Z + Z1y for some 19 = 19(ab) € K (here choosen to lie in $)) and Tr denotes

Trro(p)\sLa(2)-

We remark that in the case of Eisenstein series similar formulas were obtained
by Shimura [Shim4].

The proof of the theorem depends heavily on Kudla's paper [Kul]. We use
Kudla’s technique of restricting to the upper half-plane $) embedded into ® as the
subset of points (z,0) and making the connection to the lifting from GU(2) to
GU(2). To get a complete formula, we have to consider all Taylor coefficients in w.
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The following proposition is essentially a restatement of Kudla’s Theorem 6.6.
We include it here, since we need his result in a slightly modified form?2. Consider
the two-dimensional hermitian space V° = K? with hermitian form

— _S—1ztr 0 1

and set 1°(2) = ((z,1), (2,1)) = (2/v/D)Im(z). For a fractional ideal ¢ of K a theta
kernel on §) x ) is given by

0 he(r2) = 27IDTHPY N (X, (2,1))0(2) TH(X, (2, 1))
Xece2
27N T (2iy|(X,(2,1))[2n°(2) "1 4+7(X, X)) (24)

Denote the summand corresponding to X by ®, ,..(X;7,z2). Set

E,(L):= Y M
AeL\{0}

for lattices L C C.

Proposition 2.6. Let ¢ = Z +Zy, 19 € §) be a fractional ideal of ox and p—v > 4
even, f € M,_,(SLy(Z)). Let LY, ,..(f) € M,_,(SL2(Z)) be the scalar product (in

7) of f with the theta kernel ©° Writing L°(f) = > ey arg”, we have

v, pie”

a = (2ﬁ(t2:ri1)L!N(c)“5uEvu(c)f (ic0), (25)

ar = N(o)"** D(Tf)] (26)

T=T70 "

The lifting £° is trivially extended to C'°-modular forms and then compatible
with the differential operator D. More precisely, we have the following lemma.

Lemma 2.7. For integers p and v > 1 with u —v > 6 even, and any C*°-modular
form of weight i — v for the group SLy(Z), we have L) ,1..(Df) = D(L} ,..f)-

Vst

Proof. By the adjointness of D and e,

ngl,u+1 (Df) = <®gfl,u+1’Df> = (679271,;&1,]()-

Therefore we have to show that

0 _ 0
67-91,_17”_’_1 =D,0y,.

We leave the verification of this identity to the reader.

We now begin with the proof of the theorem. To compute the Fourier-Jacobi
coefficients g, /n(a),a Of F = L(f) set g5 = diag(df,l,ayl) for ay € A};’f with
(ay) = a and consider the Fourier-Jacobi expansion of Fy,: it is not difficult to see
that

Fgf (3) = Z glr,a(,w)e%rirz.

r€Q

2The correct statement of Kudla’s Theorem 6.6 should include an additional factor 2~ #, if
M > 1,and 2'~#, if M = 1, in the constant C3. The mistake occurs on p. 16, where a factor 2~#
contained in (6.9) is forgotten afterwards, and on p. 17, where in (6.14) an additional factor 2
needs to be inserted in the case M = 1, since the group contains —1 then. Of course, the mistake
is unimportant for Kudla’s purposes, but here the exact result is needed.
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From (7) we have

Fy, (3) = (@/a) D N(b)~ /2% 1) (0) Fayo (3),
b

where Fyp is the lifting of f against the theta kernel ©,, 5 =: ©qp defined in (8).
By considering Taylor coefficients at zero, we are reduced to computing the
Fourier expansions of the scalar valued functions

1o

ol WFa,b;l(za w)

MOE

w=0

defined on the upper half-plane, where we set ¢ := ¥*(X”~'Y!) for ¢* € V. We
may assume n + [ — v even.
In a first step, we express these functions in terms of the two-dimensional lifting

£°. Evidently 4%, = (0", f) with

S
@gilg;l(ﬂz) = aw@a,b;l(ﬂ (2,w)) o
Explicitly, we have
Oupu(r3) = 227 DTHYE N (X0, (1)) — Xew)H

XcubpbPa—1b

(1°(2) = |w]*)™#(Xsw - X2)""1(XO, (7,1))

6—27”'N(b)_1(—2in(XO,(z,l))—X'ZWIZ(ﬂO(Z)—\W\2)_1+T((X°,X°)—N(Xz))),

1

with X° = (Xy, X3). Taking holomorphic derivatives with respect to w yields

O} (r,2) = 241D #/2(=g)' N (a) ()

min(v—1,n) n—j
> (7 et ()
2\ (=9 \N@)

(Z Yzjcbl,lwnfj;t(Y; 7, zl)>
Yee2

( Z X;—l—jX-;l—jeZM'N(b)_1N(X2)‘r) ,
Xo€b

where we set Y = (X1,N(a)X3), 2/ = N(a)™'z and ¢ = ab.
To transform this further, note that

Y =) (Y, (#,1) - (Y, (<, 1)), VeV

Substituting this for Y> and expanding the power yields

O(ra) = N e 3 (VT (1)

_ a\!
o<k<j<v—t N 7 (n=3)!

4r \"I Zi y—l4n—24 —(i—
(N(b)) (\/5/2)n+k iy I+ 21+k+1n0(zl) (G—k)

O j— ket h—ise (T 2') (E bv I e2miN(e)” N(b)r) -(27)

beb
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Now we have (cf. equation (20))

v—Il—j i
N(b) 9*=1=3 o(n+l-v) _
Z bV—l—jBn—je27riN(b)_1N(b)T _ ( o ) . rv—1-3 195 y T Z v la
nJ i
beb <1\;(—7|—bz)) aa-,-n 119( — Tb) n S v — l,

and we need to distinguish the two cases. We deal only with the first case in the
following, since the second is very similiar. From (16) we compute

v—I v—Il—j
v—i—t o(ntl—v) _ v—I—t\ (n—1t)! _ i (1 2 (nti-v)
b U _Z (V—l—j) (n—j)!( 4my) 2mi 01 % ’

=t

and substituting ¢ = j — k in (27) we finally get (assuming n > v — )

- v—l n—
0 (r,2) = N(a) Ny (=) Y (V t_ l> (2rv/ D)

pord (n—1t)!

( )Du - t,ﬁ("+l V)

u+n+1—l—2tn( ) t(_)O

Y I+t,u+n—t;c

Consequently we have for ng a.b; l( 2):

(n) _ _s\l—v (p+mn) l/ n—l V- (ZW\/_)H i
() = (=5 *N(@) “HIN() 2( PR

12(2") T Ly e (T[(DY 170 1) ().

In a second step, we use our knowledge of the lifting £° to compute the Fourier
expansions of these functions. Write (cf. [Hid, p. 313])

v—Il—t

(Du—l—tﬁ(ﬁmrl*”))f: Z Djfu—z—t,j

with f,_;—¢; a holomorphic modular form of weight u +n — 1 — 2¢ — 2j. Then by
Lemma 2.7

Bu(z) = (=8)*N(a) N (o) " lZ( )%Q)"

v—I—t

VTN (DLLY it i (Tefuime))(2).
=0

Since we know a priori that ¢(™ is holomorphic, we can also take the holomorphic
part of this expression (cf. [Hid, p. 310ff.]). This leaves only the terms with ¢t =0
and gives

v—n—Il (271—\/5)”

n!
v—I ;
1 0\’
2 (%@) Ly jasngie(Tefo-14)(2').
Jj=0

We know from Proposition 2.6 that

¢ (z) = (=6)"""N(a)~+"N(b)

o0

£I+J pin—j(Tefu15)(2") = N(c)rtntt ZajTeznrz
r=0
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with
ajr = DHI(T(Trfy1,5))(r0(c)) = v~ DT (Te(D' £, 1,)) (70 (c))

for r > 0. Therefore ¢a bt = 2opeco €™ with
—v v 277'\/_ n
a- = (=3 ~N(a@)N(o)++ VDS Zrﬂaﬂ

for r > 0. Finally

ay = (—6)’—"N(a)lN(b)"+“(2ﬂlﬂ

— v— n+l—v
UL (T DYDY 19 ) )] (10 (0)).-
Summing over all representatives b we have computed the n-th Taylor coefficient
of g, /N(a),ast @t w =0 (for r > 0 and n > v —I). Using (21) the reader may verify
that the result is in accordance with the theorem.
The constant term may be handled in the same way: the analogous computation
gives

Yorne(/a
(s

IN(0)# )2 B, (ab) Tr(f(1)06,0(0, 7)), 00 -

90.a(¥) = ¥(0,1)6"

> EXT

b

But the values of ¥5,0(0, 7) at the cusps depend only on the class of b in Clx/ Cl3%
(see Section 3.2 below). Consequently, summation over b in these classes yields the
asserted partial L-values and we get the desired result.

2.3 Theta functions and Shintani operators

In this section we review Shintani’s theory of primitive theta functions, give some
complements due mainly to Murase-Sugano [MS] (see also [Ro, HKS]), and explain
the connection between values of certain linear functionals on Shintani eigenspaces
and L-values, which is a reformulation of results of Yang [Y]. We do not present
anything really original, but mainly translate known results to our situation.

Review of Shintani theory We give a short review of the theory of primitive
theta functions. For more details see [Shin, GIR, MS]. To begin, we define the
subspaces of primitive theta functions of the spaces T} q;, and 7, and construct
certain operators £ on the spaces V, c,,.

For each pair of ideals b O a such that rN(b) is integral, there is a natural
inclusion Tr.p;p < T ;- Its adjoint with respect to the natural inner product is
the trace operator

to : Tria;p — Tresp

defined as

ty = Z Y1) A

l€b/a

We may therefore define for each integral ideal ¢ such that N(¢) divides d > 0, an
inclusion

te: Tayn(e),p = Tap
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by using the inclusions Ty/N(ac),a;p “* Ta/N(ac),ac;p» a0d a trace operator
7ot Ta,p — Ta/N(e).p

built up from the t,/. on Ty/N(a),qa;o- The space of primitive theta functions 7('}?::"‘
(resp. Tﬁﬁi;’,?) is defined as the kernel of all trace operators 7. (resp. t,/.) with ¢
as above. These notions are compatible with the decomposition of 73 , into Vg4,c;,-
In addition, we define for each ideal 0, which is a product of ramified primes, a

projector II; on T ;, as

L =NE)™" Y ¢04

l€ad—1/a

(note that ¥ may be canonically extended to a/0 even if 7N(a/0) is not integral —
and this case is the whole point, since otherwise we get a multiple of t,/5). The
definition extends to 73, and Vy.¢;p, too.

Now let b € I}, the group of norm one ideals of K, and take the unique integral
ideal ¢ with ¢ +¢ = 0x and b = cc~!. Then the composition

Ty /N(a),a50 < Tr/N(a),a5;p ol T, /N(a),acc-15p
is a linear operator called £(b). One easily checks that it induces in fact an en-
domorphism of V, c.,. Set F(b) = N(c)"2/2£(b). We call the operators £ and F
Shintani operators.

The main results on these operators are the following: F defines a unitary
representation of the group I (r) (the group of ideals in I} prime to ) on V, c.p. It
decomposes into eigenspaces corresponding to characters  of I3 (r). The subspace
Vﬁrg;:] of primitive theta functions decomposes into one-dimensional eigenspaces
[GIR]. If we associate to each character x of Ix(r) a character k* of Ik (rD)
by k*(a) = Hpinert(—l)”r’(“)n(aafl) (p ranging over the prime numbers inert in
K), then for each k occuring in F the character x* is a Hecke character of K
[Shin, GIR] of conductor dividing »D. For each primitive eigenfunction ¥ we define
0y as the unique product of ramified primes such that Il = ¢, if 9|0y, and
II,¥9 = 0, otherwise. We have always 0y + rox = ox (see below for proofs of the
last assertions).

Taking p = p,,, the Shintani operators commute with the differential operators

dyx : 'TT,PO,,L+>\ =T

sPvp

which split 7, (or equivalently V, ¢;,) into an orthogonal direct sum of v + 1
subspaces. An eigenfunction ¥ € 7, , lies in the image of d, precisely when the
weight of the associated Hecke character k* equals 2(u + A) — 1.

Classical and adelic theta functions In this paragraph we introduce some
adelic function spaces isomorphic to the classically defined spaces T 4;, and Vg c;p-
The content is more or less standard or contained in Shintani.

We begin with spaces of adelic theta functions. Let V = S, and p be such that
p(n,1) acts on V by the canonical GLy-action for all upper triangular unipotent
matrices n. Let A be the additive character of A/Q normalized by \(zo,) = €27

To begin, we define two differential operators D_ and D on smooth functions
on H(A) (the "lowering” and "raising” operator, resp.):

(D_6)((w,t)) = (——) (6((w, )= 0l ) erirdlunc?

(D+0)((w,t)) = (ii> (6((w, t))emirdlwee *yg—mirdjweo*
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We define the space Tﬁp for a non-negative rational number r as the space of all

3

smooth functions 6 : H(Q)\H(A) — V with 8((0,¢)h) = A(rt)8(h) for all h € H(A),
t € A, such that

— 78| Weo |2 1 5_00

is holomorphic in we € Ko = C for all h € H(Ay). Given a fractional ideal a of
K, we define a subgroup H(a)s of H(As) by

H(a); = {(w,t) € H(As)|w € & ¢+ 6wip/2 € N(a)ox }

and we denote by Tf}p(a) the subspace of H(a)s-right-invariant functions in the
space T,

Define the space T}, as the space of all smooth functions 6 : H(Q)\H(A) — C
with 8((0,t)h) = A(rt)8(h) and D10 = 0. The subspaces T,ﬁ%,,(a) are defined as
above. The following simple lemma connects this spaces to the spaces T ;).

Lemma 2.8. 1. The space Tfp(a) is canonically isomorphic to Ty 4, by the map
associating to 6 € Tfp(a) the holomorphic V-valued function

) = =400 ) 0((wes0)

on C.

2. The space TTI?,, is canonically isomorphic to Tﬁp as an H(Ay)-module. The
canonical isomorphism is obtained by taking 6 € Tr‘?l, to the vector © with
(2mis—1)v=J

vv—=1)---(G+1)

0; = D'7g, 1<j<uy;

in the other direction associate to © € T,’,?p just its v-th component function.

The differential operators d, 5 correspond under these isomorphisms to the maps

r (K) DY TA T,

We now introduce adelic counterparts of the spaces Vg c;,. Our definition is
similiar to Shintani’s definition of the spaces Vy,.(p,¢c), c € Q* a representative for
the class C. First consider the algebraic group R over Q defined as the semidirect
product of H with U(1) < Resk/gGrm (the group of norm one elements), where
U(1) acts on H by u(w,t)u™ = (uw,t). Given parameters r and a let V%, (a) be
the space of all smooth functions

¢ : R(Q\R(A) /6 Ko H(a); — C

with ((0,t)g) = A(rt)p(g) and D" = 0.

To every ¢ € V,,f\,,(a) we may associate the functions ¢, € T;%,,((gf)a) for g € AL
by setting ¢, (h) = ¢(hg). By definition ¢, depends only on the norm one ideal (gy)
and ¢yg((Aw,t)) = py((w,t)) for A € K*. Therefore we have in the case p = p,,
for every unramified Hecke character v of weight v + p an isomorphism

vy 1 VA(8) = Vinw N@NE ) @ - (N@) T 2q() 7 T (g, () ars

where o’ ranges over all fractional ideals of the same norm as a, and gy (a') € A ;
is such that a' = (gs)a. For each a’ we let I, denote the isomorphism between
T2,(a') and T, or,, constructed above.
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Under these isomorphisms the Shintani operators on the ”classical side” may
be expressed directly on the ”adelic side”. First, we have for n € K' a ”classical”
Shintani operator F(n) on Ty q;, given by composing the operator F((n)) : Tr,q;p —
Ty, an;p with the isomorphism T qp;p =~ Tr q;p associating to t,, the function tq(w) =
p(diag(n, 1), 7%)tpa (nw).

It is not difficult to show (see [GIR, p. 92]®), that F(n) corresponds to the
operator n*+t”L(n) on T2, (a), where L(n) = N(c)'/2P,l(n),

P, = vol(H(a) ;) /H . olo)ds

is the projector on the space of H(a)-invariants, and (I(n)0)((w,t)) = 6((nw,t))
for 6 € T},

Using this, we may easily give a description of the operator L(b) on V2 (a)
corresponding under v, to y~!(6)F(b) on V, c,,. It may analogously be written as
L(b) = N(c)*/2P,l(b), I(b) denoting right translation by 3~! for some 3 € AL with
(8) =b.

Weil representation and theta functions To construct theta functions in the
adelic setting we use the Weil representation. By the Stone-von Neumann theorem
there exists a unique irreducible smooth representation p of H(A) on a space V
such that p((0,¢)) acts by the scalar A(rt). The representation may be written as
a tensor product V = ®,V, (p ranging over all places of Q, including the infinite
one).

A standard realization of V,, is the lattice model V,, C S(K,,) considered (among
others) by Murase-Sugano [MS]. At the infinite place it may be supplemented by
the Fock representation (cf. [MS], [I, Ch. 1, §8]): Vo C S(K) (the space of
Schwartz functions on K ) is defined as

Voo ={¢: Koc = C| <;5(z)e‘""‘”z|2 antiholomorphic, / |(2)|>dz < oo}
Koo

It is a Hilbert space with the obvious scalar product. The space of ”automorphic”
vectors V2 C V. (i. e. of K-finite vectors under the Weil representation) is given
by the space of all ¢ such that ¢(z)e~™"%" is a polynominal in 2. Denote by
Vo(o") C V24t the subspace obtained by restricting to polynominals of degree at most
v. The action of H(R) on V is given by

(p((w, 1))9)(2) = > rCE==D2H (7 4 w).

Putting everything together we have a global lattice model V' C S(Agx) with
H(Ay)-invariant subspaces V() C V2 C V. The theta functional V — C is
given by 0(¢) = >,k #(2). To every ¢ € V we associate the theta function
0=04: HQ\H(A) — C by 8(h) =0(p(h)$). Trivially 6((0,t)h) = A(rt)0(h).

We may now define operators D and D_ on V compatible with the map ¢ — 04:
namely set

Dy(¢)(2) = rdZed(2),
D_(¢)(2) = (271'@')‘1(8/azw)(¢(z)e—7rir6|z|2)em'rd\zﬁ

From this it is easy to see that for ¢ € V(*) we have 0y € T;’*V. Moreover, the map
¢ — 04 is actually an H (A )-equivariant isomorphism of these spaces.

3To be precise, the proof given there only considers the case v = 0, but carries over to the
general case.
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Murase-Sugano define a (modified) Weil representation M, of KX on V,,. This
extends analogously to V., and we get a representation M = ®p M, of A onV
fulfilling the commutation rule M(2)p(h) = p((2/2)h(2/2)71)M(z2). The structure
of the representations M, for finite p is described by Murase-Sugano. Consideration
of the infinite place does not pose any problems. We obtain at the infinite place the
eigenvectors

6% (2) = FFemr k>0,

with eigencharacters

Mao(2)$®) = (M)W o).

z

We are now able to relate the Shintani operators F(n) and L(n) to the operation
of MonV.

Proposition 2.9. Under the isomorphism between T, (a) and the space V) (a) ~
&N (a)D V},(ap)®Vo(o") of H(a) s -invariants in V) given above the operator L(z/Z)
for 2 € K* withn=z/z € K*(rN(a)) corresponds to

I 0= QR Mu(z) ® Mao(2).

pinert,p }rN(a) p|rN(a)D

Proof. Take ¢ € V(*)(a) corresponding to 0y € T,‘f}u. Since the theta functional
is invariant under M(z) for z € K*, we have

Or()p(h) = 0(p(R)M(2)¢) = O(M(2)p((2/2)h(2/2))¢) = (I(2/2)84) (h),

and therefore to the operator L(n) on T}*, corresponds the operator N(c)Y/2P,M(2)
on V) (a). We may write this as a local product over all places p of Q; if p is non-
split or z is a unit at p, the space Vp(a,) is invariant under M,(z), and the factor
P, is superfluous. If p frN(a)D is inert, then M,(2) acts by multiplication with
(=1)v(2),

On the other hand, z can be a non-unit at a split p only if p f/rN(a)D, and the
space Vp(a,) is then one-dimensional. It remains to verify that

P2 Py, M(2) 6 = b

for such p, 2, € K\, mp = |vp(2p) — vp(Zp)| and ¢, in the one-dimensional space
Vp(ap). This follows from the trace formula of Murase-Sugano [MS, Prop. 7.3]. The
formula given there holds actually for all z, € K* and yields in our case

TrPa, M(2)|v,(a,) = IN(zp)|"/2 (max (s, lyp])

where z, and y, are the coefficients of the expression of z, with respect to some
basis of K,/Q,. Since Vp(ap) is one-dimensional, this is exactly what we need.

It is now easy to transcribe the results of Murase-Sugano on the characters
occuring in the representations M, to our situation. We define local epsilon factors
as in [MS] and [Tat, p. 17] (Langlands’ conventions): if F' is a local field, x a
character of F/* and v an additive character of F', we set

o) =X 5= [ M wtu/od

where ¢ is an element of F'* of valuation a(x) + n(¢), a(x) the exponent of the
conductor of x and n(t)) the largest integer n such that ¢ is trivial on p,". We set
)\K =)Ao TI‘K/Q.
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Corollary 2.10. A Hecke character v of K with y|ax = wg/q appears in the rep-

resentation F on Vg m (i. e., more precisely, the character k of I}-(d) with K* =
appears in this representatzon) if and only if the following conditions are satisfied.

1. The weight of v equals 2(u+ X) — 1 with 0 < X < v.

2. The conductor §, of 7y is of the form dDD,;l, where 0 is a product of ramified
primes. (We then have automatically 9, + dox = 0x.)

3. For each prime p|D and a representative c € Q* for the class C' we have
(5 Ap) Yy (Owicsgp(d/e) = +1.

The k-eigenspace is then contained in imd,y, and for a non-zero element © we have
0o = 0,.

If we consider the whole space Vg c,, instead of the primitive subspace, we have
to change the second condition into: f, = (dt=')Do;*', where t|d is an ideal norm
from K.

From this corollary, we see that for given v and u, a Hecke character v of K
with y[ax = wg/g occurs in some space Vp“m, if and only if 2y — 1 < wt(y) <
2(u+v) —1, and the global root number s('y, 1/2) = +1. Every character satisfying
these conditions appears in precisely one space of primitive theta functions, and the
corresponding values of d and C' may be read off from the corollary.

Connection to L-values (results of Yang) We review some results of Yang
[Y] connecting theta functions with complex multiplication to values of Hecke L-
functions at the center of the critical strip. Our reason for including this material
is the connection to our main theorem (see the next section).

Yang considers a different model (V, p,w) for the Weil representation, the stan-
dard Schrédinger model: here V = S(A) with the standard scalar product

(61, 62) = /A 1@ (2)da,

where we fix a Haar measure on A normalized by vol(Q\A) = 1. He defines a Weil
representation of A} on V by taking a splitting of the metaplectic group over U(1)
(see [Ku3]). The splitting is determined by the choice of a Hecke character x of
K with x|ax = wk/g. We denote the resulting Weil representation by w,. The
normalized theta functional on V' is given by 0(¢) = >__, é(z).

We quote Yang’s main result from [Y, p. 43, (2.19)]: choose local and global Haar
measures on U(1) in a compatible way (we do not require any normalization). For
every character n of Ak, /K ”appearing” in w, (i. e. the local components 7, appear
in the spaces V, for all non-split p) there is an explicit function ¢ = Hp op €V
with
2

2 / 8w (0)B)1(g)dg| = Tam(K)c(0)
K1\Al

. L(x,1/2)
vol(KT\AL )2

Twrl) 2

Here 7} is the "base change” of n to A} given by 7(z) = n(z/2),
Tam(K') = vol(K . 6%)/vol(K'\Ak)

is the Tamagawa number of K, and

c0)=J[a+p ) [[p™a-p1)2

pES pES>
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where S; (resp. S2) is the set of inert (resp. split) primes for which x7 is ramified.
For p € S5 set ny, to the maximum of the exponents of the conductors of x and 7
at p. Yang’s choice of the function ¢ is as follows: at all non-split places p he takes
#, to be a unitary eigenfunction of K} with eigencharacter 7,. In the split case he
defines ¢, in [Y, p. 48, (2.30)]: we have

¢p = o(charz,),

in case x7 is unramified at p, and

¢p = p"/*o(chary i prrz,)

in the ramified case, where charg is the characteristic function of the set .S, and ¢
the intertwining isometry between the "natural” and the ”standard” Schrédinger
models at p given by [Y, p. 47, (2.28)]*.

It is not difficult to translate his results to our situation. Take p = p,, as
above and consider for an unramified Hecke character v of weight v + u the linear
functional £, on 7, , defined by

() =) v(@)N(a) " /204(0;Y"), (29)

a ranging over a system of representatives for the ideal classes of K.

Proposition 2.11. Let (:,-) be the scalar product on V4,c;, associated to the semi-
definite form {(z,y)y = Z,y, on V. Let © be a primitive eigenfunction of the
Shintani operators with associated Hecke character k* and -y be an unramified Hecke
character of weight v + u. Then

|€n(/9(,®®)|> N ifr;b/f [1 —wx/e@r )" Ly 2,1/2). (30)

pld

Proof. Consider the Weil representation (V, p,w,) as above. It is equivalent to
the representation of R(A) on V obtained by combining p and w,. We denote this
representation also by w,. Take a character n of AL /K! appearing in V. Assume
we are given a function ¢’ € V which is an eigenfunction for X = K1 ¢} with
eigencharacter 7j|x. Consider the function ¢(g) = 1(g)0(wy(g9)¢') on R(A) (here we
extend 7 to R(A) by the canonical map R(A) — AL). From the definition we see
that ¢ is a non-zero element of V%, (for a suitable v).

We define ¢' as the projection of Yang’s function ¢ on the 7j|x-eigenspace of K.
We have ¢' =[], ¢},, and ¢}, differs from ¢, only for p € S>. The integral in (28)
remains unchanged if we replace ¢ by ¢'.

On the other hand, by condition [Y, p. 43, (2.18)] for ¢ we have (¢,¢) = 1.
Using the description of the Weil representation at split places given in [Y, p. 44-
48], we may easily verify that projection on the ok,p—eigenspace for a split prime
p € S, induces multiplication of the scalar product with a factor p—™ (1 — p~1)~L.
Therefore

@,¢)=J[ p(-p")"

PES2

Choosing a measure on H(A) subject to vol(H(Q)\H(A)) = 1, we obtain easily

/ 10(9)Pdg = vol(K\Ak ) (¢, ¢').
R(Q)\R(4)

4The printing error |z3a|!/3 in this equation should be corrected to |z3a|'/2.
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Putting this together with (28) we get

2
‘le\Al p(g)dg vol L(x7,1
K _1y-1 L(x7,1/2)
= [[ G-wkpe@pr )=,
Jr@prwy l0)Pdg 2 5, ! L(wr/g:1)

where now ¢ or ¢' may be multiplied by an arbitrary non-zero complex number.
Let a be a fractional ideal such that ¢ or ¢’ are H(a)s-invariant. Using the
isomorphism v, : VA, (6) = V() N(aN(K*);, We get from ¢ a theta function

O = v,y() € Vin(a),N(a)N(K*);p- It is easily verified that

volKC
/ v(g)dg = £,(0)
K1\AL

and

vol/C ©,0).
K

/ lo(g)>dg =
R(Q)\R(4)

Furthermore, © is an eigenfunction of the Shintani operators F with eigenchar-
acter k satisfying k*y~2 = (x77) 1. To prove this, we have to show that L(p/p) acts
on ¢ as multiplication by (x7j)(p) ! for all but finitely many split prime ideals p of
K. Assuming that x# is unramified at p, and that the space of H(a,)-invariants
in V, is one-dimensional, we are reduced to proving (analogously as above), that
pl/zpapwx(ﬁ)_l‘p;) = X(p)_lqs;; for 8 = (p,p") € Kp ~ Qp ® Q. This may easily
be checked using the description of ¢, = qS;, cited above and the description of the
"natural” Schrodinger model given at [Y, p. 44-45, esp. Cor. 2.10].

Putting everything together equation (30) follows for our ©, since L(1,wx/q) =

—j:% by Dirichlet (cf. [Hid, p. 66]). If we take n = 1, and choose x accordingly, a

may be choosen of norm d/r, where d is the unique positive integer such that the
conductor f of x is equal to dD?d~! for a product of ramified primes 9. This may be
seen again by considering the definition of the "natural” Schrédinger model [Y, p.
44]. Tt follows that © has to belong to the primitive subspace in this case. Corollary
2.10 implies that every primitive eigenfunction may be constructed in this way, and
we are done.

2.4 Primitive coefficients of liftings

We now turn to our main result and determine the decomposition into primitive
theta functions of the Fourier-Jacobi coefficients computed above. By the main
result of Shintani’s paper [Shin, p. 68] the Fourier-Jacobi expansion of a Hecke
eigenform is completely determined by the knowledge of the Hecke eigenvalues and
the primitive coefficients.

Statement of the result We interpret a modular form f of weight m and char-
acter w for ['y(D) as a function of pairs (L, z) consisting of a lattice L C C and an
element z € L/DL of order D such that

fOL A z) =Xx""f(L,z), XeC*
and
f(L,tz) =w(t)f(L,z), te€(Z/DZL)*.
We);na,y translate f back to a function on $) by setting f(7) = f(Z +7Z,1+ D(Z +
TZ)).
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Theorem 2.12. Let m > 5, f € Mpy(To(D),wk/q), v and p integers with m =
pw—v—1 and e and x Hecke characters of weight zero and v + p, respectively. Set
p = puy and let g, € T,,, for r > 0 be the Fourier-Jacobi coefficients of L, ;e (f)
and © be an element of the k-eigenspace of ﬁ?;im. Let 0 < XA < v be such that ©
lies in the image of d,x. Then the O-part of g, is given by

(0,9,) = Ciy(r)le-1(0) > (xe) H(e)N(e) 20/

[

T 2(p+A)—1
S (D) f)(L,z + DL) (ﬂ) o (@10, L)N(0,) /2 (31)
(L,z)

Here ¢ runs over a system of representatives for the ideal classes of K and L over
all lattices L C ¢ of index v in ¢. For each lattice L consider the lattices L' C L
with L/L' ~ 7Z/DZ and (ox L')c™' =01, |de and take for each such L' an element
z € L' such that z¢=10~" is prime to rD. The constant C),(r) is given by

1
) = (1 (§) D, ),

Because «* is a Hecke character of weight 2(u+)) —1 and conductor rDdg', the
summands do not depend on the choice of z. We may also describe the summation
condition as: sum over lattices L' C ¢ with ¢/L' ~ Z/rDZ and (oxL')c! = 9|00,
and set L to the unique lattice of index 7 in ¢ containing L’.

For a primitive eigenfunction © with associated eigencharacter x the value
,.-1(®) vanishes by Proposition 2.11 if and only if L(k*’x~2,1/2) = 0. As a
consequence we obtain a direct explanation of the result of Gelbart-Rogawski on
the vanishing of certain Fourier-Jacobi coefficients of endoscopic forms [GeR, p.
468] (in the special case treated here).

We note that in the case of Eisenstein series the primitive coefficients may easily
be expressed in terms of L-values. For scalar valued Eisenstein series this result was
obtained by Hickey [Hic2] (by a different method).

Corollary 2.13. Let Ep, oy, be the (unnormalized) standard Eisenstein series of
weight m and character wi g given by

wi/g(b)

Em w ) = T 1N
wrre(T) (Dar + )™

(a,b)ez2\{0}

and g, be the Fourier-Jacobi coefficients of £, e.x = Lv piex(Em,wi o). Then

90.a(¥) = $(0,1)57 ((L;;i)lg!wx (8X71)(a)N(a)("*u)/2

L(X873’ (/1’ - V)/z)L(wK/Qam)v

and the ©-part of g, (assumptions as above) is given by

@) = Cla)(-2mryD) N A
aye (V) L(K” (Xe)_l,m/Q)EXE—l (©), (32)

with

aye(0) = JJ(1 + (xe) (p)p"—m72V72).
plo
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Proof of the primitive coefficient formula We now turn to the proof of the
theorem. It relies on the connection between the intrinsic theta functions ¥g ,_,
and the Shintani operators £. We begin by "expanding” Hecke operator and trace
in Theorem 2.5.

We denote by g, /n(a),« the Fourier-Jacobi coefficients of £, ¢, (f) for an integer
r > 0 and a fractional ideal a of K. Then an easy calculation shows

g aw) = e(@/a) D (€x ) (E)N(p)
beCly

Z SAvpAtr—1 Z gz~ (v=2A+1) (D)‘f) (L, z+ DL)

A=0 (L,z)

dyr [95,,_A(réz™ w, 1, (10(ab)))] . (33)
Here L ranges over all lattices of index r in ¢ = ab = Z + Z7y, and for each
sublattice L' < L with L/L' ~ Z /DZ one chooses a primitive element z € L' and
takes vz, € Z**? with positive determinant such that v(7?) = (}) and Z?y(7?) = L
(of course, this means that z has to be primitive in L, too). Because of Proposition
2.4 all the individual terms in this sum are elements of T} /N(q),q;p and do not depend
on the choice of z.

Let © = (©,) € TP5™ be as in the statement of the theorem. Write © = d,,» (?)

with 9 = (9,) € TPH™ . Then

T5P0,p+X "

(©,9:) = () r 2713 (ex ) (@N (@)=

Z(Efsx) (C)N(c)(u+u)/2 Z xf(uf)&l)

c (L,z)
(DX f)(L, & + DL)(Ja, 95, _x(réz " w,7L.2(10(0)))).  (34)

At this point we insert two intermediate lemmas. We begin with the calculation
of the scalar products.

Lemma 2.14. Let a, b be non-zero ideals of o with ¢ = ab = Z + Z7y and 9, €
T, /N(a),a- Let v € Z**2 be of determinant v and set x = j(v,7). Let 0 < X < v,

Then
(dur(PY4))(0;Y")

with the operator

p_ Z efwiN(zc_1)Tr(’Y(TO))N(aa_1)Aa. (35)

a€Z~1ta/a

Proof. Write 95 , 5(réz w,y(10)) = 3, fo(w) with

_ v—A
fa(u)) = <—N:Zc)> (U) + N(a)c—m—;—l)1/—/\627ri('y('ro)N(ab_1)+a7'5z_1w)’ a € b.

It is not difficult to see that

JotobN()-1 = Abfa, bE
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(where we take the A, associated to T;/N(a),q, Of course), which yields

ﬁﬁ,ufk(ré.w_lw”‘Y(TO)) = ZAb Z fa

bEa ach/za—1
Therefore we can unfold the integral over C/a in the scalar product to obtain:

Fsalroa w3 00) = s | T 0w (o) 0a(w

e_ZW\/BTN(a)_l‘ulzdu

_ 2 T v 727ri'y(7_'0)N(a[‘1_1)
~ VDN(a) \N(9 2

a€b/za-1

/ eZwiréa‘c_laﬂ(a + N(a)x_la)”_’\ﬂa(u)
C

e—21r\/BrN(a)_1\u|2du-

The integral occuring here may be evaluated by using the formula

_ A wl? m
[0t rw)e N dw = 19 (0)
C
for holomorphic functions f such that the integral converges absolutely. We get
(95, A(réz 'w,7(10)), 9a) =

v—2XA
1( zN(a) ) 3 - 2miv(7o)N(ab ™)

Dr 27/ DrN(c) ach/ma-1

b

d\" 1\ 2mi6rN(a) = (—=N(a)o~'a)w
(%> (ﬁa(w—N(a)m a)e )

w=0

and substituting a + —N(a)z~1a gives the result.

We now make the connection to Shintani operators.
Lemma 2.15. Given a primitive theta function ¥, € Tf;li\}?a)’a and two lattices
L' < L, where L has indez r in ¢ and L/L' ~ 7/ DZ, we may distinguish two cases.
In the first case, where © = (0x L')c™! is not a product of ramified primes, we have
P9, =0 for any primitive z € L'.

In the remaining case, where 0 is a product of ramified primes, after choosing
z such that zc¢=10~! is prime to rD, we have PY, = N(zbc_l)I/Q.F(ﬁlprm;rl)l'[aﬂa
with my, = Z¢ o~k

Proof. Notation as above, we set m = Z¢ !, which is an integral ideal. We first

show that P9, = 0 if 09 = (oxL)c ™! # ox. Certainly 0y is an integral ideal the
norm of which divides r. By definition 09 divides m.
Take y € 3, 'a. Since 0 = N(zc1)y(r) € dom, we may verify that

PAy — Z ef7r'i(Tr(zf)N(au_1)+rN(a)_1'1‘1'(6&y))Aa+y

aem~la/a

— e7rz'Tr(0')N(ya_1)P — ,w(y)P,

and consequently Pt /5, = N(dg)P. Since 9, was supposed primitive, we get PY, =
0, if 9¢ is nontrivial.
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Assuming (0xL)c™! = ok, we know that 0 = (oxL')c™! | Dok. So 0 is either
a product of ramified prime ideals or there exists p| D dividing 9. Since ¢/L' is of
order rD with a cyclic subgroup of order D, and L' C d¢ C pc, p has to be a divisor
of r. Arguing as above, we may conclude that Pt,;; = pP for the prime ideal p
above p, and consequently PJ, = 0.

Consider now the case that ox L = ¢ and 0 is a product of ramified primes.
Obviously it is possible to choose z € L', primitive as an element of L, such that
z¢ 107! is prime to rD. We get m = dmp, with mp, + My, = ox. By writing
a=ay +ap with a; € m_'a/a, a; € 9 'a/ain the definition of P, we may factorize
the operator P as P = P, P», where

P = Z efwiT‘r(a)N(ala_l)Aal’ P, = Z eﬂrmw)N(aga—l)Aa2

a1€myta/a az€v"la/a
It is easy to verify that P» = N(0)II,, since Tr(c) € N(?) and the exponential
collapses to 1(a). By choosing representatives a; € Wmp,m;'a/mya, we see that
Py = £(my,m;!) for the same reason. The lemma is proved.

We remark that the operators P = P ;) are connected to the local operators
considered by Murase-Sugano [MS].

We now are able to finish the proof of the theorem. Take in (34) a summand
corresponding to a choice of ¢, L and L'. From the lemmas above we see

(95,52 (rée ™ w,v(10)),8a) = Cdyr((PYa))(0;Y")

= C|m|N(Oc_1)1/25*(mc_10_1)
dyr(Yamm-1)(0;Y")
2\ 2wty
= Clz| (m) N(@@c )Y 26* (zc 107 Y)
Ogec-1(0;Y")

=5 (A) <N€a)>A (‘aNx«))H’

whenever (0x L')c™! = 0|0y and z € L' is primitive with zc=10~! prime to rD. All
terms with (0xL')c™! =0 f0y vanish. Putting everything together we get

<®,gr> = ,I,)\(’r') Z(gx—l)(a)N(a)(#—V)/Z 2(6—3X)(C)N(c)(m+2/\)/2

a

with

3" (D*f)(L,z + DL) (i

(L) &
E*(zc1071)0 4ee-1(0; YY).

2(p+A)—1
) N(D)l/2

Making here the substitution a + at/c allows to write the sum as a product of
the sums over a and ¢ and yields the desired statement. (We may now discard the
condition ¢ = Z + Z7 and do not need to require z to be primitive.)

3 Integrality and reduction modulo /

We now come to arithmetic applications of the Fourier coefficient formulas obtained
in the previous chapter. In the first section the integrality of the lifting is established,
followed by a study of the kernel of the resulting map on the level of "modular
forms mod ¢”. After a subspace of the kernel, called the ”trivial kernel”, has been
constructed, we state the central non-vanishing theorem for split £ in Section 3.3,
and give the first part of its proof. The proof will be finished in the next chapter.
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3.1 Integrality of the theta lift

After recalling some facts on elliptic modular forms and defining the basic notions of
arithmetic and integral theta functions, the main object of this section is to prove
the integrality (except for the constant term) of the (suitably normalized) theta
lifting. This will be done by expressing the value of a Fourier-Jacobi coefficient at
a point € K in terms of elliptic modular forms, from which integrality may easily
be deduced.

Geometric interpretation of elliptic modular forms We have to recall briefly
the geometric interpretation of elliptic modular forms following Katz [Kal, Ka2].
From this point of view, modular forms are sections of certain line bundles on moduli
schemes (or stacks), or functorial applications on "test objects”.

For an elliptic curve E over a ring R, let E[N] be the kernel of multiplication
by N and ey : E[N] x E[N] — pn the canonical alternating pairing (Weil pairing).
In Katz, for an integer N a (naive) level N structure (or I'(V)-structure) on E/R
is an isomorphism (of R-group schemes) a : (Z/NZ)? — E[N]. The existence of
such a level structure implies that N is invertible in R. It is obviously equivalent
to consider isomorphisms « : 0x /Nog — E[N], as we will do later. To each pair
(E, o) we may associate the discrete invariant det «, a primitive N-th root of unity,
by en(a(z),a(y)) = (deta)™@ ') A (naive) I'y(N)-structure on E/R is an
inclusion ¢ : Z/NZ — E[N].

A T1(N)-test object over R is a triple (E,w,%) consisting of an elliptic curve
E over R, a nowhere-vanishing invariant differential w on E and a naive I'{(N)-
structure on E/R. A modular form over a ring R, of weight m for the group I'; (IV),
is now defined as a rule associating to each I'; (IV)-test object (E,w, 1), defined over
an R-algebra R/, a value f(F,w,i) € R' depending only on the R-isomorphism
class of the test object, subject to the conditions that the formation of f(E,w,1)
commutes with base change over R, and that it is homogeneous of degree —m in w:

f(E,  w,i) = X""f(E,w,i), AeR™.

In addition, we require holomorphy of f at the cusps (see below). We denote the R-
module of these forms by M,,(I'1 (N); R). For a Dirichlet character x : (Z/NZ)* —

R* the submodule M,,,(To(N), x; R) is the module of all f fulfilling the additional
condition

f(E,w,i0z) = x(2)f(E,w,1),

for z € (Z/NZ)*. In the same manner, we define I'(V)-test objects and modular
forms for T'(N).

The definitions given above make (geometric) sense, since the corresponding
functors (isomorphism classes of elliptic curves with I'(V)- or ' (V)-structure) are
representable by schemes (more precisely, smooth affine curves) over Z[1/N] for all
N > 3 (resp. N > 4 for I'1(NN)). So geometric modular forms are sections of certain
invertible sheaves on the compactified moduli scheme obtained by adding a finite
number of points (cusps). The I'; (IV)-moduli scheme is geometrically connected,
while the T'(N)-moduli scheme has ¢(N) connected components over Z[1/N,(n]
corresponding to the values of the discrete invariant det . We know that for an
ideal I of R base change from M,,(T'o(N), x; R) to M, (To(N), x; R/I) is surjective,
if 6 order(x) is invertible in R/I (cf. [Kal, p. 85])°.

We have the important special elliptic curve Tate(g) (the ”Tate curve”) over the
ring Z((q)) of finite-tailed Laurent series over Z. It may be viewed as an algebraic

5We may relax this requirement to t order(x) invertible, where ¢ is the L. c. m. of the orders of
the torsion elements in the subgroup I'g(N) D I' D I'y (V) defined by the kernel of .
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version of Gy, /q%, and carries a canonical invariant differential wca, deduced from
dg/q on Gy,. If the ground ring R contains the N-th roots of unity, we may give
Tate(q) a T'(N)-structure a over R((¢*/N)), and evaluate f € M,,(I'(N);R) on
the test object (Tate(q),wean,@) to obtain an element f(q) € R((¢'/V)), the g¢-
expansion of f at the cusp determined by a. Holomorphy of f at the cusps means
that the g-expansions are already in R[[¢'/"]]. The same thing works for T'; (N)-
level structures. In this case special level structures on Tate(q) are given by the
inclusions i¢y : @ +— (% for (y € uB™. They give g-expansions in R[[¢]] depending
on the choice of the primitive N-th root of unity (x.

The g-expansion principle [Kal, p. 83] says that modular forms are determined
by their g-expansions: assuming again that R is a Z[1/N, (y]-algebra, a modu-
lar form (of level N) having g-expansion zero at at least one cusp on each con-
nected component of the moduli space is necessarily zero. In addition, if a modular
form over R has one g-expansion on every component defined over a Z[1/N,{n]-
subalgebra S, it descends to S.

Let us describe the link with the situation over the complex numbers: to a lattice
L CC and a point ! € L/NL of order N associate the I'1 (IV)-test object (E,w,1)
over C by setting £ = C/(2mi)L, w = dz and i(z) = (2mi)zl/N + (2mi)L € E[N].
In this way every complex analytic modular form (viewed as a function of pairs
(L,1)) corresponds to a geometric modular form over C, and the correspondence
preserves g-expansions if we make use of the canonical choice (y = €*™/N of a
primitive N-th root of unity (this property is the reason for the factor 27 in the
definition). By the g-expansion principle a modular form is already defined over
a subring Z[1/N,{n] C R C C, if and only if it has its g-expansion coefficients at
some cusp in R.

The (tautological) rationality and integrality property of modular forms de-
fined over R may be phrased in the complex analytic context as follows: for
f € M, (T1(N); R) we have f(L,z+NL) € R, if L is the period lattice of a nowhere-
vanishing differential w on an elliptic curve E defined over R, and z € L/NL the
point corresponding to i(1) for a I'1(N)-level structure ¢ defined over R. The fol-
lowing lemma (due to Katz [Ka2], [Ka4, Theorem 2.4.5]) extends this even to the
non-holomorphic derivatives D” f, if we restrict to elliptic curves E with complex
multiplication (and disregard primes dividing the discriminant of the endomorphism
ring).

Lemma 3.1. Let (E,w,i) be a test object for I'1(N) defined over a ring Z[1/N] C
R C C and let E have complex multiplication by an imaginary quadratic number
ring (order) o. Then (DY f)(L,z + NL) is an element of R[1/disc(0)], if L is the
period lattice of w, and x € L/NL corresponds to i(1). The same assertion holds
for T'(N)-test objects.

Arithmetic and integral theta functions We come now to the basic defini-
tions of arithmetic and integral theta functions. The notion of an arithmetic theta
function was introduced by Shimura [Shim4, Shim2]. Given a K-rational represen-
tation p of GL2(C) x C* on a complex vector space V = Vi ® C, we define for every
field C D L O K?, K2 denoting the maximal abelian extension of K inside C,
and parameters 7 and a, the L-vector space Ty q;,(L) C Tr,q;, of L-arithmetic theta
functions as the space of all ¥ € T} ;;, such that

B(A;9)(0) € LV, z€K.

Here B € GL(V) is a po-regulator in the sense of Shimura [Shim4, p. 577-580] for
the G, -representation

po(z) = p(diag(l,27"),27")
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(note that our p differs from Shimura’s, since we are using Shintani’s conventions).
We know by [Shim4, p. 590, Prop. 4.7], that Ty q,,(L) ® C = T} q;p. The notion of
arithmeticity may trivially be extended to define subspaces 7g,,(L) C 7q,p.

For the representations p,,, which are certainly K-rational, a p-regulator may
be constructed as follows: take a period Q¢ € C* such that A(2miQgok) is a unit
in K, or Q32 = (2mi) '2A(0ok)u for a unit u € K (the possible values of Qg
form a coset in C* /(Z* N K2P)). Then B = By := diag((Dg)", ... , DQq, 1).

Note that the Shintani operators £ and F act on the space of arithmetic theta
functions; consequently the decomposition of 73, into eigenspaces is arithmetic
(takes place in Ty ,(Q)).

We now proceed to generalize this notion and define integral theta functions
(with respect to a ring R). This notion was introduced (in the scalar case) inde-
pendently by Hickey [Hicl], Larsen [Larl, Lar3] and the present author [Fi]. We
take p = p,, acting on V =V, ®,, C (where V,, is the ox-dual of the module
of polynominals with ox-coefficients) and define for every ring C D R D K**NZ
the R-module T} q,,(R) C Ty q;, of R-integral theta functions as the space of all
¥ € Ty q,p With

B(A,9)(0) € RV,,, z€K,

where B = B(a) € GL(V) is now an integral regulator. In terms of a period
Q(a) € C* such that A(27if2(a)a) is a unit in K?P, we have

B(a) = diag((DQ(a)N(a))”,... ,DQ(a)N(a), 1).
The periods Q(a) and Qg are related as follows.

Lemma 3.2. Let a be a fractional ideal of K and aa) € K2 with aZ = aZ
(such an element exists certainly in the Hilbert class field of K ). Then the number
a(a)Q(a)Q ! is a unit in K2P.

Proof. See [Lan, p. 165, Th. 5].
We now define the submodule 73 ,(R) C 75, as the space of all ¥ € 75, with
a(a)”T#N(a) ™" Vq € Ta/N(a),a;p(R), where a(a) € K is as above. Equivalently,

Bop(diag(a(a) ),1),a(a)/a(a))(4:94)(0) € RVoy, € K.

Generalizing Shimura’s aforementioned result on arithmetic theta functions, we
have that even integral theta functions generate the full space over C: T} o,,(R) ®r
C = T7 q;p- In the proof of the integrality theorem below, we will need the following
density lemma.

Lemma 3.3. Ifr, a and p are as above, £ is a prime, and g € T} /N(a),a;p With
B(a)(Aw9)(0) € Z(y)Vox

for an infinite number of elements w € K/a of order prime to £, then g is Z(e)—
integral. Furthermore, if £ is a prime ideal of Zy), and

B(a)(A44,9)(0) € £Voy,
for infinitely many w € K /a of prime-to-£ order, we have g € STT/N(Q),a;p(Z(e)).

To get a better picture of the situation, we interpret integral theta functions
geometrically. Consider the elliptic curve E, = C/27iQ(a)a. It descends to Q and
even to Z, since CM elliptic curves have potentially good reduction everywhere. Our
condition on Q(a) ensures that w, = dz is a nowhere-vanishing differential over Z. In
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the scalar valued case v = 0 we know that T}./n(a),q;p is the space of global sections
of L®" over C for a symmetric line bundle L of degree D on the elliptic curve E,.
Since L may be defined over Z, integral theta functions correspond just to sections
of the bundle over Z (cf. [Hicl]). In particular, we are able to reduce integral theta
functions modulo a prime ideal £ of Z to obtain sections of the reduction L on the
reduced curve E,.

For vector valued theta functions, we have to change the vector bundle slightly
(by the regulator B(a)) to get an object defined over Z. More precisely, T} /x(a),a;p
is the space of sections of the rank v + 1 bundle V,, ® L®", where V, is a v-fold
extension of O by itself; explicitly it is obtained as V,, = (V, x C)/a, the action of
a being

l(v,w):(p(((l) il_>,1)v,w+l), lea

Since V,, is the v-th symmetric power of V;, we have to look at the extension
0—0g — Vi — 0O —0,

which is determined by its extension class in Ext!(Op,Op) ~ H'(Og). An easy
computation shows that it is equal to DN(a)Q(a) times the generator of H'(Og)
dual to w, (via Serre duality). Changing everything by B(a) we get a vector bundle
V2ar defined over Z.

Turning to the assertions made above, it follows now almost trivially that
Ty a;p(R) ®r C = T} ;- Lemma 3.3 is a consequence of the (Zariski) density of
the set of torsion points of prime-to-£ order in the reduction of F, mod £.

Now we are able to define R-integral modular forms in the spaces A(p, L) and
A(p,L, x): aform F € A(p, L, x) is called R-integral if g4 € 74,(R) for all d > 0.
The R-module of these forms is denoted by A(p, L, x; R). In the same way, we have
F € A(p, L; R) precisely when a(b)~(*+#)N(b)(»+#)/2g,, € Ty ,(R) for all d > 0.
Taking R = K, we recover Shimura’s notion of arithmetic modular forms [Shim4].
We also have a naive notion of modular form over F; as a formal g-expansion
obtained by reducing the g-expansion of a Z(g)—integral modular form modulo a
prime ideal £. In Chapter 5 we will sketch a geometric treatment of modular forms
analogous to the theory of geometric elliptic modular forms summarized above.

More intrinsic theta functions In order to prove the integrality of the theta
lift, we have to introduce certain theta functions on the upper half plane closely
connected to the intrinsic theta functions considered so far, or more precisely to
their values at points in K.

For a nonnegative integer k, a positive integer N, a fractional ideal a of K and
a function ¢ : (N§)~'a/a — C consider the theta function

Wa() = D aFp(a)emiNN@TIN@r (36)
a€(N§)~ta
on §).
Lemma 3.4. Let k, N, a, ¢ be as above and v = (*}) € To(ND). Then
k . k
I (V1) = wicso (i, )98 ()
with

(pl(a) — (p(da)eZW'iNN(a)_lN(a)bd’ a € N la

Consequently 1951’?(2, is a modular form of weight k + 1 and character wk g for the

group T(ND). 1If ¢ is supported on N~ 'a, it is a modular form for the group
To(ND)NT(N).
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Evidently, in case N is relatively prime to D, we have To(ND)NT(N) = T'o(D)N
T(N).

Proof. This is just a restatement of [P, p. 237, (B.19)] (the result is essentially
due to Hecke).

Integrality theorem We now state the main result of this section.

Theorem 3.5. Let v and p be integers withm = y—v—12> 5, and € and x Hecke
characters of weight zero and v + u, respectively. Define an arithmetic variant of
the lifting Ly, e x : Mm(To(D),wk/q) = Alpvu, L, Xx) by

Ear

v, i€,

= Qa("+ﬂ)£

V€, X "

Then the lifting L2 preserves integrality away from D, except for the constant term:
fOT f € Mm(FO(D)7wK/@7 Z[]‘/D]) we have Fal‘ = ‘szp;a,x(f) € A(leMLaXiQ) and
for every d > 0 the degree d Fourier-Jacobi coefficient g5° of Far lies in Tq,,(Z[1/D]).

Furthermore, for a split prime £ fD we have

[’lzfu;s,x (Mm(ro (D)’ WK/Q; Z(l))) c A(puua L, x; Z(g)),

i. e. the constant term is £-integral too, except in the case where v =0 and (£—1)|p.
For inert ¢ the same statement holds if ({ —1) f(u—v) or v =0.

Arithmeticity of the lifting £3* (i. e. the assertion Fu. € A(pyu, L, x;Q)) was
proven by Kudla [Kul] in a more general context. The case of Eisenstein series
had been treated earlier by Shimura in [Shim4]. A (somewhat weaker) result on
integrality of scalar valued Eisenstein series was obtained by Larsen [Larl, Lar3].

To prove this theorem, we need to evaluate the Fourier-Jacobi coefficients of the
lifting at points of finite order. A convenient expression for these values is provided
by the following proposition. As usual, we denote v(X”'Y!) by v, for elements
veS).

Proposition 3.6. Keeping the notation of the theorem, let r > 0, a a fractional
ideal of K, and w € M ~'a with (M,rD) = 1. Then we have for the Fourier-Jacobi
coefficient g, /N(a),a Of Lo e (f):

v—l
(Awgr/N(a),a)(0) = (%) (ex 1) (a)N(a)¥—#)/2

Z(X‘€_3)(C)l\T(c)(“—'/)/2+l

[

D! [T, Trry(pyr ez o) (950, ) |

7=70(c) ’

where ¢ = Z + 19(¢)Z, 10(c) € $, runs over a system of representatives for the ideal
classes of K, b=ta !, and ¢ : M—2b/b — C is defined by

(P(CV) = )\(C(—N(C)71MC%’U_]TO)eﬂ'"N(C)_lTr('ro)N(wu_l),

if M?a = rN(a)~1(Mw) (Mb), and o(a) = 0, otherwise.
Here \c is the additive character of C defined by \c(x) = e27i(z+7),

Admitting this result for the moment, we may deduce the theorem as follows.
Let f € Mu(To(D),wk/q; Z[1/D]). Then for 7 > 0 the modular form

h= a(b)l*"TTTrpO(D)nr(MZ)\r(MZ) (fﬂﬁ,’j;”)
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is integral over the ring Z[1/DM], since a(b)l_”ﬁgf‘; Y is (consider the Fourier ex-
pansion). Consequently, (D'h)(7o(c)) € Q(c)**'Z[1/DM).

Furthermore, it is elementary that for a Hecke character v of K of weight w,
and a fractional ideal a prime to the conductor, y(a)N(a)*/2a(a)~? is a unit. Using
this, we get easily from Proposition 3.6

Byp(diag(a(a) ), 1), () /(@) (Auwgr)x(a),0) (0) € Z[1/DM]Vo,

for w € M~ 'a. Invoking the ”density lemma” (Lemma 3.3) for each prime £ /D,
we conclude g2* € 7, ,(Z[1/D]) for all r > 0.
It remains to consider the constant term. Write

g (W) = 9(0,1)(x te)(a)N(a) /2

2,4 3™ (xe ) (N2 D (B (O Te(F9.0) (i00),
ceClg

where E}°™ is the Eisenstein series of weight k for SLy(Z), normalized to have
g-expansion —By/2k + g + ... If now £ is a split prime, and v = 0, we see that
E°™ is (-integral if not (£ — 1)|u, the case we excluded. This quickly gives the de-
sired statement. If v > 0 (and pu arbitrary), let io : Q < C and iy : Q —
be embeddings. By Katz’s comparison theorem [Ka2] there is an ¢-adic mod-
ular form ¢ = 6”(E;*7") (with Serre’s differential operator § = gd/dg) taking
the value igigol(Q(c)_(”+”)D”(EE‘lr,§“)(c)) on the suitably trivialized elliptic curve
C/(2m9)Q(c)c. The derivation € kills the constant term, and ¢ is integral, which
gives what we want. In case £ is inert, we have to use the vanishing of the Hasse
invariant to deduce integrality. We omit the proof, since we will not consider the
inert case in the sequel.

Proof of the torsion point formula We now turn to the proof of Proposition
3.6. We begin by restating the result of Theorem 2.5 on the g, /n(q),q in a slightly
different way:

Jom@a®@) = (X H(@N(@) /237 (xe ) (ON() /2 37 A
[ A=0

dl//\ [TT (TrFO(D)\SLz(Z)((DAf)(T)ﬂﬁ,uf)\(r&w’ T))) | T=T0(C)] .
Here we may expand Hecke operator and trace to obtain:

T, (Trro(D)\sLa(z)((D* ) (1) 95— 5 (rbu, T))) |T:T0

= LN ()TN (D) ((70))
Y€ETo(D)\ M.

05,02 (183 (v, 70) " u, ¥(10)), (37)

where M, denotes the set of all matrices in Z2*? of determinant 7.
To compute (Awgr/N(a),a)(0), we look at the resulting terms separately. Most
of the necessary computations are contained in the following lemma.

Lemma 3.7. For a fractional ideal a of K, T € H N K, and w € C, we have

Audtas >0 = (LY (Dviar ookt
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with

1951"11,2 Z a’ l>\C (a— a0/2)a0TN( ) ) 27iN(a) "' N(a)o
acatag

for ap = N(a)w /(7 — 7).

Proof. By an easy calculation we have for u € C

a u *
(AuwPai (@) = > <W+:)

ac€atag
)\C(_(a _ ao/z)aoTN(a)—l)eZWi(N(a)_lN(a)T—i-au).

From this the assertion follows as in the proof of Proposition 2.4.
Applying this lemma to the individual terms in (37) we conclude

(Awgr/N@),a)i(0) = (ex™ ) (a)N “+H>/22 ) (w2
o (N@Y (1 nrpytvmmr
;)5)\ ( . ) ()\)N(b)l r +A—-1
3 i (0) EH (DA ) (v(70(c)))
"/EFO(D)\M,,

(r63 (7, 70(c)) 1) MDY, ) (v (0 0)))
= 8 (ex (@N(@) M2 3 (xe =) (ON(e) =)/

D! [ > i)

YETo(D)\ M,

, (38)

T=79(c)

f(v(T))ﬂﬁf;,Q(v(T))]

with

IO = 3 o (= (o — Gy /2)ayy(ro)N(b) 1) e2mN ) N7
a€b+a,

and ay = —réN(b)w/ (5 (7, 70) (v(70) — ¥(70)))-
It remains to write the sum over y as a Hecke operator and trace again. Let us

identify the individual terms with values of theta functions of the form 19&1?0 Assume

that £ € M~'a for a positive integer M and let v = (g 3) € M., z = j(v,710(c)).
Then a, = zw/N(a) € M 'b. Furthermore,

ey (7) = M9V ()
with N = M?, where ¢, : M ~2b/b — C is defined by
(P'y(a) — Ac(—N(C)ilMOt’lII(aTO + b))ewz’N(c)_1’I‘r((aro+b)(c7"0+d))N(wa_1)’

if M2a = zN(a) " (Mw) (Mb), and ¢ (a) = 0, otherwise. Let us now assume that
(M,rD) = 1. From Lemma 3.4, we know that the functions 19&,’;:) are modular
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forms for the group I'(M?) NTy(D). By [Shim1] the Hecke operator 7). on forms of
weight k on T'(M?) is defined by

(TR)(7) =1 3" j(r 1) h(x(7),

YET(M2)\A!,
where

1 0

=tgenlo= (o ) ) 0r,

Consequently, for a form h of weight k on T'(M?) N Ty(D), we have

(T (Trr(azynro(p)\r(m2)h)) () = 771 > 3 7) 7 R(y(r).  (39)
YED(M2)To(D)\A,

Now under our restrictions on M the obvious map from T'(M?) N Ty(D)\A! to
To(D)\M, is a bijection, and we may in (38) choose representatives v € AlL. It
is clear that for such v we have ¢, = ¢, where ¢ is as in the statement of the
proposition. Using (39), the proposition is proved.

3.2 The trivial kernel

In the last section we constructed for any prime £ /D a map

LYo My (Co(D),wr/q; Ze)) = Alpu, Ly X Lwy),

V,[3€,

where M, = M, as long as we are not in the ”exceptional cases” of Theorem 3.5,
where we have to restrict to cusp forms by setting M, = Sp,.

Fixing embeddings i, : Q — C and iy, : Q — C;, we may extend this to
coefficients in Z, and (assuming £ > 5 to ensure surjectivity of base change) by
reduction modulo ¢ consider

Lyyzs : My (Co(D),wr/o; Fe) = Alpuy, L, X; Fe).

It is certainly interesting to investigate properties of this map on the level of
”modular forms mod ¢”. Our goal will be a precise determination of its kernel, at
least in the case when ¢ splits in K. In this section we will determine a certain
subspace K of M, (To(D),wk/q;Fe), which is certainly contained in the kernel.
The lifting vanishes mod £ on this subspace for (in principle) rather simple reasons,
although the proof contains tedious computations in some cases. On the other hand,
a precise result on the kernel is much more difficult to obtain. We will show later
that if £ is split in K (and does not divide 2hg) the kernel is in fact precisely equal
to the subspace K. The case of £ inert in K is of a different nature. At least for
v = 0 the kernel has to be "much bigger” than in the split case, essentially because
the lifting of a modular form in M., (To(D),wk/q; ;) depends only on its values at
the finitely many supersingular elliptic curves in characteristic £ (see the remark at
the end of this section).

W-Operators and associated idempotents In this section, we define the
W-Operators of Atkin and Li [AL] acting on the spaces M,,(['o(D),wk/q) and
M, (To(D),wk/q; R) and construct an associated family of idempotents if the prime
2 is invertible in R.

If ¢ is a divisor of D with (¢, D/t) = 1, we may set

_( tz ¥
Wt_(Dz tw)’
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where y = 1(t), ¢ = 1(D/t), and det W; = t>zw — Dyz = t. Then the stan-
dard action of GL3 (R) on functions on ) induces an action of W; on the space
M., (To(D),wk/q; C) which is independent of the choice of z, y, z and w [AL, Prop.
1.1]°.

If we are considering geometric modular forms, it is better to look at the op-
erators W/ = t~™/2W,, which can be defined without worrying about the sign of
the square root. Assume that the ground ring R is a Z[{p, 1/D]-algebra. We fix
a primitive D-th root of unity {p playing the role of ¢>™/P in the complex pic-
ture. (If R = Z; or R = T, choose (p compatible to €>™/P via i4i3'.) Giving
a I';(D)-level structure ¢ on an elliptic curve E is equivalent to giving level struc-
tures i; : Z/tZ — E[t] and ip); : Z/(D/t)Z — E[D/t] by it(z) = i((D/t)z) and
ip¢(x) = i(tz). To any I'1 (D)-test object (E,w,i) = (E,w, it,ip/s) we associate the
test object W(E,w,1) = (E/t(Z/tZ),7*(w),%4,1p ), where m : E — E/1,(Z [tZ) is
the projection, ib/t =7 'ip); (m and @ are bijections on the D /t-division points),

and ij(z) = [z]n(P) for P € E[t] with e;(P,i:(1)) = ¢ = g/t. This map on test
objects induces a corresponding map W; on modular forms in M,,,(I'¢(D), wx/q; R),
and the reader may verify that for R = C the definition agrees with the one given
above.

In addition to these operators we need the usual Hecke operators U; for ¢ dividing
D. For a divisor t of D with (¢, D/t) = 1 we have the factorization wx /g = wp =
wiwps of wg /g into Dirichlet characters mod ¢ and D/, respectively.

Recall some elementary properties of the operators W, from [AL, p. 223]. Al-
though Atkin and Li state them over C they hold in general.

Lemma 3.8. On M;,(I'o(D),wk/q; R) we have
1. (W{)? = wi(—1)wp i (t)t~™ for each t|D, (¢t,D/t) = 1;
2. UW)] = wi(s)W/U, for s|D coprime to t;

3. WIW! = wi(s)ws () W[W! = wi(s)W), for coprime s, t|D with (s,D/s) =
(t,D/t) =1.

Define for t|D, (¢, D/t) = 1 the Gauss sum g; by

9t = Z wi(T) (s

zmodt

it is well known that g7 = w;(—1)t. Over the complex numbers we have gp = 4.
We may now introduce an operator Y; on M,,(T'o(D),wk/q; R) by

Y; = g; “"tUW,.

Assuming 2 invertible in R, we set X, = 1/2(1+¢Y .,p)) for any prime p dividing
D, and € = 1. For a positive integer n denote by v(n) the number of different
prime divisors of n.

Lemma 3.9. 1. We have Y2 =1, and Y, Y;, = Yy,4, for coprime t1|D and t2|D
with (t;, D/t;) = 1.

2. The operators X, . are commuting idempotents with X, 1 + Xp 1 =1. Con-
sequently, for each divisor t of D with (t,D/t) = 1 and signs €, for primes

8In the special case t = D the operator Wp is the well-known Hecke involution on the modular
curve of level D. Our definition is in accordance with Atkin and Li but differs (in the odd weights

considered here) in sign from the more usual definition by the matrix Hp = g Bl
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p|t the operator

X = 9 v(t) Z £gYy = HX Ep

s|t, (s,D/s)=1 plt
where we set £, =[], &p for all s|t, is an idempotent.

Proof. The product rule Y3, Y;, = Y4, follows from Lemma 3.8. To show
Y2 = 1, it is enough to do this for ¢t = p?»(P), p|D. If p is odd, we have v,(D) = 1
and this follows from [O, Theorem 4], using again Lemma 3.8. To deal with the case
p =2, by [AL, p. 226-227], the Fourier expansion of f|Y; is > 7 anwt(n)g" up to
terms involving powers ¢, if f(q) = ..~ ang™. From this we see that f|(¥;? —1)
has as g-expansion a power series in g?. For p = 2 especially 2 is invertible in R,
and we conclude f|(Y;? — 1) = 0 as in the proof of the next proposition. The second
assertion follows easily.

The importance of the idempotents X . lies in the properties of their action on
Fourier expansions.

Proposition 3.10. 1. Let ¢t|D with (t,D/t) =1 and signs e, for prime divisors
p of t be given. Then for f € M,,(To(D),wk/q; R) with g-expansion f(q) =
Yoo o ang™ we have for the q-expansion coefficients by of f| Xy, for alln >0
with (n,t) = 1:

b — an, wp(n) = EIJ vp|t7
" 0, otherwise.

2. The kernel of Xy, is the space of all f € Mpy(To(D),wk/q; R) with f(q) =
> o ang™, such that a, = 0 in degrees n > 0 with wy(n) = &, for all p|t. The
image of Xy is the space of all f with a,, =0 in all degrees n with (n,t) =1
and wyp(n) # €, for some plt.

Proof. The first assertion follows easily from the Fourier coefficient formula of
[AL, p. 226-227] cited above. The second assertion is a corollary of the first together
with the fact that there is no non-zero modular form f € M,,,(T'¢(D),wk/q; R) which
has all Fourier coefficients a,, = 0 for indices n with (n, D) = 1. This is well known
over the complex numbers, and continues to hold over R, since 2 is invertible and
the R-valued character wg /g has still conductor D. We omit the details.

Theta transformation formula We now restrict again to modular forms over
the complex numbers. We will expand the trace in Proposition 3.6 by using the
general transformation formula for the theta functions 19&’2,, which we cite as the
following proposition.

Proposition 3.11. Let k>0, N > 1, a a fractional ideal of K, ¢ : (N&)"ta/a —
C. Then for vy = (¢ 3) € SL2(Z) with ¢ > 0, we have
IH (1) = G, T, (7),
with
Ply= > cMEB,a)es),

BE(NS)~ta/a

and the transformation coefficients C’A(,N)(ﬁ, a) are given by

1 . -1 -
N _ TiNN aN(z)—Tr(az)+dN(a))/c
CM(B,0) = —— ¢2miNN(@) 7 (@N(@)=Tr(az)+dN(@)) /e (40)

z€(Nd)~ta/ca,z=0 (a)
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Proof. See [P, p. 235, (B.15)].
We remark that by [P] we have the relation

C'A(,N) (ﬂ, a) — 6727rz'NbN(a)_l(dN(a)fTr(aB))CS/N) (ﬂ _ da,O). (41)

In this general formula, we want to look at the special case where N is prime
to D, and v € T'(IN) runs over the left cosets mod I'o(D) NT'(N). A system of
representatives is given by matrices in I'(N) whose second row is (Nc d), where ¢
is a positive divisor of D, and d = 1(N) ranges over all residue classes mod D/c
subject to (d,c) = 1. In this situation we can reduce everything to the case N =1
by means of the following easy lemma.

Lemma 3.12. Let N be prime to D, ¢ a positive divisor of D, and

7:(ch Z)EI‘(N).

Then we have

0, i
5 0) = { CP (o), B=a( ),

where ' = < Z J\;b ) € SLy(Z), and o/,3' € §~ta with o' = a(N~ta) and

6= (N"a).

Proof. We may apply (41) and decompose the Gauss sum in (40) as a product
by writing z = z; + z2 with z; € N6~'a/Nta and x5 € N~ 'ta/Nta. Under the
condition v € T'(N) the sum over z» collapses to zero if 3 #Z o (6~ 1a), and gives N2
otherwise. The reader may easily check that this yields the assertion.

It remains to actually compute the values C,(yl)(ﬁ, a). Only the case 8 = 0 is
necessary for the following. We summarize the result in the following lemma.

Lemma 3.13. Let a € 6 'a/a, and v = (‘C‘Z) € SLy(Z), where ¢ is a positive

divisor of D. For simplicity, let a be such that N(a) has no D-component. Write
ca = (D,DN(aa 1)), to = D/ca, and no = N(aa 1)ty € Z. Then C,(0,a) =0
unless c|co and (c,cqa/c) = 1. Assuming these conditions, we may distinguish three
cases.

1. In case (¢,D/c) =1,

C’Y (0, O[) = %wc(dN(a))eZWinact_ald/ta )

(Here c;." denotes an inverse of ¢ modulo t,.)

2. In case v2(c) = va(cy) = v2(D) — 1,

C1(0,0) = 222 (AN (@) ()2 (2018 /),

3. In case va(c) = va(cq) =1,

Ge/2
)

C,(0,0) = 27L20, 5 (2dN(a))e2Tina (¢/ 22, 4/ (3ta),
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Proof. From the definition (40) we have

1 .. - N~ -
Cy(0,a) = 5627rsz(aa Y)/e Z £2miN(0) ! (aN(2)~Tr(az))/c_

z€a/ca

Let ¢ be the unique ideal of K of norm c. Then N(za~!) is constant modulo c if z
changes by an element of ac. Consequently C,(0,a) = 0, if not a € 6 ac, or ¢|c,-
Under this assumption, we may rewrite the sum as ¢ times the corresponding sum
over z € a/ac.

We consider now only the case (¢, D/c) = 1. In this case there exists zo € a
with dazg = —da (ca). Substituting N(z) = N(z + zo) — N(zo) — Tr(zeZ), we get
finally

1 N (et o o
C’Y(O,a):ge%rsz(aa )/cef2rzaN(£Boa )/c Z e27rmN(zu )/c

z€a/ac

The remaining sum may be evaluated to w.(dN(a))g. (by standard results on Gauss
sums), and since N(zga 1)a%t, = n, (c), we are done.

If we do not have (¢, D/c) = 1, this ged must be a power of two, and we proceed
by factorizing the Gauss sum into a factor corresponding to a power of the prime
above two, and a second one corresponding to the odd part of ¢. The first factor
can be computed directly, and the second one dealt with as above. We omit the
details.

Computation of the trace Let now f be a modular form in M,,(T'¢(D),wk/q),
M an integer prime to D, N = M2, and ¢ : N~'a/a — C. We want to develop

a formula for Trry(p)nr(nv)\r()( fﬁg’f&). (It would be easy to consider general N,
but this is not necessary for our purpose.) Extend ¢ by zero to (NJ) 'a/a, and set
wp(a) = p(a — B) for B € 6 'a/a. Then we have

Trry(pyrr(eop ey (fO80) = Y A(fs Ma)dls),,
a€d~la/a
with
Mfio)= > CM©,a)fl]r. (42)
Y€To(D)\SL2(Z)

The A(f;a) are obviously modular forms for the group I'(D).

Using Lemma 3.13 we now derive an expression for A\(f;a) which makes its
vanishing (or vanishing mod £) for certain f evident. To state the result, introduce
the following notation. For a modular form f = ZZO:O anq™, a positive integer N,
and an integer ng modulo N, write

[f]no;N = Z anqn/N-

n=ng (N)

Define the ideal 9oaq by 60x = p22™v0qq.

Proposition 3.14. Let f € Mpy(To(D),wk/g) and a € 6 'a/a. Assume that
N(a) has no D-component. Write c, = (D,DN(aa™1)), to, = D/cqa, and ng =
N(aa=1)t, € Z. Setting (independently of a)

= fWo [[ Xpw (=N

p|D

we distinguish three cases.
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1. In case (cq,D/cy) = 1, we have
Mf3 @) = —gi e, (caN(a))ty ™/227C) [f'|We, ]

naita
2. In case va(cq) = v2(D) — 1, we have
M) = =g, gun, 2(caN(@) (2t) —m/22016) 1
[F102Wae] _poito o (7/2) = Af5 @),

where o € O, 0 with o' = a(p,ta) (this implies cor = 2cq and 2ny =

Na (ta/2))-
3. In case va(cy) =1 and 8| D, we have

Mf50) = =gyt wa. (caN(a)/2)(2t0) ~/227 ()

(IF1Wer U], + A/ [ Wer 2Us] ymap o (/2))
= Mf3a')/2 = Mf50)/2,
where o' € 0,440 with &' = a(27%a), and &' — o' € p, 'a\a.

Proof. We give the proof only in the first case. The other two cases are very
much analogous, and once the correct formula is known, its proof consists out of
not very enlightening computations.

Assume (cq, D/cy) = 1. Using Lemma 3.13 write (42) as follows:

GOEEED N E DY wc(dN(a))em”«ct‘:d/taf|(Z;)

¢|ea, (c,D/c)=1 dmod D/c

It is easily seen that

A(3) om0 (2) 7 o)

for d = ed' (D/c) and d = 1(c). Combining these formulas a short computation
yields A(f;@) = [g] n,t, for

g D 1-m/2
g= Z FCWD/C(_CN(CL)) <?) leD/cUca/c-

clca, (¢,D/c)=1

Changing the index of summation into s = ¢, /c, after some juggling with Lemma
3.8 we arrive at

9 = —g;'wr (caN(a))ty ™/
Y. g.tst ™ Pwy(-N(a) fWpU W, We,
slca, (s,D/s)=1
= —g;wr, (caN(@)ty ™27 fIWp [ Xp, (-N(a) Wea-
plca
From Proposition 3.10 it is clear that
[g]—na§ta = [g| H X 7wp(_na)]_na§ta'
plta

Using the commutation rule W.X, . = X, .,
from Lemma 3.8, we may conclude

9l T Xowp(=ne) = — 92 we. (caN (@)t /2270 1| W7,
plta

(yWe for p /c, which follows again

as desired.
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Description of the trivial kernel After these preparatory considerations, we
are in a position to deduce the following result on the kernel of our lifting £.

Theorem 3.15. Let v and u be integers withm = py—v—12>5, and € and x Hecke
characters of weight zero and v + p, respectively. Let f € My (To(D),wk/q;C),
and fIlWp = 07 bng™ with b, = 0 for all n > 0 with wg,g(n) = —1. Then
Ly psex(f) =0.

Furthermore, if £ /2D the same statement holds in characteristic £: if f €
M (Co(D),wk q; Fe) (assumed to be liftable to M}, (To(D),wx/q; Le) in case £ =
3), and f|Wp, has g-expansion Y " bpq™ with by, = 0 for alln > 0 with wkg(n) =
—1, we have L, 4z 5(f) = 0.

We denote the subspaces of M, (T'o(D),wk/q) (resp. M, (To(D),wk/q;Fe))
defined above by IC (resp. K).

Proof. Most of the work already being done, the proof is now quite easy. In the
complex case, we get from Proposition 3.10 that

FIWo T Xpwp(-nis) =0

p|D

for all fractional ideals b (such that N(b) has no D-component). Therefore, by
Proposition 3.14 we conclude

Trr, (pyr(a)\r () (f04r, 7)) = 0

for all M > 1 and ¢ : M—2b/b — C. By Proposition 3.6 we see that every Fourier-
Jacobi coefficient g, /n(a),a Of F' = Ly, 4;e,5(f) for r > 0 has infinitely many zeroes
in C/a, i. e. is zero. But this means that F' = 0.

In the characteristic £ case, we may introduce these arguments into the proof
of Theorem 3.5. Lift f € M (To(D),wk/q,Fs) to Z; and even via ini, ' to
f' € My, (To(D),wk/q,Zg)- Looking at F' = L3, (f') and its Fourier-Jacobi
coefficients g7y ,) o We see that (again by Propositions 3.10 and 3.14) for £ /M the
modular form A in the proof of Theorem 3.5 is not only integral over Z(g), but even
contained in £M,, ;(T'(M?); Zy)), where £ is the prime ideal of Z ;) determined by
igit. Consequently, (D'h)(7o(c)) € Q(c)#**+ L. Proceeding as in the previous proof,
we get (using the ”density lemma”) g2* € £7; ,(Z(y)) for all > 0. Consideration of
the constant term does not pose any difficulties; consequently F' € £A(p, L, x; Z(4)),
and reduces to zero modulo £.

An immediate corollary is that theta series

Dy(r) = 3 x(a) >N
a

in M, (To(D),wk/q) associated to Hecke characters x of the field K (unramified of
weight m — 1) lift to zero, since they are eigenforms with all eigenvalues a; = 0 for
wg/(q) = —1. Therefore, everything congruent mod £ to such a CM form lifts to
zero mod £. On the other hand, by [LL] eigenforms f without complex multiplication
by K have a non-zero eigenvalue for some prime ¢ with wx/g(q) = —1, and therefore
do not belong to the (characteristic zero) ”trivial kernel”. In fact, it is easily seen
that the two-dimensional subspace of M;,(I'¢(D),wx/q) generated by f and its
complex conjugate has a one-dimensional intersection with /C. We conclude that in
characteristic zero we have

dimk = { 1/2(dim M,,(To(D),wk/q) + hx), m =1(wk),
- | 1/2dim M, (To(D),wk/q), mZ 1 (wg).
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Let us finally remark that in the case of inert £, we may easily give a much larger
space contained in the kernel of £. Restricting to the scalar valued case for simplic-
ity, if f € M (To(D),wk q; Fr) is such that for arbitrary ¢ € N(Ix(D)) the level
D modular form f|W], le D Xp,w,(~c) vanishes at the finitely many supersingular
points on the characteristic £ fiber of the moduli scheme, its lifting mod ¢ vanishes.
The condition is true, for example, if f itself vanishes at the supersingular points.
One may prove this statement easily by arguing as above, since for the computation
of the lifting we only need to evaluate f at supersingular elliptic curves.

3.3 The non-vanishing theorem: overview

We continue to study the arithmetic properties of the theta lifting £. Let as above
K C M;,(Do(D),wk q; Fr) be the "trivial kernel”. We would like to show that for
£ split in K the subspace K is already the precise kernel of £, .z 5, or equivalently
that £ is injective on M, (To(D),wk q; Fe)/K. Our main result is the following

theorem.

Theorem 3.16. Let u > 6 be an integer, and € and x Hecke characters of weight
zero and p, respectively. Let £ /12hk be a prime split in K and f an element
of My;_1(To(D),wk/q; Fe)\K (assumed to be liftable to M;_(T'o(D),wk/q; Ze) if
¢=3). Then Lo ue5(f) #0.

The proof of this theorem falls into several different steps, and will occupy
several sections. We give a brief overview here. In the characteristic zero case,
Gelbart, Rogawski and Soudry [GeRS] prove a much more general non-vanishing
theorem for theta lifts, by completely different methods. Another possibility to
show non-vanishing is the (regularized) Siegel-Weil formula [Tanl, Tan2]. Both of
these methods do not seem to generalize well to the characteristic £ case.

Construction of a bilinear form We use the formula for primitive coefficients
of L(f) given in Theorem 2.12. To write it in a slightly different way better suited
to reduction mod ¢, define for a R-rational representation p of GL2(C) x C* on a
complex vector space V = Vr ®p C and parameters 7 and a a complex-antilinear
map Tyap = Trap by 91 (w) = 9(—w). (Rationality over R means that complex
conjugation on V is compatible with p; for V = S this is certainly true.) These
maps fit together to a map from 7g , to itself, also denoted by 9 — 1. Define a

non-degenerate symmetric bilinear form b on 7y , by

b(d1,92) = (91, 95).

Sketch of the strategy If now O is a Shintani eigenfunction in 7},’;“, r > 0,
and g, the r-th Fourier-Jacobi coefficient of £, ;- (f), we may rewrite the result
of Theorem 2.12 as an explicit formula for b(©, g,.).

Define for a C*°-modular form ¢ of weight m’, a Hecke character n of K of
weight —m' and conductor rDd,; ! restricting to wx o on @Q, and a character o of
the genus class group C i}}" of K (the subgroup of Clx of elements invariant under
complex conjugation) the number (”discrete period”) P(p,n; o) by

P(p,mo) = Y. ¢(L,a+DLN@E™/ ( z )

¢, (L,z) |:E|
n(ze 1o} )0(01,0)N(0r,0)"?,
where ¢ runs over a system of representatives for the ideal classes of K, L over the

cyclic sublattices of index r in ¢, and z over generators mod DL of sublattices L'
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with L/L' ~ Z/DZ, subject to (oxL')e™! =0 ;|0,. With this definition we have
b(®7 gT) = Lk(r)gxs—l (G)P(D)‘fa K'*ilXE; Xs)a

where C),, and £, are as in Section 2.4, and & is as usual the eigencharacter of ©.

We will now ”arithmetize” this formula by constructing an arithmetic and even
£-integral counterpart of b. Seeing that everything behaves well under reduction mod
£, we are left with the task of showing the existence of an integral primitive Shintani
eigenfunction © for which the two factors £,.-1(©) and P(D*f, k* " xe; xe) (this
factor modified by a suitable period) are both non-zero mod ¢. We will do this
by considering the spaces of theta functions of degree r = p™ for all n for a fixed
Yauxilary prime” p # £, and restricting to eigenfunctions © with 0 = ox. If
we are able to show that the first factor vanishes mod ¢ only a finite number of
times, while the second one is non-zero infinitely often, we are done. After the
?arithmetization” of the bilinear form b in the following section, the second factor
will be dealt with in Section 3.5, and the (more difficult) task of dealing with the
first factor follows in the next chapter. See Theorem 3.21 and Corollary 3.22 below
for precise statements.

3.4 Arithmetizing the canonical bilinear form

In this section we show that the symmetric bilinear form b has an arithmetic coun-
terpart b,y, which is f-integral and non-degenerate at £ if £ frDwg. We restrict
here consideration to scalar valued theta functions. Our method in obtaining results
on arithmeticity and /-integrality will be rather rough: we consider usual standard
bases of theta functions, whose integrality may be checked directly, and express
the form b in these bases. The same method was used by Hickey [Hic2] to prove
arithmeticity of the canonical scalar product.

Recall that after choosing and fixing a system of representatives A4 for Clg
(which we assume to be stable under complex conjugation), we have

Trp =~ @ Trl/N(a),a;p < @ TN (@00 = Trpe
acA acA

Here T denotes the subspace of theta functions invariant under the action of the
roots of unity. Of course, the space 7;” , depends on the choice of A.

Standard bases of theta functions We explain now the construction of conve-
nient bases of the spaces T;/n(q),q;p- These standard bases may be defined without
assuming complex multiplication: for any lattice L C C let H(z,y) = nZy/a(L) for
a positive integer n, which is a Riemann form, and let 1 an associated semichar-
acter. The space T(H, v, L) of theta functions with respect to these choices is the
space of all holomorphic functions ¥ on C satisfying

Iw + 1) = (1)e™ G2 ()

for all [ € L. Tt has dimension n, as is well known. The canonical Heisenberg group
operation on T'(H, ), L) is given by (4;9)(w) = e ™HEw+/2)9(yw +1) for | € n~' L.

The following lemma provides a standard basis of T'(H,, L). To state it, let
theta functions with characteristics be defined as usual by

9 [ a ] (’LU,T) — Z eri(n+a)2T+27ri(n+a)(w+ﬁ)‘
IB nezZ

We also need the slightly modified functions

bustw:r) =0 | £ 0,

47



Lemma 3.17. Let L, H and ¢ be as above and (wi,w2) be a positively oriented
basis of L, i. e. T = wa/wy € §. Then the functions

9L;j (w) = ¢ao+j/n,fnﬂo (nw/wl s nT)a

where j ranges over the residue classes mod n, are a basis of T(H,, L), if ap and
Bo are choosen such that

Y(aw; + bwy) = eminlabt2ac0+2080)

The functions g; are eigenfunctions of the (commuting) operators Ac,, /n. More
precisely,

e27ric(a0+j/n)gj’ (43)
Gitk- (44)

Finally, the g; are orthogonal with respect to the standard scalar product, and we
have (g;,9;) = |w1|/(2na(L))*/2.

The proof is completely standard (see [I, Hic2]).
In the complex multiplication case it is not difficult to show the following arith-
meticity and integrality properties of these bases.

Acwl/ngj

Acw2 /ng] — e27ricﬁo

Lemma 3.18. Let L be a lattice with complex multiplication, take an oriented basis
of L and construct a basis g of T(H, %, L) as above. Setting g; = n(nt)1g;, the
functions g} are primitive integral theta functions (. e. ag} 1s integral precisely when
a 1s). Furthermore, every integral theta function in T (H,v, L) may be expressed in
the basis g' with algebraic coefficients of denominator dividing n.

Proof. We introduce the classical Siegel functions [Lan, p. 262]. For 7 € ), a,
b € Q, they are defined by

9ap(T) = —in(T) te™*9 [ }g ] (2,7), z=ar+b.

Using this an elementary calculation yields
(Aawr+bw95)(0) = emil(@o+i/n—1/2)(n(b—Bo)+1/2)+a(nBo+1/2)+1/2)
77(nT)ga+a0+j/nfl/2,n(b*ﬁo)*1/2 (nT).

It follows that the g; are primitive integral theta functions, since the Siegel functions
Jgab take integral values at points in imaginary quadratic fields, and take units as
values for suitable parameters a and b [Ra, p. 127].

To show the second assertion, let g be an integral theta function in T'(H,, L).
If g =3, \ig;, we have from (43)

)\jg_;' —p! Z e—27ric(a0+j/n)Acw1/ng’
cmodn
and the assertion follows from the above.
Arithmeticity and integrality theorem Having assembled these tools, we are

now able to state and prove the following proposition on the symmetric bilinear
form b. We introduce its arithmetic version b,; by

bar = Qob.
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Proposition 3.19. 1. The bilinear form by, takes algebraic values at pairs of
arithmetic theta functions in Ty ,(Q).

2. If £ /irD, the bilinear form isi}(ba,) takes {-integral values for (-integral
arguments (with respect to iy and i ).

3. Under the same assumptions, if in addition ¢ fwk, isi!(bar) on Trp(Z) is
non-degenerate modulo the mazimal ideal, 1. e. its determinant 1s a unit in
Zy.
Proof. Let p be the weight corresponding to the one-dimensional representation
p. Recall that ¥ € T, , is integral if and only if a(a)*¥, is integral for all a. Also

(B1,95) = Y N(a)* (91,0, V2.0)-
acA

We extend these definitions trivially to 7. ,.

To prove the first two assertions, we construct a basis h of TT” , over C from the
explicit bases g;, defined above: choose for each a € A an oriented basis, which
defines an element 7, € §), set ho; = V/rDv'(a) 9(1q) g for 1 < j < rD as
above, and extend it by zero to an element of 7, ,. Clearly, this gives a basis of
7T, ,- Since VrDn(rD71,)/n(7,) is an algebraic integer dividing v/rD (see [Lan, p.
164]), the functions h, ; are integral, and even primitive except at primes dividing
rD. They are mutually orthogonal, and by Lemma 3.2

, 1/2
(o he) = 1060 (FL5) T = sy VD),

where u, is a unit.

From the above, we know that h and h' are bases of the module of £- 1ntegral
theta functions over the ring of /-integral algebraic numbers, and that bar(h a,5) ha,j)
is l-integral. Therefore the first two assertions follow.

As for the third assertion, it is clearly true for the larger space 7, ,. Now 7;., is
just the subspace of 7',’, , invariant under the action of 0y and this action fulfills

b (€0, 9") = bye (9, £0)

for ¢ € 0. If { jwk, we may decompose 7, p(@) {-integrally into eigenspaces for
the action of 0, and it is easily seen that b,, vanishes if the arguments belong to
different eigenspaces. From this the assertion follows.

3.5 Non-vanishing of the second factor

The aim of this section is to prove a modulo ¢ non-vanishing statement on the
"second factor” P(D*f,k* xe;xe) in our formula for a primitive Fourier-Jacobi
coeflicient of £(f). The precise statement will be given in Theorem 3.21. We first
give as a corollary of Section 2.3 an explicit description of the characters occuring
in Vfg“; for (r, D) = 1. Then we rewrite the ”second factor” in an arithmetic way
which allows us to apply the theory of geometric modular forms over rings.

Characters occuring in spaces of primitive theta functions For an integer
r > 0 we know from Corollary 2.10 which Hecke characters x* correspond to char-
acters k occuring in the Shintani representation on V7;". We consider here the
case (r, D) = 1 and restrict our attention further to characters of exact conductor
rD. Equivalently, we demand that 0.+ = 09 = 0k for an associated eigenfunction

0.
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We write n = (k*)"'xe. If © € imd,,, this is a Hecke character of weight
—m' = —(m + 2}) and conductor rD with 7|4« = wg/g- The integer m', and the
restrictions of the local components np and 7, to the unit groups ox 5, and ok .
determine the character n up to twist by an ideal class character. The additional
knowledge of the full local component np determines n up to twist by a character
of Clg /CLg".

The restriction to the unit group of the component np may be parametrized by
elements p € (Z/DZ)* as follows:

np(l+ds) = &i/P 2D,
no(1+d(N ++/—=N)) = ¢*#d/D D =4N, 2 /N,
no(1+dvV/—=N) = e*#d/D D =4N,2IN.

This is completely trivial for D odd and easily verified in the other cases.

To sum up, for fixed odd weight m' and arbitrary r > 0, (r, D) = 1, the classes
under twist with the dual of Clx of Hecke characters n of weight —m' and con-
ductor rD with n|sx = wg/q correspond bijectively to pairs of residue classes
p € (Z/DZ)* and primitive characters ni™* of (ox /rox)*/(Z/rZ)* if D > 4. In
the two exceptional cases D = 3 and D = 4 we have to add a consistency condition
1 = ™ np(e)ne(¢) for a primitive third (resp. fourth) root of unity & to obtain a
bijection. The result of Corollary 2.10 takes now the following explicit form.

rim

Lemma 3.20. A character k* corresponding to 1 as above appears in Vf,c;p if and
only if all of its twists by ideal class characters appear. This happens exactly when
we() = we(2r/c) (resp. wq(p) = wq(r/c)) for all primes g|D if D is odd (resp.
even). Here ¢ denotes a prime-to-D representative of the class C.

Proof. By Corollary 2.10 this boils down to the calculation of the epsilon factor
€(ng, Ak,q) for g|D. Let us shortly indicate the compuation for odd ¢, the case of
even ¢ being left to the reader. Since a(n,) = 2 and ny, , = 1, we may take ¢ = ¢¢
and have to determine

S= [, 1" @a(Tr(@8) w)du

Assume 74(1 + 6z) = e*>™#a2/9. Writing u = £(1 + 0z) (¢) with ¢ € (Z/qZ)* and
x € Z/qZ we obtain

S = vol(qox,q) Z wq(§)62Wi(72§7Nq)z/q = qvol(qox,q)wq(—24q).-
g’w

Therefore

nq(5)6(77q, )\K,q) = wq(2(D/Q)Nq)a

and we are done.

Statement of the main result We now look at the ”second factor” P(yp,n;0)
more closely. The first step is to write it in a ”geometric” way allowing reduc-
tion mod £. For this purpose define the arithmetic variant of P by P (p,n;0) =
Q5™ P(p,n; 0).

Let r be a positive integer, and ¢, 1, o as above. Choose a system of rep-
resentatives ¢ for the ideal classes of K among ideals without rD-component and
consider for each representative the elliptic curve E, ~ C/(27i)Q(c)c over Z with
invariant differential w, = dz. The analytic parametrization of F. yields a natural
isomorphism ¢,p : ¢/rDec ~ E[rD].
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Let n¢ be the product of the p-components of 7 for primes p|rD. Then we have
(just from the definitions)

Premo) = X (52) N@m o
S (B, (), 7(P)

H'=(P)<E.[rD]
(i p(P)) 'N@p)'/?0(2p).

Here the second sum goes over all cyclic subgroups H' = (P) of order 7D of E [rD)]
such that o H' = E.[rDop'] with 0p[0,,. For each H' set H = DH < E.[r] and let
7 : E. — E./H be the projection. (We identified a I'; (D)-structure with a point of
order D, since the base is connected.)

As a corollary we see that for ¢ = D" f with f € My, (To(D),wxk/q; R) defined
over aring Z[1/D] C R C C, we have the integrality property P**(¢,n;0) € R[1/7],
as expected. Consequently for R C Q it makes sense to consider iyi_! (P¥(p,n;0)).
Let us now state the main result of this section on the non-vanishing mod ¢ of these
values. We write £ for the prime ideal of Z,.

Theorem 3.21. Let ¢ be a prime split in K, and p be a split prime with £ fhxp(p—
1). Let p and v be integers with m = py—v—1, X an integer with 0 < A < v, and X'
an unramified Hecke character of K of weight v + p. If A > 0, assume in addition
>m+2. Let f € My (To(D),wk/q; Z(s) be such that the reduction f of igi ) (f)
modulo £ does not lie in the "trivial kernel” IC.

For each n consider the set C,, of all Hecke characters of the form n = k* 71X/,
where k* is a character of weight 2(u + A\) — 1 and conductor Dp™ occuring in
the Shintani representation on Eﬂr’i,?‘w. Then there are infinitely many characters
n € U, Cn with

itio (P (D f,m)) # 0(2).

In fact we can prove something a little stronger: for all large n there exists a
character n € C,, with the property above.

Before getting to the proof, we give the application to the non-vanishing of L,
assuming a strong non-vanishing result on theta functions which will be proved in
the next chapter.

Corollary 3.22. Let u > 6 be an integer, and € and x Hecke characters of weight
zero and p, respectively. Let £ f2hgi be a prime split in K and for alln > 0 let T),
be the set of all Shintani eigenspaces t in 7;,?};“ corresponding to eigencharacters
of mazimal conductor Dp™. Assume there erists a split prime p with £ fp(p — 1)
with the following property: there are only finitely many t € |J,, Tn, such that for all
integral representatives 9 € t we have ipiz) (£y.-1(9)) = 0(L).

Then for any modular form f € M} |(To(D),wx/q;Fe)\K (assumed to be
liftable to M%_, (To(D),wk q; Ze) if £ = 3) we have Lo uz5(f) # 0.

Proof. Lift f via iooif to characteristic zero to obtain a modular form f' €
M, _1(To(D),wk/q;Zg))- For the Fourier-Jacobi coefficients gi* of the arithmetic

T
lifting L§', . (f') we have

rh—2

bar(ﬁa g?r) = Texs—l(’ﬂ)Par(flaK*_lxg;xg)a

where 9 is a Shintani eigenfunction in 7'},’;“‘ with eigencharacter «.
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Taking r = p™ and choosing 9 as an integral representative of a space in T,,, by
assumption the first factor” isi3} (€,.-1()) will be non-zero mod £ if n is large
enough. On the other hand, by Theorem 3.21, the factor i,i (P> (f',k* 'xe))
will be non-zero infinitely often, if n grows. Because of the {-integrality of b, on
Ty ,p We conclude that gi. will be non-zero mod £ for some n, and the assertion
follows.

The proof of Theorem 3.16 will be finished in the next chapter, where we will
prove the non-vanishing assumption made above (see Theorem 4.1).

Proof of the non-vanishing theorem We now begin the proof of Theorem
3.21. Let us first consider the formula for P3 (¢, n; o) in the special case (r,D) =1
and 9, = ox. Here we have

I

P =3 (2) " N 00 o

c

with

Pr(pm) = > @(E/H, & (wo),m(P))ns (e, 5(P) 1
H'=(P)<E[rD]

Writing 1y = n,np it is not difficult to transform this expression further by sepa-
rating the two components. Indeed, define a C°°-modular form for I'(D) by

¢ (Bw,a)= > @B wQny (a(Q))

X=(Q)<E[D]

for alevel D structure o : (0 /Dog) ~ E[D], where summation goes over all cyclic
subgroups X of order D of E[D] such that oxa™!(X) = 0x/Dok. Then

P(p,n) =wiso(r) Y. ne(t, (P) ¢ (Be/H, 7" (we), m(axc)),
H=(P)<E[r]

where ¢ is as above, o, is the level D structure given by the natural isomorphism
ox/Dog ~ ¢/Dc¢ ~ E.[D], and 7(a,) = 7o a is its projection down to E./H.

Assume now contrary to the assertion of Theorem 3.21, that for infinitely many
n we have i,i 1 (P*(D*f,n)) = 0(£) for all € C,,. We may apply our formulas in
the case r = p™. Since

u(c)

P& (p,n) = T

> P¥(p,nm)7(c)

reClyk

with some unit u(c), our assumption implies i,i!(P2*(D*f,n)) € £ for all n €
C, (since £ Jhk). Fix now the (restricted) D-component of 1 by choosing some
u € (Z/DZ)* as above. This means we are fixing the modular form ¢’ associated
to D*f and np. Letting n,» range over all possible characters, we get by Fourier
inversion on the group (ox /p"ok)*/(Z/p"Z)* ~ (Z /p"Z)* (whose order is prime
to £ by assumption) the fundamental periodicity property

itizy (¢ (Be/Hy, 7 (we), mi(ac))) = igizg (¢ (Ee/Ha, 75 (we), ma(axc))) - (€)
for all pairs of cyclic subgroups H; < E.[p"] of order p™ with oxH; = E.[p"]

and pHy; = pH>. The restriction ox H; = E.[p"] may be reformulated as H; ¢
E [p" 'p]UE.[p™ p]. (Observe that this argument goes through unchanged in the
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case wx > 2, since the components corresponding to characters 7y for which the
»consistency condition” 1 = £™ ¢ (¢) fails, are automatically zero.)

Equivalently, for all cyclic subgroups H' < E.[p"] of order p"~! not contained
in E:[p" 'p] U E.[p" 'p] consider the elliptic curve E' = E./H' with invariant
differential w' and level D structure o obtained from w. and a. by the canonical
projection. These curves have the property that for all but possibly one of the p+1
subgroups G < E'[p] of order p the values

i (¢'(E'[G, g (w), ma(a)))

are congruent modulo £, where 7 is the projection E' — E'/G.

Assume now v = 0. We will indicate later how to modify the argument in the
case v > 0. The functor of isomorphism classes of triples (E, a, H) consisting of an
elliptic curve with level D structure and a subgroup of order p is representable over
F, by a smooth affine curve M, a covering of degree p + 1 of the level D moduli
curve. Letting ¢’ denote the reduction mod £ of i,i5!(¢'), we define a subvariety
M, of the curve M by imposing on (F, «, H) the condition

¢'(E/G1, 7] (), m(a) = §'(E/G2, 75 (w), m2(a)) (45)

for any non-trivial invariant differential w and all order p subgroups G; different
from H. Our assumption implies that on each of the connected components of M
corresponding to deta = ({, with wg/g(d) = 1 there are infinitely many points
of My, namely the reductions mod £ of the curves E' (with level structure and
p-subgroup) considered above. Here (p is the primitive D-th root of unity in F,
obtained from 4,i7!(e>™*/P) by reduction mod £. In fact, the curves E' have as
ring of endomorphisms the order of conductor p™ ! in o0k, and since ¢ was assumed
split in K, the endomorphism ring of the reduced curve E’ is the same (cf. [Lan, p.
182, Thm. 12]). This shows that we get infinitely many non-isomorphic curves E’,
and since det o = (% with d = N(c)~'p"~! (D) for the associated level structures,
the determinant may be adjusted by varying ¢. Consequently, we see that each
of the connected components above is contained in M. This means that for all
triples (E, a, H) over F, with deta as above the equality (45) holds true for all
pairs of subgroups G; different from H. But this implies (by varying H) that (45)
has to hold for all pairs of subgroups G; of any E and any a under the determinant
condition.
Let us consider the consequences for g-expansions as in [Kal, p. 89-92]. If

(/_)I (Tate(q), Wean a) = Z aqu/D’
k

the values of @'(Tate(q)/H, #*(wean), () for the order p subgroups H of Tate(q)
are as follows:

@' (Tate(q) / Hi, #* (wean), m() = p™™ Y ar(pFq*/ (PP,
k

for H; = ((Piq'/?) < Tate(q), 0 <i<p—1, and

@' (Tate(q) / wp, * (wean), m(@) = Y arg?/P.
k

Relation (45) implies first a = 0 if p fk (by using the subgroups H;), and second
ar/p = P ™apy (by including u,), where ar = 0 if k is not an integer. It follows
quickly that a; = 0 for all ¥ > 0. But a modular form of weight m with constant ¢-
expansion exists only if (£ —1)|m, which is impossible since m is odd. Consequently,
@ vanishes for det o = (§, with wy/g(d) = 1.
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We will derive a contradiction by computing a g-expansion of @' on each con-
nected component. Of course, for this purpose we may compute g-expansions of ¢’
over the complex numbers. Given d € (Z/DZ)*, let E = C/2wi(Z + 7Z), T € $
with natural invariant differential w and choose a level structure a of determinant

e2mid/D 45 follows:
a(a+b8) = (2ni/D)(b—2dar), 2 /D,
ala+b(N ++v=N)) = (2ni/D)(b—dar), D =4N,?2 JN,
ala+b/=N) = (27i/D)(b—dar), D =4N, 2|N.

Write f|W) = 3, beg®, and let by, be the reduction mod £ of isi (by). We easily

get for the g-expansion coefficients c; in ¢'(E,w,a) = 3, cxg"/P the relation
o = w(d')Dby, k= —du(D),
= o, otherwise,

where d' = 2d in case D is odd, and d' = d if D is even. For example, for D odd
we compute

¢'(B,w,a) = Y f(E,w,%(x+T))n51((—2d)_1+g;5)
z€Z/DZ

0 -1 T T
= wi/o(=2d) ) fl(1 . )e2 (Baz/D

z€Z/DZ

= wrsd) Y. (fIWH)((r +1)/D)e?ri?ama/D

z€Z/DZ

= wio(2d)D D bpe” /P,
k=—2du (D)

Letting now d run over all residue classes with wx /q(d) = 1, we conclude by = 0 for
all & with wg/g(k) = —1, and consequently f € K, a contradiction.

In the case A > 0, we use Katz’s comparison theorem [Ka2] to construct a
modular form @' whose values at ordinary CM elliptic curves coincide with the
reduction of the values of ¢/. To be precise, @' is constructed from @ = 6”f
(with Serre’s differential operator § = gd/dg) as ¢’ is from ¢, and it is a modular
form on the ordinary locus of the level D moduli scheme over [F;, obtained by
omitting the points (finite in number) corresponding to supersingular elliptic curves.
Therefore, using the same reasoning as above (but replacing M by the ordinary part
M°*), we conclude that @' vanishes on the connected components with det o = (%,
wio(d) = 1. But @ = 6”(f'), where f' is just the modular form @' in the
case A = 0. From [Ka3] we get (since m < £ — 2) that f’ itself vanishes on the
corresponding components, and we may proceed as above.

4 A non-vanishing result for theta functions in
characteristic /

The purpose of this chapter is to prove the cruical non-vanishing result on theta
functions needed to complete our strategy. Because of the connection to anti-

cyclotomic L-functions furnished by the work of Yang [Y], the result may be of
independent interest.
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The main theorem We consider the following situation: fix a prime £ and em-
beddings iy : Q — C; and iy, : Q — C as usual. For an integer p > 0 we
have the spaces V; c;p,, together with the Shintani representation 7 and the linear
functionals £, for unramified Hecke characters -y of weight p.

We take a second prime p # ¢, assumed to be split in K, and look at Shintani
eigenfunctions in the tower of spaces Vy,pm cpm;p for some fixed ro prime to p and
arbitrary m > 0. If k* is the associated Hecke character of K, we fix the restriction
B of k* (considered as a character of Ay ) to the group Kpog ,,ps and vary the
p-component K, (more precisely, its restriction to o} Kp ). The choice of these local
data (together w1th the datum at infinity given by the weight 2u — 1) determines
the character x* up to twist by a character of Clg /CI%. We have the consistency
condition

kp(8) =% (k7,p(6)) 7,

and in case wx > 2 the additional condition k() = €~ (k} p(e))™" for € €
0 /{£1}. Whether such a character x* actually occurs in Vyopm cpm;p is determined
by the local epsilon conditions of Corollary 2.10 on 3|K 5, which are independent
of m. The following theorem is our main result.

Theorem 4.1. Let ¢ be a prime and p # £ be a prime split in K with p /2hk.
Fiz p > 0, an integer ro prime to p, a class C = ¢cN(K*), an unramified Hecke
character v of weight u, and a character B of KBO;({,MD’ such that the epsilon
conditions

e(B Ak.0)By H (O)wy(ro/c) =1, q|D,

hold true.
Then, if m is large enough, for every character k* with ’9*|K5°;<(,TOD =B ap-

pearing in yprim there is an integral representative 9 in the k-eigenspace such

rop™,Cp™;p’
that

ivind (Wi Ly (9)) £ 0 ().

By Corollary 3.22 and Dirichlet’s theorem on primes in arithmetic progressions,
this theorem finishes in particular the proof of Theorem 3.16.

Our method used to obtain this result is based on ideas of Sinnott [Sil, Si2], who
gave an algebraic proof of Washington’s theorem [W1, W2] on the ¢-adic behaviour
of class numbers in cyclotomic Z,-extensions of abelian number fields. To state it,
let F' be an abelian number field, and Fi,y = FQy its cyclotomic Z,-extension with
unique intermediate extensions Fy, /F of degree p". Washington’s theorem says that
for a prime ¢ # p the £-part of the class number h,, of F,, stays bounded for n — oo;
indeed, the sequence vg(h,) gets stationary. It is an f-adic analogue of the theorem
of Ferrero-Washington on the vanishing of the p-invariant of Fo,/F, which implies
by a well-known result of Iwasawa that the p-part of h, grows linearly with n for
n — oo. By the class number formula Washington’s theorem is equivalent (see
[W1]) to the following assertion on L-values: given an integer n > 1 and a Dirichlet

character x, for all but finitely many Dirichlet characters 1 of p-power conductor
with x¥(—1) = (—1)" we have

200 —n,x) 20(9).

(7 (2

Sinnott’s strategy is to use the fact that these L-values are closely connected to
rational functions, which allows him to derive the non-vanishing from an algebraic
independence result. The article [Si2] gives an excellent exposition.
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Gillard [Gi] proved the analogous statement for Z,-extensions of imaginary
quadratic fields in which exactly one of the primes lying above a split p is ram-
ified. Here we are in effect considering anticyclotomic Z ,-extensions. We hope that
our method may also be applied to the determination of the p-invariant of such an
extension.

Explicit expression for £,(¥) For the proof of Theorem 4.1, we first have to
give an expression for £,(9) which allows us to separate the influence of the p-
component. To begin, consider a space V, ¢;, of scalar-valued theta functions; we
have the isomorphism

Vrcio = B T} n(a) aesespo
ceC

where a is a fractional ideal of K with N(a) € C, and C a system of representatives
for Clx /CI consisting of primitive integral ideals (i. e. integral ideals not divisible
by n for any rational integer n > 1). If ¥ = (¥4¢/)cec is an eigenfunction with
eigencharacter x of the Shintani representation F, we have

Vaz/e = 67 (€) F (/) V. (46)
Consequently,
£y (9) = yar(a)e (Z(H*Wz)ar(C)S (c/ C)ﬁa) ; (47)
ceC

where we write xar(a) = x(a)N(a)?/? for a Hecke character x of weight w and
denote by £ the map ”evaluation at zero” on a space of theta functions.

Let us now specialize to the situation of Theorem 4.1. This means we fix in
addition to C and p (or u) the parameters £, p, r¢, v and 3, and consider the spaces
Vyopm ,Cpmip- Since p is split, we have pox = pp, and to the primes p and p above p
correspond the two embeddings ¢, and ¢5 of 0x into Z,. Together they induce an
isomorphism ox p ~ Z,x Zp. We denote by (z,y) the element of ok j, corresponding
to the pair (z,y) on the right hand side; the same applies to ox /p"0xk.

Take a fractional ideal a (prime to p and £) with N(a) € C. Choose a system of
representatives C as above, and assume all the elements of C to be prime to p and
£. Our local datum 3 determines a character &, of K*(rg) by

Rro(2/2) = (/2787 T (=1,
ginert,q JroD

prim

T /N @) a0

2.3 for their definition), since the local conditions at primes dividing D are fulfilled.
(The eigenspace does not necessaily lie in Trl0 IN(a)ap? i. e. it does not need to come

from restricting an element of V,,¢;,.) From a representative ¥, of this space we

and in turn an eigenspace in for the Shintani operators F(n) (cf. Section

construct elements Jqpm 5, Of Tzr/i’;;( a),apm;p DY setting
Japro = D, Xo0(2)¥(elo) Azty D
z€(Z/pm2)*

for a Dirichlet character o (of the rational integers) of conductor p™ and a generator
lo of ap™p~™/ap™. This is certainly well-defined, and changing the parameter /g
into Ao for A € (Z/p™Z)* changes Jq5m 5, only by a factor xo(\)!; therefore
the associated vector space is uniquely determined by ¥, and xo. Since £(n)Ay =
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AiE(n) for n € K* and | € a* Nn~ta* by [GIR, p. 72], it follows that Jgpm , is
an eigenfunction of the operators F(n), n € K*(rop), with eigencharacter x(n) =

Ko (1) Xo(n mod p™).

In particular, ¥q5m y, is invariant under the action of the roots of unity if and
only if k(¢) = 1 for all ¢ € ox. If this is the case, we can extend Yqpm 5, t0 an
element of Vy pm cpm;, as in (46). Putting this together with (47) we have proved
the following lemma.

. . prim ; X o X —
Lemma 4.2. The eigenspaces in Viop™ .Cpmip of characters k with K:|KD0K’T0 =p

may be described as follows. Let € be the l. c. m. of all ideals ¢ € C, A = a€, and
lo a generator of Ap™p~ ™ /Ap™. Moreover, let xo be the character of (Z/p™Z)*
giwen by xo(2) = k5((2,1)) . Then 9 = (Jupme/c) with

Dapmese = £°() D Xo(2)¥(2lo) Auty (F(/c)9a)
2€(Z/pm2)"

s a generator of the k-eigenspace, and we have

L) = var(aﬁm)s(Z(fi*Tz)ar(C)

[

> xo(2)9(zlo)Auy (E(E/c)ﬂa)). (48)

z€(Z/pmZ)*

To achieve a complete separation of the p-component, we need a slight variation
of this result. The character xo is not enough for a complete parametrization of
the possible eigenspaces (there are h% of them for each admissible xg). Such a
parametrization may be constructed in the case wx = 2 by setting x* = K{x,
where £ is some fixed extension of Blok . ;, to a Hecke character of K of weight
2p—1, and

X : 'm = Ik (p)/In(p) Pk pm — C*

is a finite order character extending the character (z) — xo(z/Zmodp™) of the
group of principal ideals prime to p. The local components x(q) € {£1} for ramified
prime ideals q are fixed to let the D-component of k* come out correctly:

x* —1
x(q) = €q = (IBQK’O,q )(mq)
(where 7, denotes a prime element in K ). This implies the consistency condition

x(60x) = xo(-1) =TI, egq(D). We may now rephrase (48) as

1 _
26 (0) = var(ap™)e > x((z, 1)) (2lo) Auo (9e) |, (49)
¢ceC, z€(Z/pmZ)* /{£1}

if we introduce (changing our notation a bit) the theta functions
I = (6§72 ar(¢)E(c/c)0q, ¢ €C.

Since the sections 9, are even (resp. odd) according to whether x((—1,1)) =
11, ez"(D) =1 or —1, summing over z € (Z/p™Z)*/{£1} instead of z € (Z/p™Z)*
yields a factor of 1/2, as asserted.

In case wx > 2 we have hx = 1, and taking C = {ox} we get

L 0,(9) = Yus aB™)e S X)) Au, (90)

w
K 2 €(Z/p™ )% 1y (03)
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For simplicity, we will assume wgx = 2 in the following, and leave it to the reader to
figure out the minor modifications necessary for dealing with the two exceptional
fields K = Q(v/—3) and K = Q(3).

Algebraic theta functions To deal with reduction mod ¢ and theta functions
in characteristic ¢, we have to use the elements of the theory of algebraic theta
functions developed by Mumford [Muml, Mum2]. We briefly state a few basic
results in the form necessary for our purpose. Let E be an elliptic curve over an
algebraically closed field k, and L an ample line bundle on E. If L has degree
dp™ with p f/d and m > 1 for an odd prime p not dividing the characteristic, the
subgroup

H(L)={z € E(k)|T;L ~ L}
of E(k) associated to L contains E[p™]. We consider the subgroup G, (L) of Mum-
ford’s Heisenberg group G(L) (see [Muml, p. 289]) given as the set of pairs (z, ¢)
where z € E[p™] and ¢ : L — T} L is an isomorphism. This group fits into an exact
sequence

1 — k* — G,(L) — E[p™] — 0.

The commutator gives an alternating pairing ey, : E[p™] x E[p™] — pip=. The group
Gp(L) acts naturally on the space of global sections I'(E, L) [Muml, p. 295]. There
is a smallest subgroup G, 7(L) of G,(L) such that the projection to E[p™] is still
surjective; it is obtained by taking all elements of order dividing p™ and fits into
an exact sequence

1 — ppm — Gp (L) — E[p™] — 0.

If the line bundle L is symmetric, i. e. [-1]*L ~ L, we may construct a canonical
section of G, s by using the automorphism §_; of G,(L) defined in [Mum1, p. 308].
It is of order two, its restriction to the center k* is the identity, and its projection
to E[p™] induces the map [—1]. For z € E[p™] we now let z = A/, be the unique
element in G, ; with 6_1(2) = 27! projecting to z. We then have the addition law

AL A = er(z,y)' AL,
where the square root is (uniquely) taken in gi,m.

As the reader may easily verify, over the complex numbers this construction
gives (in essence) back the operators A;. More precisely, let F be determined by
a lattice L, and the line bundle by a pair (H,v), where ¢ takes values in {£1}
(because of the symmetry condition). Then we have Al = ¢(z)A, for z € p~™L,
where 1 is canonically extended to p~™L by ¢(z) := ¢ (p™xz).

Application of an idea of Sinnott We now are able to reduce the result (49)
modulo ¢. First rephrase the characteristic zero situation algebraically. For each
m > 0 we have on the elliptic curve Egpm = C/Ap™ a symmetric line bundle Lgpm
whose space of global sections (over C) is Ty /N(a),215m; the isogeny @, : Eqpm — Eg
induces a map ®}, : ['(Eg, Ly) — ['(Eggm, Lagm ) which is just the natural inclusion
of spaces of theta functions. We are considering the values at zero of the theta
functions

> X((2, 1)) A7y, @7, (V)

c€C,z€(Z/p™Z)* /{£1}

in T'(Egpm , Logm ).
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The objects Egpm , Lyp= and ®,, are all defined over a fixed number field L, and
indeed have good reduction at £ (for L big enough). Observe that (since a and the
elements of C were assumed prime to £) the functions ¥, will be ¢-integral whenever
the original function 9, is, and by (49) the number (1/2)4(9) will be ¢-integral, too.
We may therefore reduce everything modulo £ via isi}. Choosing 9, with non-zero
reduction, all 9. will reduce to non-zero sections of Lg over Fg, since the Shintani
operator £(¢/c¢) is invertible even in characteristic £. More precisely, the operators
£(c/c) and £(¢/t) both preserve integrality, and £(¢/?)E(c/¢) = N(c¢), which is prime
to 4.

Let us now look at the situation modulo ¢: let k¥ C F, be a finite field of
characteristic £. We are given elliptic curves E,, = E’mﬁm over k (with complex
multiplication by ox) together with isogenies ¢, : E,, — Eo (over k) such that
ker p, = En[p™]. For 0 < k < m the isogeny ¢,, may be factored as ¢, = ©r¥mk
with an isogeny ¥.x : E,, — Ej fulfilling ker ¢,,x = E,,[p™ *]. In addition, we
have a symmetric line bundle Lo over Ey (defined over k) and induced bundles
Ly, = ¢}, Lo over E,, of degree p™ deg Ly. We give the bundles L,, rigidifications
along the zero sections compatible with the ¢ ; this induces (compatible) maps
T(Em, L) — F, denoted by &.

Furthermore we have non-zero sections ¥, € I'(Ey, L) for each ¢ € C, and
signs €, for all ramified prime ideals q. (We use here the same symbol J. for the
characteristic £ theta function as for its characteristic zero counterpart; the same
remark also applies to the character x below. This should not yield to confusion.)
Choose isomorphisms i, : Z/p™Z — En,[p™] and jp, : Z/p™Z — Ep,[p™]; together
they determine a primitive p™-th root of unity &, in F, by ez, (im (), jm (y)) = £2Y.
For convenience we write i(z,y) = i(z) + j(y). Note that for ¥ € I'(Ey, Ly) the
section ¢* (9) € I'(Ey,, Lyy,) is invariant under the operators A;.(y) fory € Z/p™Z.
(Because of the symmetry of L,, and Ly, it is easily seen that the "level subgroup”
in the sense of Mumford associated to L,,, Ly and ¢,, consists out of the A’y for
X € Efp™])

We assume (contrary to the assertion of our main theorem) that for infinitely
many m there exists a character x : T';;, — F} of conductor p™ with x(q) = ¢, for
all g and e(9,) = 0, where ¥,, € T'(E,;,, Ly,) is defined by

Ix = > x(¢) > X((z, 1) Aj() 97 (Fe).- (50)

z€(Z/pmL)* /{£1}

The group Ty, is an extension of the class group Clg by (Z/p™Z)*, and the
direct limit ', of the T',,, (with respect to the obvious direct system) is therefore an
extension of Clk by Z . It is well known that Z ; = p, 1 XU with U = 1+pZj;, ~ Zy;
because p fhx we may write I'oc = V x U with a finite group V of order prime to
p (indeed it is isomorphic to I'1). If Uy, = 14 p™Z, C U, we identify Z /Uy, with
(Z/p™Z)*.

We are now in a position to transfer Sinnott’s ideas to our situation (cf. [Si2,
p- 215]). Enlarge the finite field k, if necessary, such that it contains p(p_1)n,
and that furthermore the sections 9. are defined over k. Let us agree to call a
character x : I'y, — F; admissible, if x(q) = ¢, for all ramified prime ideals q, and
assume that there exists an admissible x of conductor p™ with ¢(d,,) = 0. From this
assumption we will derive relations for the 9.. We use the operation of the Galois
group Gal([F; /k) on L,, and on the spaces of global sections. The first observation
is the following.

Lemma 4.3. For anyo € Gal(F,/k) and x : Ty, — F, there is a constant c(o, x) €
F} with
¢

95 = (o, X) 0y
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Proof. The action of o on E,,[p™] is given by multiplication with some a(c) €
(Z/p™Z)*. Moreover, we have in general A"7 = Al. for z € E,,[p™], since A,
is the unique lifting z of z to G,(L) which is of order dividing p™, and fulfills
d71(z) = 27 1. The assertion follows easily from these two facts.

Define ng by p™ := #(k N pp~) and set k,, := k(fuyno+n). Clearly we have for
CEe Hpno+n:

n ) € 70 5
T u0 = { 5 Rl G1)

The decomposition ', = V x U gives a corresponding splitting of the character
x as a product x = w¢, where w and ¢ are characters of V and U, respectively; ¢
has by assumption conductor p™. Assume now m > 2ng and set n = m — ng. It
is elementary that there exists a primitive p™°-th root of unity A € ]F;< such that
B(u) = \&=D/P" for y = 1 (p").

Splitting the class of every c € Cin T, =V x U as (¢) = v u., we may rewrite
the definition (50) of 9, as

I= D, wlun) Y A, 00
ceC,n€Epp—1/{£1} 2€U/Um

Coming back to our assumption £(d,) = 0, by Lemma 4.3 it implies £(J,-) = 0
for 0 € Gal(Fy/k). Since p,—1)n, € k™, conjugation by o leaves the V-part w
invariant. Consequently, we have for arbitrary y € U (using (51)):

0 = elp™ D W)

o€Gal(kn /k)

€ Zw(vcn) Z ¢(z/y)A;(,,uc—12)‘p:n(l9t)

2€y(14+pnZ)/p™Z

Since here ¢(z/y) = A&/V=VP™"  we get

€ Zw(vcn) Z )\UA;(nuc_ly(l+p"u))(p*m(19c) =0. (52)

&N UEZ [pOZ

We want to rewrite the inner sum in a more convenient form. Defining the

projection
Pop= >, A= ) Ak
uEZ /pnOZ XEE,,[pno]

we observe the following identity of operators on I'(E,,, Ly,):

A P, = E A A’ _
i(nusty,n—lucv)” M0 i(nus ty,n—lucv) i(pn nus tyu)
uEZ/p"OZ

_ g2 ~(p"y)u g /
- Z/Z ng o uAi(Tluc_ly(1+p"U))Aj("_1“t”)'
u€Z/pno

If we choose v € Z/p™Z with £,P"?¥ = ), and apply this identity to ¢, (J.), we
get, because of the invariance of this theta function under Ag(y), just 5;12_1?“’ times
the inner sum in (52). Therefore

€ <Zw(U‘n)A;(nuily,n—lucv)Pﬂo%":n (19:)) = 0.

ci"
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Since we have the factorization ¢m = Qny¥m,ne, and Ay, . (9) = ¥y, (Ay (x)9)

m,no

for 9 € I'(Ep,y, Ln,) and X € E,[p™] (cf. [Muml, Prop. 2]), we conclude

Pryor, (9c) = ¢:n,n0 (Pno(P:(, (90)),

denoting by P, on I'(E,,, L,,) the operator >y p Ay, of course. Writing

olp™o]
Be;ng = Pnooy, (9c), we arrive at
€ (Z (v‘n)Az(nu y,n—lucv)d}:%,nowcy"o)> =0. (53)
c,n

Note that 9y, is non-zero; in fact, it is simply E(p™ /p™0)dI, considered as a section
of L,, on E,;, where £ is the characteristic £ version of the Shintani operator £.
More precisely, we may compute

Z Ay | Beno) = P05, (),
YeEny[p"0]

and the non-vanishing follows.

We now want to deduce from these relations an algebraic identity saying that
an algebraic variety contains a certain set of points. To this end, remember that
y € U may be choosen arbitrarily, and that the condition f;f’""y = ) relates only
the classes of y and v mod p™°. Consider therefore y' = y +w with w = 0 (p™°) and
take for both y and y' the same value of v. We have

! :§2_1vw ! AI
i(nug 'y~ luc) | oM i(nuy tyn Tuew) (s tw)

Inserting this into (53) (with y replaced by y') yields

’ (ZW(Utn)A;(nuc—lym‘lucv)A;(nule)w:"’m’ (19"”0)) -

c7’”

Take a fixed integer n; = ng + N > ng, assume m > n; + ng, and set w = p™"1z.
Factorizing ¥, ny = ¥n, no¥m,n., We may write

& (Z w(Ucn)A;(ﬂufly,ﬂ_luc U)¢:n’n1 (AE(ﬂuc_l JI_lu:)]Xd):bl im0 CE ))) =0, (54)
c’ ,”

where X = ¢ p, (i (p™ ™)) € E,, [p™]. Here we use the natural operation
of ogp on E,, [p®] ~ Kp/ok,. Because of the invariance of ¥ ,, under A},
Y € E, [p"°], the value of X is only important modulo E,, [p™].

Setting 0. x = A%y, no(Je,no) for X € Ep, [p™], we have morphisms &, : E :=
E,, — PP"~1 given by the global sections Oc,in,(a)s © € L/p L, of Ly,. Every
element a € (Z/pNZ)* defines an automorphism c, of PPY -1 by (V2)z = (Vaz)s-
Set Pp = Ym,n, (im(y,v)) € E[p™p™] for y € U and corresponding v, and look
at the points Cnuc—l(’1>E([(TIUC_1,7)_1U¢)]Pm))- For z € E(F,) define Ly, (z) as the
tensor product with F, of the stalk of L,, at z (cf. [Muml, p. 299]). Then
the map ['(E, Ly,) — F, given by ¥ — e(A%%;, ,,¥) induces an identification of
Ly, (¥m,n, (X)) with Fy. The relations (54) imply now the existence of a non-trivial
linear dependency between the c, -1 (2. ([(mut,n " uc)]Pn)): they have to lie in a
projective space of dimension QJ — 1)h’ /2 —2.
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Set ¢ = (p—1)/2, enumerate the elements of p,_1/{£1} xC as (9., ¢,) and define
a, = nyu; ! for 0 < v < ghl — 1. Write (a,a™ )P = ([(ow,0;,')]P), € Ehx [p>]
for P € E[p*]. Summarizing, we have obtained the following intermediate result.
Let D C E™x be the subvariety defined by the relation

N\ ca, (@, (P,)) = 0.

Then for each m > ni1+ng such that there exists an admissible character x : I'c —
F, of conductor p™ with €(¥,) = 0, we have (a,a )P, € D for all

Pm = d’m,nl (im(y’v)) € E[pmﬁnl]

with arbitrary y € U and v € Z /p™Z such that §,‘n1’"”y = A\ for a primitive p™°-th
root of unity A\, € FKX depending on x.

A geometric ”independence” result Assuming contrary to Theorem 4.1 the
existence of infinitely many admissible x with (J,) = 0, we proceed to derive a
contradiction. Let us first consider the Zariski closure of the infinite set of all points
(a,a1)P,, obtained in this way”.

Lemma 4.4. Letr > 1 and B, = (ow, ) € 0k p for 0 < v < r —1 be given, and
B : E[p™] — E"[p™] the map P — ([B,]P),. Let

r—1
R ={z € 0% | ZLp(a;,,)a,, =0}
v=0
be the o -module of relations between the a,,, and
r—1
A={P=(P,)€E"|) [z,]P, =0Vz € R}
v=0

the abelian subvariety of E™ defined by these relations. Assume we have a chain of
sets E[p®] D M = My D My D ..., where M; + E[p'] = M;. Then the Zariski
closure B of B(M) in E" contains a translate A+ X (for some X € E"(IF;)).

Proof.  Let B; be the Zariski closure of 3(M;) in E”. This gives a chain
B = B; D By D ... Clearly B; is stable under translation by B(E[p¢]). Since the
chain of the B; gets stationary at some point, the closed subset B,, = [ B; is
non-empty, and we see that it is stable under translation by S(E[p>]). Consider
the algebraic subgroup T of E" consisting out of all X with B,, + X = By Since
B(E[p>]) C T, and we will see shortly that A is the minimal algebraic subgroup of
E" containing S(E[p°°]), we have A C T, which implies that By, (and a fortiori B)
contains a translate of A.

Let now A be an algebraic subgroup of E" containing B(E[p™]). If Ag is the
connected component of zero (an abelian variety), we have B(E[p>°]) C Ao. If not

7The following lemma, is inspired by [B]. I would like to thank Don Blasius for bringing this
paper to my attention. A similar lemma is contained in [Gi, p. 351, Prop. 1.2], but the proof given
there is insufficient. Using our lemma we are able to fill the gap in Gillard’s proof. Although I do
not know how to prove Gillard’s Proposition 1.2 in general, he applies it only in the case where
(using Gillard’s notation) the ideal A is prime to its conjugate A’. Assuming A = p is a prime
ideal different from its conjugate, if for an infinite subset W C E[p*°] the points P(w), w € W, are
contained in a proper subvariety S C E®, we may enlarge the base field k such that S is defined
over k, and consider the set W’ of all Galois conjugates of elements of W. Since the image of
Galois in AutE[p>] ~ Zy has to contain 1+ p™ Zy, for some N, we see that the set of points in W'
of order > n is invariant under translation by E[p”~™]; consequently, we may apply our lemma
and get a contradiction. The case of general A (prime to A’) can be dealt with accordingly.
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A C A, there exists a non-trivial homomorphism ¢ : 4/(ANA) — E. By Poincaré’s
complete reducibility theorem [Mum2, p. 173], we can extend ¢o[N] to E" for some
integer N > 0, and obtain a homomorphism ¢’ : E” — E mapping 3(E[p*°]) to
zero. Since ¢’ has to be of the form P — ) &, (P,) with & € EndE, necessarily
A C ker ¢, contradicting the assumption that ¢ is non-trivial on A. (Observe that
this holds true even if E is supersingular and EndFE is strictly bigger than ok.)
Therefore A C A, and the lemma is proved.

It is clear how to apply this lemma to our situation: the set of all points
Ymni (im(y,v)) for a fixed m is certainly invariant under E[p™~"°], and we may
take as M; the set of all such points for m > ng + <. We conclude that a translate
A+ X, X € E%k(F,), is contained in the subvariety D.

To derive a contradiction, we use the fact that translations by elements of
E[pmp™] operate on & (E) via projective automorphisms. In fact, for y € Z/pNZ
we have

*

Ajrog)leie) = Ajroy)Aie)¥rsne (Feino)
= e, (1), 50" 9)) " Aia) Al proy) P no Fermo)
= CZI?\/T oc,i(z)

with the primitive pV-th root of unity {,v = £,7"", and consequently

(X +7(p™y)) = 1(2e(X)),

where 7, is the automorphism (vg), — (Cﬁ{, Vg)q Of PP" 1,

From A+ X C D trivially P+ A[p"] C D for every P € A+ X. Parametrize the
elements Y of A[pN] by writing Y = (j(p™z,)), with z € (Z/pNZ)%"x satisfying
p¥z =0 for all p € 15(R)/pN15(R). If for each v the vector v, is a representative
for co, (@, (P,))inV = Iﬁ‘ghl", the fact P +Y € D translates into

/\ Taya, (V) = /\ Ca, (Ta, (c(;j (v))) =0, (55)

using the commutation rule between the 7, and cy: coTy = Tayco for y € Z /pN Z
and a € (Z/pNZ)*.

We will get a contradiction by forming suitable linear combinations of these
relations, which will force the vanishing of some coordinate of a v,,, provided N was

choosen large enough. Let a : V®ahk /\qh'K V be the canonical projection, and
expand the vectors v, as v, = } ;cz /,~z Vi€ in terms of the standard basis (e;).

We have then
U0®"'®U‘1h’1(_1: Z va'#@ei#

iE(Z/pNZ)thK Iz Iz
and
> )
® Tayz, Vv = Z - e H Oniy ® Ciy -
v iE(Z/pNZ)qh’K 1z Iz

Applying a Fourier transform, we get

_\tr —

YR Q) rave,ve = (#APN)) > [T Qe
z v i, ai—A€15(R)/pN 5 (R) B Iz

for all X € (Z/pN7Z)®x. From (55) we know that application of a to this equation
yields zero. Since #.A[p"] is a power of p, we conclude

Z vaﬂ /\eiy =0.

i, ai—AEL5 (R)/pNi5(R) M Iz
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If we can find a summation index ¢ with ¢, # i, (v # u) such that no non-trivial
permutation o(i), 0 € &gy \{id}, occurs in the sum for the same value of A, a
multiple of the multivector A . €i, appears only once. Therefore

H Vi = 0,
“

i. e. one of the coordinates v,;, has to vanish. But it is easily seen that the
subvariety of A + X cut out by the condition that one of the coordinates of the
®., (P,) should vanish, has codimension one, and so choosing a point P outside of
this exceptional set yields a contradiction. It remains to check the existence of an
index ¢ with the required property; this is provided by the following two lemmas,
which finish the proof of the main theorem.

Lemma 4.5. The module of relations R C 0%”‘ does not contain any vectors (ex-
cept zero) which have less than three non-zero entries.

Proof. Tt is clear that no element of R can have exactly one non-zero coordi-
nate. Assume there exists a vector in R with two non-zero entries. This implies
(n/n")(uer Juc) € K where either ¢ # ¢/ or n # 7'. In case ¢ = ¢’ we get immediately
a contradiction. If ¢ # ¢/, let v and 7' be generators of the principal ideals ¢"* and
¢"¥ . Then ulx = (y/)¢ for some ¢ € p, 1, and the same for us. From our as-
sumption, 7'y~ /y'y~1 is an element of u, 1 times the hx-th power of an element
of K, and therefore the product of a unit of K and a hx-th power. By Hilbert
90, there is some o € K* such that 4y~ 'a% generates an ideal of K invariant
under complex conjugation. But this means that ¢/c~!a has to be invariant under
complex conjugation, which contradicts the fact that ¢ and ¢ represent different
classes in Clg /Clg".

Lemma 4.6. For N large enough, there erists an element i € (Z/pNZ)qh’K such
that i, #1i, (v # p) and

a(i —o(i) & 5(R)/p" i5(R)
for every o € &y, \{id}.
Proof. We use a simple counting argument. The number of i € (Z/pNZ)t"x
such that i, # i, (v # p) is simply
P 1) " ah +1),

Nahk . We bound the number of i, for which there exists some

i. e. grows like p
o € &gy \{id} with

a(i —o(i)) € p(R)/p" 5(R),

by considering each o separately. We have the linear map f, : (Z/pNZ)%x —
(Z |pNZ) "« defined by i — a(i—o(i)) and want to count the number 7, of elements
in £71(5(R)/pN 15(R)). If b, is the number of orbits of ¢ on {0,... ,ghl — 1}, the
kernel of f, has p™? elements, and the image consists out of all z € (Z/p™ Z)qh'K

with
Z a;lx,, =0
vEB

for all orbits B. Standard results on the number of solutions of a system of linear
congruences imply that n, is equal to pN(b=tr)+¢s for N large enough, where ¢,
is some integer independent of N, and r, is the rank of the Z,-module (5(R) N I,

I, = {z € 23" | Z oy 'z, = 0VB}.
veB
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Since the rank of I, is gh'y — by, we have r, < gh'y —b,, and equality can occur only
if I, C 5(R). But I, is generated by vectors with only two non-zero components,
and none of these generators can be contained in ¢(5(R). Therefore r, < ghl — by
for every o # id, the number of excluded multiindices i is bounded by a constant
times pN(@hx—1) and we see that for N large enough there will be a multiindex
satisfying the assertion. The lemma is proved.

Application to anticyclotomic L-functions Because of Proposition 2.11 our
non-vanishing theorem has immediate consequences for the values of anticyclotomic
L-functions. In fact, let ¥ be a Shintani eigenfunction in the space V, c;p,,. The
character x*y~2 has weight —1, and setting L., (£,1/2) = (vVD/27Q)L(£,1/2) € Q
for anticyclotomic £ of weight —1, we may rewrite the result of Proposition 2.11 as

%L“(”*f{ 1/2) = hie [[(1 - wi/o(@)d " )bar (9,9) (M) _

WK
qlr

Observe here that the anti-linear map 9 +— 9! preserves the eigenspaces of the
Shintani operators, and that therefore ¥ is a constant multiple of ¥ for all eigen-
functions 9. It is now easy to deduce the following result under the restriction
¢ fhgrD]],,,(¢ — wk/g(q)), but by a more careful consideration of the form ba:
(or the scalar product) we get a stronger statement.

Corollary 4.7. Let £ be a prime, p # £ be a prime split in K, p /2hk, and &
a Hecke character of K of weight —1 and conductor rD0~1 for some product d of
ramified prime ideals, which fulfills &|ax = wk/q- Assume in addition

¢ JrinD 11 (a+1),

¢, wi/o(9)=—1,v4(r)=1

where 1y, denotes the product of the inert prime factors of r. Then there are only
finitely many twists £ of & with finite order characters unramified outside p such
that &|ax = wi/q, the global root number £(£,1/2) =1 and

|
it (goipy Lar(§,1/2)) € £.

It should be possible to lift the restriction on the weight by considering ¢-adic
L-functions, at least for split £. That some restriction on £ of the type above is
necessary is indicated by examples of Gillard [Gi, Section 6].

5 Eisensteln series

In this chapter we apply our results to the determination of the congruence primes of
(scalar valued) Eisenstein series on GU(3). We first review general results on arith-
metic moduli stacks and schemes, compactifications and g-expansions for GU(3) due
mainly to Larsen [Larl, Lar2]. The result on congruences is then easily deduced
from our non-vanishing theorem with the help of a geometric lemma (Lemma 5.2
below). Our analysis is analogous to Ribet’s in his famous paper [Ri].

5.1 Review of the arithmetic moduli problem for GU(3)

Shimura varieties for GU(3) We briefly review the situation over the complex
numbers, which is described by the theory of Shimura varieties of PEL type. See
[Go] for more details.
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Let K be a maximal compact subgroup of (the derived group of) G(R) and K
be an open compact subgroup of G(Ay). Then we may form the quotient

Sk(C) = GIQ\G(A)/Z(R) Koo K ~ G(Q\(D x G(Ay))/K,

which is in fact the set of complex points of a quasi-projective algebraic variety
Sk /C of dimension two, the Shimura variety (surface) associated to G and K. The
character v = det /u : G — T, where T is the torus Resk/qGm, gives a map

v:Sk(C) = T(4)/T(Quv(Z(R)K)

from Sk (C) to a finite group (a generalized ideal class group), whose fibers are the
connected components of Sk (C). Especially, for K = G(L); the Shimura surface
S of level one has hi connected components. The principal congruence subgroup
K of G(L)y is the normal subgroup obtained as the kernel of the map "reduction
mod N” on G(L)y, i. e. the subgroup operating trivially on L/NL. We will mainly
consider the Shimura varieties Sy = Sk, -

The Shimura varieties obtained this way allow an interpretation as moduli spaces
for polarized abelian varieties with additional endomorphism and level structures.
To sketch this interpretation, let V = K3 and L = 0% as in the introduction,
and (-,-) the skew-hermitian space given by the matrix R. Given a point 3 €
9, we obtain a splitting Vo = V. @ V_ of Vo = V @ C as a sum of an one-
dimensional space V, and a two-dimensional space V_, on which the hermitian
form (-,-) = —671(-,-) is positive, resp. negative definite. Defining a new complex
structure j on V¢ by j(2)(vy + v_) = Zvy + zv_, the alternating R-linear form
E = Trc/r(-,-) has, as is easily checked, the properties E(j(i)z,j(i)y) = E(z,y)
and E(j(i)z,z) > 0 for z € Vg \{0}. If therefore A C V is an ox-lattice such that
the form F is integral on A, we obtain a polarized abelian threefold V¢ /A (with
complex structure j and polarization given by E) together with an ox-operation
(given simply by multiplication of elements of Vi with scalars - with respect to the
usual complex structure, of course), such that the Rosati involution induces the
non-trivial automorphism of og.

We now associate to a pair (3,97) € ® x G(Ay) the lattice A = gy L and change
the skew-hermitian form by the factor |u(gs)|a. Then our construction gives a
polarized abelian threefold A with additional o x-structure. Multiplication of gy
by an element of G(L); on the right does not change anything, and multiplication
of (3,9f) by an element of G(Q) from the left induces an isomorphism of the two
structures. Consequently, we have an interpretation (over C) of the Shimura variety
of level one as a moduli space. To get a corresponding interpretation of the level
N Shimura variety, we have to add a level structure, i. e. an isomorphism « :
L/NL — A[N]. See [Go] for proofs; instead of giving more details, we directly turn
to the arithmetic case.

Arithmetic moduli spaces Since Sk(C) parametrizes abelian varieties with
additional structure over C, it is natural to give it an arithmetic structure by showing
the representability of the corresponding moduli functor over a number ring. We
pose for an integer N with (N, D) = 1 the following moduli problem over the ring
RN = ok[1/DN]: let S be a scheme over Ry. We consider quadruples (4, ¢, ¢, a),
where the first datum is an abelian scheme 7 : A — S and the second one an
endomorphism structure ¢ : 0x < Endg(A). The locally free sheaf wy,s = m, QY /s
of rank three acquires a natural structure as an Og ® oxg ~ Og ® Og-module and
therefore splits as wy/s = w), /s ® wj /8" where w, /s is the identity component and

wl | the non-identity component. We require w 4,5 and wl /s to be of rank two and

one, respectively. Furthermore, as third piece we have a polarization ¢ : A — A of
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type (1, D, D) such that the Rosati involution induces the non-trivial automorphism
of ox. Considering for each p|D the relative étale cohomology V, = RLm.Zy, a
smooth sheaf of rank six on .S, we want the canonical alternating pairing on V,,
induced by ¢ to be equivalent to Tr(-,-) on L ® Z,. (Here we have to choose
identifications Z,(1) ~ Z,, since the pairing takes at first values in Z,(—1).) The
last piece is a level N-structure o : L/NL — A[N] required to carry Tr(-,-) on the
left hand side into the pairing en(z, #(y)) on the right hand side, identifying again
uN ~ Z/NZ in some (fixed) way.

By the work of Larsen [Larl, Lar2, Lar3] the functor of isomorphism classes of
quadruples (4, , @, ) is representable by a smooth two-dimensional moduli stack
Mp /Spec(RN). In fact, by Serre’s lemma [Mum?2, p. 207] for N > 3 the quadruples
have no automorphisms, and My is an algebraic space, even a scheme.

We can now define geometric automorphic forms for GU(3) as global sections of
certain (automorphic) vector bundles over My. The stack My with its universal
abelian threefold A carries the locally free sheaves wjt /M and w, /M of rank one
and two, respectively. For any R y-algebra R an element of A(p,,, L, N; R) is now
a global section over My of the sheaf V,, ® R, where

Vo = (@ ) © Symi (@3 00,)

(Sym} denotes the dual of the symmetric v-th power). Alternatively, we can give
an equivalent description in terms of ”test objects”, as it was done in Chapter 3 for
elliptic modular forms: we interpret an automorphic form f € A(p,,, L, N; R) as a
functorial rule associating to any quadruple (4,:, @, a) (as above) defined over an
R-algebra R', together with bases wy and (w_ 1, w_ ) of the R'-modules QZ’}FR, and
Qh’/_R,, an element of Sym’((R')?). Of course, we require f to be homogeneous of
degree —p in wy, and to transform naturally if we change the basis w_. Automor-
phic forms with central character may be defined using the operation A — A ® ¢
for ideals ¢ of K as in [Ka4, p. 207, 1.0.5].

The ”dictionary” to the complex analytic case is as follows (N = 1 for sim-
plicity): for an (analytic) automorphic form f € A(p,,, L) we have the functions
fq; on D for all gy € G(As) defined in Section 2.1, and a corresponding func-
tion f'(3,9¢) = |u(gy) X'_“)mfgf (3) on ® x G(A;)/G(L)y, holomorphic in the first
variable, and satisfying

F'(v3),v97) = () k(7,3)(F' (3, 97)), 7 € G(Q).

To a pair (3,95) we associated above a polarized abelian threefold A over C with
additional structure. We can further define canonical bases of Qi{fc and Qi{;c by
taking the differentials of the j-linear maps V' — C, v — (27i)|u(gs)|a(v, P+(3))
and v — (270)|p(gs)|a(P-(3),v). Given a geometric automorphic form fyeom over
C, we may now evaluate it on the triple (4, ¢, ¢) and these bases of 21T and Q!'~ to
get a function f'(3,97) on © x G(A¢)/G(L)y, and therefore an analytic automorphic
form f € A(pyyu, L).

We recall the Kodaira-Spencer isomorphism for My. By [FaC, p. 81, Prop.
9.2] the canonical Kodaira-Spencer homomorphism

1
PA“*)A@‘UA_)QMN/RN
gives a symmetric homomorphism
1
PA:WARwA = Ly s

if we identify w4 and w 4 by ¢. Furthermore, by [Larl, Lar3] it is compatible with
the endomorphism structure:

pA((E) w1 ® w2) = pa(w1 ® (@) ws).
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Writing
Sym®(wa) = (w})®? @ Sym®(w}) @ (wf ® wy),
we see that p 4 induces in fact an isomorphism
pA W ®w, — Q}MN/RN,

which in turn gives an isomorphism of Q3 5 and (W}, )®* modulo tensoring

with a torsion sheaf, since /\2 Wa My “’jt /M modulo torsion. For N > 3 the
moduli problem is rigid and no torsion sheaf occurs.

Compactification and ¢g-expansions We now sketch the compactification of the
stack M following Larsen [Larl, Lar2]. The construction is based on the theory
of degeneration of abelian varieties [C, FaC]. We obtain the compactification by
attaching a boundary consisting out of finitely many elliptic curves parametrizing
split semi-abelian threefolds with ox-action, that is extensions

0--T—->G—-E—=0

of an elliptic curve E with complex multiplication by ox by a two-dimensional
split torus 7' (with an action of 0x); the ox-actions on the two pieces lift to an
action on G. There are h% isomorphism classes of pairs (E,T), since there are
hx many curves E and hx many possibilities for an 0x-module structure on the
character group X (T'); they correspond to the ”cusps” of the level one moduli stack.
Fixing a pair (E,T) the extensions G are parametrized by the CM elliptic curve
E' = Hom,, (X(T), E). These boundary components are defined over ox[1/ND],
where H is the Hilbert class field of K. — We denote the resulting compactified
moduli stack by My; it is smooth and proper over Ry and carries a semi-abelian
scheme G with o -action whose restriction to My is the universal abelian threefold
A.

The sheaves w;{/MN and wZ/MN extend to wg/MN and w;/MN, and we may

also extend global sections, i. e. automorphic forms (by the Koecher principle). By
[FaC, p. 86, Cor. 9.8] the Kodaira-Spencer isomorphism extends to an isomorphism
of wf ®wy with Q}QN IR [dlog C], the sheaf of differentials with logarithmic poles

®3 js isomorphic to Q2- [dlog C]

at the boundary C. Consequently, ( T /R

modulo a torsion sheaf.

For a pair (E,T) as above, the theory of degenerations allows us to construct
quotients of the semi-abelian variety G over E’, which are generically abelian, by
?dividing through a period group”. As the Tate curve (semi-abelian scheme) over
Z[[q]] is the ”universal degenerating elliptic curve”, we get "universal degenerating
abelian threefolds with ox-action” over formal schemes related to E'. From the
polarization and endomorphism data a certain line bundle L of degree D on E’ is
canonically constructed, and we obtain a semi-abelian scheme Tateg 7 with ox-
action over the completion of the variety L® ! at the zero section (more precisely,
Tateg 1 is a relative scheme over this formal scheme, cf. [C]). Tateg r is abelian
away from the zero section of L® 1, where it degenerates to the universal semi-

abelian variety G' over E' described above. The bundle w; /M getting trivial at

the boundary, we can choose an invariant differential in QE"F and evaluate a global
section f of its u-th power (or a scalar valued automorphic form) on our semi-abelian
scheme Tateg T to obtain an element of the completion of the ring T'(L®~!, O1e-1),
which is the homogeneous coordinate ring of the elliptic curve E’ and the ample line
bundle L. This gives an element of the completed homogeneous coordinate ring,

+
wg/MN)
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which is the algebraic Fourier-Jacobi expansion of f. We skip the case of vector
valued automorphic forms since it will not be needed in the following.

To compare with the analytic situation (in the case N = 1), let E be a model
of the elliptic curve C/b over og[1/D], and a be a fractional ideal such that there
exists an o0x-isomorphism X (T) ~ §~'ba~!. Every A € X(T) gives an invariant
differential A*(dg/q) on T, and by projection an element of Q;ﬁ. This gives us
the possibility of constructing an element wr € Q;’Jr as 27! times the differential
associated to a non-zero z € 6-'ba~'; obviously it is independent of z. Now wr
lifts uniquely to wg € Qg+, and with this choice we get g-expansion coefficients
geoy corresponding to the analytic ones by g% " = gr.a,6N(b)#/2.

We now have the ”g-expansion principle” as in the elliptic modular case (cf.
[C, Fa(C]): the g-expansion homomorphism is injective, and if the g-expansion of an
automorphic form f over R (R being a og[1/N D]-algebra) is already defined over a
subalgebra S, the modular form f is defined over S. This means that we can identify
the geometric concept with the “naive” concept of an arithmetic automorphic form
defined via g-expansions.

Let us finally remark that Hecke operators Tp* = N(p)(»+#)/2T, on forms of
level one are defined over the field of definition K of the level one moduli variety,
and that they preserve integrality. In particular, the associated eigenvalues A\}" are
algebraic integers (cf. [Fi]).

5.2 Congruences between Eisenstein series and cusp forms

Recall that for v, g with m = g — v —1 > 5 we have the Eisenstein series
Evpex = Lopex(Bmwg,o) i A(puy, L) associated to pairs of Hecke characters
(¢,x) of weight zero and v + u, respectively. Here E, ,, ., is the unnormalized
standard Eisenstein series of weight m and character wg /g as in Corollary 2.13.
The form &, .., has central character x, and a look at the constant terms shows
that the collection of these h% many forms is linearly independent. Consequently,
in the weights considered here, these forms span the space of Eisenstein series. In
Corollary 2.13, we computed their (primitive) Fourier-Jacobi coefficients. Their
Hecke eigenvalues were determined in Proposition 2.2. The eigenvalues AJ" of T"
on &, ey are:

e _ [ B P+ (x5 D), B o
P p2(v+1) +p2(u—l) +pu+u—1, p=pox.

We may normalize E, o, by setting

v (-1 (2m\
MWK /Q 25 D mWwK/Q

and the normalized form has g-expansion

oo
ER i) = L1 —m,wi/q) /2 + Z Um,wx/c_(k)qk-

k=1
In particular, EY , € M, (To(D),wk q; Z[1/D]). By the integrality theorem for
the lifting £ (Theorem 3.5) the forms £37, . . = L3, (EX . /C) are defined over

Q and all their Fourier-Jacobi coefficients except for the constant term are integral
away from D. Write the constant term as

90,0(%) = (0, 1)(ex™ ) (@)N(@) " /20, e
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with

—v (/'L_ 1)'

4Qg+y(2m)uL(Xa*3, (n—v)/2)L(1 — m,wgk/q) € Q.

Cupie,x = WKO

The following theorem shows that (in the scalar valued case v = 0, and for ¢ f6hk)
the /-adic behaviour of C) ;.. , determines whether or not there exists a congruence
modulo £ between &7, . . and a cusp form. Choose embeddings ix : Q — C and
is : Q = Cy, as always, and let £ be the prime ideal of Z,.

Theorem 5.1. Let £ [6hi be a split prime in K, p > 6 be an integer with p #
2(¢ — 1), x and € Hecke characters of weight u and zero, respectively. If now
iiog (Co,puse.x) € £, we have the following:

1. There is a cusp form f € Ao(pou, Lyieiol (Xar); Zs) such that
F = irin (Ee) £ 0(2).
2. There is a Hecke eigenform f € Ao(pou, Lyieies (Xar); Z4) such that

X (f) = deics (5 (Eo,uie)) (£)
for all p prime to £.

Let us remark that we are unable to prove the existence of a Hecke eigenform
congruent to the Eisenstein series, although this assertion is probably true under
our conditions; we only obtain a congruence of eigenvalues. It is almost trivial
that the first assertion is in fact equivalent to 4! (Co pe,) € £ On the other
hand, if the second assertion holds true, I do not know if it is possible to con-
clude 443 (Co,ue.x) € £, since it is not clear whether there exists a modular form
congruent to the Eisenstein series. As mentioned in the introduction, explicit com-
putations indicate that in the case of inert ¢ (excluded here) the eigenvalues of a
Hecke eigenform may be congruent to Eisenstein eigenvalues without the form itself
begin congruent to an Eisenstein series.

The restriction u #Z 2 (¢ — 1) is necessary for rather simple reasons. Namely,
for m = 1(¢ — 1) we have (for a prime ideal [ over £ in a suitable number field)
the congruence Ef7 , = Uy (1) of the I'g(D) Eisenstein series to a theta series 1,
associated to a Hecke character x of K of weight m — 1. This can be checked by
considering the non-constant terms in the g-expansion and gives a congruence of the
constant terms since ({—1) fm. Therefore, for such m we have L(1—m,wk/q)/2 =
0 (¢), but since Ej; Jo is congruent to a theta series, by Theorem 3.15 the entire
Eisenstein series 5;},’““;5,); vanishes modulo /, and in general we can not expect to get
a congruence in this case. The divisibility of L(1—m,wgk/q)/2 by £ can be explained
by the existence of a trivial zero at s = 0 of the Kubota-Leopoldt ¢-adic L-function
associated to the character wx/quwe, wy being the £-adic Teichmiiller character. The
trivial zero arises from the vanishing of the Kuler factor at ¢, which appears in the
defining interpolation property of Ly(s,wk qwe)-

The proof of Theorem 5.1 is based on our main result Theorem 3.16 together
with the following cruical lemma.

Lemma 5.2. Let £ /6D be a prime, and p > 4 be an integer. Then there exist
modular forms f € A(po,u, L; Z4) with arbitrarily prescribed constant terms in Z, at
the h% cusps.

If in addition £ /|hk, for every pair (x,€) of a Q-valued unramified Hecke
character x with x(Aox) = M for all A € K*, and an ideal class character ¢,
there ezists f € A(pou, L, X; Zg) with constant terms Ioas = x(b)(ex ") (a) for all
fractional ideals a and b.
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Postponing the proof of this Lemma for a moment, let us show how it immedi-

ately implies Theorem 5.1. Since £§, u ex = L8 e x (Bl wr /@)’ we may apply our
non-vanishing theorem. Namely, F |Wh has g-expansion Y, brg® such

that

M*lywx/Q

b, = —5_1(WK/Q(p) +p*7?)

for all primes p. Since u— 2 # 0 (£ —1), by Dirichlet’s theorem there exists a prime
p with wg/g(p) = —1 and p#~2 # 1(¢), which implies b, # 0(£). Therefore, by
Theorem 3.16 we have: i, (E3,.. ) Z 0(£).

But by Lemma 5.2 there exists a modular form g € A(p, L, iyi ! (Xar); Z¢) with
constant term gg 4 5 = %7io0 (Xar(b)(eXar (2))). Consequently,

f - le (gO,p, ,X) CO,IMEan

is a cusp form in Ag(p, L,igi7t(x); Zy), and
f = itiog (E85uex) 7 0(£).

The second assertion follows almost immediately from the Deligne-Serre lemma.
The forms f and 443} (€. ) are already defined over the ring of integers O of
a finite extension of Q. Since the reduction f of f is a Hecke eigenform with
eigenvalues i5i5; (A3 (€o,u;e,x)) modulo £N O, by Deligne-Serre [DS, p. 522, Lemme
6.11] there exists a dlscrete valuation ring O’ finite over O, and a Hecke eigenform
I' € Ao(pop, Lyiisl (x); O') with the same eigenvalues as f modulo £N O’, which
is what we want.

It remains to prove Lemma 5.2. For this we have to use the geometric results
recalled above. Let us first prove the first assertion in characteristic /. Let N > 3
to rigidify the moduli problem and consider the characteristic £ moduli scheme
S = My ® F, with auxilary level N-structure, its compactification S = My ® F,
and let C' be the compactification divisor (consisting out of finitely many elliptic
curves). We have the exact sequence of invertible sheaves on S (denoting tensoring
with F, by a tilde):

0 — Vo, (—C) — Vo, — Vo uc — 0.

Here Vo ,.c denotes the restriction of Vg ,, to the boundary of the compactification;
it is isomorphic to O¢, since wZ{ gets trivial at the boundary. The natural map
T'(8,Vo,.) = T(S,Vo,u.c) associates to an element of A(p, L; F;) the vector of its
values at the cusps. From the cohomology exact sequence, we see that this map
will be surjective if H*(S,V(—C)) = 0. Let Vo1 = Oz(D) with some divisor D.
Then V(—C) = L ® wg with L = Og(uD — K5 — C). But by the Kodaira-Spencer
isomorphism 3D is linearly equivalent to K5+ C, where Kg is the canonical divisor
of the surface S, and therefore L = Og((u — 3)D). By Serre duality we have to
show H*(S,L~!) =0.

Now from [MB], if 7 : G — S is the ”universal” semi-abelian variety above S, the
restriction of the Hodge bundle H = A® mflg/s to S is ample. But H =Y, upto

torsion, and therefore ]}0,1 and also L are ample on S. Therefore the invertible sheaf
L is numerically positive, and we conclude H'(S,L™!) = 0 from the characteristic
£ version of the Kodaira vanishing theorem obtained by Deligne-Illusie-Raynaud
[DI, p. 257, Cor. 2.8], because the smooth projective surface S lifts (obviously) to
characteristic zero. Having obtained surjectivity for level N modular forms, we get
surjectivity for level one by taking invariants under the factor group, if its order is
not divisible by £. The reader may easily verify that because of £ > 5 it is always
possible to find such an N.
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We still have to prove the assertion for Z, For this it is enough to know
surjectivity of base change from Z, to F,. By the same argument as above, it
is enough to consider the level N case. We have to show H'(Mpy,Vo,, ® Zg) =0
(cf. [Kal, p. 85]). But for this it is enough to know H'(S, V) = 0 which follows
from the ampleness of )}071 on S as above. — The second assertion follows very
simply by projecting onto the eigenspaces of the center.
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Abstract

The main subject of this thesis is the study of some finer arithmetic properties of
a certain theta lift from GU(2,Q) (or equivalently GL2(Q)) to GU(3,Q), where
GU(n) denotes the quasi-split unitary similitude group in n variables with respect
to a fixed imaginary quadratic field extension K/Q. The lifting considered here was
first studied by Kudla [Kul, Ku2]: it takes holomorphic elliptic modular forms of
level D (the negative of the discriminant of K') and character wg /g (the quadratic
Dirichlet character associated to the extension K/Q) to holomorphic, in general
vector valued, modular forms of level one on GU(3).

After integrality (away from the discriminant) of the suitably normalized lifting
is demonstrated, it makes sense to reduce it mod £ for a prime ¢, unramified in K.
The main result is a precise determination of the kernel of the reduction mod ¢ in
the case where £ splits in K, and the lifting goes to scalar modular forms, under the
weak technical restriction ¢ f2hg. Since Eisenstein series go to Eisenstein series
under the lifting, as an application a criterion on congruences between Eisenstein
series and cusp forms is obtained.

These results depend mainly on a careful study of the Fourier-Jacobi expansion
of the lifting. A closed expression for the Fourier-Jacobi expansion is derived from
Kudla’s work, and its coefficients are then decomposed into primitive components
as defined by Shintani [Shin]. The resulting formula may be of some independent
interest, but it also allows to prove the cruical non-vanishing (modulo ¢) of the lift-
ing away from the expected kernel. As a second main ingredient a characteristic £
non-vanishing result on theta functions is proved, which is an analogue of a theorem
of Washington [W2, Si2] on non-divisibility of Bernoulli numbers (special values of
Dirichlet L-functions). In fact, by the work of Yang [Y] our result implies corre-
sponding non-divisibility statements for special values of anticyclotomic L-functions
of the field K.
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Zusammenfassung

Hauptthema dieser Arbeit sind arithmetische Eigenschaften einer Thetakorrespon-
denz (theta lifting) zwischen den Gruppen GU (2,Q) (oder GL2(Q)) und GU(3,Q),
wobei GU(n) die quasizerfallende Gruppe unitirer Ahnlichkeiten in n Variablen
beziiglich eines festen imagindrquadratischen Zahlkérpers K bezeichnet. Die hier
betrachtete Korrespondenz wurde zuerst von Kudla behandelt [Kul, Ku2]: sie ord-
net holomorphen elliptischen Modulformen der Stufe D = —disc(K) zum Charak-
ter wg/q (dem quadratischen Dirichlet-Charakter, der zu der Erweiterung K/Q
gehort), holomorphe, im allgemeinen Fall vektorwertige Modulformen der Stufe
eins auf GU (3) zu.

Nachdem die Ganzzahligkeit dieser geeignet normalisierten Abbildung (aufer-
halb der Diskriminante) bewiesen ist, kann ihre Reduktion modulo einer unverzweig-
ten Primzahl £ betrachtet werden. Als Hauptergebnis wird der Kern der modulo ¢
reduzierten Abbildung in dem Fall bestimmt, dafl £ in K zerfillt, die Thetakorres-
pondenz skalarwertige Modulformen als Werte annimmt, und ¢ nicht 2hg teilt. Da
FEisenstein-Reihen Bilder von Eisenstein-Reihen unter der Thetakorrespondenz sind,
wird als Anwendung ein Kriterium fiir Kongruenzen zwischen Eisenstein-Reihen und
Spitzenformen auf GU(3) erhalten.

Diese Ergebnisse basieren hauptsichlich auf einer genauen Untersuchung der
Fourier-Jacobi-Entwicklung einer Form im Bild der Thetakorrespondenz. Eine
geschlossene Formel fiir die Fourier-Jacobi-Entwicklung wird aus Kudlas Ergeb-
nissen hergeleitet, und daran anschlieflend werden die Fourier-Jacobi-Koeffizienten
in primitive Komponenten nach Shintani [Shin] zerlegt. Die resultierende Formel
mag auch an sich von Interesse sein; sie dient hier jedenfalls zum Beweis der zen-
tralen Nichtverschwindungsaussage (modulo £). Zum Beweis des Hauptsatzes wird
zusdtzlich ein Nichtverschwindungssatz fiir Thetafunktionen in Charakteristik ¢ be-
wiesen, der zu einem Satz von Washington [W2, Si2] iiber Bernoullische Zahlen
(spezielle Werte von Dirichletschen L-Reihen) analog ist. In Verbindung mit einer
Arbeit von Yang [Y] impliziert dieses Ergebnis einen entsprechenden Nichtteilbar-
keitssatz fiir spezielle Werte antizyklotomischer L-Funktionen des Korpers K.
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