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Introduction

The real understanding involves, I believe, a synthesis of the discrete and
continuous ...

L. Lovász, Discrete and Continuous: two sides of the same?

Evolving systems can be modelled using a discrete or a continuous time scale. The
discrete model leads to a map ϕ and its powers ϕn on some state space Ω, while
the continuous model is given by a (semi)flow (ϕt)t≥0 on Ω satisfying ϕ0 = Id
and ϕt+s = ϕtϕs. In many situations, the state space Ω is a Banach space and the
maps are linear and bounded. In this case, we will use the notations T and T (t)
instead of ϕ and ϕt.

In this book, our focus is on the various concepts of stability of such linear
systems, where by stability we mean convergence to zero of {T n}∞n=1 or (T (t))t≥0

in a sense to be specified. This property is crucial for study of the qualitative be-
haviour of dynamical systems, even in the non-linear case. We adopt the general
philosophy of a parallel treatment of both the discrete and the continuous case,
systematically comparing methods and results. We try to give a reasonably com-
plete picture mentioning (most of) the relevant results, a strategy that has, by the
way, helped us to identify a number of natural open problems. However, we do not
discuss the case of positive operators and semigroups on Banach lattices, referring
the reader to, e.g., Nagel (ed.) [196] or the recent monograph of Emel’yanov [75]
for this topic. We also tried to minimise overlap with the monographs of van Neer-
ven [204] on asymptotics in the continuous case and Müller [191] in the discrete
case. Instead we emphasise the connections of stability in operator theory to its
analogues in ergodic theory and harmonic analysis.

In the following we summarise the content of the book.
Chapter I gives an overview on some functional analytic tools needed later.

Besides the classical decomposition theorems of Jacobs–Glicksberg–de Leeuw for
compact semigroups, we recall the powerful notion of the cogenerator of a C0-
semigroup. Finally, we present one of our main concepts for the investigation of
stability of C0-semigroups, the Laplace inversion formula, which can also be seen
as an extension of the Dunford functional calculus for exponential functions.



2 Introduction

In Chapter II we investigate the behaviour of the powers of a bounded linear
operator on a Banach space. As a first step, we study power boundedness. Here and
later, behaviour of the resolvent of the operator near the unit circle plays a crucial
role. In particular, we give a resolvent characterisation for power boundedness on
Hilbert spaces using the L2-norm of the resolvent on circles with radius greater
than 1. We further study the related notion of polynomial boundedness which is,
surprisingly, easier to characterise than power boundedness.

Stability is the topic in the rest of the chapter. While uniform stability is
characterised by the spectral radius, we discuss strong stability and give various
characterisations of it, both classical and recent. When turning to weak stability,
we encounter a phenomenon, well-known in ergodic theory and described by Katok
and Hasselblatt [143, p. 748] as follows1

“. . . It [mixing] is, however, one of those notions, that is easy and natural
to define but very difficult to study...”.

Thus very few results concerning weak stability are known, a sufficient condition
in terms of the resolvent being one of the exceptions.

We then introduce the concept of almost weak stability and give various
equivalent conditions. From this we see that almost weak stability, while looking
artificial, is much easier to characterise than weak stability. In particular, if the
operator has relatively compact orbits, then almost weak stability is equivalent to
“no point spectrum on the unit circle”.

Almost weak stability turns out to be fundamentally different from weak
stability, as we see in Section 5. We show that a “typical” (in the sense of Baire)
unitary operator, a “typical” isometry, and a “typical” contraction on a separable
Hilbert space are almost weakly, but not weakly, stable. This is an operator the-
oretic counterpart to the classical theorems of Halmos [116] and Rohlin [221] on
weakly and strongly mixing transformations on a probability space.

We close the chapter by characterising stability and power boundedness of
operators on Hilbert spaces via Lyapunov equations.

In Chapter III we turn our attention to the time continuous case and consider
C0-semigroups (T (t))t≥0 on Banach spaces. As in the previous chapter we discuss
boundedness and stability of (T (t))t≥0 and try to characterise these properties by
the generator, its spectrum and resolvent. We start with boundedness and discuss
in particular the quite recent characterisation of a bounded C0-semigroup on a
Hilbert space by Gomilko [104] and Shi, Feng [231]. Their integrability condition
for the resolvent on vertical lines (Theorem 1.11) is the key to the resolvent ap-
proach to boundedness and stability, as first introduced by van Casteren [45, 46].
We then characterise generators of polynomially bounded semigroups (i.e., semi-
groups growing not faster than a polynomial) in terms of various resolvent condi-
tions.

1Mixing corresponds to weak stability.
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A discussion of uniform exponential stability of C0-semigroups follows, a
notion which is more difficult to characterise than its discrete analogue. Besides
Gearhart’s generalisation to Hilbert spaces of Liapunov’s stability theorem and
the Datko–Pazy theorem, we extend Gearhart’s theorem to Banach spaces.

Strong stability is the subject of the following section containing the classical
results of Sz.-Nagy and Foiaş, Lax and Phillips and the more recent theorem by
Arendt, Batty [9], Lyubich and Vũ [180]. We then discuss the resolvent approach
developed by Tomilov [243].

Weak stability and its characterisations, partly classical and partly quite
recent, is the next topic. We emphasise that, as in the discrete case, weak stability
is much less understood than its strong and uniform analogues, still leaving many
open questions. For example, it is not clear how to characterise weak stability in
terms of the resolvent of the generator.

Next, we look at almost weak stability (Definition 5.3), which is closely re-
lated to weak stability but occurs much more frequently. We give various equivalent
conditions, analogous to the discrete case, and present a concrete example of an
almost weakly, but not weakly, stable semigroup. We finally present category theo-
rems analogous to the discrete ones stating that a “typical” (in the sense of Baire)
unitary C0-group as well as a “typical” isometric C0-semigroup on a separable
infinite-dimensional Hilbert space are almost weakly, but not weakly, stable.

Characterisation of stability and boundedness of C0-semigroups on Hilbert
spaces via Lyapunov equations is the subject of the last section.

Chapter IV relates our stability concepts to weakly and strongly mixing
transformations and flows in ergodic theory and (via the spectral theorem) to Raj-
chman and non-Rajchman measures in harmonic analysis. In addition, “typical”
behaviour of contractive operators and semigroups on Hilbert spaces is studied
using the notion of rigidity, extending the corresponding results in the previous
two chapters.

In Chapter V we build bridges between discrete systems {T n}∞n=0 and contin-
uous systems (T (t))t≥0. We start by embedding a discrete system into a continu-
ous one. More precisely, we ask for which operators T there exists a C0-semigroup
(T (t))t≥0 with T = T (1). We discuss some spectral conditions for embeddability
and give classes of examples for which such a C0-semigroup does or does not exist.
The general embedding question is still open as well as its analogues in ergodic and
in measure theory. In Section 2 we discuss the connection between a C0-semigroup
T (·) and its cogenerator V and its induced discrete system {V n}∞n=0. On Hilbert
spaces there are great similarities between asymptotic properties of the two sys-
tems. We give classical and more recent results, discuss difficulties, examples, and
open questions.

Acknowledgment. My deepest thanks go to Rainer Nagel, whose strong encour-
agement and support, deep mathematical insight and permanent optimism has
been an invaluable help.
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Lemańczyk, Jan van Neerven, Werner Ricker, Yuri Tomilov, Ulf Schlotterbeck,
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search and the Arts Baden-Württemberg is gratefully acknowledged.

I deeply thank my parents for their hearty encouragement and permanent
support, as well as Anna M. Vishnyakova for teaching me how to become a math-
ematician.



Chapter I

Functional analytic tools

In this chapter we introduce some functional analytic tools needed later.
We start with the theory of general compact semigroups and the decomposi-

tion theorem of Jacobs–Glicksberg–de Leeuw for (discrete or continuous) operator
semigroups. If applicable it states that an operator semigroup can be decomposed
into a “reversible” and a “stable” part. Since the reversible part corresponds to
an action of a compact group and can be described using harmonic analysis, it
remains to study the stable part, the main goal of this book.

We then discuss mean ergodicity of operators and semigroups and some con-
cepts from semigroup theory such as the cogenerator and the inverse Laplace
transform for C0-semigroups.

1 Compact semigroups

1.1 Preliminaries

We first recall some facts concerning the weak topology and weak compactness in
Banach spaces and refer to Dunford, Schwartz [63, Sections V.4-6], Rudin [225,
Chapter 3] and Schaefer [226, Section IV.11] for details.

We begin with the Eberlein–Šmulian theorem characterising weak compact-
ness in Banach spaces.

Theorem 1.1 (Eberlein–Šmulian). For subsets of a Banach space, weak compact-
ness and weak sequential compactness coincide.

Next, we recall the following consequence of the Banach–Alaoglu theorem.

Theorem 1.2. A Banach space is reflexive if and only if its closed unit ball is
weakly compact.

In particular, every bounded set of a Banach space is relatively weakly com-
pact if and only if the space is reflexive.
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Another important property of weakly compact sets is expressed by the
Krěın–Šmulian theorem.

Theorem 1.3 (Krěın–Šmulian). The closed convex hull of a weakly compact subset
of a Banach space is weakly compact.

The following theorem characterises metrisability of the weak topology.

Theorem 1.4. The weak topology on the closed unit ball of a Banach space X is
metrisable if and only if the dual space X ′ is separable.

We recall that separability of X ′ implies separability of X , while the converse
does not always hold. In addition, separable Banach spaces have a nice metrisabil-
ity property with respect to the weak topology.

Theorem 1.5. On a separable Banach space, the weak topology is metrisable on
weakly compact subsets.

We now introduce the basic notations to be used in the following.
For a linear operator T we denote by σ(T ) , Pσ(T ), Aσ(T ) , Rσ(T ), r(T ),

ρ(T ) and R(λ, T ) its spectrum, point spectrum, approximative point spectrum
and residual spectrum, spectral radius, resolvent set and resolvent at the point λ ∈
ρ(T ), respectively. Here, the approximative point spectrum and residual spectrum
are defined as

Aσ(T ) := Pσ(T ) ∪ {λ ∈ C : rg(λI − T ) is not closed in X}

=
{
λ∈C : ∃ {xn}⊂X such that ‖xn‖ = 1 and lim

n→∞
‖Txn − λxn‖ = 0

}
,

Rσ(T ) := {λ ∈ C : rg(λI − T ) is not dense in X}.

For more on these concepts see e.g. Conway [52, §VII.6] and Engel, Nagel [78,
pp. 241–243].

For a C0-semigroup (T (t))t≥0 we often write T (·), and denote its growth
bound by ω0(T ). The spectral bound s(A) of an (in general unbounded) operator
A is

s(A) := sup{Reλ : λ ∈ σ(A)}
and its pseudo-spectral bound (also called abscissa of the uniform boundedness of
the resolvent) is

s0(A) := inf{a ∈ R : R(λ,A) is bounded on {λ : Reλ > a}}.

Recall that for a C0-semigroup T (·) with generator A the relations

s(A) ≤ s0(A) ≤ ω0(T )

hold, while both inequalities can be strict, see e.g. Engel, Nagel [78, Example
IV.3.4] and van Neerven [204, Example 4.2.9], respectively. For other growth
bounds and their properties see van Neerven [204, Sections 1.2, 4.1, 4.2].
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1.2 Relatively compact sets in Lσ(X)

In this subsection we characterise relatively weakly compact sets of operators and
give some important examples. To this purpose we denote by Lσ(X) the space of
all bounded linear operators on a Banach spaceX endowed with the weak operator
topology.

The following characterisation goes back to Grothendieck.

Lemma 1.6. For a set of operators T ⊂ L(X), X a Banach space, the following
assertions are equivalent.

(a) T is relatively compact in Lσ(X).

(b) T x := {Tx : T ∈ T } is relatively weakly compact in X for all x ∈ X.

(c) T is bounded, and T x is relatively weakly compact in X for all x in some
dense subset of X.

Proof. We follow Engel, Nagel [78, pp. 512–514].
The implication (a)⇒(b) follows directly from the continuity of the mapping

T 	→ Tx for every x ∈ X . The converse implication follows from the inclusion

(T ,Lσ(X)) ⊂
∏
x∈X

(T xσ
, σ)

and Tychonoff’s theorem.
The uniform boundedness principle yields the implication (b)⇒(c).
(c)⇒(b): Take x ∈ X and {xn}∞n=1 ⊂ D converging to x, where D denotes

the dense subset of X from (c). By the Eberlein–Šmulian theorem (Theorem 1.1),
it is enough to show that every sequence {Tnx}∞n=1 ⊂ T x has a weakly convergent
subsequence.

Take a sequence {Tnx}∞n=1 ⊂ T x. For x1 ∈ D, there exists a subsequence
{nk,1}∞k=1 and a vector z1 ∈ X such that weak-limk→∞ Tnk,1x1 = z1. Analogously,
for x2 ∈ D there exists a subsequence {nk,2}∞k=1 of {nk,1}∞k=1 and a vector z2 ∈
X such that weak-limk→∞ Tnk,2x2 = z2, and so on. By the standard diagonal
procedure there exists a subsequence which we denote by {nk}∞k=1 such that weak-
limk→∞ Tnk

xm = zm for every m ∈ N. We have

‖zn − zm‖ ≤ sup
k∈N

‖Tnk
(xn − xm)‖ ≤ C‖xn − xm‖

for C = sup{‖T ‖ : T ∈ T } and all n,m ∈ N. So {zn}∞n=1 is a Cauchy sequence
and therefore converges to some z ∈ X . By the usual 3ε–argument we obtain
weak-limk→∞ Tnk

x = z. �

We now give some examples of relatively weakly compact subsets of opera-
tors.
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Example 1.7.

(a) On a reflexive Banach space X , any norm bounded family T ⊆ L(X) is
relatively weakly compact by the Banach–Alaoglu theorem.

(b) Let T ⊆ L(L1(μ)) be a norm bounded subset of positive operators on the
Banach lattice L1(μ), and suppose that Tu ≤ u for some μ-almost everywhere
positive u ∈ L1(μ) and every T ∈ T . Then T is relatively weakly compact
since the order interval [−u, u] is weakly compact, T -invariant and generates
a dense subset (see Schaefer [227, Thm. II.5.10 (f) and Prop. II.8.3]).

(c) Let S be a semitopological semigroup, i.e., a (multiplicative) semigroup S
which is a topological space such that the multiplication is separately con-
tinuous (see Definition 1.8 below). Consider the space C(S) of bounded,
continuous (real- or complex-valued) functions over S. For s ∈ S define the
corresponding rotation operator (Lsf)(t) := f(s · t). A function f ∈ C(S)
is said to be weakly almost periodic if the set {Lsf : s ∈ S} is relatively
weakly compact in C(S), see Berglund, Junghenn, Milnes [33, Def. 4.2.1].
The set of weakly almost periodic functions is denoted by WAP (S). If S is
a compact semitopological semigroup, then C(S) = WAP (S) holds, see [33,
Cor. 4.2.9]. This means that for a compact semitopological semigroup S the
set {Ls : s ∈ S} is always relatively weakly compact in L(C(S)). We come
back to this example in the proof of Theorem II.4.1, in Example II.4.10 as
well as in the proof of Theorem III.5.1 and in Example III.5.9.

1.3 Compact semitopological semigroups

In this subsection we present a very general and flexible approach to the quali-
tative theory of operators and C0-semigroups. We will use the theory of compact
semigroups and refer to Engel, Nagel [78, Section V.2] and Krengel [154, Section
2.2.4].

We call a set S with an associative multiplication · an abstract semigroup
(S, ·). If the semigroup operation is fixed, we write only S and st instead of (S, ·)
and s · t.

Definition 1.8. An abstract semigroup S is called a semitopological semigroup if
S is a topological space such that the multiplication is separately continuous, i.e.,
such that the maps s 	→ st and s 	→ ts are continuous for every t ∈ S. If in addition
S is compact, we call S a compact semigroup. A subset J ⊂ S is called an ideal if
JS ⊂ J and SJ ⊂ J hold.

The following easy lemma shows that separate continuity of the multiplica-
tion is enough to preserve the semigroup property and commutativity under the
closure operation.

Lemma 1.9. Let S be a semitopological semigroup and T ⊂ S. If T is a subsemi-
group, then so is T . Moreover, if T is commutative, then so is T .
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We now state the classical theorem describing the structure of commutative
compact semigroups.

Theorem 1.10 (Structure of compact semigroups). Let S be a compact commuta-
tive semitopological semigroup. Then there exists a unique minimal ideal K in S
which is a compact topological group (i.e., the multiplication and the inverse maps
are continuous from K × K → K and K → K, respectively) and satisfies K = qS
for the unit element q of K.

Proof. Observe first that, for closed ideals J1, . . . , Jn in S, ∩n
j=1Jj is a nonempty

closed ideal containing J1J2 · · ·Jn. By compactness of S we conclude that

K :=
⋂

J closed ideal

J

is a nonempty closed ideal in S.
We now show that K is the minimal ideal. Let J be an arbitrary ideal in S

and s ∈ J . We observe that Js := sS is an ideal as well and is closed as the image
of the compact set S under the multiplication by s. Hence, K ⊂ Js ⊂ J and K is
a minimal ideal. Uniqueness follows by the above representation of K.

We now check that K is a group. Take s ∈ K. Then sK ⊂ K is an ideal as
well, hence

sK = K (I.1)

by the minimality of K. Therefore there exists q ∈ K with sq = s. We show that q
is the unit in K. Indeed, for an arbitrary r ∈ K there exists by (I.1) some r′ ∈ K
with sr′ = r. So by commutativity of S we have rq = sr′q = r′s = r which implies
that q is the unit element in K. Existence of the inverse follows again from (I.1).

The equality K = qS follows from minimality of K and the ideal property of
qS.

We now invoke the Ellis theorem (see, e.g., Namioka [201] or Glasner [96,
pp. 33–37]) stating that each compact semitopological group is in fact a topological
group. �

1.4 Abstract Jacobs–Glicksberg–de Leeuw decomposition
for operator semigroups

We now consider the case where S is a subsemigroup of L(X) (X a Banach space)
considered with the usual multiplication. The typical examples for topologies mak-
ing S a semitopological semigroup are the weak, strong and norm operator topolo-
gies.

If S is commutative and compact with respect to one of these topologies, the
idempotent element q from Theorem 1.10 is a projection, hence

X = ker q ⊕ rg q
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and both subspaces are S-invariant. Since the unit q of the minimal ideal K = qS
is zero on ker q and the identity operator on rg q, we have

K = {0} ⊕ S|rg q.

Therefore, the semigroup S satisfies

0 ∈ S|ker q and S|rg q is a compact topological group.

These properties describe the structure of commutative compact semigroups of
operators on a Banach space. We state it for the weak operator topology only.
Here and below, Γ denotes the unit circle in C.

Theorem 1.11 (Abstract Jacobs–Glicksberg–de Leeuw decomposition for operator
semigroups). Let X be a Banach space and let T ⊂ L(X) be a commutative,
relatively weakly compact semigroup. Then X = Xr ⊕Xs, where

Xr := lin
{
x ∈ X : for every T ∈ T there exists γ ∈ Γ such that Tx = γx

}
Xs :=

{
x ∈ X : 0 is a weak accumulation point of T x

}
.

Proof. Denote by S the closure of T in the weak operator topology. Then S is
a compact commutative semitopological semigroup, see Lemma 1.9. Denote by K
its minimal ideal and by q the unit in K. We show that Xs = ker q and Xr = rg q.

Part 1: Xs = ker q.

We observe first that, by continuity of the mapping T 	→ Tx, Lσ(X) → (X,σ), we
have T xσ

= Sx for every x ∈ X .
To show ker q ⊂ Xs take x with qx = 0. Then 0 ∈ Sx = T xσ

and hence
x ∈ Xs. For the converse inclusion take x ∈ Xs. Then 0 ∈ T xσ

= Sx and
therefore there exists an operator R ∈ S with Rx = 0 and hence qRx = 0 as well.
Since qR ∈ K and K is a group, there exists an operator R′ ∈ K with R′qR = q.
This implies qx = R′qRx = 0.

Part 2: Xr = rg q.

We first prove “⊂”. Take x ∈ X with T x ⊂ Γ · x. Then Sx ⊂ Γ · x as well and
hence qx = γx for some γ ∈ Γ. (Indeed γ = 1 by q2 = q.) Therefore, x ∈ rg q. By
density of such vectors in Xr and closedness of rg q we have Xr ⊂ rg q.

The proof of rg q ⊂ Xr uses some basic facts on compact abelian groups, see
e.g. Hewitt, Ross [127].

Denote by m the Haar measure on K, i.e., the unique invariant probability
measure with respect to multiplication. (For an elegant functional-analytic proof
of its existence for compact groups see Izzo [133].) For a continuous character, i.e.,
a multiplicative continuous function χ : K → Γ, define

Pχx :=
∫
K
χ(S)Sxdm(S)
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weakly. (Note that the function S 	→ χ(S)〈Sx, y〉 is continuous.) We obtain an
operator Pχ : X → X ′′ and show that actually Pχ : X → X . Indeed, for a fixed
x ∈ X the set M := {χ(S)Sx, S ∈ K} is weakly compact in X . Since the closed
convex hull of a weakly compact set is again weakly compact by the Krěın–Šmulian
theorem (see Theorem 1.3), Pχx belongs to the image of co{M} in X ′′ under the
canonical embedding and hence represents an element of X . So Pχ ∈ L(X) with
‖Pχ‖ ≤ supS∈K ‖S‖.

We now show that rg(Pχ) ⊂ {x : T x ⊂ Γx}. Take R ∈ K. By the invariance
of m and multiplicativity of χ,

RPχx =
∫
K
χ(S)RSxdm(S) = χ(R)

∫
K
χ(RS)RSxdm(S),

= χ(R)
∫
K
χ(S)Sxdm(S) = χ(R)Pχx

holds for every x ∈ X , i.e., RPχ = χ(R)Pχ. For R := q this means qPχ =
χ(q)Pχ = Pχ, hence rg(Pχ) ⊂ rg q. Take now S ∈ T and define R := Sq. Then we
have SPχ = SqPχ = χ(Sq)Pχ and therefore

rg(Pχ) ⊂ {x : Sx = χ(Sq)x for every S ∈ T } (I.2)

and in particular rg(Pχ) ⊂ Xr.
It remains to show that

Xr ⊂ lin
⋃
χ

rgPχ.

To this purpose, take y ∈ X ′ vanishing on rgPχ for every character χ and show
that y vanishes on rg q. By assumption

∫
K χ(S)〈Sx, y〉dm(S) = 0 for every charac-

ter χ and x ∈ X . By the continuity of the integrand and by the fact that the linear
hull of all characters is dense in L2(K,m) (see e.g. Hewitt, Ross [127, Theorem
22.17]), we obtain 〈Sx, y〉 = 0 for every S ∈ K. In particular, 〈qx, y〉 = 0 for every
x, so y vanishes on rg q and the theorem is proved. �

The subspaces Xr and Xs in the above decomposition are called reversible
and stable subspaces, respectively.

Remark 1.12. A function λ : T → C is called an eigenvalue function if there exists
0 �= x ∈ X such that Tx = λ(T )x holds for every T ∈ T . By (I.2) above, we see
that every character χ with Pχ �= 0 defines an eigenvalue function λ : K → Γ
by λ(T ) = χ(Tq) with eigenvectors in rgPχ. Conversely, if for some x �= 0 the
equalities Tx = λ(T )x with λ(T ) ∈ Γ hold for every T ∈ K, then TSx = λ(S)Tx =
λ(S)λ(T )x and T 	→ λ(T ) is continuous. Thus every such eigenvalue function λ is
a character on K.
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1.5 Operators with relatively weakly compact orbits

We now apply the abstract setting to discrete operator semigroups.

Definition 1.13. An operator T on a Banach space X has relatively weakly compact
orbits if the set T := {T n : n ∈ N0} satisfies one of the equivalent conditions in
Lemma 1.6.

Example 1.14. By the Banach–Alaoglu theorem, every power bounded operator
on a reflexive Banach space has relatively weakly compact orbits.

We now apply the abstract decomposition from Subsection 1.4 to such oper-
ators.

Theorem 1.15 (Jacobs–Glicksberg–de Leeuw decomposition). Let X be a Banach
space and let T ∈ L(X) have relatively weakly compact orbits. Then X = Xr⊕Xs,
where

Xr := lin
{
x ∈ X : Tx = γx for some γ ∈ Γ

}
,

Xs :=
{
x ∈ X : 0 is a weak accumulation point of {T nx : n = 0, 1, 2, . . .}

}
.

We will formulate an extended version of this theorem later in Theorem II.4.8.
Finally, we state the Jacobs–Glicksberg–de Leeuw decomposition theorem for

the strong operator topology.

Theorem 1.16. Let X be a Banach space and T ∈ L(X) such that for every x ∈ X
the orbit {T nx : n = 0, 1, 2 . . .} is relatively compact in X. Then X = Xr ⊕Xs for

Xr := lin{x ∈ X : Tx = γx for some γ ∈ Γ},
Xs := {x ∈ X : ‖T nx‖ → 0 as n→ ∞}.

The proof follows directly from Theorem 1.15, the fact that on compact sets
weak convergence implies convergence, and since limj→∞ ‖T njx‖ = 0 for some
subsequence {nj} implies limn→∞ ‖T nx‖ = 0, see Lemma II.2.4.

1.6 Jacobs–Glicksberg–de Leeuw decomposition for
C0-semigroups

We now apply the abstract setting of Subsection 1.4 to C0-semigroups. Note that
the results of this section are completely analogous to the discrete version consid-
ered in Subsection 1.5.

Definition 1.17. A C0-semigroup T (·) on a Banach space X is called relatively
weakly compact if the set T := {T (t) : t ≥ 0} ⊂ L(X) satisfies one of the equivalent
conditions in Lemma 1.6.

Remark 1.18. A C0-semigroup T (·) on a Banach space X is relatively weakly
compact if and only if T (1) has relatively weakly compact orbits. The non-trivial
“if” implication follows from the semigroup law and the fact that the sets {T (r)x :
r ∈ [0, 1]} are (strongly) compact as the continuous image of [0, 1].
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The following theorem is again a special case of the abstract Jacobs–Glicks-
berg–de Leeuw decomposition and is fundamental for the stability theory of C0-
semigroups, see Engel, Nagel [78], Theorem V.2.8.

Theorem 1.19 (Jacobs–Glicksberg–de Leeuw decomposition for C0-semigroups).
Let X be a Banach space and T (·) be a relatively weakly compact C0-semigroup on
X. Then X = Xr ⊕Xs, where

Xr := lin
{
x ∈ X : T (t)x = eiαtx for some α ∈ R and all t ≥ 0

}
,

Xs :=
{
x ∈ X : 0 is a weak accumulation point of {T (t)x : t ≥ 0}

}
.

In Theorem III.5.7 we formulate an extended version of the above theorem.
Moreover, we refer to Arendt, Batty, Hieber, Neubrander [10, Theorem 5.4.11] for
an individual version.

We now state the decomposition theorem of Jacobs–Glicksberg–de Leeuw for
C0-semigroups with respect to the strong operator topology.

Theorem 1.20. Let X be a Banach space and T (·) be relatively compact in the
strong operator topology, i.e., for every x ∈ X the orbit {T (t)x : t ≥ 0} is relatively
compact in X. Then X = Xr ⊕Xs for

Xr := lin{x ∈ X : T (t)x = eiαtx for some α ∈ R and all t ≥ 0},
Xs := {x ∈ X : ‖T (t)x‖ → 0 as t→ ∞}.

The proof follows as in the discrete case directly from Theorem 1.19, the fact
that, for sequences in a compact set, weak convergence implies convergence, and
Lemma III.2.4.

For an individual version of Theorem 1.20 see Arendt, Batty, Hieber, Neu-
brander [10, Theorem 5.4.6].

Remark 1.21. Theorem 1.20 applies, for instance, to eventually compact C0-
semigroups or bounded C0-semigroups whose generator has compact resolvent,
see Engel, Nagel [78, Corollary V.2.15].

2 Mean ergodicity

We now introduce mean ergodicity, or convergence in mean, of operators and
C0-semigroups. This is an important asymptotic property having its origin in the
classical “mean” and “individual ergodic theorems” by von Neumann and Birkhoff
(see books on ergodic theory such as Halmos [118], Petersen [212], Walters [254])
which occurs in quite general situations.

2.1 Mean ergodic operators

We first look at mean ergodicity of operators and follow Yosida [260, Section
VIII.3], Nagel [195] as well as Engel, Nagel [78, Section V.4] where the continuous
case is treated.
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We begin with the so-called Cesàro means of an operator.

Definition 2.1. For a bounded operator T on a Banach space X the Cesàro means
Sn are defined by

Snx :=
1

n+ 1

n∑
k=0

T kx, x ∈ X.

We are interested in convergence of Sn. The following easy lemma already
gives some information.

Lemma 2.2. Let T be a bounded operator on a Banach space X. If T satisfies
limn→∞

‖T nx‖
n = 0 for every x ∈ X, then Snx converges as n→ ∞ for every

x ∈ FixT ⊕ rg(I − T ).

More precisely, Snx = x for every x ∈ FixT and limn→∞ Snx = 0 for every
x ∈ rg(I − T ).

Proof. To prove the second statement take x = z−Tz ∈ rg(I −T ). Then we have

Snx =
1

n+ 1

n∑
k=0

(
T kz − T k+1z

)
=
z − T n+1z

n+ 1
→ 0 as n→ ∞

by assumption. �

Definition 2.3. A bounded operator T on a Banach space X is called mean ergodic
if the Cesàro means {Snx}∞n=0 converge as n → ∞ for every x ∈ X . In this case
the limit

x 	→ Px := lim
n→∞

Snx

is called the mean ergodic projection corresponding to T .

Remark 2.4. 1) For a mean ergodic operator T , the operator P is indeed a
projection commuting with T since P = TP = PT follows from the definition
and implies P = T nP = limn→∞

1
n+1

∑n
k=0 T

kP = P 2. If T is a contraction
on a Hilbert space, then P is an orthogonal projection since it is contractive.

2) By T nx
n = Snx− n−1

n Sn−1x, every mean ergodic operator T satisfies

lim
n→∞

‖T nx‖
n

= 0 for every x ∈ X,

and hence r(T ) ≤ 1 by the uniform boundedness principle.

As a counterpart to the Cesàro means we now introduce Abel means of an
operator.
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Definition 2.5. For a bounded operator T on a Banach space X , the Abel means
of T are the operators S̃r defined by

S̃rx := (r − 1)
∞∑

n=0

T nx

rn+1
, x ∈ X

for r > 1, whenever the above series converges.

The following classical property is central for our study, see, e.g., Hardy [123,
Section V.12], Emilion [76] or Shaw [230] for the continuous case.

Lemma 2.6 (Equivalence of the Cesàro and Abel means). Let {an}∞n=1 be a se-

quence in a Banach space X such that the Abel means (r − 1)
∞∑

n=0

an

rn+1
exist for

every r > 1. Then convergence of the Cesàro means as n→ ∞ implies convergence
of the Abel means as r → 1+ and the limits coincide, i.e.,

lim
n→∞

1
n+ 1

n∑
k=0

ak = lim
r→1+

(r − 1)
∞∑

n=0

an

rn+1
.

Conversely, convergence of the Abel means implies convergence of the Cesàro
means and the limits coincide in each of the following cases:

• {an}∞n=1 is bounded;

• X = C and an ≥ 0 for every n ∈ N.

In particular, for a bounded operator T on a Banach space with r(T ) ≤ 1, one has

lim
n→∞

1
n+ 1

n∑
k=0

T k = lim
r→1+

(r − 1)R(r, T )

in the weak, strong and norm operator topology, whenever the left limit exists.

Note that the last assertion follows from the previous ones by the Neumann
series representation of the resolvent.

Remark 2.7. Shaw [230] showed that convergence of Abel means implies conver-
gence of the Cesàro means and the limits coincide for every positive sequence in
a Banach lattice.

We now state an easy but useful property of mean ergodic operators. We will
see in Theorem 2.9 that it is in fact equivalent to mean ergodicity.

Proposition 2.8. Let T be a mean ergodic operator on a Banach space X. Then
the mean ergodic projection P yields a decomposition

X = rgP ⊕ kerP
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with
rgP = FixT, kerP = rg(I − T ).

Moreover, the projection P can also be obtained as

Px = lim
r→1+

(r − 1)R(r, T )x for all x ∈ X. (I.3)

Proof. The inclusion FixT ⊂ rgP follows from the definition of P . For the con-
verse inclusion take some z = Px ∈ rgP . Then Tz = TPx = Px = z by the above
remark.

The inclusion rg(I − T ) ⊂ kerP follows from Lemma 2.2. For the converse
inclusion take y ∈ X ′ vanishing on rg(I − T ). This means that 〈x, y〉 = 〈Tx, y〉 for
every x ∈ X , which implies 〈x, y〉 = 〈Px, y〉 for every x ∈ X , hence y vanishes on
kerP , and we obtain kerP ⊂ rg(I − T ).

The last formula follows from r(T ) ≤ 1 and Lemma 2.6. �
The following classical theorem gives different characterisations of mean er-

godicity, see, e.g., Yosida [260, Theorem VIII.3.2], Nagel [195] and Krengel [154,
§ 2.1].

Theorem 2.9 (Mean ergodic theorem). Let T be a bounded operator on a Banach
space X satisfying supn∈N ‖T n‖ <∞. Then the following assertions are equivalent.

(i) T is mean ergodic.

(ii) For every x ∈ X there exists a subsequence {nk}∞k=1 such that Snk
x converges

weakly as k → ∞.

(iii) limr→1+(r − 1)R(r, T )x exists for every x ∈ X.

(iv) FixT separates Fix(T ′).

(v) X = FixT ⊕ rg(I − T ).

In particular, operators with relatively weakly compact orbits are mean ergodic.

Proof. The equivalence (i)⇔(iii) follows from Lemma 2.6.
The implication (i)⇒(ii) is trivial.
For the implication (ii)⇒(iv) take 0 �= y ∈ FixT ′. We have to find x ∈

FixT with 〈x, y〉 �= 0. Take x0 ∈ X with 〈x0, y〉 �= 0. By (ii) there exists weak-
limk→∞ Snk

x0 =: x for some subsequence {nk}∞k=0. We now show that x ∈ FixT .
Observe

x−Tx = (I−T )(x−Snk
x0)+(I−T )Snk

x0 = (I−T )(x−Snk
x0)+

x0 − T nk+1x0

nk + 1
.

Since T is power bounded, the second summand on the right-hand side tends to
0 as k → ∞. Thus weak continuity of (I − T ) implies

x− Tx = weak- lim
k→∞

(I − T )(x− Snk
x0) = 0,
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hence x ∈ FixT . Therefore we obtain

〈x, y〉 = lim
k→∞

〈Snk
x0, y〉 = 〈x0, y〉 �= 0,

where we have used y ∈ kerT ′, and (iv) follows.
Assume now that (iv) holds. For (v) it suffices to show that the subspace

G := FixT ⊕ rg(I − T )

is dense in X . Take y ∈ X ′ vanishing on G. Then 〈x, y〉 = 〈Tx, y〉 for every x ∈ X ,
and hence y ∈ FixT ′. Since y vanishes on FixT by assumption as well, we have
by (iv) that y = 0, and density of G follows.

To prove (v)⇒(i) we first observe that Snx converges for every x ∈ FixT ⊕
rg(I − T ) by Lemma 2.2. By density of this set and boundedness of {Sn}∞n=0 we
obtain that Sn converges on the whole X , i.e., T is mean ergodic.

In order to show the last assertion, suppose that T has relatively weakly
compact orbits and check assertion (ii). Take x ∈ X and observe that {Snx :
n ∈ N} ⊂ co{T nx : n = 0, 1, 2, . . .} and hence is relatively weakly compact by
assumption and the Krěin–Šmulian theorem. By the Eberlein–Šmulian theorem,
weak compactness coincides with weak sequential compactness, and assertion (ii)
of Theorem 2.9 follows. �

The following result shows the value of the various characterisations in the
above mean ergodic theorem.

Corollary 2.10. A power bounded operator T on a Banach space is mean ergodic
with mean ergodic projection P = 0 if and only if FixT ′ = {0}.

The proof uses (i)⇔(iv) in Theorem 2.9 and the fact that FixT ′ separates
FixT for power bounded operators. For a quite large class of operators, mean
ergodicity holds automatically as a consequence of the Banach–Alaoglu theorem
and Theorem 2.9.

Corollary 2.11. Every power bounded operator on a reflexive Banach space is mean
ergodic.

Note that mean ergodicity of power bounded operators characterises reflex-
ivity for Banach spaces with unconditional basis, see Fonf, Lin, Wojtaszczyk [89]
and also the discussion in Emel’yanov [75, Section 2.2.3].

Remark 2.12. If Pσ(T ) ∩ Γ ⊂ {1} and T has relatively weakly compact orbits,
then the mean ergodic projection coincides with the projection from the Jacobs–
Glicksberg–de Leeuw decomposition, see Section 1.5.

There are many extensions of the mean ergodic theorem, see e.g. Berend, Lin,
Rosenblatt, Tempelman [31] for recent results on modulated and subsequential
ergodic theorems and further references.
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2.2 Uniformly mean ergodic operators

In this subsection we consider a stronger property than the above mean ergodicity,
see also Krengel [154, § 2.2].

Definition 2.13. An operator T on a Banach space is called uniformly mean ergodic
if the Cesàro means Sn converge in the norm operator topology.

In other words, an operator T is uniformly mean ergodic if and only if T is mean
ergodic and one has

lim
n→∞

‖Sn − P‖ = 0

for the mean ergodic projection P .

Remark 2.14. A uniformly mean ergodic operator T again satisfies r(T ) ≤ 1, and
the projection P can be obtained as

P = lim
r→1+

(r − 1)R(r, T )

by Lemma 2.6. Recall that for a mean ergodic operator this formula holds only
pointwise.

The following result characterises uniform mean ergodicity, see Lin [168].

Theorem 2.15. Let T be a power bounded operator on a Banach space. Then the
following assertions are equivalent.

(i) T is uniformly mean ergodic.

(ii) There exists limr→1+(r − 1)R(r, T ).

(iii) 1 ∈ ρ(T ) or 1 is a first-order pole of R(λ, T ).

(iv) rg(I − T ) is closed in X.

(v) X = FixT ⊕ rg(I − T ).

Proof. The equivalence (i)⇔(ii) again follows from Lemma 2.6.
(i)⇒(iii). Assume that 1 ∈ σ(T ). We have to show that 1 is a first-order pole

of the resolvent. By Proposition 2.8, the decomposition into invariant subspaces
X = FixT ⊕ rg(I − T ) holds. Since T |FixT = I, and hence 1 is a first-order pole
of R(λ, T |FixT ), it suffices to show that

1 ∈ ρ(T |kerP ). (I.4)

Assume the opposite, i.e., that 1 ∈ σ (T |kerP ). Since T is power bounded, we
have 1 ∈ Aσ (T |kerP ). Thus there exists an approximate eigenvalue {xm}∞m=1 ⊂
kerP , ‖xm‖ = 1, such that limm→∞ ‖(I − T )xm‖ = 0. Then we obtain

lim
m→∞

(I − T n)xm = lim
m→∞

n−1∑
k=0

T k(I − T )xm = 0
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for every n ∈ N. This implies limm→∞(I − Sn)xm = 0, so 1 ∈ Aσ(Sn) and hence
‖Sn|ker P ‖ ≥ 1 for every n ∈ N. This contradicts the uniform ergodicity of T which
means limn→∞ ‖Sn|ker P ‖ = 0. Hence (I.4) is proved.

The implication (iii)⇒(ii) is clear.
(ii)⇒(iv). Let P := limr→1+(r − 1)R(r, T ). We first prove that Px = 0 for

every x ∈ rg(I − T ). Take x = z−Tz ∈ rg(I−T ). Then we have, by the resolvent
identity,

(r − 1)R(r, T )x = (r − 1)R(r, T )(I − T )z = (r − 1)z − (r − 1)2R(r, T )z

and hence by (iii) Px = limr→1+(r−1)R(r, T )x = 0. So P = 0 on Y := rg(I − T ),
i.e.,

lim
r→1+

‖(r − 1)R(r, T )|Y ‖ = 0

holds. (We used here that Y is R(r, T )-invariant by the Neumann representation
of the resolvent.) This implies that the operator

(I − T )R(r, T ) = I − (r − 1)R(r, T )

is invertible on Y for every r > 1 small enough. So we have in particular

Y = rg(I − T ) = (I − T )R(r, T )Y ⊂ rg(I − T ),

and rg(I − T ) is closed.
(iv)⇒(v). We first show that (I − T )|rg(I−T ) is invertible. Assume the op-

posite, i.e., that 1 ∈ σ(T |rg(I−T )). As in the proof of (i)⇒(iii), this implies that
1 ∈ σ(Sn|rg(I−T )) and hence ‖Sn|rg(I−T )‖ ≥ 1 for every n ∈ N. On the other hand,
for x = z − Tz ∈ rg(I − T ) we have, by

(n+ 1)Snx =
n∑

k=0

(T kz − T k+1z) = z − T n+1z

and power boundedness of T , that supn∈N ‖nSnx‖ <∞. By closedness of rg(I−T )
and the uniform boundedness principle this implies supn∈N ‖nSn|rg(I−T )‖ <∞ and
hence limn→∞ ‖Sn|rg(I−T )‖ = 0, a contradiction. So (I − T )|rg(I−T ) is invertible.

Take now x ∈ X . By invertibility of (I − T )|rg(I−T ) there exists a unique
z ∈ rg(I−T ) such that (I−T )x = (I−T )z. Then (x−z) ∈ FixT and x = (x−z)+z,
and the decomposition X = FixT ⊕ rg(I − T ) is proved.

(v)⇒(i). Observe that FixT and rg(I − T ) are invariant closed subspaces.
On FixT the restriction of Sn is equal to I, so T |FixT is uniformly mean ergodic.
Moreover, as in the proof of the implication (iv)⇒(v) we have (by closedness of
rg(I − T ))

lim
n→∞

‖Sn|rg(I−T )‖ = 0.

So T is uniformly mean ergodic by (v). �
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A direct corollary of the above characterisation is the following.

Corollary 2.16. A quasi-compact power bounded operator T on a Banach space is
uniformly mean ergodic.

Proof. Since T is quasi-compact, we have a decomposition into invariant subspaces
X = X1⊕X2 and T = T1⊕T2 such that dimX1 <∞ and r(T2) < 1. Assume that
1 ∈ σ(T ) which is equivalent to 1 ∈ σ(T1). Since T1 is a power bounded matrix,
we see by Jordan’s representation that 1 is the first-order pole of R(λ, T1). Thus
T satisfies condition (iii) of Theorem 2.15. �
Remark 2.17. For positive operators on Banach lattices a stronger assertion holds:
A positive operator T is quasi-compact if and only if it is mean ergodic and satisfies
dim FixT <∞, see Lin [170].

2.3 Mean ergodic C0-semigroups

We now characterise mean ergodicity of C0-semigroups. Most of the proofs are
analogous to the discrete case, so we omit them and refer to Engel, Nagel [78,
Section V.4] for details.

We first define Cesàro means of a C0-semigroup T (·).
Definition 2.18. The Cesàro means of a C0-semigroup T (·) are the operators

S(t)x :=
1
t

∫ t

0

T (s)xds, x ∈ X and t > 0.

The following easy lemma describes convergence of the Cesàro means on a
subspace. Here and later we use the notation

FixT (·) :=
⋂
t≥0

FixT (t).

Lemma 2.19. Let T (·) be a C0-semigroup on a Banach space X. If T satisfies
limt→∞

‖T (t)x‖
t = 0 for every x ∈ X, then S(t)x converges as t→ ∞ for every

x ∈ FixT (·) ⊕ lin ∪t≥0 rg(I − T (t)).

More precisely, S(t)x = x for every x ∈ FixT (·) and limt→∞ S(t)x = 0 for every
x ∈ lin ∪t≥0 rg(I − T (t)).

Mean ergodic semigroups are defined as follows.

Definition 2.20. A C0-semigroup T (·) on a Banach space X is called mean ergodic
if the Cesàro means S(t)x converge as t → ∞ for every x ∈ X . In this case the
limit

x 	→ Px := lim
t→∞

S(t)x

is called the mean ergodic projection corresponding to T (·).
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Remark 2.21. Mean ergodicity of T (·) implies P = T (t)P = PT (t) and there-
fore Px = T (t)Px = limt→∞

1
t

∫ t

0 T (s)Pxds = P 2x. So P is indeed a projection
commuting with T (·).

As above, we also consider the Abel means.

Definition 2.22. The Abel means of a C0-semigroup T (·) with ω0(T ) ≤ 0 are the
operators S̃a defined by

S̃ax := a

∫ ∞

0

e−asT (s)xds for x ∈ X and a > 0.

The following relation between convergence of the Cesàro and Abel means
is essential for the resolvent approach to asymptotics of C0-semigroups, see, e.g.,
Emilion [76] and Shaw [230].

Lemma 2.23 (Equivalence of the Cesàro and Abel means, continuous case). Let
X be a Banach space and f : R+ → X be continuous such that the Abel means
a
∫∞
0 e−atf(t)dt exist for every a > 0. Then convergence of the Cesàro means as

t→ ∞ implies convergence of the Abel means as a→ 0+ and the limits coincide,
i.e.,

lim
t→∞

1
t

∫ t

0

f(s)ds = lim
a→0+

a

∫ ∞

0

e−atf(t)dt.

Conversely, convergence of the Abel means implies convergence of the Cesàro
means and the limits coincide in each of the following cases:

• f is bounded;

• X = C and f(s) ≥ 0 for every s ≥ 0.

In particular, for a C0-semigroup T (·) on a Banach space X with generator A
satisfying ω0(T ) ≤ 0 one has

lim
t→∞

1
t

∫ t

0

T (s)xds = lim
a→0+

aR(a,A)x

for every x ∈ X, whenever the left limit exists.

The following proposition gives more information on the decomposition ob-
tained from the mean ergodic projection.

Proposition 2.24. Let T (·) be a mean ergodic C0-semigroup on a Banach space X
satisfying limt→∞

‖T (t)x‖
t = 0 for every x ∈ X. Then the mean ergodic projection

P yields the decomposition
X = rgP ⊕ kerP

with
rgP = kerA = FixT (·), kerP = rgA = lin ∪t≥0 rg(I − T (t)).
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Moreover, the projection P can be obtained as

Px = lim
a→0+

aR(a,A)x for all x ∈ X. (I.5)

The following classical theorem characterises mean ergodicity in various ways.

Theorem 2.25 (Mean ergodic theorem for C0-semigroups). Let T (·) be a bounded
C0-semigroup on a Banach space X. Then the following assertions are equivalent.

(i) T (·) is mean ergodic.

(ii) For every x ∈ X there exists a sequence {tk}∞k=1 ⊂ R+ converging to ∞ such
that S(tk)x converges weakly as k → ∞.

(iii) There exists lima→0+ aR(a,A)x for every x ∈ X.

(iv) kerA separates kerA′.

(v) X = kerA⊕ rgA.

In particular, every relatively weakly compact C0-semigroup, and hence every
bounded semigroup on a reflexive Banach space, is mean ergodic.

As a direct corollary we obtain an easy characterisation of C0-semigroups
whose Cesàro means converge to 0.

Corollary 2.26. A bounded C0-semigroup T (·) on a Banach space with generator
A is mean ergodic with mean ergodic projection P = 0 if and only if kerA′ = {0}.
Remark 2.27. If T (·) is a relatively weakly compact semigroup with generator A
and Pσ(A)∩ iR = {0}, then the mean ergodic projection corresponding to T (·) co-
incides with the projection from the Glicksberg–Jacobs–de Leeuw decomposition,
see Section 1.6.

2.4 Uniformly mean ergodic C0-semigroups

We now introduce uniformly mean ergodic C0-semigroups. Again, the situation is
similar to the discrete case and we refer to Engel, Nagel [78, Section V.4] for the
proofs.

Definition 2.28. A C0-semigroup T (·) on a Banach space is called uniformly mean
ergodic if the Cesàro means S(t) converge as t→ ∞ in the norm operator topology.

Remark 2.29. A C0-semigroup T (·) is uniformly mean ergodic if and only if it is
mean ergodic and

lim
t→∞

‖S(t) − P‖ = 0

holds for the mean ergodic projection P .

The following theorem characterises uniform mean ergodicity of C0-semi-
groups, see Lin [169].
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Theorem 2.30. Let T (·) be a bounded C0-semigroup on a Banach space. Then the
following assertions are equivalent.

(i) T (·) is uniformly mean ergodic.

(ii) There exists lima→0+ aR(a, T ).

(iii) 0 ∈ ρ(A) or 0 is a first-order pole of R(λ,A).

(iv) rgA is closed in X.

(v) X = FixT (·) ⊕ rgA.

In this case, the mean ergodic projection satisfies P = lima→0+ aR(a, T ).

A direct corollary of the above characterisation is the following example of
uniformly mean ergodic semigroups.

Corollary 2.31. A quasi-compact bounded C0-semigroup T (·) on a Banach space
is uniformly mean ergodic.

3 Specific concepts from semigroup theory

In this section we present tools and methods from semigroup theory which we
will need later. The main reference for basic definitions and facts from semigroup
theory is Engel, Nagel [78].

3.1 Cogenerator

Another useful tool, besides the generator, in the theory of C0-semigroups is the so-
called cogenerator. It can be obtained easily from the generator (see formula (I.6)
below), it is a bounded operator, and, as we will see later, reflects many properties
of the semigroup. The diagram on top of the next page shows the major objects
related to a C0-semigroup.

The cogenerator is defined as follows.

Definition 3.1. Let A generate a C0-semigroup T (·) on a Banach spaceX satisfying
1 ∈ ρ(A). The operator V defined by

V := (A+ I)(A − I)−1 ∈ L(X)

is called the cogenerator of T (·).
Remark 3.2. The identity

V = (A− I + 2I)(A− I)−1 = I − 2R(1, A) (I.6)

implies that V −I has a densely defined inverse (V −I)−1 = 1
2 (A−I). In particular,

A = (V + I)(V − I)−1 = I + 2(V − I)−1

holds, i.e., the generator is also the (negative) Cayley transform of the cogenerator.
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(R(λ,A))λ∈ρ(A)

generator’s resolvent

(T (t))t≥0

semigroup

(A,D(A))
generator

V

cogenerator

Note that the cogenerator determines the generator, and therefore the semi-
group, uniquely. As a further consequence of (I.6) one has the following easy
description the spectrum and resolvent of V .

Proposition 3.3. The spectrum of the cogenerator V is

σ(V ) \ {1} =
{
λ+ 1
λ− 1

: λ ∈ σ(A)
}
.

The same relation holds for the point spectrum, residual point spectrum and ap-
proximative point spectrum, respectively. Moreover,

R(λ,A) =
1

λ− 1
(I − V )R

(
λ+ 1
λ− 1

, V

)
(I.7)

holds for every λ ∈ ρ(A) \ {1}.
Proof. The assertion on the spectrum of V is a direct consequence of (I.6) and the
spectral mapping theorem for the resolvent (see e.g. Engel, Nagel [78, Theorem
IV.1.13]), while (I.7) follows from

λI −A = (λV − λI − V − I)(V − I)−1

= (V (λ− 1) − (λ+ 1))(V − I)−1 = (λ− 1)
(
λ+ 1
λ− 1

− V

)
(I − V )−1

for every λ �= 1. �
It is remarkable that for operators on Hilbert spaces there is a very simple

characterisation of operators being the cogenerator of a contraction semigroup.
This is the following theorem due to Foiaş, Sz.-Nagy [238, Theorem III.8.1]. The
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proof below of the non-trivial “if”-implication (see also Katz [145]) is simpler
than the original one which uses a special functional calculus to construct the
semigroup.

Theorem 3.4 (Foiaş–Sz.-Nagy). Let H be a Hilbert space and V ∈ L(H). Then V
is the cogenerator of a contractive C0-semigroup if and only if V is contractive
and 1 /∈ Pσ(V ).

Proof. Assume first that V is the cogenerator of a contractive C0-semigroup T (·)
and denote by A its generator. Then the operator I − V = 2R(1, A) is injective
and hence 1 /∈ Pσ(V ). Moreover, by the Lumer–Phillips Theorem (see, e.g., Engel,
Nagel [78, Theorem II.3.15]) A is dissipative and hence

‖(A+ I)x‖2 − ‖(A− I)x‖2 = 4Re 〈Ax, x〉 ≤ 0 ∀x ∈ D(A).

Therefore ‖V x‖ = ‖(A + I)(A − I)−1x‖ ≤ ‖(A − I)(A − I)−1x‖ = ‖x‖ for every
x ∈ H , hence V is contractive.

Let now V be a contraction with 1 /∈ Pσ(V ). Then the operator I − V is
injective, and we can define

A := −(I + V )(I − V )−1 with D(A) := rg(I − V ).

Note that A = I − 2(I − V )−1 holds.
We show first that Re 〈Ax, x〉 ≤ 0 for every x ∈ D(A). Indeed, for x ∈ D(A)

and y := (V − I)−1x we have

〈Ax, x〉 = 〈(I + V )(V − I)−1x, x〉 = 〈(I + V )y, (V − I)y〉
= ‖V y‖2 − ‖y‖2 + 2i · Im 〈y, V y〉

and therefore Re 〈Ax, x〉 ≤ 0.
We observe further that (I − A)−1 = 1

2 (I − V ) and therefore 1 ∈ ρ(A).
Moreover, since V is mean ergodic, we have rg(I − V ) = H by Proposition 2.8, so
the operator A is densely defined.

The assertion now follows directly from the Lumer–Phillips Theorem (see,
e.g., Engel, Nagel [78, Theorem II.3.15]). �

Further, many properties of a contraction semigroup on a Hilbert space can
be seen from its cogenerator. The following is again due to Foiaş, Sz.-Nagy, see
[238, Sections III.8–9].

Theorem 3.5. Let T (·) be a contractive C0-semigroup on a Hilbert space with co-
generator V . Then T (·) is normal, self-adjoint, isometric or unitary if and only if
V is normal, self-adjoint, isometric or unitary, respectively.

Note that all the equivalences except the isometry property follow easily
from the spectral theorem in its multiplicator form, see e.g. Conway [52, Theorem
IX.4.6].
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The cogenerator approach allows us to transfer many properties of single
operators to C0-semigroups in a short and elegant way. However, it is not yet
clear how this approach extends to C0-semigroups on general Banach spaces.

To conclude this subsection we present an elementary but useful formula for
the powers of the cogenerator in terms of the semigroup, see e.g. Gomilko [105].

Lemma 3.6. Let T (·) be a C0-semigroup on a Banach space X with ω0(T ) < 1 and
cogenerator V . Then

V nx = x− 2
∫ ∞

0

L1
n−1(2t)e

−tT (t)xdt (I.8)

holds for every x ∈ X, where L1
n(t) is the first generalized Laguerre polynomial

given by

L1
n(t) =

n∑
m=0

(−1)m

m!

(
n+ 1
n−m

)
tm. (I.9)

Proof. By V = I − 2R(1, A) and the Laplace representation for the resolvent we
obtain

V nx = (I − 2R(1, A))nx = x−
n∑

m=1

2m

(m− 1)!

(
n

n−m

)
R(m−1)(1, A)x

= x−
n∑

m=1

2m(−1)m−1

(m− 1)!

(
n

n−m

)∫ ∞

0

e−ttm−1T (t)xdt

= x− 2
∫ ∞

0

L1
n−1(2t)e

−tT (t)xdt,

and the lemma is proved. �

3.2 Inverse Laplace transform for C0-semigroups

Our main tool in the resolvent approach to stability of C0-semigroups is a formula
for the inverse Laplace transform of the semigroup.

We first need a lemma on the behaviour of the resolvent of an operator on
the left of its abscissa of uniform boundedness.

Lemma 3.7. Let A be a closed operator with s0(A) <∞. Then

‖R(z,A)x‖ → 0 as |z| → ∞, Re z ≥ a (I.10)

holds for every a > s0(A) and x ∈ X.

Proof. Take any a > s0(A). Then there exists a constant M > 0 such that
‖R(z,A)‖ ≤ M for all z ∈ C with Re z ≥ a. Take now x ∈ D(A) and z with
Re z ≥ a. Then

‖R(z,A)x‖ =
1
|z| ‖x+R(z,A)Ax‖ ≤ 1

|z|(‖x‖ +M‖Ax‖),
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and therefore we have

‖R(z,A)x‖ → 0 as |z| → ∞, Re z ≥ a.

Since D(A) is dense in X and the resolvent of A is uniformly bounded on {z :
Re z ≥ a}, this is true for all x ∈ X and property (I.10) is proved. �

The following representation holds for every C0-semigroup and is based on
arguments from Fourier analysis, see van Neerven [204, Thm.1.3.3] and Kaashoek,
Verduyn Lunel [139].

Theorem 3.8. Let T (·) be a C0-semigroup on a Banach space X with generator A.
Then

T (t)x =
1
2π

(C, 1)
∫ ∞

−∞
e(a+is)tR(a+ is, A)xds

=
1

2πt
(C, 1)

∫ ∞

−∞
e(a+is)tR2(a+ is, A)xds

holds for all a > s0(A), t > 0 and x ∈ X.

Here, (C, 1)
∫∞
−∞ f(s) ds denotes the limit of the Cesàro means of

∫ τ

−τ f(s)ds
and is defined by

(C, 1)
∫ ∞

−∞
f(s) ds := lim

N→∞

1
N

∫ N

0

∫ τ

−τ

f(s) ds dτ,

whenever the limit on the right-hand side exists. Recall that Cesàro convergence
of an integral is weaker than the existence of its principal value, and the latter is
weaker than convergence.

Proof. The second equality follows from integration by parts. To prove the first
one take x ∈ X and a > ω0(T ). By the representation

R(a+ is, A)x =
∫ ∞

0

e−iste−atT (t)xdt

and the Cesàro convergence of the inverse Fourier transform (see, e.g., Zaanen
[261, Theorem 9.1] or Katznelson [146, Theorem VI.1.11]) we obtain

e−atT (t)x = lim
N→∞

1
2πN

∫ N

0

∫ τ

−τ

eistR(a+ is, A)xds dτ,

and the first formula for T (·) follows for all a > ω0(T ).
Take now an arbitrary a > s0(A) and a1 > max{a, ω0(T )}. By the previous

considerations and Cauchy’s theorem it suffices to show that

lim
N→∞

∫ a1

a

eb±iNR(b± iN,A)xdb = 0

for every x ∈ X . However, this follows directly from Lemma 3.7. �
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We now consider a linear densely defined operator A satisfying s0(A) <∞ for
which it is not known whether it is a generator or not. The basis of our approach
is the following condition:

〈R(a+ i·, A)2x, y〉 ∈ L1(R) for all x ∈ X, y ∈ X ′, (I.11)

where a > s0(A). Indeed, this property allows us to construct the inverse Laplace
transform of the resolvent of the operator A which actually yields a semigroup
which is strongly continuous on (0,∞). (Note that strong continuity on (0,∞)
does not imply strong continuity in general, see Kaiser, Weis [140].) The result is
based on Shi, Feng [231] and Kaiser, Weis [140], see Eisner [64].

Theorem 3.9 (Laplace inversion formula). Let A be a densely defined linear oper-
ator on a Banach space X satisfying s0(A) <∞ and assume that condition (I.11)
holds for all a > s0(A). Then the bounded linear operators defined by T (0) = I
and

T (t)x :=
1
2π

∫ ∞

−∞
e(a+is)tR(a+ is, A)xds (I.12)

=
1

2πt

∫ ∞

−∞
e(a+is)tR(a+ is, A)2xds for all t > 0, (I.13)

where the improper integrals converge in norm, are independent of a > s0(A).
In addition, the family (T (t))t≥0 is a semigroup which is strongly continuous on
(0,∞) and satisfies

lim
t→0+

T (t)x = x for all x ∈ D(A2). (I.14)

Finally, we have

R(z,A)x =
∫ ∞

0

e−ztT (t)xds for all x ∈ D(A), Re z > s0(A). (I.15)

Proof. Define T (0) := I and

T (t)x :=
1
2π

∫ ∞

−∞
e(a+is)tR(a+ is, A)xds (I.16)

for all x ∈ X , t > 0 and some a > 0. We prove first that the integral on the right-
hand side of (I.16) converges for all a > 0 and all x ∈ X and does not depend
on a > 0. For a fixed t > 0 and using d

dzR(z,A) = −R(z,A)2, we obtain for any
r > 0,

it

∫ r

−r

e(a+is)tR(a+ is, A)xds = e(a+ir)tR(a+ ir, A)x− e(a−ir)tR(a− ir, A)x

+ i

∫ r

−r

e(a+is)tR(a+ is, A)2xds.
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By (I.10), the first two summands converge to zero if r → +∞. Therefore

t

∫ ∞

−∞
e(a+is)tR(a+ is, A)xds =

∫ ∞

−∞
e(a+is)tR(a+ is, A)2xds, (I.17)

and by condition (I.11) the integral on the right-hand side converges. Indeed, for
all r,R ∈ R, all x ∈ X , and for B∗ = {y ∈ X ′ : ‖y‖ = 1} we have, by the uniform
boundedness principle, that∥∥∥∥∥

∫ R

r

eistR(a+ is, A)2xds

∥∥∥∥∥ = sup
y∈B∗

∫ R

r

〈eistR(a+ is, A)2x, y〉 ds

≤ sup
y∈B∗

‖〈R(a+ i·, A)2x, y〉‖1 ≤ L1(a)‖x‖

holds for some constant L1(a) not depending on x. This implies the convergence
of the integral on the right-hand side of (I.17).

Therefore the integral on the right-hand side of (I.16) converges and

T (t)x =
1

2πt

∫ ∞

−∞
e(a+is)tR(a+ is, A)2xds (I.18)

for every x ∈ X and t > 0. We show next that T (t) does not depend on a > 0.
Indeed, by Cauchy’s theorem we obtain∫ r

−r

e(a+is)tR(a+ is, A)2xds−
∫ r

−r

e(b+is)tR(b+ is, A)2xds

= −
∫ b

a

eτ+irR(τ + ir, A)2xdτ +
∫ b

a

eτ−irR(τ − ir, A)2xdτ

for all a, b > s0(A). By (I.10) and since a, b > s0(A), the right-hand side converges
to zero as r → +∞. So we have proved that T (t) does not depend on a > 0 and
formula (I.18) holds.

From (I.18) we obtain

|〈T (t)x, y〉| ≤ eat

2πt
‖〈R(a+ i·, A)2x, y〉‖1 (I.19)

and, by the uniform boundedness principle, each T (t) is a bounded linear operator
satisfying

‖T (t)‖ ≤ Ceat

t
, t > 0, (I.20)

for some constant C depending on a > s0(A).

We now show that (I.15) holds for all x ∈ D(A). Take x ∈ D(A), Re z > s0(A)
and a ∈ (s0(A),Re z). Then, by Fubini’s theorem and Cauchy’s integral theorem
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for bounded analytic functions on a right half-plane, we have∫ ∞

0

e−ztT (t)xdt =
1
2π

∫ ∞

0

e−zt

∫ ∞

−∞
e(a+is)tR(a+ is, A)xdsdt

=
1
2π

∫ ∞

−∞

{∫ ∞

0

e(a+is−z)tdt

}
R(a+ is, A)Ax+ x

a+ is
ds

=
1
2π

∫ ∞

−∞

R(a+ is, A)Ax+ x

(a+ is)(z − a− is)
ds =

R(z,A)Ax+ x

z
= R(z,A)x,

and (I.15) is proved.
We next show strong continuity of our semigroup on (0,∞). Since by (I.20)

the semigroup is uniformly bounded on all compact intervals in (0,∞), it is enough
to show that (I.14) holds for all x ∈ D(A2). (We used here that D(A2) is dense,
see e.g. Engel, Nagel [78, pp. 53–54]).) Take x ∈ D(A2), a > 0, and observe that

T (t)x− x =
1
2π

∫ ∞

−∞
e(a+is)t

(
R(a+ is, A)x− x

a+ is

)
ds

=
1
2π

∫ ∞

−∞
e(a+is)tR(a+ is, A)Ax

a+ is
ds.

Moreover, ‖R(a+ is, A)Ax‖ ≤ c‖A2x‖
1+|a+is| for some constant c. Therefore, by Lebes-

gue’s theorem,

lim
t→0+

(T (t)x− x) =
1
2π

∫ ∞

−∞

R(a+ is, A)Ax
a+ is

ds (I.21)

and the integral on the right-hand side converges absolutely. We now show∫ ∞

−∞

R(a+ is, A)Ax
a+ is

ds = 0. (I.22)

Again by Cauchy’s theorem and (I.10) we have∥∥∥∥
∫ r

−r

R(a+ is, A)Ax
a+ is

ds

∥∥∥∥ =

∥∥∥∥∥
∫ π/2

−π/2

ireiϕ

a+ reiϕ
R(a+ reiϕ, A)Axdϕ

∥∥∥∥∥
≤

∫ π/2

−π/2

‖R(a+ reiϕ, A)Ax‖ dϕ→ 0, r → ∞.

So equality (I.22) is proved, and (I.21) implies (I.14) and the strong continuity of
our semigroup on (0,∞).

We finally prove the semigroup law T (t + s) = T (t)T (s). Take t, s > 0,
x ∈ D(A2), and 0 < λ < μ. Then R(λ,A)x ∈ D(A) and we have by (I.15)

R(μ,A)R(λ,A)x =
∫ ∞

0

e−μt

{∫ ∞

0

e−λsT (t)T (s)xds
}
dt.
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On the other hand observe that

R(λ,A)x−R(μ,A)x
μ− λ

=
∫ ∞

0

e(λ−μ)tR(λ,A)xdt − 1
μ− λ

∫ ∞

0

e(λ−μ)te−λtT (t)xdt

=
∫ ∞

0

e(λ−μ)t

{∫ ∞

0

e−λsT (s)xds
}
dt−

∫ ∞

0

e(λ−μ)t

{∫ t

0

e−λsT (s)xds
}
dt

=
∫ ∞

0

e(λ−μ)t

{∫ ∞

t

e−λsT (s)xds
}
dt =

∫ ∞

0

e−μt

{∫ ∞

t

eλ(t−s)T (s)xds
}
dt

=
∫ ∞

0

e−μt

{∫ ∞

0

e−λsT (s+ t)xds
}
dt.

The uniqueness of the Laplace transform implies T (t+s)x = T (t)T (s)x for almost
all t, s > 0. By strong continuity of T (·) on (0,∞) we have T (t+ s)x = T (t)T (s)x
for all t, s > 0 and x ∈ D(A2). Since D(A2) is dense and the case t = 0 or s = 0
is trivial, the semigroup law is proved. �

The following proposition shows that condition (I.11) holds for a quite large
class of semigroups and hence is indeed useful. The assertion in the Hilbert space
case is based on van Casteren [45] and was used by many authors in this or some
other form.

Proposition 3.10. Let T (·) be a C0-semigroup on a Banach space X. If either X
is a Hilbert space or T (·) is an analytic semigroup, then the generator of T (·)
satisfies condition (I.11).

Proof. If T (·) is analytic, then the resolvent of its generatorA satisfies ‖R(λ,A)‖ ≤
M
|λ| for some M and all λ in some sector Σc,ϕ := {z : arg(z − c) ≤ ϕ+ π

2 }, ϕ > 0.

Therefore, ‖R2(a + is, A)‖ ≤ M2

a2+s2 for every a > s(A) and s ∈ R, and condition
(I.11) follows.

Assume now that X is a Hilbert space. Then by the representation

R(a+ is, A)x =
∫ ∞

0

e−iste−atT (t)xdt

and Parseval’s equality we have∫ ∞

−∞
‖R(a+ is, A)x‖2ds =

∫ ∞

0

e−2at‖T (t)x‖2 ds <∞

for every x ∈ X and every a > ω0(T ). We now take a > s0(A) and prove con-
vergence of the above integral on the left-hand side. By the resolvent equality we
have for a fixed a1 > ω0(T ) and M := sup{‖R(z,A)‖ : Re z ≥ a} that

‖R(a+ is, A)x‖ ≤ ‖(I + (a1 − a)R(a+ is, A))R(a1 + is, A)x‖
≤ (1 + (a1 − a)M)‖R(a1 + is, A)x‖
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and hence ∫ ∞

−∞
‖R(a+ is, A)x‖2 ds <∞

by the above considerations. Note that the same holds for the adjoint semigroup
T ∗(·) and its generator A∗ as well.

We now conclude that for every a > s0(A) and x, y ∈ X by the Cauchy–
Schwarz inequality∫ ∞

−∞
|〈R2(a+ is, A)x, y〉| ds ≤

∫ ∞

−∞
‖R(a+ is, A)x‖ · ‖R(a− is, A∗)y‖ ds

≤
(∫ ∞

−∞
‖R(a+ is, A)x‖2ds

) 1
2
(∫ ∞

−∞
‖R(a+ is, A∗)y‖2 ds

) 1
2

<∞.

So the integrability condition (I.11) is satisfied for every a > s0(A). �

4 Positivity in L(H)

As a preparation to Sections II.6 and III.7, we now look at the Banach algebra
L(H), H a Hilbert space, decomposed as

L(H) = L(H)sa ⊕ iL(H)sa,

where L(H)sa is the real vector space of all selfadjoint operators on H . We are
interested in the order structure induced by the positive semidefinite operators on
L(H)sa.

4.1 Preliminaries

Recall that an operator T ∈ L(H) on a Hilbert space H is positive semidefinite if
〈Tx, x〉 ≥ 0 for every x ∈ H , in which case we write 0 ≤ T . The set L(H)+ of all
positive semidefinite operators is a generating cone in L(H) and defines a vector
space order by

S ≤ T if 0 ≤ T − S.

The following properties of this order will be needed later, see e.g. Pedersen
[210, Proposition 3.2.9].

Lemma 4.1. (a) If 0 ≤ S ≤ T , then ‖S‖ ≤ ‖T ‖.
(b) If {Sn}∞n=1 is a positive, monotone increasing sequence in L(H)sa such that

sup
n∈N

‖Sn‖ <∞,

then S := supn∈N Sn exists and is given by 〈Sx, x〉 = supn∈N〈Snx, x〉 =
limn→∞〈Snx, x〉. In particular, Sn converges to S in the weak operator topol-
ogy.
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Note that the last part of (b) follows using the polarisation identity.
We now consider linear operators acting on L(H) respecting this order struc-

ture.

Definition 4.2. An operator T ∈ L(L(H)) is called positive (or positivity preserv-
ing) if 0 ≤ T S for every 0 ≤ S ∈ L(H).

For a positive operator S ∈ L(L(H)) we again write 0 ≤ S. Analogously, we write
T ≤ S whenever 0 ≤ S − T . Observe that such a positive operator is determined
by its restriction to L(H)sa.

4.2 Spectral properties of positive operators

We now discuss some spectral and resolvent properties of positive operators on
L(H). For the reader’s convenience we present some proofs and start with the
following lemma.

Lemma 4.3. Let H be a Hilbert space and let T be a positive operator on L(H). If
|μ| > r(T ), then

|〈R(μ, T )Sx, x〉| ≤ 〈R(|μ|, T )Sx, x〉
for every x ∈ H and 0 ≤ S ∈ L(H).

Proof. For x ∈ H , 0 ≤ S ∈ L(H) and μ satisfying |μ| > r(T ) we have, by the
Neumann series representation for the resolvent,

|〈R(μ, T )Sx, x〉| ≤
∞∑

k=0

|〈T kSx, x〉|
|μ|k+1

=
∞∑

k=0

〈T kSx, x〉
|μ|k+1

= 〈R(|μ|, T )Sx, x〉,

proving the assertion. �
The following properties of positive operators on L(H) correspond to the

classical Perron–Frobenius theorem for positive matrices and will be crucial for
our approach to Lyapunov’s equation in Sections II.6 and III.7.

Theorem 4.4. Let T be a positive operator on L(H), H a Hilbert space. Then the
following assertions hold.

(a) r(T ) ∈ σ(T ).

(b) R(μ, T ) ≥ 0 if and only if μ > r(T ).

In particular, r(T ) < 1 if and only if 1 ∈ ρ(T ) and R(1, T ) ≥ 0.

Proof. (a) For each λ ∈ σ(T ) such that |λ| = r(T ) we have

lim
μ→λ, |μ|>r(T )

‖R(μ, T )‖ = ∞.

By the uniform boundedness principle there exists S ∈ L(H)+ and a sequence
{μn}∞n=1 converging to λ such that limn→∞ ‖R(μn, T )S‖ = ∞. This implies, by
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the polarisation identity, that lim supn→∞ |〈R(μn, T )Sx, x〉| = ∞ for some x ∈ H .
We obtain, by Lemma 4.3,

lim sup
n→∞

〈R(|μn|, T )Sx, x〉 = ∞

implying |λ| = r(T ) ∈ σ(T ).
(b) The “if” direction follows directly from the Neumann series representation

for the resolvent of T . To show the “only if” direction, assume that R(μ, T ) ≥ 0
holds for some μ ∈ ρ(T ). We first show that μ is real. Take some ν > r(T ) with
ν �= μ. By the above “if” direction, R(ν, T ) ≥ 0. For every x ∈ H we obtain by
the resolvent identity

(μ− ν)〈R(μ, T )R(ν, T )Ix, x〉 = 〈R(ν, T )Ix, x〉 − 〈R(μ, T )Ix, x〉 ∈ R.

Since ν �= μ and hence R(ν, T )I �= R(μ, T )I, we have 〈R(ν, T )Ix, x〉 �=
〈R(μ, T )Ix, x〉 for some x ∈ H . Thus the right-hand side of the above equation is
real and non-zero for this x and hence R(μ, T )R(ν, T ) ≥ 0 implies μ ∈ R.

To show μ > r(T ), we assume μ ≤ r(T ) and take ν > r(T ). By the above,
R(ν, T ) ≥ 0 and therefore, by the resolvent identity,

R(μ, T ) = R(ν, T ) + (ν − μ)R(μ, T )R(ν, T ) ≥ R(ν, T ). (I.23)

By (a) we have limν→r(T )+ ‖R(ν, T )‖ = ∞ implying by the uniform boundedness
principle that lim supν→r(T )+ ‖R(ν, T )S‖ = ∞ for some S ∈ L(H)+. Moreover, it
follows from the polarisation identity that lim supν→r(T )+〈R(ν, T )Sx, x〉 = ∞ for
some x ∈ H , contradicting (I.23). �

4.3 Implemented operators

We now present an important class of positive operators on L(H) which will play
a crucial role in Section II.6.

Definition 4.5. To T ∈ L(H), H a Hilbert space, corresponds its implemented
operator T on L(H) defined by T S := T ∗ST , S ∈ L(H).

Implemented operators have the following elementary properties.

Lemma 4.6. For each T ∈ L(H), the implemented operator T is positive and
satisfies ‖T ‖ = ‖T I‖ = ‖T ‖2.

Proof. Positivity of T follows directly from its definition. For the second part
observe that ‖T S‖ = ‖T ∗ST ‖ ≤ ‖T ‖2‖S‖ for every S implies ‖T ‖ ≤ ‖T ‖2. On
the other hand we have ‖T ‖ ≥ ‖T I‖ = ‖T ∗T ‖ = ‖T ‖2, proving the assertion. �
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4.4 Implemented semigroups

Starting from a C0-semigroup on a Hilbert space, we define its “implemented
semigroup” and list some basic properties.

Definition 4.7. For a C0-semigroup T (·) on a Hilbert space H , we call the family
(T (t))t≥0 of operators on L(H) given by

T (t)S := T ∗(t)ST (t), S ∈ L(H),

the implemented semigroup corresponding to T (·).
The family T (·) is indeed a semigroup, but the mapping t 	→ T (t)Sx is

only continuous for every S ∈ L(H) and x ∈ H , i.e., T (·) is “strongly operator
continuous”. It is a C0-semigroup on L(H) if and only if T (·) is norm continuous.

The following properties of T (·) are well-known, see e.g. Nagel (ed.) [196,
Section D-IV.2], Batty, Robinson [28, Example 2.3.7] and also Kühnemund [158].

Lemma 4.8. For the semigroup T (·) on L(H) implemented by a C0-semigroup T (·)
on a Hilbert space H the following assertions hold.

(a) ‖T (t)‖ = ‖T (t)I‖ = ‖T (t)‖2.

(b) There is a unique operator A with domain D(A) in L(H), called the gener-
ator of T (·), with the following properties.

1) D(A) is the set of all S ∈ L(H) such that S(D(A)) ⊂ D(A∗) and
the operator A∗S + SA : D(A) → H has a continuous extension to H
denoted by AS.

2) If
∫∞
0
e−λtT (t)Sxdt converges for every S ∈ L(H) and x ∈ H, then

λ ∈ ρ(A) and

R(λ,A)Sx =
∫ ∞

0

e−λtT (t)Sxdt.

In particular, this equality holds for every λ with Reλ > ω0(T ).

To shorten the notation, we write R(λ,A) =
∫∞
0
e−λtT (t) dt meaning that

the integral exists in the above sense.
While T (·) is not strongly continuous on L(H) in general, we gain posi-

tivity as a new property. Indeed, T (·) is positive on L(H) since 〈T (t)Sx, x〉 =
〈ST (t)x, T (t)x〉 ≥ 0 for every positive semidefinite operator S ∈ L(H) and every
x ∈ H .

Such semigroups have been studied systematically in e.g. Nagel (ed.) [196,
Section D-IV.1-2], Nagel, Rhandi [199], Groh, Neubrander [112] and Batty, Robin-
son [28, Section 2]. For example, the following spectral property is analogous to
Theorem 4.4 above and plays the key role in our considerations.

Theorem 4.9. Let (T (t))t≥0 be an implemented semigroup on L(H) for a Hilbert
space H with generator A. Then s(A) ∈ σ(A), and R(λ,A) ≥ 0 in L(H) if and
only if λ > s(A). Moreover, ω0(T ) = s(A) holds.





Chapter II

Stability of linear operators

In this chapter we study power and polynomial boundedness, strong, weak and
almost weak stability of linear bounded operators on Banach spaces. In many cases,
these properties can be characterised through the behaviour of the resolvent of the
operator in a neighbourhood of the unit circle. Similar results on the stability of
C0-semigroups will be discussed in Chapter III.

1 Power boundedness

We start by discussing power boundedness and the related property of polynomial
boundedness of an operator on a Banach space. While power boundedness is fun-
damental for many purposes, it is difficult to check in the absence of contractivity.
On the contrary, polynomial boundedness is much easier to characterise.

1.1 Preliminaries

We first introduce power bounded operators and show some elementary properties.

Definition 1.1. A linear operator T on a Banach space X is called power bounded
if supn∈N ‖T n‖ <∞.

An immediate necessary spectral condition for power bounded operators is
the following.

Remark 1.2. The spectral radius r(T ) of a power bounded operator T on a Banach
space X satisfies

r(T ) = inf
n∈N

(‖T n‖) 1
n ≤ 1,

and hence σ(T ) ⊂ {z : |z| ≤ 1}.
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Note that r(T ) ≤ 1 does not imply power boundedness as can be seen from

T =
(

1 1
0 1

)
on C2. Moreover, we refer to Subsection 1.3 for more sophisticated

examples and a quite complete description of the possible growth of the powers
of an operator satisfying r(T ) ≤ 1, see Example 1.16 below. However, the strict
inequality r(T ) < 1 automatically implies a much stronger assertion.

Proposition 1.3. Let X be a Banach space and T ∈ L(X). The following assertions
are equivalent.

(a) r(T ) < 1.

(b) limn→∞ ‖T n‖ = 0.

(c) T is uniformly exponentially stable, i.e., there exist constants M ≥ 0 and
ε > 0 such that ‖T n‖ ≤Me−εn for all n ∈ N.

The proof follows from the formula r(T ) = limn∈N(‖T n‖) 1
n .

Remark 1.4. It is interesting that for power bounded operators on separable Ba-
nach spaces some more information on the spectrum is known. For example, Jami-
son [135] proved that for every power bounded operator T on a separable Banach
space X the boundary point spectrum Pσ(T ) ∩ Γ is countable. For more infor-
mation on this phenomenon see Ransford [218], Ransford, Roginskaya [219] and
Badea, Grivaux [13, 14].

We will see later that countability of the entire spectrum on the unit circle
plays an important role for strong stability of the operator (see Subsection 2.3).

The following easy lemma is useful in order to understand power bounded-
ness.

Lemma 1.5. Let T be power bounded on a Banach space X. Then there exists an
equivalent norm on X such that T becomes a contraction.

Proof. Take ‖x‖1 := supn∈N∪{0} ‖T nx‖ for every x ∈ X . �
Remark 1.6. It is difficult to characterise those power bounded operators on
Hilbert spaces which are similar to a contraction for a Hilbert space norm. Foguel
[87] showed that this is not always true (see also Halmos [120]).

The next result, due to Guo, Zwart [113] and van Casteren [46], characterises
power bounded operators by strong Cesàro-boundedness of the orbits.

Proposition 1.7. An operator T on a Banach space X is power bounded if and only
if

sup
n∈N

1
n+ 1

n∑
k=0

‖T kx‖2 <∞ for every x ∈ X,

sup
n∈N

1
n+ 1

n∑
k=0

‖T ′ky‖2 <∞ for every y ∈ X ′.
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Proof. The necessity of the above conditions is clear, so we have to prove suffi-
ciency.

Fix x ∈ X and y ∈ X ′. By the Cauchy-Schwarz inequality we obtain

|〈T nx, y〉| =
1

n+ 1

n∑
k=0

|〈T nx, y〉| =
1

n+ 1

n∑
k=0

|〈T kx, T
′(n−k)y〉|

≤
(

1
n+ 1

n∑
k=0

‖T kx‖2

) 1
2
(

1
n+ 1

n∑
k=0

‖T ′(n−k)y‖2

) 1
2

.

So by assumption and the uniform boundedness principle we obtain that
supn∈N ‖T n‖ <∞. �

We finish this subsection by an elementary but interesting characterisation
of power bounded operators as shift operators. We first treat contractions.

Theorem 1.8. Let T be a contraction on a Banach space X. Then T is isometrically
isomorphic to the left shift on a closed subspace of l∞(X).

Proof. Define the operator J : X → l∞(X) by

Jx := (x, Tx, T 2x, T 3x, . . .), x ∈ X,

i.e., we identify x with its orbit under (T n)∞n=0. Since T is contractive, J is an
isometry. Moreover,

JTx = (Tx, T 2x, T 3x, . . .), x ∈ X,

i.e., T corresponds to the left shift on rg J which is a closed shift-invariant subspace
of l∞(X). �

Using Lemma 1.5 we now obtain an analogous characterisation of power
bounded operators.

Corollary 1.9. Let T be a power bounded operator on a Banach space X. Then
T is isomorphic to the left shift on a closed subspace of l∞(X1), where X1 is X
endowed with an equivalent norm.

1.2 Characterisation via resolvent

We begin with the following proposition which is analogous to one implication in
the Hille–Yosida theorem for C0-semigroups.

Proposition 1.10. Let X be a Banach space and let T ∈ L(X) satisfy ‖T k‖ ≤ M
for some M ≥ 1 and all k ∈ N0. Then T satisfies the strong Kreiss resolvent
condition (also called iterated resolvent condition) for the constant M , i.e.,

‖Rn(λ, T )‖ ≤ M

(|λ| − 1)n
for all n ∈ N and λ with |λ| > 1. (II.1)
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Proof. Observe that by the Neumann series representation R(λ, T ) =
∑∞

k=0
T k

λk+1

for |λ| > 1, we have

Rn(λ, T ) =
(−1)n−1

(n− 1)!
R(n−1)(λ, T ) =

(−1)n−1

(n− 1)!

∞∑
k=0

(
1

λk+1

)(n−1)

T k

=
1

(n− 1)!

∞∑
k=0

(k + 1) · · · (k + n− 1)
λk+n

T k.

This implies

‖Rn(λ, T )‖ ≤ M

(n− 1)!

∞∑
k=0

(k + 1) · · · (k + n− 1)
|λ|k+n

=
M(−1)n−1

(n− 1)!

∞∑
k=0

(
1

zk+1

)(n−1)

|z=|λ|

=
M(−1)n−1

(n− 1)!

(
1

z − 1

)(n−1)

|z=|λ| =
M

(|λ| − 1)n
,

and the proposition is proved. �

It is surprising that the converse implication in Proposition 1.10 is not true,
i.e., the discrete analogue of the Hille–Yosida theorem does not hold. For a coun-
terexample with the maximal possible growth of ‖T n‖ being equal to

√
n, see

Lubich, Nevanlinna [172]. For a systematic discussion of the strong Kreiss con-
dition and the related uniform Kreiss condition, we refer the reader to Gomilko,
Zemánek [106], Montes-Rodŕıguez, Sánchez-Álvarez and Zemánek [187], see also
Nagy, Zemánek [200] and Nevanlinna [206].

Note that the question whether the strong Kreiss resolvent condition implies
power boundedness for operators on Hilbert spaces is still open.

Condition (II.1) for n = 1 is called the Kreiss resolvent condition and plays
an important role in numerical analysis. By the celebrated Kreiss matrix theorem,
it is equivalent to power boundedness for operators acting on finite-dimensional
spaces. On infinite-dimensional spaces this is no longer true, see Subsection 1.3 for
details. We also mention here the Ritt resolvent condition (also called Tadmor–Ritt
resolvent condition)

‖R(λ, T )‖ ≤ const
|λ− 1| for all λ with |λ| > 1.

This condition does imply power boundedness, see Nagy, Zemánek [200], and also
σ(T ) ∩ Γ ⊂ {1}, hence it is far from being necessary for power boundedness
of general operators. We refer to Shields [232], Lubich, Nevanlinna [172], Nagy,
Zemánek [200], Borovykh, Drissi, Spijker [40], Nevanlinna [206], Spijker, Tracogna,
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Welfert [233], Tsedenbayar, Zemánek [241] and Vitse [246]–[248] for systematic
studies of operators satisfying Kreiss and Ritt resolvent conditions.

In the following we consider conditions not involving all powers of the resol-
vent and characterise power boundedness at least on Hilbert spaces.

We first state an easy but very useful lemma.

Lemma 1.11. Let X be a Banach space and T ∈ L(X). Then

T n =
rn+1

2π

∫ 2π

0

eiϕ(n+1)R(reiϕ, T )dϕ =
rn+2

2π(n+ 1)

∫ 2π

0

eiϕ(n+1)R2(reiϕ, T )dϕ

(II.2)
for every n ∈ N and r > r(T ).

Proof. The first equality in (II.2) follows directly from the Dunford functional
calculus and the second by integration by parts. �

The main result of this subsection is the following theorem which is a discrete
analogue of a characterisation of bounded C0-semigroups due to Gomilko [104] and
Shi, Feng [231], see Theorem III.1.11.

Theorem 1.12. Let X be a Banach space and T ∈ L(X) with r(T ) ≤ 1. Consider
the following assertions.

(a) lim supr→1+(r − 1)
∫ 2π

0 ‖R(reiϕ, T )x‖2dϕ <∞ for all x ∈ X,
lim supr→1+(r − 1)

∫ 2π

0
‖R(reiϕ, T ′)y‖2dϕ <∞ for all y ∈ X ′;

(b) lim supr→1+(r − 1)
∫ 2π

0 |〈R2(reiϕ, T )x, y〉|dϕ <∞ for all x ∈ X, y ∈ X ′;

(c) T is power bounded.

Then (a)⇒(b)⇒(c). Moreover, if X is a Hilbert space, then (c)⇒(a), hence (a),
(b) and (c) are equivalent.

Proof. By the Cauchy-Schwarz inequality we have∫ 2π

0

|〈R2(reiϕ, T )x, y〉|dϕ =
∫ 2π

0

|〈R(reiϕ, T )x,R(reiϕ, T ′)y〉|dϕ

≤
(∫ 2π

0

‖R(reiϕ, T )x‖2dϕ

) 1
2
(∫ 2π

0

‖R(reiϕ, T ′)y‖2dϕ

) 1
2

for all x ∈ X , y ∈ X ′ and r > r(T ). This proves the implication (a)⇒(b).
For the implication (b)⇒(c) take n ∈ N and r > 1. By Lemma 1.11 we have

|〈T nx, y〉| ≤ rn+2

2π(n+ 1)

∫ 2π

0

|〈R2(reiϕ)x, y〉|dϕ

for every x ∈ X and y ∈ X ′. By (b) and the uniform boundedness principle there
exists a constant M > 0 such that

(r − 1)
∫ 2π

0

|〈R2(reiϕ, T )x, y〉|dϕ ≤M‖x‖‖y‖ for every x∈X, y∈X ′ and r>1.
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Therefore we obtain

|〈T nx, y〉| ≤ Mrn+2

2π(n+ 1)(r − 1)
‖x‖‖y‖. (II.3)

Take now r := 1 + 1
n+1 . Then rn+2

(n+1)(r−1) =
(
1 + 1

n+1

)n+2

→ e as n→ ∞, and we
obtain by (II.3) that supn∈N ‖T n‖ is finite.

For the second part of the theorem assume that X is a Hilbert space and T
is power bounded. Then, by Lemma 1.11 and Parseval’s equality,

(r − 1)
∫ 2π

0

‖R(reiϕ, T )x‖2dϕ =
r − 1
r2

∞∑
n=0

‖T nx‖2

r2n
=

1
r + 1

(1 − s)
∞∑

n=0

sn‖T nx‖2

(II.4)
for s := 1

r2 < 1. Note that the right-hand side of (II.4) is, up to the factor 1/(r+1),
the Abel mean of the sequence {‖T nx‖2}∞n=0, so it is bounded because of the power
boundedness of T . This proves the first part of (a).

Analogously, we obtain the second part of (a) using the power boundedness
of T ′. �
Remarks 1.13. 1) As can be seen from the proof, Theorem 1.12 can also be for-
mulated for a single weak orbit {〈T nx, y〉 : n ∈ N}. More precisely, for a fixed
pair x ∈ X and y ∈ X ′, condition (a) implies (b), (b) implies boundedness of the
corresponding weak orbit and the converse implications hold for Hilbert spaces.

2) Moreover, one can replace condition (a) by

lim sup
r→1+

(r − 1)
∫ 2π

0

‖R(reiϕ, T )x‖pdϕ <∞,

lim sup
r→1+

(r − 1)
∫ 2π

0

‖R(reiϕ, T ′)y‖qdϕ <∞

for some p, q > 1 (depending on x and y) with 1
p + 1

q = 1.

We now show that in Theorem 1.12 condition (c) does not imply (a) in
general, not even for isometric invertible operators.

Example 1.14. Take X = l∞ and T given by

T (x1, x2, x3, . . .) := (ax1, a
2x2, a

3x3, . . .)

for some a ∈ Γ with angle rationally independent of π. The operator T is isometric
and hence contractive, invertible and satisfies σ(T ) = Γ. Moreover, its resolvent is
given by

R(λ, T )(x1, x2, x3, . . .) =
(

x1

λ− a
,

x2

λ− a2
,

x3

λ− a3
, . . .

)
, |λ| �= 1.
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So we have

‖R(λ, T )1‖ = sup
n∈N

1
|λ− an| =

1
dist(λ,Γ)

=
1

|λ| − 1
, |λ| > 1,

which implies

(r−1)
∫ 2π

0

‖R(reiϕ, T )1‖2dϕ = (r−1)
∫ 2π

0

1
(r − 1)2

dϕ =
2π
r − 1

→ ∞ as r → 1+ .

This shows that condition (a) in Theorem 1.12 does not hold for T . In view of
Remark 1.13.2) we note also that limr→1+(r − 1)

∫ 2π

0
‖R(reiϕ, T )x‖pdϕ = ∞ for

every 1 < p <∞.
The pre-adjoint of T on l1 also does not satisfy (a). We remark that this

operator is again isometric and invertible.

A useful characterisation of power boundedness on Banach spaces is still
unknown.

1.3 Polynomial boundedness

In this subsection we discuss the related notion of polynomial boundedness which,
surprisingly, is much easier to characterise.

Definition 1.15. A bounded linear operator T on a Banach space X is called
polynomially bounded if ‖T n‖ ≤ p(n) for some polynomial p and all n ∈ N.

Without loss of generality we will assume the polynomial to be of the form
p(t) = Ctd.

Note that a polynomially bounded operator T again satisfies r(T ) ≤ 1. The
following example shows that the converse implication is far from being true.

Example 1.16 (Operators satisfying r(T ) ≤ 1 with non-polynomial growth). Con-
sider the Hilbert space

H := l2a =

{
{xn}∞n=1 ⊂ C :

∞∑
n=1

|xn|2a2
n <∞

}

for a positive sequence {an}∞n=1 satisfying

an+m ≤ anam for all n,m ∈ N (II.5)

and with the natural scalar product. On H take the right shift operator

T (x1, x2, x3, . . .) := (0, x1, x2, . . .).

Then for x = (x1, x2, . . .) ∈ H we have by (II.5)

‖T kx‖2 = ‖(0, . . . , 0, x1, x2, . . .)‖2 =
∞∑

n=1

a2
n+k|xn|2 ≤ a2

k

∞∑
n=1

a2
n|xn|2 = a2

k‖x‖2



44 Chapter II. Stability of linear operators

for every k ∈ N. Moreover, ‖T ke1‖ = ‖ek+1‖ = ak+1 = ak+1
a1

‖e1‖, where ek denotes
the sequence having the k-th component equal to 1 and all others equal to zero.
Therefore we have the norm estimate

ak+1

a1
≤ ‖T k‖ ≤ ak,

which implies that the powers of T have the same growth as the sequence {an}∞n=1.
Now every sequence satisfying (II.5) and growing faster than every polynomial but
slower than any exponential function with positive exponent yields an operator
growing non-polynomially but with r(T ) ≤ 1.

As a concrete example of such a sequence take

an := (n+ 5)ln(n+5) = eln
2(n+5).

The assertion about the growth is clear and we only need to check condition (II.5).
For n,m ≥ 6 we have to prove that ln2(n+m) ≤ ln2 n+ ln2m. This follows from
the following two properties of the function x 	→ ln2 x:

f(2x) ≤ 2f(x), (II.6)
f ′′(x) < 0 (II.7)

satisfied for x ≥ 6. Indeed, from the conditions above we see that the inequality

f(x+ y) − f(x) ≤ f(y)

holds for x = y. For a fixed y the derivative of the left-hand side is negative, so
the inequality holds for all x, y ≥ 6. To finish, we mention that, for the function
f : x 	→ ln2 x, condition (II.7) is immediate and condition (II.6) follows from the
fact that the inequality ln2(2x) ≤ 2 ln2(x) is equivalent to 2x ≤ x

√
2 which is

satisfied for x ≥ 6. So we have constructed an operator whose powers grow as
nlnn.

Analogously one can construct an operator with powers growing as n(ln n)α

for any α ≥ 1.

The following characterisation of polynomial boundedness uses the resolvent
of T in a neighbourhood of the unit circle, see Eisner, Zwart [73]. See also Lubich,
Nevanlinna [172] for a related result involving all powers of the resolvent.

Theorem 1.17. Let T be a bounded operator on a Banach space X with r(T ) ≤ 1.
If

lim sup
|z|→1+

(|z| − 1)d‖R(z, T )‖ <∞ for some d ≥ 0, (II.8)

then
‖T n‖ ≤ Cnd for some C > 0 and all n ∈ N. (II.9)

Moreover, if (II.9) holds for d = k, then (II.8) holds with d = k + 1.
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Proof. Assume that condition (II.8) holds and take n ∈ N and r > 1. By Lemma
1.11 and (II.8) we have

‖T n‖ ≤ rn+1

2π

∫ 2π

0

‖R(reiϕ, T )‖dϕ ≤ Mrn+1

(r − 1)d

forM > lim sup|z|→1+(|z|−1)d‖R(z, T )‖ and r close enough to 1. Taking r := 1+ 1
n

for n large enough we obtain ‖T n‖ ≤ 2Mend and the first part of the theorem is
proved.

For the second part we assume that condition (II.9) holds for d = k. Take
n ∈ N, r > 1, ϕ ∈ [0, 2π), and q := 1

r < 1. Then

‖R(reiϕ, T )‖ ≤
∞∑

n=0

‖T n‖
rn+1

≤ Cq

∞∑
n=0

nkqn ≤ C

k−1∑
n=0

nk + C

∞∑
n=k

nkqn

≤ C

k−1∑
n=0

nk + CC̃qk d
k

dqk

∞∑
n=0

qn ≤ C

k−1∑
n=0

nk +
CC̃k!

(1 − q)k+1
,

where C̃ is such that nk ≤ C̃ · n(n− 1) · . . . · (n − k + 1) for all n ≥ k. For k = 0
we suppose the first sum on the right-hand side to be equal to zero. Substituting
q by 1

r we obtain condition (II.8) for d = k + 1. �
Remark 1.18. Note that, by the inequality dist(λ, σ(T )) ≥ 1

‖R(λ,T )‖ , condition
(II.8) for 0 ≤ d < 1 already implies r(T ) < 1 and hence uniform exponential
stability. So for 0 ≤ d < 1 Theorem 1.17 does not give the best information about
the growth of the powers. Nevertheless, for d = 1, i.e., for the above mentioned
Kreiss resolvent condition, the growth stated in Theorem 1.17 is the best possible
and the exponent d in (II.9) cannot be decreased in general, see Shields [232]. For
d > 1 it is not clear whether Theorem 1.17 is optimal.

2 Strong stability

In this section we consider a weaker stability concept than the norm stability
discussed in Proposition 1.3 and replace uniform by pointwise convergence.

2.1 Preliminaries

Let us introduce strongly stable operators and present some of their fundamental
properties.

Definition 2.1. An operator T on a Banach space X is called strongly stable if
limn→∞ ‖T nx‖ = 0 for every x ∈ X .

The first part of the following example is, in a certain sense, typical for
Hilbert spaces (see Theorem 2.11 below).
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Example 2.2. (a) Consider H := l2(N, H0) for a Hilbert space H0 and T ∈ L(H)
defined by

T (x1, x2, x3, . . .) := (x2, x3, . . .). (II.10)

The operator T , called the left shift on H , is strongly stable.

Analogously, the operator defined by formula (II.10) is also strongly
stable on the spaces c0(N, X), lp(N, X) for a Banach space X and 1 ≤ p <∞,
but not on l∞(N, X).

(b) Consider X := lp for 1 ≤ p < ∞ and the multiplication operator T ∈ L(X)
defined by

T (x1, x2, x3, . . .) := (a1x1, a2x2, a3x3, . . .)

for a sequence (an)∞n=1 ⊂ {z : |z| < 1}. By the density of vectors with finitely
many non-zero coordinates, the operator T is strongly stable. Note that by
Proposition 1.3, T fails to be uniformly exponentially stable if supn |an| = 1.

Analogously, such a multiplication operator is also strongly stable on c0
but not on l∞.

The following property of strongly stable operators is an easy consequence
of the uniform boundedness principle.

Remark 2.3. Every strongly stable operator T on a Banach space X is power
bounded which in particular implies σ(T ) ⊂ {z : |z| ≤ 1}. Moreover, the properties
Pσ(T ) ∩ Γ = ∅ and Pσ(T ′) ∩ Γ = ∅ are necessary for strong stability.

We now present an elementary property which is very helpful to show strong
stability.

Lemma 2.4. Let X be a Banach space, T ∈ L(X) power bounded and x ∈ X.

(a) If there exists a subsequence {nk}∞k=1 ⊂ N such that limk→∞ ‖T nkx‖ = 0,
then limn→∞ ‖T nx‖ = 0.

(b) If T is a contraction, then there exists limn→∞ ‖T nx‖.
Proof. The second assertion follows from the fact that for a contraction the se-
quence {‖T nx‖}∞n=1 is non-increasing. For the first one take ε > 0, M :=
supn∈N ‖T n‖ and k ∈ N such that ‖T nkx‖ ≤ ε. Then we have

‖T nx‖ ≤ ‖T n−nk‖‖T nkx‖ ≤Mε

for every n ≥ nk, and (a) is proved. �
Remark 2.5. Assertion (b) in the above lemma is no longer true for power bounded
operators. Here is an example. Consider the Hilbert space of all l2-sequences en-
dowed with the norm

‖x‖ :=

( ∞∑
n=1

[
|x2n−1|2 +

1
4
|x2n|2

]) 1
2

.
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On this space consider the right shift operator which is clearly power bounded. We
see that for the vector e1 = (1, 0, 0, . . .) we have ‖T 2n−1e1‖ = 1

2 and ‖T 2ne1‖ = 1
for every n ∈ N which implies

1
2

= lim inf
n→∞

‖T ne1‖ �= lim sup
n→∞

‖T ne1‖ = 1.

The following is a direct consequence of Lemma 2.4.

Corollary 2.6. A power bounded operator T on a Banach space X is strongly stable
if and only if

lim
n→∞

1
n+ 1

n∑
k=0

‖T kx‖2 = 0

only in X, or even only in a dense subset of X.

One can also characterise strong stability without using power boundedness.
This is the following result due to Zwart [263].

Proposition 2.7. An operator T on a Banach space X is strongly stable if and only
if

lim
n→∞

1
n+ 1

n∑
k=0

‖T kx‖2 = 0 for all x ∈ X and (II.11)

sup
n∈N

1
n+ 1

n∑
k=0

‖T ′ky‖2 <∞ for all y ∈ X ′. (II.12)

The proof is analogous to the one of Proposition 1.7.
Note that one can formulate Corollary 2.6 and Proposition 2.7 for single

orbits. More precisely, limn→∞ T nx = 0 if and only if conditions (II.11) and (II.12)
hold for every y ∈ X ′. In particular, for a power bounded operator and x ∈ X ,
limn→∞ T nx = 0 is equivalent to (II.11).

Finally, we state a surprising and deep result of Müller [188] on the asymp-
totic behaviour of operators which are not uniformly exponentially stable.

Theorem 2.8 (V. Müller). Let T be a bounded linear operator on a Banach space
X with r(T ) ≥ 1. For every {αn}∞n=1 ⊂ [0, 1) converging monotonically to 0 there
exists x ∈ X with ‖x‖ = 1 such that

‖T nx‖ ≥ αn for every n ∈ N.

In other words, the orbits of a strongly but not uniformly exponentially
stable operator decrease arbitrarily slowly. We refer to Müller [188], [189] and
[191, Section V.37] for more details and results.

Up to now, there is no general characterisation of strong stability for opera-
tors on Banach spaces, while on Hilbert spaces there is a resolvent condition (see
Subsection 2.4).
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2.2 Representation as shift operators

We now present a characterisation analogous to Theorem 1.8 of strongly stable
operators as shifts.

Proposition 2.9. Let T be a strongly stable contraction on a Banach space X. Then
T is isometrically isomorphic to the left shift on a closed subspace of c0(X).

This result follows directly from Theorem 1.8. Moreover, by the renorming
procedure we again obtain a characterisation for non-contractive strongly stable
operators.

Corollary 2.10. A strongly stable operator T on a Banach space X is isomorphic
to the left shift on a closed shift-invariant subspace of c0(X1), where X1 is X
endowed with an equivalent norm.

For contractions on Hilbert spaces we have the following classical result of
Foiaş [85] and de Branges–Rovnyak [43] (see also Sz.-Nagy, Foiaş [238, p. 95]).

Theorem 2.11. Let T be a strongly stable contraction on a Hilbert space H. Then
T is unitarily isomorphic to a left shift, i.e., there is a Hilbert space H0 and a
unitary operator U : H → H1 for some closed subspace H1 ⊂ l2(N, H0) such that
UTU−1 is the left shift on H1.

Proof. As in Proposition 2.9, the idea is to identify a vector x with the sequence
{T nx}∞n=0 in an appropriate sequence space.

Observe first that by strong stability we have the equality

‖x‖2 =
∞∑

n=0

(‖T nx‖2 − ‖T n+1x‖2). (II.13)

We now define on H a new seminorm by

‖x‖2
Y := ‖x‖2 − ‖Tx‖2, x ∈ H,

corresponding to the scalar semiproduct 〈x, y〉Y := 〈x, y〉 − 〈Tx, T y〉. Note that
contractivity of T implies the non-negativity of ‖ · ‖Y . Let H0 := {x : ‖x‖Y = 0}
and finally take the completion Y := (H/H0, ‖ · ‖Y )̃ .

Define now the operator J : H → l2(Y ) by

x 	→ (T nx)∞n=0,

which identifies x with its orbit under (T n)∞n=0. By (II.13), J is an isometry and
hence a unitary operator from H to its (closed) range. Observe finally that the
operator JTJ−1 acts as the left shift on rg J . �



2. Strong stability 49

2.3 Spectral conditions

In this subsection we discuss sufficient conditions for strong stability of an operator
in terms of its spectrum. All results presented here are based on some “smallness”
of the part of the spectrum on Γ.

The origin of this spectral approach to stability is the following classical
“T = I” theorem of Gelfand [95]. The proof we give here is due to Allan, Ransford
[6].

Theorem 2.12 (Gelfand, 1941). Let X be a Banach space and T ∈ L(X). If σ(T ) =
{1} and supn∈Z ‖T n‖ <∞, then T = I.

Proof. Since (the principle branch of) the logarithm is holomorphic in a neigh-
bourhood of σ(T ) = {1}, we can define S := −i logT using Dunford’s functional
calculus. This operator satisfies T = eiS and σ(S) = 0 by the spectral mapping
theorem. We show that S = 0.

Take n ∈ N and consider sin(nS) := 1
2i(e

inS − e−inS) = 1
2i (T

n − T−n). We
observe that this operator is power bounded satisfying

‖[sin(nS)]k‖ =

∥∥∥∥∥
(
T n − T−n

2i

)k
∥∥∥∥∥ ≤ sup

n∈Z

‖T n‖ for every k ∈ N.

Consider now the Taylor series representation
∑∞

k=0 ckz
k of the principal branch of

arcsin in 0 (recall that σ(nS) = {0}). Since ck ≥ 0 and
∑∞

k=0 ck = arcsin(1) = π
2 ,

we obtain by the above that

‖nS‖ = ‖ arcsin(sin(mS))‖ ≤
∞∑

k=0

ck

∥∥∥(sin(nS))k
∥∥∥ ≤ π

2
sup
n∈Z

‖T n‖ for every n∈N.

This implies S = 0 and T = eiS = I. �

As a second tool, we introduce the so-called isometric limit operator, an
elegant construction due to Lyubich, Vũ [180].

For a contraction T on a Banach space X define

Y := {x ∈ X : lim
n→∞

‖T nx‖ = 0}.

Observe that Y is a closed T -invariant subspace. Consider the space (X/Y, ‖ · ‖T )
for the norm ‖x + Y ‖T := limn→∞ ‖T nx‖ which is well defined by Lemma 2.4.
Note that ‖x+Y ‖T ≤ ‖x‖ holds for every x ∈ X by contractivity of T . Define the
operator S on X/Y by

S(x+ Y ) := Tx+ Y.

Consider finally the completion Z := (X/Y, ‖ · ‖T )̃ .
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Remark 2.13. The space (X/Y, ‖ ·‖T ) is not complete in general. This can be seen
taking the space X = {(xk)∞k=−∞ ∈ l1(Z) :

∑∞
k=1 k|xk| < ∞} with norm given

by ‖(xk)∞−∞‖ :=
∑0

k=−∞ |xk| +
∑∞

k=1 k|xk| and the left shift operator T . Then T
is contractive and satisfies

‖x‖T = lim
n→∞

‖T nx‖ = ‖x‖1 for every x ∈ X.

Therefore we have (X/Y, ‖ · ‖T ) = (X, ‖ · ‖1) and its completion is Z = l1(Z).

We now need the following lemma, see Lyubich, Vũ [180] or Engel, Nagel [78,
pp. 263–264] in the continuous case.

Lemma 2.14. Let T be a contraction on a Banach space X and take S on X/Y as
above. Then S extends to an isometry on Z, called the isometric limit operator,
and satisfies σ(S) ⊂ σ(T ).

Proof. Observe first that ‖S(x + Y )‖T = limn→∞ ‖T n+1x‖ = ‖x‖T and hence S
extends to an isometry on Z.

Take now λ ∈ ρ(T ) and define operators R(λ) on (X/Y, ‖ · ‖T ) by

R(λ)(x + Y ) := R(λ, T )x+ Y, x ∈ X.

Since ‖x+Y ‖T ≤ ‖x‖ for every x ∈ X , R(λ) extends to a bounded operator on Z
again denoted by R(λ). By definition we have (λ−S)R(λ) = I and R(λ)(λ−S) = I
on X/Y and hence λ ∈ ρ(S) and R(λ) = (λ− S)−1. �

The following theorem is the starting point for many spectral characterisa-
tions of strong stability, see Katznelson, Tzafriri [147]. Our proof of the non-trivial
implication is due to Vũ [249].

Theorem 2.15 (Katznelson–Tzafriri, 1986). Let T be a power bounded operator on
a Banach space X. Then ‖T n+1−T n‖ → 0 as n→ ∞ if and only if σ(T )∩Γ ⊂ {1}.
Proof. Assume first that there exists 1 �= λ ∈ Γ with λ ∈ σ(T ). Then we have, by
the spectral mapping theorem for polynomials,

‖T n+1 − T n‖ ≥ r(T n+1 − T n) ≥ |λn+1 − λn| = |λ− 1|

and hence lim infn→∞ ‖T n+1 − T n‖ > 0.
To show the converse implication, we first show that the condition σ(T )∩Γ ⊂

{1} and the power boundedness of T imply

lim
n→∞

‖T n+1x− T nx‖ = 0 for every x ∈ X. (II.14)

By Lemma 1.5 we may assume that T is a contraction. Let S be its isometric limit
operator. Then S is an isometry with σ(S) ∩ Γ ⊂ {1} by Lemma 2.14. Since an
isometry is non-invertible if and only if its spectrum is the entire unit disc, see, e.g.,
Conway [52, Exercise VII.6.7], S must be invertible with S−1 being an isometry
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as well. This shows that σ(S) = {1}, and by Gelfand’s Theorem 2.12, S = I on Z.
By the definition of S, we have that x− Tx ∈ Y = {y ∈ X : limn→∞ ‖T ny‖ = 0},
and (II.14) is proved.

It remains to show that limn→∞ ‖T n+1 − T n‖ = 0. Consider the operator U
on L(X) given by UR = TR for all R ∈ L(X). This operator is power bounded and
satisfies σ(U) ⊂ σ(T ). By the above considerations we have limn→∞ ‖Un+1R −
UnR‖ = 0 for all R ∈ L(X). It suffices to take R := I. �

For alternative proofs of the Katznelson–Tzafriri theorem using complex
analysis see Allan, Ransford [6] and Allan, Farrell, Ransford [7], as well as the
original proof of Katznelson, Tzafriri [147] using harmonic analysis.

Remark 2.16. There are various generalisations and extensions of the Katznelson–
Tzafriri theorem in which T n+1 − T n is replaced by T nf(T ) for some function f .
For example, Esterle, Strouse, Zouakia [80] showed that for a contraction T on
a Hilbert space and for f ∈ H(D) ∩ C(Γ), the condition limn→∞ ‖T nf(T )‖ = 0
holds if and only if f = 0 on σ(T ) ∩ Γ. This can be generalised to “polynomially
bounded” operators (in the sense of von Neumann’s inequality, see, e.g., Pisier [213,
214] and Davidson [56]) and to holomorphic functions on D and completely non-
unitary contractions, see Kérchy, van Neerven [148] and Bercovici [30], respectively.
The version of the Katznelson–Tzafriri theorem for C0-semigroups is in Esterle,
Strouse, Zouakia [81] and Vũ [250]. For further generalisations and history we refer
to Chill, Tomilov [50, Section 5].

An immediate corollary concerning strong stability is the following.

Corollary 2.17. Let T be a power bounded operator on a Banach space X with
σ(T )∩Γ ⊂ {1}. Then ‖T nx‖ → 0 as n→ ∞ for every x ∈ rg(I − T ). In particular,
1 /∈ Pσ(T ′) implies that T is strongly stable.

On the basis of the Katznelson–Tzafriri theorem, Arendt, Batty [9] and in-
dependently Lyubich, Vũ [180] proved a sufficient condition for strong stability
assuming countability of σ(T ) on the unit circle. The following proof using the
isometric limit operator is due to Lyubich and Vũ [180], while Arendt, Batty [9]
used Laplace transform techniques.

Theorem 2.18 (Arendt–Batty–Lyubich–Vũ, 1988). Let T be power bounded on a
Banach space X. Assume that

(i) Pσ(T ′) ∩ Γ = ∅;

(ii) σ(T ) ∩ Γ is countable.

Then T is strongly stable.

Proof. We first note that, by Lemma 1.5, we can assume T to be contractive.
Assume that T is not strongly stable. Then the space Z = (X/Y, ‖ · ‖T )̃

constructed above is non-zero. Consider now the isometric limit operator S on Z.
By (ii) and Lemma 2.14, σ(S) ∩ Γ is still countable implying σ(S) ∩ Γ �= Γ. Since
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the spectrum of a noninvertible isometry is the whole unit disc, S is invertible
and σ(S) ⊂ Γ holds. So σ(S) is a countable complete metric space and therefore
contains an isolated point λ0 ∈ Γ by Baire’s theorem.

We now show that λ0 is an eigenvalue of S. Consider the spectral projection
P of S corresponding to λ0 and the restriction S0 of S on rgP =: Z0. Since
σ(S0) = {λ0} and ‖Sn

0 ‖ = 1 for every n ∈ Z, it follows from Gelfand’s theorem
(Theorem 2.12) that S0 = λ0I and therefore in particular λ0 ∈ Pσ(S).

It remains to show that λ0 ∈ Pσ(T ′) to obtain a contradiction to (i). Take
z′ ∈ Z ′

0 and consider 0 �= x′ ∈ X ′ defined by

〈x, x′〉 := 〈P (x+ Y ), z′〉, x ∈ X.

Then

〈x, T ′x′〉 = 〈Tx, x′〉 = 〈P (Tx+ Y ), z′〉
= 〈PS(x+ Y ), z′〉 = λ0〈P (x+ Y ), z′〉 = λ0〈x, x′〉

for every x ∈ X and hence T ′x′ = λ0x
′ contradicting (i). �

Remark 2.19. For operators with relatively weakly compact orbits (in particular,
for power bounded operators on reflexive Banach spaces) condition (i) is equivalent
to Pσ(T ) ∩ Γ = ∅.

As one of many applications of the above theorem we present the following
stability result for positive operators.

Corollary 2.20. Let T be a positive power bounded operator on a Banach lattice.
Then T is strongly stable if Pσ(T ′) ∩ Γ = ∅ and σ(T ) ∩ Γ �= Γ.

The proof follows from Theorem 2.18 and the Perron–Frobenius theory stat-
ing that in this case the boundary spectrum σ(T )∩Γ is multiplicatively cyclic (see
Schaefer [227, Section V.4]), and hence, since different from Γ, must be a finite
union of roots of unity.

The following result is an extension of the Arendt–Batty–Lyubich–Vũ theo-
rem for completely non-unitary contractions on Hilbert spaces (for the definition
of completely non-unitary operators see Remark 3.10) below.

Theorem 2.21 (Foiaş, Sz.-Nagy [238, Prop. II.6.7]). Let T be a completely non-
unitary contraction on a Hilbert space H. If

σ(T ) ∩ Γ has Lebesgue measure 0,

then T and T ∗ are both strongly stable.

See also Kérchy, van Neerven [148] for related results.
In the above theorem it does not suffice to assume contractivity and emptiness

of the point spectrum. In Example III.3.19 we present a unitary and hence not
strongly stable operator T satisfying λ(σ(T )) = 0 for the Lebesgue measure λ and
Pσ(T ) = ∅.
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Remark 2.22. Although the results above have many useful applications, the small-
ness conditions on the boundary spectrum are far from being necessary for strong
stability. Indeed, we saw in Example 2.2(b) that for a strongly stable operator the
boundary spectrum can be an arbitrary closed subset of Γ. However, on super-
reflexive Banach spaces, countability of the boundary spectrum is equivalent to a
stronger property called superstability, see Nagel, Räbiger [198].

2.4 Characterisation via resolvent

In this subsection we pursue a resolvent approach to stability introduced by
Tomilov [243].

Our main result is the following discrete analogue to the spectral character-
isation given by Tomilov. For related results we refer to his paper [243].

Theorem 2.23. Let X be a Banach space and T ∈ L(X) with r(T ) ≤ 1 and x ∈ X.
Consider the following assertions.

(a) lim
r→1+

(r − 1)
∫ 2π

0

‖R(reiϕ, T )x‖2 dϕ = 0 and

lim sup
r→1+

(r − 1)
∫ 2π

0

‖R(reiϕ, T ′)y‖2 dϕ <∞ for all y ∈ X ′.

(b) lim
n→∞

‖T nx‖ = 0.

Then (a) implies (b). Moreover, if X is a Hilbert space, then (a)⇔(b).
In particular, condition (a) for all x ∈ X implies strong stability of T and,

in the case of a Hilbert space, is equivalent to it.

Proof. To prove the first part of the theorem we take x ∈ X , n ∈ N, and r > 1.
By Lemma 1.11 and the Cauchy-Schwarz inequality we have

|〈T nx, y〉| ≤ rn+2

2π(n+ 1)

∫ 2π

0

|〈R2(reiϕ, T )x, y〉|dϕ

≤ rn+2

2π(n+ 1)

(∫ 2π

0

‖R(reiϕ, T )x‖2dϕ

) 1
2
(∫ 2π

0

‖R(reiϕ, T ′)y‖2dϕ

) 1
2

for every y ∈ X ′. By (a) and the uniform boundedness principle there exists a
constant M > 0 such that

(r − 1)
∫ 2π

0

‖R(reiϕ, T ′)y‖2dϕ ≤M2‖y‖2 for every y ∈ X ′ and r > 1.

(The uniform boundedness principle should be applied to the family of operators
Sr : X ′ → L2([0, 2π], X ′), r > 1, given by (Sry)(ϕ) :=

√
r − 1R(reiϕ, T ′)y.)

Therefore, we obtain

‖T nx‖ ≤ Mrn+2

2π(n+ 1)(r − 1)

(
(r − 1)

∫ 2π

0

‖R(reiϕ, T )x‖2dϕ

) 1
2

. (II.15)
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For r := 1 + 1
n+1 , we obtain rn+2

(n+1)(r−1) =
(
1 + 1

n+1

)n+2

→ e as n → ∞, hence
limn→∞ ‖T nx‖ = 0 by (II.15).

Assume now that X is a Hilbert space and T is strongly stable. Then by
Lemma 1.11 and Parseval’s equality,

(r − 1)
∫ 2π

0

‖R(reiϕ, T )x‖2dϕ = (r − 1)
∞∑

n=0

‖T nx‖2

r2(n+1)
=

1
r + 1

(1 − s)
∞∑

n=0

sn‖T nx‖2

for s := 1
r2 < 1. The right-hand side is, up to the factor 1/(r+ 1), the Abel mean

of {‖T nx‖2}. Therefore it converges to zero as s→ 1 by the strong stability of T ,
proving the first part of (a). The second part of (a) follows from Theorem 1.12. �

We now show that the converse implication in Theorem 2.23 does not hold
on Banach spaces. We use ideas as in Example 1.14.

Example 2.24. Consider the space l∞ and the multiplication operator T given by

T (x1, x2, x3, . . .) := (a1x1, a2x2, a3x3, . . .)

for a sequence {an}∞n=1 ⊂ {z : |z| < 1} satisfying Γ ⊂ {an : n ∈ N}. For |λ| > 1
and x ∈ U 1

2
(1) we obtain

‖R(λ, T )x‖ = sup
n∈N

|xn|
|λ− an|

≥ 1
2dist(λ,Γ)

=
1

2(|λ| − 1)

and therefore

(r − 1)
∫ 2π

0

‖R(reiϕ, T )x‖2dϕ ≥ π(r − 1)
2(r − 1)2

=
π

2(r − 1)
→ ∞ as r → 1 + .

Consider now X = l1 and the multiplication operator S defined by the se-
quence {an}∞n=1. Then S is strongly stable, see Example 2.2 (b). On the other
hand, since S′ = T and by the considerations above, the second part of (a) in
Theorem 1.12 is not fulfilled for an open set in X ′.

By Theorem 1.12 we immediately obtain the following characterisation of
strongly stable operators on Hilbert spaces.

Corollary 2.25. Let T be a power bounded operator on a Hilbert space H and
x ∈ X. Then ‖T nx‖ → 0 if and only if

lim
r→1+

(r − 1)
∫ 2π

0

‖R(reiϕ, T )x‖2dϕ = 0. (II.16)

In particular, T is strongly stable if and only if (II.16) holds for every x ∈ H (or
only for every x in a dense subset of H).

It remains an open question whether the assertion of Corollary 2.25 holds
on arbitrary Banach spaces. More generally, it is not clear what kind of resolvent
conditions characterise strong stability of operators on Banach spaces.
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3 Weak stability

We now consider stability of operators with respect to the weak operator topology.
Surprisingly, this is much more difficult to characterise than the previous concepts.

3.1 Preliminaries

We begin with the definition and some immediate properties of weakly stable
operators.

Definition 3.1. Let X be a Banach space. An operator T ∈ L(X) is called weakly
stable if limn→∞〈T nx, y〉 = 0 for every x ∈ X and y ∈ X ′.

Note that by the uniform boundedness principle every weakly stable operator
T on a Banach space is power bounded and hence σ(T ) ⊂ {z : |z| ≤ 1}. Moreover,
the spectral conditions Pσ(T ) ∩ Γ = ∅ and Rσ(T ) ∩ Γ = Pσ(T ′) ∩ Γ = ∅ are
necessary for weak stability.

Example 3.2. (a) The left and right shifts are weakly stable on the spaces
c0(Z, X) and lp(Z, X) for any Banach space X and 1 < p < ∞. Note that
these operators are isometries and therefore not strongly stable.

(b) Consider H := l2 and the multiplication operator T given by

T (xn)∞n=1 := (anxn)∞n=1

for some bounded sequence (an)∞n=1. Then T is weakly stable if and only if
|an| < 1 for every n ∈ N. However, in this case T is automatically strongly
stable.

(c) The situation is different for a multiplication operator on L2(R) with respect
to the Lebesgue measure μ. Let T be defined as (Tf)(s) := a(s)f(s) for some
bounded measurable function a : R → R. Then T is strongly stable if and
only if |a(s)| < 1 for almost all s. However, the operator T is weakly stable if
and only if |a(s)| ≤ 1 for almost all s and

∫ d

c a
n(s)ds → 0 as n→ ∞ for every

interval [c, d] ⊂ R. (Check weak convergence on characteristic functions and
use the standard density argument.) This is the case for, e.g., a(s) = eiαsγ

,
α, γ ∈ R \ {0}.
More examples will be given in Section 5.

We now present a simple condition implying weak stability and begin with
the following definition, see, e.g., Furstenberg [92, p. 28].

Definition 3.3. A subsequence {nj}∞j=1 of N is called relatively dense or syndetic if
there exists a number � > 0 such that for every n ∈ N the set {n, n+ 1, . . . , n+ �}
intersects {nj}∞j=1.

For example, kN +m for arbitrary natural numbers k and m is a relatively
dense subsequence of N.
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Theorem 3.4. Let X be a Banach space and T ∈ L(X). Suppose that limj→∞ T nj =
0 weakly for some relatively dense subsequence {nj}∞j=1. Then T is weakly stable.

Proof. Define � := supj∈N(nj+1 −nj) which is finite by assumption and fix x ∈ X
and y ∈ X ′. For n ∈ {nj, . . . , nj + �} we have

〈T nx, y〉 = 〈T n−njx, T ′njy〉. (II.17)

Note that T n−njx belongs to the finite set {x, Tx, . . . , T �x}. By assumption we
have limj→∞〈z, T ′njy〉 = 0 for every z ∈ X , and (II.17) implies limn→∞〈T nx, y〉 =
0. �
Remark 3.5. We will see later that one cannot replace relative density by density
1, see Section 4.

We now state the following characterisation of weak convergence in terms of
(strong) convergence of the Cesàro means of subsequences due to Lin [167], Jones,
Kuftinec [136] and Akcoglu, Sucheston [2].

Theorem 3.6. Let X be a Banach space and T ∈ L(X). Consider the following
assertions.

(i) T nx converges weakly as n→ ∞ for every x ∈ X;

(ii) For every x ∈ X and every increasing sequence {nj}∞j=1 ⊂ N with positive
lower density, the limit

lim
N→∞

1
N

N∑
j=1

T njx exists in norm for every x ∈ X ; (II.18)

(iii) Property (II.18) holds for every x ∈ X and every increasing sequence
{nj}∞j=1 ⊂ N.

Then (i)⇔(ii)⇐(iii), and they all are equivalent provided X is a Hilbert space and
T is a contraction.

Here, the lower density of a sequence {nj}∞j=1 ⊂ N is defined by

d := lim inf
n→∞

#{j : nj < n}
n

∈ [0, 1].

If the limit on the right-hand side exists, it is called density and denoted by d.

Remark 3.7. Assertion (iii) in Theorem 3.6 is called the Blum–Hanson property
and appears frequently in ergodic theory. For a survey on this property and some
recent results and applications to some classical problems in operator theory (e.g.,
to the quasi-similarity problem) see Müller, Tomilov [192]. In particular, they
showed that for power bounded operators on Hilbert spaces the Blum–Hanson
property does not follow from weak convergence.
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We also add a result of Müller [189] on possible decay of weak orbits.

Theorem 3.8 (Müller). Let T be an operator on a Banach space X with r(T ) ≥ 1
and {an}∞n=1 be a positive sequence satisfying an → 0. Then there exist x ∈ X,
y ∈ X ′ and an increasing sequence {nj}∞j=1 ⊂ N such that

Re 〈T njx, y〉 ≥ aj ∀j ∈ N. (II.19)

Surprisingly, inequality (II.19) does not hold for all n ∈ N in general, i.e.,
the weak version of Theorem 2.8 is not true. For an example and many other
phenomena see Müller [189] and [191, Section V.39]. However, for weakly stable
operators one can choose nj := j, see Badea, Müller [12].

3.2 Contractions on Hilbert spaces

In this subsection we present classical decomposition theorems for contractions on
Hilbert spaces having direct connection to weak stability.

The first theorem is due to Sz.-Nagy, Foiaş [237], see also [238].

Theorem 3.9 (Sz.-Nagy, Foiaş, 1960). Let T be a contraction on a Hilbert space
H. Then H is the orthogonal sum of two T - and T ∗-invariant subspaces H1 and
H2 such that

(a) H1 is the maximal subspace on which the restriction of T is unitary;

(b) the restrictions of T and T ∗ to H2 are weakly stable.

We follow the proof given by Foguel [86].

Proof. Define

H1 := {x ∈ H : ‖T nx‖ = ‖T ∗nx‖ = ‖x‖ for all n ∈ N}.

We first prove that for every x ∈ H1 and n ∈ N one has T ∗nT nx = T nT ∗nx =
x. If x ∈ H1, then ‖x‖2 = 〈T nx, T nx〉 = 〈T ∗nT nx, x〉 ≤ ‖T ∗nT nx‖‖x‖ ≤ ‖x‖2

holds. Therefore, by the equality in the Cauchy-Schwarz inequality and positivity
of ‖x‖2 we have T ∗nT nx = x. Analogously one shows T nT ∗nx = x. On the other
hand, every x with these two properties belongs to H1. So we proved that

H1 = {x ∈ H : T ∗nT nx = T nT ∗nx = x for all n ∈ N} (II.20)

is the maximal (closed) subspace on which T is unitary. The T - and T ∗-invariance
of H1 follows from the definition of H1 and the fact that T ∗T = TT ∗ on H1.

To prove (b) take x ∈ H2 := H⊥
1 . Note that H2 is T - and T ∗-invariant

since H1 is. Suppose that T nx does not converge weakly to zero as n → ∞. This
means that there exists ε > 0, y ∈ H2 and a subsequence {nj}∞j=1 such that
|〈T njx, y〉| ≥ ε for every j ∈ N. On the other hand, {T njx}∞j=1 contains a weakly
converging subsequence which we again denote by {T njx}∞j=1, and its limit by x0.
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Since H2 is T -invariant and closed, x0 belongs to H2. To achieve a contradiction
we show below that actually x0 = 0.

For a fixed k ∈ N we have

‖T ∗kT kT nx− T nx‖2 = ‖T ∗kT k+nx‖2 − 2〈T ∗kT k+nx, T nx〉 + ‖T nx‖2

≤ ‖T k+nx‖2 − 2‖T k+nx‖2 + ‖T nx‖2 = ‖T nx‖2 − ‖T k+nx‖2.

The right-hand side converges to zero as n → ∞ since the sequence {‖T nx‖}∞n=1

is monotone decreasing and therefore convergent. So ‖T ∗kT kT nx− T nx‖ → 0 as
n→ ∞.

We now return to the above subsequence {T njx}∞j=1 converging weakly to x0.
Then T ∗kT kT njx → T ∗kT kx0 weakly. On the other hand, by the considerations
above, we have T ∗kT kT njx→ x0 weakly and therefore T ∗kT kx0 = x0. One shows
analogously that T kT ∗kx0 = x0 and hence x0 ∈ H1. Since H1 ∩ H2 = {0}, we
obtain x0 = 0, the desired contradiction.

Analogously, the powers of the restriction of T ∗ to H2 converge weakly to
zero. �
Remark 3.10. The restriction of T to the subspaceH2 in Theorem 3.9 is completely
non-unitary (c.n.u. for short), i.e., there is no non-trivial subspace of H2 on which
the restriction of T becomes unitary. In other words, Theorem 3.9 states that every
Hilbert space contraction can be decomposed into a unitary and a c.n.u. part, and
the c.n.u. part is weakly stable.

For a systematic study of completely non-unitary operators as well as an
alternative proof of Theorem 3.9 using unitary dilation theory see the monograph
of Sz.-Nagy and Foiaş [238].

On the other hand, we have the following decomposition into the weakly
stable and the weakly unstable part due to Foguel [86]. We give a simplified proof.

Theorem 3.11 (Foguel, 1963). Let T be a contraction on a Hilbert space H. Then

W := {x ∈ H : lim
n→∞

〈T nx, x〉 = 0}

coincides with

{x ∈ H : lim
n→∞

T nx = 0 weakly } = {x ∈ H : lim
n→∞

T ∗nx = 0 weakly }

and is a closed T - and T ∗-invariant subspace of H, and the restriction of T to
W⊥ is unitary.

Proof. We first take x ∈ W and show that T nx → 0 weakly. By Theorem 3.9 we
may assume that x ∈ H1. Take S := lin{T nx : n = 0, 1, 2 . . .}. Since for all y ∈ S⊥

we have 〈T nx, y〉 = 0 for all n, it is enough to show that limn→∞〈T nx, y〉 = 0 for
all y ∈ S. For y := T kx we obtain

〈T nx, y〉 = 〈T ∗kT nx, x〉 = 〈T n−kx, x〉 → 0 for k ≤ n→ ∞,
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where we used that the restriction of T to H1 is unitary. From the density of
lin{T nx : n = 0, 1, 2, . . .} in S, it follows that limn→∞〈T nx, y〉 = 0 for ev-
ery y ∈ S and therefore limn→∞ T nx = 0 weakly. Analogously, one shows that
limn→∞ T ∗nx = 0 weakly. The converse implication, the closedness and the in-
variance of W are clear.

The last assertion of the theorem follows directly from Theorem 3.9. �

Combining Theorem 3.9 and Theorem 3.11 we obtain the following decom-
position.

Theorem 3.12. Let T be a contraction on a Hilbert space H. Then H is the or-
thogonal sum of three closed T - and T ∗-invariant subspaces H1, H2 and H3 such
that the corresponding restrictions T1, T2 and T3 satisfy

1. T1 is unitary and has no non-zero weakly stable orbit;

2. T2 is unitary and weakly stable;

3. T3 is completely non-unitary and weakly stable.

The above theorem shows that a characterisation of weak stability for unitary
operators is of special importance. For more aspects of this problem see Section
IV.1.

3.3 Characterisation via resolvent

To close this section we give a resolvent characterisation of weak stability being
a discrete analogue of a result for C0-semigroups due to Chill, Tomilov [49], see
Subsection III.4.3.

Theorem 3.13. Let T be an operator on a Banach space X with r(T ) ≤ 1 and take
x ∈ X and y ∈ X ′. Consider the following assertions.

(a)
∫ 2

1

∫ 2π

0

|〈R2(reiϕ, T )x, y〉| dϕdr <∞.

(b) lim
r→1+

(r − 1)
∫ 2π

0

|〈R2(reiϕ, T )x, y〉| dϕ = 0.

(c) lim
n→∞

〈T nx, y〉 = 0.

Then (a)⇒(b)⇒(c). In particular, if (a) or (b) hold for all x ∈ X and y ∈ X ′,
then T is weakly stable.

Note that (a) means that the function z 	→ 〈R2(z, T )x, y〉 belongs to the
Bergman space A1({z ∈ C : 1 < |z| < 2}). (See Hedenmalm, Korenblum, Zhu
[124] or Bergman [32] for basic information on Bergman spaces.)
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Proof. We first prove (a)⇒(b). The function g : D = {z ∈ C : |z| < 1} → C

defined by

g(z) :=

{
〈R2(z−1, T )x, y〉 if 0 < |z| < 1,
0 if z = 0

is holomorphic in D. (Holomorphy of g in z = 0 is a consequence of the Neumann
representation of the resolvent.) It follows from the classical theory of Hardy spaces
on the unit disc, see e.g. Rosenblum, Rovnyak [223, Theorem 2.6], that the function

r 	→
∫ 2π

0

|g(reiϕ)| dϕ

is monotone increasing on (0, 1) which implies that

f(r) :=
∫ 2π

0

|〈R2(reiϕ, T )x, y〉| dϕ

increases as r → 1+. Assume that (b) fails. Then there exists a decreasing sequence
{rn}∞n=1 converging to 1 and a constant c > 0 such that

(rn − 1)f(rn) ≥ c for every n ∈ N. (II.21)

Take now n and m with rn − 1 ≤ (rm − 1)/2. The monotonicity of f and (II.21)
imply∫ rm

rn

f(r) dr ≥ f(rm)(rm − rn) ≥ c

rm − 1
(rm − rn) = c

(
1 − rn − 1

rm − 1

)
≥ c

2

contradicting (a).
We now assume (b). By formula (II.2) we have

〈T nx, y〉 ≤ rn+2

2π(r − 1)(n+ 1)
(r − 1)

∫ 2π

0

|〈R2(reiϕ, T )x, y〉| dϕ

for all n ∈ N and r > 1. Taking r := 1 + 1
n+1 we obtain by (b) that 〈T nx, y〉 → 0

as n→ ∞. �
Remark 3.14. As mentioned above, a (simple) necessary and sufficient resolvent
condition for weak stability is still unknown. In particular, it is not clear whether
condition (b) in the above theorem is necessary.

4 Almost weak stability

In this section we consider a stability concept which is analogous to weak mixing
in ergodic theory (see Halmos [118]). This notion is weaker and much easier to
investigate than weak stability. In fact, a complete characterisation through spec-
tral or resolvent conditions is available as we show below. In large parts we modify
and extend the treatment in Eisner, Farkas, Nagel, Sereny [67] in the continuous
case.
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4.1 Characterisation

The main result of this section is the following list of equivalent properties.

Theorem 4.1. Let T be an operator on a Banach space X having relatively weakly
compact orbits. Then the following assertions are equivalent.

(i) 0 ∈ {T nx : n ∈ N}σ
for every x ∈ X.

(i′) 0 ∈ {T n : n ∈ N}Lσ .

(ii) For every x ∈ X there exists a subsequence {nj}∞j=1 ⊂ N such that
lim

j→∞
T njx = 0 weakly.

(iii) For every x ∈ X there exists a subsequence {nj}∞j=1 ⊂ N with density 1 such
that lim

j→∞
T njx = 0 weakly.

(iv) lim
n→∞

1
n+ 1

n∑
k=0

|〈T kx, y〉| = 0 for all x ∈ X and y ∈ X ′.

(v) lim
r→1+

(r − 1)
∫ 2π

0

|〈R(reiϕ, T )x, y〉|2 dϕ = 0 for all x ∈ X and y ∈ X ′.

(vi) lim
r→1+

(r − 1)R(reiϕ, T )x = 0 for all x ∈ X and 0 ≤ ϕ < 2π.

(vii) Pσ(T ) ∩ Γ = ∅, i.e., T has no eigenvalues on the unit circle.

In addition, if X ′ is separable, then the following conditions are equivalent to the
conditions above.

(ii∗) There exists a subsequence {nj}∞j=1 ⊂ N such that lim
j→∞

T nj = 0 in the weak

operator topology.

(iii∗) There exists a subsequence {nj}∞j=1 ⊂ N with density 1 such that lim
j→∞

T nj = 0

in the weak operator topology.

Recall that the density of a sequence {nj}∞j=1 ⊂ N was defined after Theorem
3.6.

The following elementary lemma (see, e.g., Petersen [212, p. 65] or Lemma
III.5.2 below in the continuous case) will be needed in the proof of Theorem 4.1.

Lemma 4.2 (Koopman–von Neumann, 1932). For a bounded sequence {an}∞n=1 ⊂
[0,∞) the following assertions are equivalent.

(a) lim
n→∞

1
n

n∑
k=1

ak = 0.

(b) There exists a subsequence {nj}∞j=1 of N with density 1 such that
limj→∞ anj = 0.
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Proof of Theorem 4.1. The implications (i′)⇒(i) and (ii)⇒(vii) are trivial.
(i)⇒(ii) follows from the equivalence of weak compactness and weak sequen-

tial compactness in Banach spaces (see Theorem I.1.1).
The implication (vii)⇒(i′) is a consequence of Theorem I.1.15 and the con-

struction in its proof. Therefore, we already proved the equivalences (i)⇔(i′)⇔(ii)
⇔(vii).

(vi)⇒(vii): Assume that there exists 0 �= x ∈ X and ϕ ∈ [0, 2π) such that
Tx = eiϕx. Then we have ‖R(reiϕ, T )x‖ = (r − 1)−1‖x‖ and (vi) does not hold.

The converse implication follows from Theorem 2.8 and the fact that for
every 0 ≤ ϕ < 2π the operator eiϕT has relatively weakly compact orbits as well.
So (vi)⇔(vii).

(i′)⇒(iii): Take S := {T nx : n ≥ 0}Lσ(X) ⊂ L(X) with the usual multipli-
cation and the weak operator topology. It becomes a compact semitopological
semigroup (for the definition and basic properties of compact semitopological
semigroups see Subsection I.1.4). By (i′) we have 0 ∈ S. Define the operator
T̃ : C(S) → C(S) by

(T̃ f)(R) := f(TR), f ∈ C(S), R ∈ S.

Note that T̃ is a contraction on C(S).
By Example I.1.7 (c) the set {f(T n ·) : n ≥ 0} is relatively weakly compact

in C(S) for every f ∈ C(S). It means that every set {T̃ nf : n ≥ 0} is relatively
weakly compact, i.e., T̃ has relatively weakly compact orbits.

Denote by P̃ the mean ergodic projection of T̃ . We have Fix(T̃ ) = 〈1〉.
Indeed, for f ∈ Fix(T̃ ) one has f(T nI) = f(I) for all n ≥ 0 and therefore f must
be constant. Hence P̃ f is constant for every f ∈ C(S). By definition of the ergodic
projection

(P̃ f)(0) = lim
n→∞

1
n+ 1

n∑
k=0

(T̃ kf)(0) = f(0). (II.22)

Thus we have
(P̃ f)(R) = f(0) · 1, f ∈ C(S), R ∈ S. (II.23)

Take now x ∈ X . By Theorem I.1.5 and its proof (see Dunford, Schwartz [63,
p. 434]), the weak topology on the orbit {T nx : n ≥ 0} is metrisable and coincides
with the topology induced by some sequence {yn}∞n=1 ⊂ X ′ \ {0}. Consider fx ∈
C(S) defined by

fx(R) :=
∑
n∈N

1
2n

∣∣∣〈Rx, yn

‖yn‖

〉∣∣∣ , R ∈ S.

By (II.23) we obtain

0 = lim
n→∞

1
n+ 1

n∑
k=0

(T̃ kfx)(I) = lim
n→∞

1
n+ 1

n∑
k=0

fx(T k).
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Lemma 4.2 applied to the sequence {fx(T nI)}∞n=0 ⊂ R+ yields a subsequence
(nj)∞j=1 of N with density 1 such that

lim
j→∞

fx(T nj) = 0.

By definition of fx and by the fact that the weak topology on the orbit is induced
by {yn}∞n=1 we have that

lim
j→∞

T njx = 0 weakly,

and (iii) is proved.

(iii)⇒(iv) follows directly from Lemma 4.2.

(iv)⇒(vii) is clear.

(iv)⇔(v): We note first that the set {T n : n ≥ 0} is bounded in L(X). Take x ∈ X ,
y ∈ X ′ and let r > 1. By (II.2) and the Parseval’s equality we have

∫ 2π

0

|〈R(reiϕ, T )x, y〉|2 dϕ = 2π
∞∑

n=0

|〈T nx, y〉|2
r2n+2

.

We obtain by the equivalence of Abel and Cesàro limits (see Lemma I.2.6) that

lim
r→1+

(r − 1)
∫ 2π

0

|〈R(reiϕ, T )x, y〉|2 dϕ = π lim
n→∞

1
n+ 1

n∑
k=0

|〈T kx, y〉|2. (II.24)

Note that for a bounded sequence {an}∞n=1 ⊂ R+ with C := supn∈N an we have

(
1

C(n+ 1)

n∑
k=0

a2
k

)2

≤
(

1
n+ 1

n∑
k=0

ak

)2

≤ 1
n+ 1

n∑
k=0

a2
k

for every n ∈ N, where for the second part we used the Cauchy-Schwarz inequality.
This together with (II.24) gives the equivalence of (iv) and (v).

For the additional part of the assertion suppose X ′ to be separable. Then so
is X , and we can take dense subsets {xn �= 0 : n ∈ N} ⊆ X and {ym �= 0 : m ∈
N} ⊆ X ′. Consider the functions

fn,m : S → R, fn,m(R) :=
∣∣〈R xn

‖xn‖ ,
ym

‖ym‖
〉∣∣, n,m ∈ N,

which are continuous and uniformly bounded in n,m ∈ N. Define the function

f : S → R, f(R) :=
∑

n,m∈N

1
2n+m

fn,m(R).
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Then clearly f ∈ C(S). Thus, as in the proof of the implication (i′)⇒(iii), i.e.,
using (II.22) we obtain

lim
n→∞

1
n+ 1

n∑
k=0

f(T nI) = 0.

Hence, Lemma 4.2 applied to the bounded sequence {f(T n)}∞n=0 ⊂ R+ yields the
existence of a subsequence {nj}∞j=1 of N with density 1 such that limj→∞ f(T nj) =
0. In particular, limj→∞ |〈T njxn, ym〉| = 0 for all n,m ∈ N, which, together with
the boundedness of {T n}∞n=1, proves the implication (i′)⇒(iii∗). The implications
(iii∗)⇒(ii∗)⇒(ii′) are straightforward, hence the proof is complete. �

The above theorem shows that the property

“no eigenvalues of T on the unit circle”

implies properties like (iii) on the asymptotic behaviour of the orbits of T . Moti-
vated by this we introduce the following terminology.

Definition 4.3. We call an operator on a Banach space with relatively weakly
compact orbits almost weakly stable if it satisfies condition (iii) in Theorem 4.1.

Historical remark 4.4. Theorem 4.1 and especially the implication (vii)⇒(iii) has
a long history. It goes back to the origin of ergodic theory and von Neumann’s
spectral mixing theorem for flows, see Halmos [118], Mixing Theorem, p. 39. This
has been generalised to operators on Banach spaces by many authors, see, e.g.,
Nagel [195], Jones, Lin [137, 138] and Krengel [154], pp. 108–110. Note that the
equivalence (vii)⇔(iv) for contractions on Hilbert spaces also follows from the
so-called generalised Wiener theorem, see Goldstein [102].

For a continuous analogue of the above characterisation see Theorem III.5.1.

Remark 4.5. We emphasise that the conditions appearing in Theorem 4.1 are of
quite different nature. Conditions (i)–(iv), (ii∗) and (iii∗) describe the behaviour of
the powers of T , while conditions (v)–(vii) consider the spectrum and the resolvent
of T in a neighbourhood of the unit circle. Among them condition (vii) apparently
is the simplest to verify. Note that one can also add the equivalent condition

(iv′) lim
n→∞

sup
y∈X′, ‖y‖≤1

1
n+ 1

n∑
k=0

|〈T kx, y〉| = 0 for every x ∈ X ,

see Jones, Lin [137, 138].

Remark 4.6. The equivalence (i′)⇔(v) is a weak analogue of the characterisation
of strong stability given in Corollary 2.25.

Remark 4.7. Theorem 3.4 leads to an interesting algebraic property of the sequence
{nj}∞j=1 appearing in condition (iii). Indeed, if {nj}∞j=1 contains a relatively dense
subsequence, then the operator T is weakly stable. Reformulating this, we obtain
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the following: Let T be almost weakly but not weakly stable. Then the sequence
{nj}∞j=1 in (iii) does not contain any relatively dense set (for example, it does not
contain any equidistant sequence).

Using Theorem 4.1 one can reformulate the Jacobs–Glicksberg–de Leeuw
decomposition (see Theorem I.1.15) as follows.

Theorem 4.8 (Jacobs–Glicksberg–de Leeuw decomposition, extended version). Let
X be a Banach space and let T ∈ L(X) have relatively weakly compact orbits. Then
X = Xr ⊕Xs, where

Xr := lin
{
x ∈ X : Tx = γx for some γ ∈ Γ

}
,

Xs :=
{
x ∈ X : lim

j→∞
T njx = 0 weakly for some subsequence {nj}∞j=1

with density 1
}
.

One also can formulate Theorem 4.1 for single orbits. This is the following
result partially due to Jan van Neerven (oral communication) in the continuous
case.

Corollary 4.9. Let T be an operator on a Banach space X and x ∈ X. Assume
that the orbit {T nx : n = 0, 1, 2, . . .} is relatively weakly compact in X and the
restriction of T to lin{T nx : n = 0, 1, 2, . . .} is power bounded. Then there is a
holomorphic continuation of the function R(·, T )x to {λ : |λ| > 1} denoted by
Rx(·) and the following assertions are equivalent.

(i) 0 ∈ {T nx : n ∈ N}σ
.

(ii) There exists a subsequence {nj}∞j=1 ⊂ N such that limj→∞ T njx = 0 weakly.

(iii) There exists a subsequence {nj}∞j=1⊂N with density 1 such that limj→∞ T njx
= 0 weakly.

(iv) lim
n→∞

1
n+ 1

n∑
k=0

|〈T kx, y〉| = 0 for all y ∈ X ′.

(v) lim
r→1+

(r − 1)
∫ 2π

0

|〈Rx(reiϕ), y〉|2 dϕ = 0 for all y ∈ X ′.

(vi) lim
r→1+

(r − 1)Rx(reiϕ) = 0 for all 0 ≤ ϕ < 2π.

(vii) The restriction of T on lin{T nx : n ∈ N∪{0}} has no unimodular eigenvalue.

Proof. For the first part of the theorem we just define

Rx(λ) :=
∞∑

n=0

T nx

λn+1
whenever |λ| > 1.
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This implies the representation

T nx =
rn+1

2π

∫ 2π

0

e(n+1)iϕRx(reiϕ) dϕ for all n ∈ N.

Denote now by Z the closed linear span of the orbit {T nx : n = 0, 1, 2, . . .}.
Then Z is a T -invariant closed subspace of X and we can restrict T to it. The
restriction, which we denote by TZ , has relatively weakly compact orbits by Lemma
I.1.6. The equivalence of the assertions follows from the canonical decomposition
X ′ = Z ′ ⊕ Z0 with Z0 := {y ∈ X ′ : 〈z, y〉 = 0 for all z ∈ Z} and Theorem 4.1
applied to the restricted operator. �

4.2 Concrete example

As we will see from the abstract examples in the next section, almost weak stability
does not imply weak stability. In this subsection we present a concrete example of
a (positive) operator being almost weakly but not weakly stable. (For definitions
and basic theory of positive operators we refer to Schaefer [227].)

Example 4.10. Consider the operator T0(1) from Example III.5.9 below being
a positive operator on the Banach lattice C(Ω) for some Ω ⊂ C. The relative
weak compactness of the orbits follows from the relative weak compactness of the
semigroup T0(·). The almost weak stability of T0(1) is a consequence of Pσ(T0(1))∩
Γ = ∅ and Theorem 4.1. Further, since the semigroup T0(·) is not weakly stable
and N is a relatively dense set in R+, it follows from Theorem III.4.4 that the
operator T0(1) is not weakly stable.

So we proved the following result.

Theorem 4.11. There is a locally compact space Ω and a positive contraction T on
C0(Ω) which is almost weakly but not weakly stable.

Note that for positive operators on C(K) and L1-spaces, almost weak sta-
bility does imply weak stability and even a stronger stability property, see Chill,
Tomilov [50] as well as Groh, Neubrander [112, Theorem. 3.2] for the continuous
case.

Theorem 4.12. For a power bounded, positive, and mean ergodic operator T on a
Banach lattice X, the following assertions hold.

(i) If X ∼= L1(Ω, μ), then Pσ(T ′) ∩ Γ = ∅ is equivalent to strong stability of T .

(ii) If X ∼= C(K), K compact, then Pσ(T ′) ∩ Γ = ∅ is equivalent to uniform
exponential stability of T .
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5 Category theorems

By proving category results, we obtain abstract examples of almost weakly but not
weakly stable operators and show that the difference between these two concepts
(at least for operators on Hilbert spaces) is dramatic. More precisely, we show that
a “typical” (in the sense of Baire) contraction as well as a “typical” isometric or
unitary operator on a separable Hilbert space is almost weakly but not weakly
stable. This gives an operator–theoretic analogue to the classical theorems of Hal-
mos and Rohlin from ergodic theory stating that a “typical” measure preserving
transformation is weakly but not strongly mixing, see Halmos [118, pp. 77–80] or
the original papers by Halmos [116] and Rohlin [221], see also Section IV.2. We
follow in this section Eisner, Serény [69] and assume the underlying Hilbert space
H to be separable and infinite-dimensional.

5.1 Unitary operators

Denote the set of all unitary operators on H by U . The following density result
for periodic operators is a first step in our construction.

Proposition 5.1. For every n ∈ N the set of all periodic unitary operators with
period greater than n is dense in U endowed with the operator norm topology.

Proof. Take U ∈ U , N ∈ N and ε > 0. By the spectral theorem H is isomorphic to
L2(Ω, μ) for some finite measure μ on a locally compact space Ω and U is unitarily
equivalent to the multiplication operator Ũ with

(Ũf)(ω) = ϕ(ω)f(ω) for almost all ω ∈ Ω,

for some measurable ϕ : Ω → Γ.
We approximate the operator Ũ as follows. Consider the set

ΓN := {e2πi· p
q : p, q ∈ N relatively prime, q > N}

which is dense in Γ. Take a finite set {αj}n
j=1 ⊂ ΓN with α1 = αn such that

arg(αj−1) < arg(αj) and |αj − αj−1| < ε hold for all 2 ≤ j ≤ n. Define

ψ(ω) := αj−1, ∀ω ∈ ϕ−1({z ∈ Γ : arg(αj−1) ≤ arg(z) < arg(αj)}),

and denote by P̃ the multiplication operator with ψ. The operator P̃ is periodic
with period greater than N and satisfies

‖Ũ − P̃‖ = sup
ω∈Ω

|ϕ(ω) − ψ(ω)| ≤ ε,

hence the proposition is proved. �

For the second step we need the following lemma.
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Lemma 5.2. Let H be a separable infinite-dimensional Hilbert space. Then there
exists a sequence {Tn}∞n=1 of almost weakly stable unitary operators satisfying
limn→∞ ‖Tn − I‖ = 0.

Proof. It suffices to prove the result for H = L2(R).
Take n ∈ N and define T̃n on L2(R) by

(T̃nf)(s) := e
iq(s)

n f(s), s ∈ R, f ∈ L2(R),

where q : R → [0, 1] is strictly monotone. Then all T̃n are almost weakly stable by
Theorem 4.1, and they approximate I since

‖T̃n − I‖ = sup
s∈R

|e
iq(s)

n − 1| ≤ |e i
n − 1| → 0, n→ ∞.

The lemma is proved. �
We now introduce the strong∗ (operator) topology which is induced by the

family of seminorms px(T ) :=
√
‖Tx‖2 + ‖T ∗x‖2, x ∈ H . We note that conver-

gence in this topology corresponds to strong convergence of operators and their
adjoints. For properties and further information on this topology we refer to Take-
saki [239, p. 68].

In the following we consider the space U of all unitary operators on H en-
dowed with this strong* operator topology. Note that U is a complete metric space
with respect to the metric given by

d(U, V ) :=
∞∑

j=1

‖Uxj − V xj‖ + ‖U∗xj − V ∗xj‖
2j‖xj‖

for U, V ∈ U ,

and {xj}∞j=1 some dense subset of H \ {0}. Further we denote by SU the set of
all weakly stable unitary operators on H and by WU the set of all almost weakly
stable unitary operators on H .

We now show the following density property for WU .

Proposition 5.3. The set WU of all almost weakly stable unitary operators is dense
in U .

Proof. By Proposition 5.1 it is enough to approximate periodic unitary operators
by almost weakly stable unitary operators. Let U be a periodic unitary operator
and let N be its period. Take ε > 0, n ∈ N and x1, . . . , xn ∈ H \ {0}. We have
to find an almost weakly stable unitary operator T with ‖Uxj − Txj‖ < ε and
‖U∗xj − T ∗xj‖ < ε for all j = 1, . . . , n.

Since UN = I we have σ(U) ⊂
{
1, e

2πi
N , . . . , e

2π(N−1)i
N

}
, and the orthogonal

decomposition

H = ker(I − U) ⊕ ker(e
2πi
N I − U) ⊕ . . .⊕ ker(e

2π(N−1)i
N I − U) (II.25)
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holds.
Assume first that x1, . . . , xn are orthogonal eigenvectors of U .
In order to use Lemma 5.2 we first construct a periodic unitary operator

S satisfying Uxj = Sxj for all j = 1, . . . , n and having infinite-dimensional
eigenspaces only. For this purpose define the n-dimensional U - and U∗-invariant
subspace H0 := lin{xj}n

j=1 and the operator S0 on H0 as the restriction of U to
H0. Decompose H as an orthogonal sum

H =
∞⊕

k=0

Hk with dimHk = dimH0 for all k ∈ N.

Denote by Pk an isomorphism from Hk to H0 for every k. Define now Sk :=
P−1

k UPk on each Hk as a copy of U |H0 and consider S :=
⊕∞

k=0 Sk on H .
The operator S is unitary and periodic with period being a divisor of N .

So a decomposition analogous to (II.25) is valid for S. Moreover, Uxj = Sxj and
U∗xj = S∗xj hold for all j = 1, . . . , n and the eigenspaces of S are infinite dimen-
sional. Denote by Fj the eigenspace of S containing xj and by λj the corresponding
eigenvalue. By Lemma 5.2, for every j = 1, . . . , n there exists an almost weakly
stable unitary operator Tj on Fj satisfying ‖Tj − S|Fj

‖ = ‖Tj − λjI‖ < ε. Finally,
we define the desired operator T as Tj on Fj for every j = 1 . . . , n and extend it
linearly to H .

Let now x1, . . . , xn ∈ H be arbitrary and take an orthonormal basis of eigen-
values {yk}∞k=1. Then there exists K ∈ N such that xj =

∑K
k=1 ajkyk + oj with

‖oj‖ < ε
4 for every j = 1, . . . , n. By the arguments above applied to y1, . . . , yK

there is an almost weakly stable operator T with ‖Uyk − Tyk‖ < ε
4KM and

‖U∗yk−T ∗yk‖ < ε
4KM for M := maxk=1,...,K,j=1,...,n |ajk| and every k = 1, . . . ,K.

Therefore we obtain

‖Uxj − Txj‖ ≤
K∑

k=1

|ajk|‖Uyk − Tyk‖ + 2‖oj‖ < ε

for every j = 1, . . . , n. Analogously, ‖U∗xj−T ∗xj‖ < ε holds for every j = 1, . . . , n,
and the proposition is proved. �

We can now prove the following category theorem for weakly and almost
weakly stable unitary operators. To do so we extend the argument used by Halmos
and Rohlin (see, e.g., [118, pp. 77–80]) for measure preserving transformations in
ergodic theory.

Theorem 5.4. The set SU of weakly stable unitary operators is of first category and
the set WU of almost weakly stable unitary operators is residual in U .

Recall that a subset of a Baire space is called residual if its complement is of
first category.
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Proof. We first prove that S is of first category in U . Fix x ∈ H with ‖x‖ = 1 and
consider the closed sets

Mk :=
{
U ∈ U : |〈Ukx, x〉| ≤ 1

2

}
.

Let U ∈ U be weakly stable. Then there exists n ∈ N such that U ∈ Mk for
all k ≥ n, i.e., U ∈ ∩k≥nMk. So we obtain

SU ⊂
∞⋃

n=1

Nn, (II.26)

where Nn := ∩k≥nMk. Since the sets Nn are closed, it remains to show that U \Nn

is dense for every n.
Fix n ∈ N and let U be a periodic unitary operator. Then U /∈ Mk for

some k ≥ n and therefore U /∈ Nn. Since by Proposition 5.1 the periodic unitary
operators are dense in U , S is of first category.

To show that WU is residual we take a dense subset D = {xj}∞j=1 of H and
define the open sets

Wjkn :=
{
U ∈ U : | 〈Unxj , xj〉 | <

1
k

}
.

Then the sets Wjk := ∪∞
n=1Wjkn are also open.

We show that

WU =
∞⋂

j,k=1

Wjk (II.27)

holds.
The inclusion “⊂” follows from the definition of almost weak stability. To

prove the converse inclusion we take U /∈ WU . Then there exists x ∈ H with
‖x‖ = 1 and ϕ ∈ R such that Ux = eiϕx. Take now xj ∈ D with ‖xj − x‖ ≤ 1

4 .
Then

| 〈Unxj , xj〉 | = | 〈Un(x− xj), x− xj〉 + 〈Unx, x〉 − 〈Unx, x− xj〉
− 〈Un(x− xj), x〉 |

≥ 1 − ‖x− xj‖2 − 2‖x− xj‖ >
1
3

holds for every n ∈ N. So U /∈ Wj3 which implies U /∈ ∩∞
j,k=1Wjk, and therefore

(II.27) holds. Moreover, allWjk are dense by Proposition 5.3. Hence WU is residual
as a countable intersection of open dense sets. �
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5.2 Isometries

We now consider the space I of all isometries on H , a separable and infinite-
dimensional Hilbert space, endowed with the strong operator topology and prove
analogous category results as above. Note that I is a complete metric space with
respect to the metric given by the formula

d(T, S) :=
∞∑

j=1

‖Txj − Sxj‖
2j‖xj‖

for T, S ∈ I,

where {xj}∞j=1 is a fixed dense subset of H \ {0}.
Further we denote by SI the set of all weakly stable isometries on H and by

WI the set all almost weakly stable isometries on H .
The results in this subsection are based on the following classical theorem on

isometries on Hilbert spaces, see [238, Theorem 1.1].

Theorem 5.5 (Wold decomposition). Let V be an isometry on a Hilbert space H.
Then H can be decomposed into an orthogonal sum H = H0 ⊕H1 of V -invariant
subspaces such that the restriction of V on H0 is unitary and the restriction of V
on H1 is a unilateral shift, i.e., there exists a subspace Y ⊂ H1 with V nY ⊥ V mY
for all n �= m, n,m ∈ N, such that H1 = ⊕∞

n=1V
nY holds.

We need the following easy lemma, see also Peller [211].

Lemma 5.6. Let Y be a Hilbert space and let R be the right shift on H := l2(N, Y ).
Then there exists a sequence {Tn}∞n=1 of periodic unitary operators on H converg-
ing strongly to R.

Proof. We define the operators Tn by

Tn(x1, x2, . . . , xn, . . .) := (xn, x1, x2, . . . , xn−1, xn+1, . . .).

Every Tn is unitary and has period n. Moreover, for an arbitrary x = (x1, x2, . . .) ∈
H we have

‖Tnx−Rx‖2 = ‖xn‖2 +
∞∑

k=n

‖xk+1 − xk‖2 −→
n→∞

0,

and the lemma is proved. �
As a first application of the Wold decomposition we obtain the density of the

periodic operators in I. (Note that periodic isometries are unitary.)

Proposition 5.7. The set of all periodic isometries is dense in I.

Proof. Let V be an isometry onH . Then by Theorem 5.5 the orthogonal decompo-
sition H = H0⊕H1 holds, where the restriction V0 on H0 is unitary and the space
H1 is unitarily equivalent to l2(N, Y ). The restriction V1 of V on H1 corresponds
(by this equivalence) to the right shift operator on l2(N, Y ). By Proposition 5.1
and Lemma 5.6 we can approximate both operators V0 and V1 by unitary periodic
ones and the assertion follows. �
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We further obtain the density of the set of all almost weakly stable operators
in I.

Proposition 5.8. The set WI of almost weakly stable isometries is dense in I.

Proof. Let V be an isometry on H and let V0 and V1 be the corresponding re-
strictions of V to the orthogonal subspaces H0 and H1 from Theorem 5.5. By
Lemma 5.6 the operator V1 can be approximated by unitary operators on H1. The
assertion now follows from Proposition 5.3. �

Using the same idea as in the proof of Theorem 5.4 one obtains, using Propo-
sitions 5.7 and 5.8, the following category result for weakly and almost weakly
stable isometries.

Theorem 5.9. The set SI of all weakly stable isometries is of first category and
the set WI of all almost weakly stable isometries is residual in I.

5.3 Contractions

The above category results are now extended to the case of contractive operators.
Let the Hilbert space H be as before and denote by C the set of all contrac-

tions on H endowed with the weak operator topology. Note that C is a complete
metric space with respect to the metric given by the formula

d(T, S) :=
∞∑

i,j=1

| 〈Txi, xj〉 − 〈Sxi, xj〉 |
2i+j‖xi‖‖xj‖

for T, S ∈ C,

where {xj}∞j=1 is a fixed dense subset of H with each xj �= 0.
By Takesaki [239, p. 99], the set of all unitary operators is dense in C (see

also Peller [211] for a much stronger assertion). Combining this with Propositions
5.1 and 5.3 we have the following fact.

Proposition 5.10. The set of all periodic unitary operators and the set of all almost
weakly stable unitary operators are both dense in C.

The following elementary property is a key for the further results (cf. Halmos
[121, p. 14]).

Lemma 5.11. Let {Tn}∞n=1 be a sequence of linear operators on a Hilbert space H
converging weakly to a linear operator S. If ‖Tnx‖ ≤ ‖Sx‖ for every x ∈ H, then
lim

n→∞
Tn = S strongly.

Proof. For each x ∈ H we have

‖Tnx− Sx‖2 = 〈Tnx− Sx, Tnx− Sx〉 = ‖Sx‖2 + ‖Tnx‖2 − 2Re 〈Tnx, Sx〉
≤ 2 〈Sx, Sx〉 − 2Re 〈Tnx, Sx〉 = 2Re 〈(S − Tn)x, Sx〉 −→

n→∞
0,

and the lemma is proved. �
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We now state the category result for contractions, but note that its proof
differs from the corresponding proofs in the two previous subsections.

Theorem 5.12. The set SC of all weakly stable contractions is of first category and
the set WC of all almost weakly stable contractions is residual in C.

Proof. To prove the first statement we fix x ∈ X , ‖x‖ = 1, and define as before
the sets

Nn :=
{
T ∈ C : |〈T kx, x〉| ≤ 1

2
for all k ≥ n

}
.

Let T ∈ C be weakly stable. Then there exists n ∈ N such that T ∈ Nn, and we
obtain

SC ⊂
∞⋃

n=1

Nn. (II.28)

It remains to show that the sets Nn are nowhere dense. Fix n ∈ N and let U be a
periodic unitary operator. We show that U does not belong to the closure of Nn.
Assume the opposite, i.e., that there exists a sequence {Tk}k∈N ⊂ Nn satisfying
limk→∞ Tk = U weakly. Then, by Lemma 5.11, limk→∞ Tk = U strongly and
therefore U ∈ Nn by the definition of Nn. This contradicts the periodicity of U .
By the density of the set of unitary periodic operators in C we obtain that Nn is
nowhere dense and therefore SC is of first category.

To show the residuality of WC we again take a dense subset D = {xj}∞j=1 of
H and define

Wjk :=
{
T ∈ C : |〈T nxj , xj〉| <

1
k

for some n ∈ N

}
.

As in the proof of Theorem 5.4 the equality

WC =
∞⋂

j,k=1

Wjk (II.29)

holds.
Fix j, k ∈ N. We have to show that the complement W c

jk of Wjk which
coincides with {

T ∈ C : | 〈T nxj , xj〉 | ≥
1
k

for all n ∈ N

}

is nowhere dense. Let U be a unitary almost weakly stable operator. Assume
that there exists a sequence {Tm}∞m=1 ⊂ W c

jk satisfying limm→∞ Tm = U weakly.
Then, by Lemma 5.11, limm→∞ Tm = U strongly and therefore U ∈ W c

jk. This
contradicts the almost weak stability of U . Therefore the set of all unitary almost
weakly stable operators does not intersect the closure of W c

jk. By Proposition 5.10
all the sets W c

jk are nowhere dense and therefore WC is residual. �
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Remark 5.13. As a consequence of Theorem 5.12 we see that the set of all strongly
stable operators as well as the set of all operators T satisfying r(T ) < 1 are also
of first category in C.

Open question 5.14. Do the above category theorems hold on reflexive Banach
spaces?

On non-reflexive Banach spaces these results are not true in general. Indeed,
every almost weakly stable contraction on the space l1 is automatically weakly
and even strongly stable by Schur’s lemma, see, e.g., Conway [52, Prop. V.5.2],
and Lemma 2.4.

For related category results see e.g. Iwanik [82], Bartoszek [16], Bartoszek,
Kuna [18].

Remark 5.15. In Section IV.3 we prove a stronger version of the above results.

6 Stability via Lyapunov’s equation

Our spectral and resolvent criteria for stability and power boundedness of an
operator T used information on R(λ, T ) in many points λ ∈ ρ(T ), i.e., one had to
solve the equation

(λI − T )x = y

for all y and infinitely many λ (and then even had to estimate the solutions). This
is, in practical situations, a quite difficult task.

In a Hilbert space H , one can reduce this problem to the solution of a single
equation in a new, but higher dimensional space. The idea is to use the imple-
mented operators on and the order structure of L(H), see Section I.4. Recall that
implemented operators are positive operators on L(H) defined as T S := T ∗ST
for some fixed operator T ∈ L(H).

6.1 Uniform exponential and strong stability

We start by characterising uniform exponential stability.

Theorem 6.1. Let T be a bounded operator on a Hilbert space H and T its imple-
mented operator on L(H). Then the following assertions are equivalent.

(i) T is uniformly exponentially stable on H.

(ii) T is uniformly exponentially stable on L(H).

(iii) 1 ∈ ρ(T ) and 0 ≤ R(1, T ).

(iv) There exists 0 ≤ Q ∈ L(H) such that

(T − I)Q = T ∗QT −Q = −I. (II.30)
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(v) There exists 0 ≤ Q ∈ L(H) such that T ∗QT −Q ≤ −I.

In this case, Q in (iv) is unique and given by Q = R(1, T )I =
∑∞

n=0 T
∗nT n.

Equation (II.30) is called Lyapunov equation.

Proof. (i)⇔(ii) follows from Lemma I.4.6, (ii)⇔(iii) by Theorem I.4.4 and (iii)
implies (iv) by taking Q := R(1, T )I ≥ 0. Since (iv)⇒(v) is trivial, we now
assume (v) and prove (iii). Take 0 ≤ S on H and observe that S ≤ ‖S‖ · I. Since
(I − T )Q = I we obtain

0 ≤
n∑

k=0

T kS ≤ ‖S‖
n∑

k=0

T kI = ‖S‖
n∑

k=0

T k(I − T )Q = ‖S‖(Q− T n+1Q) ≤ ‖S‖Q.

This shows that the sequence {
∑n

k=0 T kS}∞n=0 is monotonically increasing and
bounded, hence the series

∑∞
k=0 T kS converges weakly for every 0 ≤ S and hence

for every S ∈ L(H) by Lemma I.4.1. So 1 ∈ ρ(T ) and R(1, T ) =
∑∞

k=0 T k (for
the strong operator topology) implying R(1, T ) ≥ 0, and (c) is proved. �

We now turn our attention to strong stability.

Theorem 6.2. Let T ∈ L(H) and T ∈ L(L(H)) be as above. Then the following
assertions are equivalent.

(i) T is strongly stable.

(ii) limn→∞〈T nSx, x〉 = 0 for every S ∈ L(H) and x ∈ H.

(iii) For every a > 0 there exist (unique) 0 ≤ Qa, Q̃a ∈ L(H) satisfying

e−2aT ∗QaT −Qa = −I and e−2aT Q̃aT
∗ − Q̃a = −I

such that

lim
a→0+

a〈Qax, x〉 = 0 and sup
a>0

a〈Q̃ax, x〉 <∞ for all x ∈ H. (II.31)

The operators Qa and Q̃a are obtained as

Qa = e2aR(e2a, T )I and Q̃a = e2aR(e2a, T ∗)I.

Here, T ∗ denotes the operator implemented by T ∗.

Proof. The implication (ii)⇒(i) follows from the relation ‖Tx‖2 = 〈T Ix, x〉. To
prove the converse take S ∈ L(H)sa and observe −cI ≤ S ≤ cI for c := ‖S‖. This
implies |〈T nSx, x〉| ≤ c|〈T nIx, x〉| = c‖T nx‖2 proving (i)⇒(ii).

Assume that (i) or (iii) hold. Then Theorem 6.1 applied to e−aT and its
implemented operator Ta = e−2aT implies that Qa := R(1, Ta)I = e2aR(e2a, T )I
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is the unique solution of the first rescaled Lyapunov equation in (iii) for every
a > 0. Moreover,

〈Qax, x〉 =
∞∑

n=0

e−2an〈T nIx, x〉 =
∞∑

n=0

e−2an‖T nx‖2.

Analogously, Q̃a := e2aR(e2a, T ∗)I is the unique solution of the second rescaled
Lyapunov equation in (iii) and satisfies 〈Q̃ax, x〉 =

∑∞
n=0 e

−2an‖T nx‖2.
We now see that (II.31) is equivalent to the property

lim
a→0+

a

∞∑
n=0

e−2an‖T nx‖2 = 0 and sup
a>0

a

∞∑
n=0

e−2an‖T ∗nx‖2 <∞.

By Lemma I.2.6, this is equivalent to

lim
n→∞

1
n+ 1

n∑
k=0

‖T kx‖2 = 0 and sup
n>0

1
n+ 1

n∑
k=0

‖T ∗kx‖2 <∞

for every x ∈ H which is equivalent to strong stability of T by Proposition 2.7,
and therefore (i)⇔(iii). �
Remark 6.3. Note that one can again replace “= −I” by “≤ −I” in the rescaled
Lyapunov equations in (iii).

6.2 Power boundedness

One can also characterise power boundedness of operators on Hilbert spaces via
analogous Lyapunov equations.

Theorem 6.4. For T ∈ L(H) and T ∈ L(L(H)) as before, the following assertions
are equivalent.

(i) T is power bounded.

(ii) T is power bounded.

(iii) For every a > 0 there exist (unique) 0 ≤ Qa, Q̃a ∈ L(H) satisfying

e−2aT ∗QaT −Qa = −I and e−2aT Q̃aT
∗ −Qa = −I

such that

sup
a>0

a〈Qax, x〉 <∞ and sup
a>0

a〈Q̃ax, x〉 <∞ for all x ∈ H. (II.32)

In this case, one has Qa = e2aR(e2a, T )I and Q̃a = e2aR(e2a, T ∗)I.

The implication (i)⇔(ii) follows directly from Lemma I.4.6, while the proof
of (i)⇔(iii) is analogous to the proof of Theorem 6.2 using Proposition 1.7.



6. Stability via Lyapunov’s equation 77

Final remark

Again, weak stability is much more delicate to treat than strong stability or power
boundedness. The main problem occurs when T is a unitary operator. (Note that
by Theorem 3.9, the unitary part of a contraction is decisive for weak stability.)
In this case, the implemented operator T satisfies T I = I, and therefore weak
stability cannot be described in terms of {T nI}∞n=0 or R(·, T )I, respectively, as
we could do in Theorems 6.1 and 6.2.

Open question 6.5. Is it possible to characterise weak stability of operators on
Hilbert spaces via some kind of Lyapunov equation?





Chapter III

Stability of C0-semigroups

In this chapter we discuss boundedness, polynomial boundedness, exponential,
strong, weak and almost weak stability of C0-semigroups (T (t))t≥0 on Banach
spaces.

The goal is to characterise these properties without using the semigroup
explicitly. The optimal case is to have a characterisation in terms of the spectrum
of the generator A. However, such results are possible only in very special cases.
As it turns out, a good substitute is the behaviour of the resolvent R(λ,A) in a
neighbourhood of iR.

In our presentation we emphasise the similarities and differences to the dis-
crete case treated in Chapter II.

1 Boundedness

In this section we consider boundedness and the related notion of polynomial
boundedness for C0-semigroups. While boundedness of C0-semigroups is difficult
to check if the semigroup is not contractive, the weaker notion of polynomial
boundedness is easier to characterise.

1.1 Preliminaries

We start with bounded C0-semigroups and their elementary properties.

Definition 1.1. A C0-semigroup T (·) on a Banach space X is called bounded if
supt≥0 ‖T (t)‖ <∞.

Remark 1.2. Every bounded semigroup T (·) satisfies ω0(T ) ≤ 0 and hence σ(A) ⊂
{z : Re (z) ≤ 0}. However, the spectral condition σ(A) ⊂ {z : Re (z) ≤ 0} does
not imply boundedness of the semigroup, as can be seen already from the matrix
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semigroup T (·) given by T (t) =
(

1 t
0 1

)
on C2. In Subsection 1.3 we give more

sophisticated examples and a general description of possible growth.

Remark 1.3. It is interesting that, analogous to power bounded operators (see
Subsection 1.1), more information on the spectrum of the generator of a bounded
C0-semigroup is known if X is separable. For example, Jamison [135] proved that if
a C0-semigroup on a separable Banach space is bounded, then the point spectrum
of its generator on the imaginary axis has to be at most countable. For more
results in this direction see Ransford [218], Ransford, Roginskaya [219] and Badea,
Grivaux [14].

We will see later that countability of the spectrum of the generator on the
imaginary axis plays an important role for strong stability of the semigroup, see
Subsection 3.3.

The following simple lemma is useful to understand boundedness.

Lemma 1.4. Let T (·) be a bounded semigroup on a Banach space X. Then there
exists an equivalent norm on X such that T (·) becomes a contraction semigroup.

Proof. Take ‖x‖1 := supt≥0 ‖T (t)x‖ for every x ∈ X . �

Remark 1.5. Packel [207] showed that not all bounded C0-semigroups on Hilbert
spaces are similar to a contraction semigroup for a Hilbert space norm. His example
was a modification of the corresponding examples of Foguel [87] and Halmos [120]
in the discrete case.

However, Sz.-Nagy [236] proved that every bounded C0-group is similar to a
unitary one. We also mention Vũ and Yao [253] who proved that every bounded
uniformly continuous quasi-compact C0-semigroup on a Hilbert space is similar to
a contraction semigroup.

Zwart [263] and Guo, Zwart [113, Thm. 8.2] showed that some kind of Cesàro
boundedness implies boundedness. See also van Casteren [45] for the case of
bounded C0-groups on Hilbert spaces.

Theorem 1.6. For a C0-semigroup T (·) on a Banach space X the following asser-
tions are equivalent.

(a) T (·) is bounded.

(b) For all x ∈ X and y ∈ X ′ we have

sup
t≥0

1
t

∫ t

0

‖T (s)x‖2 ds <∞,

sup
t≥0

1
t

∫ t

0

‖T ′(s)y‖2 ds <∞.
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Proof. (a)⇒(b) is clear.
(b)⇒(a). Take x ∈ X and y ∈ X ′. Then we have by the Cauchy–Schwarz

inequality

|〈T (t)x, y〉| =
1
t

∫ t

0

|〈T (t)x, y〉| ds =
1
t

∫ t

0

|〈T (t− s)x, T ′(s)y〉| ds

≤
(

1
t

∫ t

0

‖T (s)x‖2 ds

) 1
2
(

1
t

∫ t

0

‖T ′(s)y‖2 ds

) 1
2

,

and hence every weak orbit {〈T (t)x, y〉 : t ≥ 0} is bounded by assumption. So T (·)
is bounded by the uniform boundedness principle. �

Remark 1.7. The second part of condition (b) in the above theorem cannot be
omitted, i.e., absolute Cesàro-boundedness is not equivalent to boundedness. Van
Casteren [45] gave an example of an unbounded C0-group on a Hilbert space
satisfying the first part of condition (b).

Theorem 1.6 can also be formulated for single orbits.

Proposition 1.8. For a C0-semigroup T (·) on a Banach space X, x ∈ X and y ∈ X ′

the weak orbit {〈T (t)x, y〉 : t ≥ 0} is bounded if and only if there exist p, q > 1
with 1

p + 1
q = 1 such that

sup
t≥0

1
t

∫ t

0

‖T (s)x‖p ds <∞,

sup
t≥0

1
t

∫ t

0

‖T ′(s)y‖q ds <∞.

However, since the semigroup is, in most cases, not known explicitly, it is
important to find characterisations not involving it directly.

1.2 Representation as shift semigroups

It is well-known that every bounded semigroup on a Banach space is similar to
the left shift semigroup on a space of continuous functions.

Theorem 1.9. Let T (·) be a contractive C0-semigroup on a Banach space X. If
T (·) is strongly stable, then it is isometrically equivalent to the left shift semigroup
on a closed subspace of BUC(R+, X).

By BUC(R+, X) we denote the space of all bounded, uniformly continuous
functions from R+ to X .

Proof. Define the operator J : X → BUC(R+, X) by

(Jx)(s) := T (s)x, s ≥ 0, x ∈ X.
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This operator identifies a vector x with its orbit under the semigroup. (Note that
every function s 	→ T (s)x is uniformly continuous by the assumption on T (·).) By
contractivity of T (·) we have ‖x‖ = maxs≥0 ‖T (s)x‖ = ‖Jx‖ and hence J is an
isometry. Moreover,

JT (t)x = T (t+ ·)x, t ≥ 0, x ∈ X,

i.e., T (·) corresponds to the left shift semigroup on rg J which is a closed shift-
invariant subspace of C0(R+, X). �

By the renorming procedure from Lemma 1.4 we obtain the following general
form of bounded semigroups.

Corollary 1.10. Let T (·) be a strongly stable semigroup on a Banach space X. Then
T (·) is isomorphic to the left shift semigroup on a closed subspace of BUC(R+, X1),
where X1 = X endowed with an equivalent norm.

1.3 Characterisation via resolvent

In this subsection we characterise boundedness for C0-semigroups by the first or
second power of the resolvent of its generator.

Theorem 1.11 (Gomilko [104], Shi and Feng [231]). Let A be a densely defined
operator on a Banach space X satisfying s0(A) ≤ 0. Consider the following asser-
tions.

(a) For every x ∈ X and y ∈ X ′,

sup
a>0

a

∫ ∞

−∞
‖R(a+ is, A)x‖2 ds <∞,

sup
a>0

a

∫ ∞

−∞
‖R(a+ is, A′)y‖2 ds <∞;

(b) sup
a>0

a

∫ ∞

−∞
|〈R2(a+ is, A)x, y〉| ds <∞ for all x ∈ X, y ∈ X ′;

(c) A generates a bounded C0-semigroup on X.

Then (a)⇒(b)⇒(c). Moreover, if X is a Hilbert space, then (a)⇔(b)⇔(c).

Proof. Assume (a). By the Cauchy-Schwarz inequality we have

a

∫ ∞

−∞
|〈R2(a+ is, A)x, y〉| ds ≤ a

∫ ∞

−∞
‖R(a+ is, A)x‖‖R(a+ is, A′)y‖ ds

≤
(
a

∫ ∞

−∞
‖R(a+ is, A)x‖2 ds

) 1
2
(
a

∫ ∞

−∞
‖R(a+ is, A)x‖2 ds

) 1
2

which proves (b).
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Consider now the implication (b)⇒(c). We will construct the semigroup ex-
plicitly using the idea from Shi, Feng [231].

We first prove that (b) implies s0(A) ≤ 0. Since d
dzR(z,A) = −R2(z,A), we

have for all a > 0, x ∈ X and y ∈ X ′ that

〈R(a+ is, A)x, y〉 = 〈R(a,A)x, y〉 − i

∫ s

0

〈R(a+ iτ, A)2x, y〉 dτ. (III.1)

By the absolute convergence of the integral on the right-hand side we obtain that
lims→∞〈R(a+ is, A)x, y〉 = 0. From (III.1) and (b) it follows that

‖R(a+ is, A)‖ ≤ M

a
,

hence s0(A) ≤ 0 holds.
Define now T (0) = I and

T (t)x =
1

2πt

∫ ∞

−∞
e(a+is)tR(a+ is, A)2xds

for all x ∈ X and t > 0. By the assumption the operators T (·) are well-defined
and form a semigroup by Theorem I.3.9. Let us estimate ‖T (t)‖. By (b) and the
uniform boundedness principle we have

|〈T (t)x, y〉| ≤ eat

2πt

∫ ∞

−∞
|〈R(a+ is, A)2x, y〉| ds

≤ Meat

2πta
‖x‖‖y‖.

Taking a := t−1 we obtain for K := Me
2π the desired estimate

‖T (t)‖ ≤ K ∀t ≥ 0. (III.2)

Finally, this and Theorem I.3.9 imply the strong continuity of T (·).
For the implication (c)⇒(a), let T (·) be a C0-semigroup on a Hilbert space

H with generator A satisfying K := supt≥0 ‖T (t)‖ < ∞. By Parseval’s inequality
and integration by parts we have∫ ∞

−∞
‖R(a+ is, A)x‖2 ds =

∫ ∞

0

e−2at‖T (t)x‖2 dt ≤ K2

∫ ∞

0

e−2at‖x‖2 dt ≤ K2

2a
‖x‖2

and analogously ∫ ∞

−∞
‖R(a+ is, A′)y‖2 ds ≤ K2

2a
‖y‖2

for every x, y ∈ H , and the theorem is proved. �
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Remarks 1.12. 1) Gomilko first proved the non-trivial implication (b)⇒(c) using
the Hille–Yosida theorem. Then Shi and Feng gave an alternative proof using an
explicit construction of the semigroup by formula (I.13) in Subsection I.3.2. The
direction (c)⇒(a) for Hilbert spaces follows easily from Plancherel’s theorem.

Note that van Casteren [45] presented an analogous characterisation for
bounded C0-groups on Hilbert spaces much earlier. He also showed that the second
part of condition (a) cannot be omitted.

2) One can replace the L2-norms in condition (a) by the Lp-norm in the first
inequality and Lq-norm in the second one for p, q > 1 with 1

p + 1
q = 1, possibly

depending on x and y. However, for the converse implication, if X is a Hilbert
space, one needs p = q = 2.

A direct consequence of the construction given in the proof of Theorem 1.11
is the following result for single orbits.

Proposition 1.13. Let X be Banach space and A generate a C0-semigroup T (·)
with s0(A) ≤ 0, x ∈ X and y ∈ X ′. Consider the following assertions.

(a) For some p, q > 1 with 1
p + 1

q = 1,

lim sup
a→0+

a

∫ ∞

−∞
‖R(a+ is, A)x‖p ds <∞,

lim sup
a→0+

a

∫ ∞

−∞
‖R(a+ is, A′)y‖q ds <∞;

(b) lim sup
a→0+

a

∫ ∞

−∞
|〈R2(a+ is, A)x, y〉| ds <∞;

(c) {〈T (t)x, y〉 : t ≥ 0} is bounded.

Then (a)⇒(b)⇒(c). Moreover, if X is a Hilbert space, then (a)⇔(b)⇔(c) for
p = q = 2.

In particular, conditions (a) and (b) holding for all x ∈ X and y ∈ X ′ both
imply boundedness of T (·) and are equivalent to it when X is a Hilbert space and
p = q = 2.

Note that conditions (a) and (b) in Theorem 1.11 are not necessary for
boundedness since Corollary 2.19 below shows that the integrals in (a) and (b)
can diverge in general. But even if all these integrals converge, condition (a) is still
not necessary for boundedness even for isometric groups with bounded generators.
This can be seen from the following example.

Example 1.14. On X := C[0, 1] consider the bounded operator A defined by
Af(s) := isf(s) which generates the isometric (and hence bounded) group given by
T (t)f(s) = eistf(s). Then for every a > 0 and b ∈ [0, 1] we have

‖R(a+ ib, A)1‖ = sup
s∈[0,1]

1
|a+ ib− is| =

1
a
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which implies

a

∫ ∞

−∞
‖R(a+ ib, A)1‖2 db ≥ a

∫ 1

0

‖R(a+ ib, A)1‖2 db =
1
a
→ ∞ as a→ 0 + .

So A does not satisfy condition (a) in Theorem 1.11 as well as condition (a) in
Proposition 1.13.

Since the same example works on the space L∞[0, 1], we can take the pre-
adjoint and see that also on the space L1([0, 1]) the operator A does not satisfy
(a) in Theorem 1.11.

It is still open to find analogous necessary and sufficient resolvent conditions
for C0-semigroups on Banach spaces.

1.4 Polynomial boundedness

In this subsection we introduce and discuss polynomial boundedness of C0-semi-
groups. Surprisingly, this weaker notion allows a much simpler characterisation.

Definition 1.15. A semigroup T (·) on a Banach space X is called polynomially
bounded if ‖T (t)‖ ≤ p(t), t ≥ 0, for some polynomial p.

In the following we will assume ‖T (t)‖ ≤ K(1 + td) for some constants d ≥ 0
(being not necessarily an integer) and K ≥ 1.

Note that every polynomially bounded semigroup T (·) still satisfies ω0(T ) ≤
0. The following example shows that the converse implication does not hold.

Example 1.16 (C0-semigroups satisfying ω0(T ) ≤ 0 with non-polynomial growth).
The following construction is analogous to Example II.1.16 in the discrete case.

Consider the Hilbert space

H := L2
a2 = {f : R+ → C measurable :

∫ ∞

0

|f(s)|2a2(s) ds <∞}

for some positive continuous function a satisfying a(0) ≥ 1 and

a(t+ s) ≤ a(t)a(s) for all t, s ∈ R+ (III.3)

with the corresponding natural scalar product. OnH take the right shift semigroup
T (·).

We first check strong continuity of T (·). For the characteristic function f on
an interval [a, b] and t < b− a one has

‖T (t)f − f‖ =
∫ a+t

a

a2(s) ds+
∫ b+t

b

a2(s)ds −→
t→0+

0.
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Further, for f ∈ X we have by (III.3)

‖T (t)f‖2 =
∫ ∞

t

|f(s− t)|2a2(s) ds =
∫ ∞

0

|f(s)|2a2(s+ t) ds

≤ a2(t)
∫ ∞

0

|f(s)|2a2(s) ds = a2(t)‖f‖2

for every t ≥ 0 and therefore ‖T (t)‖ ≤ a(t). A density argument shows that the
semigroup T (·) is strongly continuous.

Moreover, for the characteristic functions fn of the intervals [0, 1/n] we have

‖T (t)fn‖2 =
∫ t+ 1

n

t

a2(s) ds =

∫ t+ 1
n

t a2(s) ds∫ 1
n

0 a2(s) ds
‖fn‖2

and hence

‖T (t)‖2 ≥
1
n

∫ t+ 1
n

t
a2(s)ds

1
n

∫ 1
n

0
a2(s) ds

−→
n→∞

a2(t)
a2(0)

.

So we obtain the norm estimate

a(t)
a(0)

≤ ‖T (t)‖ ≤ a(t)

and hence the semigroup T (·) has the same growth as the function a. Note that
if a(0) = 1, then ‖T (t)‖ = a(t) for all t ≥ 0. Now every function a satisfying
(III.3) and growing faster than every polynomial but slower than any exponential
function with positive exponent yields an example of a non-polynomially growing
C0-semigroup T (·) satisfying ω0(T ) ≤ 0.

As a concrete example of such a function take

a(t) := (t+ 6)ln(t+6) = eln
2(t+6)

(see Example II.1.16), from which we obtain a C0-semigroup growing like tln t.
Analogously, one can construct a C0-semigroup growing as tln

α t for any α ≥ 1.
The idea to use condition (III.3) belongs to Sen-Zhong Huang (private com-

munication).

The following theorem characterises operators generating polynomially boun-
ded C0-semigroups, see Eisner [64]. This generalises Theorem 1.11 for bounded
C0-semigroups and a theorem of Malejki [183] (see also Kiselev [150]) in the case
of C0-groups. The proof is a modification of the one of Theorem 1.11, see [64].

Theorem 1.17. Let X be a Banach space and A be a densely defined operator on
X with s(A) ≤ 0 and d ∈ [0,∞). If the condition∫ ∞

−∞
|〈R(a+ is, A)2x, y〉| ds ≤ M

a
(1 + a−d)‖x‖‖y‖ ∀x ∈ X, ∀y ∈ X ′ (III.4)
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holds for all a > 0, then A is the generator of a C0-semigroup (T (t))t≥0 which
does not grow faster than td, i.e.,

‖T (t)‖ ≤ K(1 + td) (III.5)

for some constant K and all t > 0. Conversely, if X is a Hilbert space, then the
growth condition (III.5) implies (III.4) for the parameter d1 := 2d.

Remark 1.18. Kiselev [150] showed that the exponent 2d in the implication (III.5)
⇒ (III.4) is sharp for the case of C0-groups.

Remark 1.19. Analogously to the bounded case, conditions
∫ ∞

−∞
‖R(a+ is, A)x‖p ds ≤ M

a
(1 + a−d) for every x ∈ X,∫ ∞

−∞
‖R(a+ is, A′)y‖q ds ≤ M

a
(1 + a−d) for every y ∈ X ′

for some M ≥ 1 and p, q > 1 satisfying 1
p + 1

q = 1 are sufficient to obtain (III.4)
and, for p = q = 2, equivalent to the generation of a polynomially bounded C0-
semigroup on Hilbert spaces.

If it is already known that A generates a C0-semigroup, then it becomes
much easier to check whether the semigroup is polynomially bounded at least for
a large class of semigroups.

Following Eisner, Zwart [73], we say that an operator A has a p-integrable
resolvent if for some/all a, b > s0(A) the conditions

∫ ∞

−∞
‖R(a+ is, A)x‖p ds <∞ ∀x ∈ X, (III.6)∫ ∞

−∞
‖R(b+ is, A′)y‖q ds <∞ ∀y ∈ X ′ (III.7)

hold, where 1 < p, q < ∞ with 1
p + 1

q = 1. Note that in particular condition
(I.11) from Subsection I.3.2 is satisfied for such semigroups by the Cauchy–Schwarz
inequality.

Plancherel’s theorem applied to the functions t 	→ e−atT (t)x and t 	→
e−atT ∗(t)y for sufficiently large a > 0 implies that every generator of a C0-
semigroup on a Hilbert space has 2-integrable resolvent. Moreover, for generators
on a Banach space with Fourier type p > 1 condition (III.6) is satisfied auto-
matically. Finally, every generator of an analytic semigroup (in particular, every
bounded operator) on an arbitrary Banach space has p-integrable resolvent for ev-
ery p > 1. Intuitively, having p-integrable resolvent for some p is a good property
of the generator A or/and a good property of the space X .
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Theorem 1.20 (Eisner, Zwart [73]). Let A be the generator of a C0-semigroup
(T (t))t≥0 having p-integrable resolvent for some p > 1. Assume that C+

0 = {λ :
Reλ > 0} is contained in the resolvent set of A and there exist a0 > 0 and M > 0
such that the following conditions hold.

(a) ‖R(λ,A)‖ ≤ M

(Reλ)d
for some d ∈ [0,∞) and all λ with 0 < Reλ < a0;

(b) ‖R(λ,A)‖ ≤M for all λ with Reλ ≥ a0.

Then ‖T (t)‖ ≤ K(1 + t2d−1) holds for some constant K > 0 and all t ≥ 0.
Conversely, if (T (t))t≥0 is a C0-semigroup on a Banach space with

‖T (t)‖ ≤ K(1 + tγ)

for some constants γ ≥ 0, K > 0 and all t ≥ 0, then for every a0 > 0 there exists
a constant M > 0 such that the resolvent of the generator satisfies conditions (a)
and (b) above for d = γ + 1.

Proof. The second part of the theorem follows easily from the representation

R(λ,A)x =
∫ ∞

0

e−λtT (t)xdt.

The idea of the proof of the first part is based on the inverse Laplace transform
representation of the semigroup presented in Subsection I.3.2 and the technique
from Zwart [264] and Eisner, Zwart [72].

We first note that by conditions (a) and (b) we obtain s0(A) ≤ 0.
Next, since the function ω 	→ R(a + iω,A)x is an element of Lp(R, X) for

all x ∈ X , we conclude by the uniform boundedness theorem that there exists a
constant M0 > 0 such that

‖R(a+ i·, A)x‖Lp(R,X) ≤M0‖x‖ (III.8)

for all x ∈ X . Similarly, one obtains the dual result, i.e.,

‖R(b+ i·, A′)y‖Lq(R,X′) ≤ M̃0‖y‖ (III.9)

for all y ∈ X ′.
Take now 0 < r < a0. By the resolvent equality we have

R(r + iω), A)x = [I + (a− r)R(r + iω,A)]R(a+ iω,A)x.

Hence

‖R(r + iω,A)x‖ ≤ [1 + |a− r|‖(R(r + iω,A)‖] ‖R(a+ iω,A)x‖

≤
[
1 + |a− r|M

rd

]
‖R(a+ iω,A)x‖,
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where we used (a). Combining this with the estimate (III.8), we find that

‖R(r + i·, A)x‖Lp(R,X) ≤
[
1 + |a− r|M

rd

]
M0‖x‖

≤M1

[
1 +

1
rd

]
‖x‖. (III.10)

Similarly, we find that

‖R(r + i·, A′)y‖Lq(R,X′) ≤ M̃1

[
1 +

1
rd

]
‖y‖. (III.11)

From the estimates (III.10) and (III.11) we obtain∫ ∞

−∞
|〈R(r + iω,A)2x, y〉| dω

=
∫ ∞

−∞
|〈R(r + iω,A)x,R(r + iω,A)′y〉| dω

≤ ‖R(r + i·, A)x‖Lp(R,X)‖R(r + i·, A′)y‖Lq(R,X′)

≤M1M̃1‖x‖‖y‖
[
1 +

1
rd

]2

. (III.12)

Convergence of the integral on the right-hand side of (III.12) implies that the
inversion formula for the semigroup

T (t)x =
1

2πt

∫ ∞

−∞
e(r+is)tR(r + is, A)2xds

holds for all x ∈ X by Theorem I.3.9. Notice that the condition r > s0(A) is
essential. Combining this formula with (III.12) we obtain

|〈T (t)x, y〉| ≤ 1
2πt

∫ ∞

−∞
ert|〈R(r + iω,A)2x, y〉| dω

≤ 1
2πt

ertM1M̃1‖x‖‖y‖
[
1 +

1
rd

]2

. (III.13)

Since this holds for all 0 < r < a0, we may choose r := 1
t for t large enough giving

|〈T (t)x, y〉| ≤ 1
2πt

eM1M̃1‖x‖‖y‖
[
1 + td

]2
. (III.14)

So for large t the norm of the semigroup is bounded by Ct2d−1 for some con-
stant C. Since any C0-semigroup is uniformly bounded on compact time intervals,
the result follows. �
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As mentioned above, every generator on a Hilbert space has 2-integrable
resolvent, hence we have the following immediate corollary.

Corollary 1.21. Let A generate a C0-semigroup (T (t))t≥0 on the Hilbert space H.
If A satisfies conditions (a) and (b) of Theorem 1.20 for some d ≥ 0 and a0 > 0,
then there exists K > 0 such that ‖T (t)‖ ≤ K[1 + t2d−1] for all t ≥ 0.

Remark 1.22. Notice that conditions (a) and (b) for 0 ≤ d < 1 already imply
s0(A) < 0 (use the power series expansion for the resolvent). On the other hand,
for generators with p-integrable resolvent the equality ω0(T ) = s0(A) holds by
Corollary 2.19. Combining these facts we obtain that in this case the semigroup is
even uniformly exponentially stable. On the other hand, the exponential stability
follows from the Theorem 1.20 only for d < 1

2 . So for 1
2 ≤ d < 1 Theorem 1.20 does

not give the best information about the growth of the semigroup. Nevertheless,
for d = 1 the exponent 2d− 1 given in Theorem 1.20 is best possible (see Eisner,
Zwart [72]). For d > 1 this is not clear.

Note that the parameter d = γ + 1 in the converse implication of Theorem
1.20 is optimal for γ ∈ N. Indeed, for X := Cn and

A :=

⎛
⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0

...
0 0 0 . . . 0

⎞
⎟⎟⎟⎠

conditions (a) and (b) in Theorem 1.20 are fulfilled for d = n and the semigroup
generated by A grows exactly as tn−1.

By Corollary 1.21 we see that the class of generators of polynomially bounded
semigroups on a Hilbert space coincides with the class of generators of C0-semi-
groups satisfying the resolvent conditions (a) and (b). For semigroups on Banach
spaces this is not true since there exist C0-semigroups with w0(T ) > s0(A) (see
Engel, Nagel [78, Examples IV.3.2 and IV.3.3]).

As a corollary of Theorem 1.20 we have the following characterisation of
polynomially bounded C0-groups in terms of the resolvent of the generator.

Theorem 1.23. Let A be the generator of a C0-group (T (t))t∈R on a Banach space.
Assume that A has p-integrable resolvent for some p > 1. Then the group (T (t))t∈R

is polynomially bounded if and only if the following conditions on the operator A
are satisfied.

(a) σ(A) ⊂ iR.

(b) There exist a0 > 0 and d ≥ 0 such that ‖R(λ,A)‖ ≤ M

|Reλ|d for some

constant M and all λ with 0 < |Reλ| < a0.

(c) R(λ,A) is uniformly bounded on {λ : |Reλ| ≥ a0}.
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Proof. It is enough to show that the operator −A also has p-integrable resolvent
whenever A satisfies (a)–(c). Take any a > 0. Then by (b) or (c), respectively,
R(λ,A) is bounded on the vertical line −a + iR. By the resolvent equation we
obtain

‖R(−a+ is, A)x‖ ≤ [1 + 2a‖R(−a+ is, A)‖]‖R(a+ is, A)x‖,

and therefore the function s 	→ ‖R(−a+ is, A)x‖ also belongs to Lp(R). The rest
follows immediately from Theorem 1.20. �

Again, this yields a characterisation of polynomially bounded C0-groups on
Hilbert spaces. Note that the relation between the growth of the group and the
growth of the resolvent appearing in (b) of Theorem 1.23 is as in Theorem 1.20.

2 Uniform exponential stability

In this section we study the concept of uniform exponential stability of C0-semi-
groups. Due to the unboundedness of the generator, this turns out to be more
difficult than the corresponding notion for operators (compare Proposition II.1.3).

Uniform exponential stability is defined as follows.

Definition 2.1. A C0-semigroup T (·) is called uniformly exponentially stable if
there exist M ≥ 1 and ε > 0 such that

‖T (t)‖ ≤Me−εt for all t ≥ 0,

or, equivalently, if ω0(T ) < 0.

For C0-semigroups on finite-dimensional Banach spaces the classical Lya-
punov theorem gives a simple characterisation in terms of the spectrum of the
generator: A matrix semigroup (etA)t≥0 is uniformly exponentially stable if and
only if Reλ < 0 for every λ ∈ σ(A), i.e., if s(A) < 0. However, on infinite-
dimensional spaces this equivalence is no longer valid.

The aim of this section is to characterise uniformly exponentially stable C0-
semigroups on Banach and Hilbert spaces, preferably through spectral and resol-
vent properties of the generator.

2.1 Spectral characterisation

The following elementary description of uniformly exponentially stable C0-semi-
groups is the basis for many further results in this section, see Engel, Nagel [78,
Prop. V.1.7].

Theorem 2.2. For a C0-semigroup T (·) on a Banach space X the following asser-
tions are equivalent.

(i) T (·) is uniformly exponentially stable, i.e., ω0(T ) < 0.
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(ii) lim
t→∞

‖T (t)‖ = 0.

(iii) ‖T (t0)‖ < 1 for some t0 > 0.

(iv) r(T (t0)) < 1 for some t0 > 0.

(v) r(T (t)) < 1 for all t > 0.

The proof of the non-trivial implication (iv)⇒(i) is based on the formula
r(T (t)) = etω0(T ).

This theorem shows that, in particular, stability in the norm topology already
implies uniform exponential stability. Furthermore, the equivalences (i)⇔(iv)⇔(v)
show that in order to check uniform exponential stability it suffices to determine
the spectral radius of T (t0) for some t0. Since, in most cases, the semigroup is
unknown, this is not very helpful in general. However, if the spectrum of the
semigroup, and therefore the spectral radius r(T (t)) can be obtained via some
spectral mapping theorem from the spectrum of the generator, the analogue of
the Lyapunov theorem holds. We devote the next section to this topic.

2.2 Spectral mapping theorems

The question is how to determine the spectrum and the growth bound of the
semigroup using information about the generator only.

For bounded generators we know that the semigroup is given as the expo-
nential function etA (via the Taylor series or the Dunford functional calculus), and
the spectral mapping theorem

σ(T (t)) = etσ(A) for every t ≥ 0 (III.15)

holds. This combined with r(T (t)) = etω0(T ) implies the equality

s(A) = ω0(T ) (III.16)

and allows one to check the uniform exponential stability by determining the spec-
trum of the generator. It is well-known, see from e.g. Engel, Nagel [78, Examples
IV.2.7, IV.3.3-4], neither (III.15) nor (III.16) holds in general.

We give a short survey of why and how the spectral mapping theorem (III.15)
fails, and under which assumptions and modifications it becomes true. As a first
modification, we should exclude the point 0 in (III.15) since it can occur in the
left-hand, but not in the right-hand term. So we choose the following terminology.

Definition 2.3. A C0-semigroup T (·) on a Banach space X with generator A sat-
isfies the spectral mapping theorem (or has the spectral mapping property) if

σ(T (t)) \ {0} = etσ(A) for every t ≥ 0. (III.17)
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For semigroups satisfying the spectral mapping theorem, equality (III.16)
holds automatically by the formula r(T (t)) = etω0(T ).

Note that the spectral mapping theorem always holds for the point and resid-
ual spectrum, see Engel, Nagel [78, Theorem IV.3.7]. Moreover, the spectral map-
ping theorem holds for certain quite large and important classes of C0-semigroups.

Theorem 2.4. (see Engel, Nagel [78, Cor. IV.3.12]) The spectral mapping theorem
holds for all eventually norm continuous C0-semigroups, hence for the following
classes of semigroups:

(i) uniformly continuous semigroups (or, equivalently, for semigroups with boun-
ded generators),

(ii) eventually compact semigroups,

(iii) analytic semigroups,

(iv) eventually differentiable semigroups.

In particular, for any such semigroup equality (III.16) holds, implying that the
semigroup is uniformly exponentially stable if and only if s(A) < 0.

For the proof of the first assertion we refer to Engel, Nagel [78, Cor. IV.3.12].
Equality (III.16) is then a consequence of the formula r(T (t)) = etω0(T ).

However, the following example shows that even for simple multiplication
semigroups the spectral mapping theorem can fail.

Example 2.5. Let T (·) be the multiplication semigroup on l2 given by

T (x1, x2, . . .) = (etq1x1, e
tq2x2, . . .)

for qn := 1
n + in. Then

1 ∈ σ(T (2π)) = {e2π/n : n ∈ N},

while
1 /∈ e2πσ(A) = {e2π/n : n ∈ N}.

So the spectral mapping theorem (III.17) does not hold.

We now look for some weaker forms of a spectral mapping theorem still
implying (III.16). The first is motivated by the above example.

Definition 2.6. A C0-semigroup T (·) with generator A satisfies the weak spectral
mapping theorem (or has the weak spectral mapping property) if

σ(T (t)) \ {0} = etσ(A) \ {0} for every t ≥ 0. (III.18)
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Every multiplication semigroup on spaces C0(Ω) and Lp(Ω, μ) satisfies the
weak spectral mapping theorem, see Engel, Nagel [78, Prop. IV.3.13]. Conse-
quently, we obtain (by the spectral theorem) that every semigroup of normal op-
erators on a Hilbert space has the weak spectral mapping property. Moreover, the
weak spectral mapping theorem holds for bounded C0-groups on Banach spaces,
see Engel, Nagel [78, Prop. IV.3.13], and, more generally, for every C0-group with
so-called non-quasianalytic growth, see Huang [131] and Huang, Nagel [197] for
details.

We finally present another weaker spectral mapping property, still sufficient
for equation (III.16).

Definition 2.7. A C0-semigroup T (·) with generator A satisfies the weak circular
spectral mapping theorem (or has the weak circular spectral mapping property) if

Γ · σ(T (t)) \ {0} = Γ · etσ(A) \ {0} = etσ(A)+iR \ {0} for every t ≥ 0. (III.19)

We thus obtain the following.

Proposition 2.8. For a C0-semigroup T (·) with generator A satisfying the weak
circular spectral mapping theorem, the equality

ω0(T ) = s(A)

holds. In particular, T (·) is uniformly exponentially stable if and only if s(A) < 0.

The proof is again based on the formula r(T (t)) = etω0(T ).
For concrete examples of semigroups satisfying the weak circular spectral

mapping theorem see e.g. Greiner, Schwarz [111], Kramar, Sikolya [153] and
Bátkai, Eisner, Latushkin [19].

Remark 2.9. In order to check the weak circular or some other spectral mapping
theorem, a result due to Greiner is very useful, see Nagel (ed.) [196, Theorems
A-III.7.8 and 7.10]. It states that, for a C0-semigroup T (·) and its generator A,
etλ ∈ ρ(T (t)) if and only if the resolvent of A exists and is Cesàro bounded on
Λ := {λ + 2πk

t : k ∈ Z}. Moreover, on Hilbert spaces one can replace Cesàro
boundedness by boundedness of the resolvent, see Gearhart [94] and Prüss [215].
For the evolution semigroup version of the spectral mapping theorem see Chicone,
Latushkin [47, Section 2.2.2] or van Neerven [204, Section 2.5].

Note finally that spectral mapping theorems give much more information
than just on uniform exponential stability. For example, they allow us to charac-
terise hyperbolicity, periodicity, so-called Lyapunov exponents and so on, see e.g.
Chicone, Latushkin [47, Sections 2.1.4, 6.2.3, 6.3.3] and Engel, Nagel [78, Sections
IV.2.c, V.1.c].
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2.3 Theorem of Datko–Pazy

The main result of this subsection is a classical theorem characterising uniform
exponential stability of a C0-semigroup in terms of the integrability of its orbits.

Theorem 2.10 (Datko–Pazy). A C0-semigroup T (·) on a Banach space X is uni-
formly exponentially stable if and only if, for some p ∈ [1,∞),∫ ∞

0

‖T (t)x‖p dt <∞ for all x ∈ X. (III.20)

Proof. Clearly, uniform exponential stability implies condition (III.20). We now
prove the converse direction.

Assume that condition (III.20) holds. We first show that the semigroup T (·)
is bounded. Take M ≥ 1 and ω > 0 satisfying ‖T (t)‖ ≤ Meωt for every t ≥ 0.
Then

1 − e−pωt

pω
‖T (t)x‖p =

∫ t

0

e−pωs‖T (s)T (t− s)x‖p ds

≤Mp

∫ t

0

‖T (t− s)x‖p ds ≤Mp

∫ ∞

0

‖T (s)x‖p ds

holds for every x ∈ X and t ≥ 0, where the right-hand side is finite by assumption.
Hence, every orbit {T (t)x : t ≥ 0} is bounded and therefore the semigroup T (·) is
bounded by the uniform boundedness principle, hence L := supt≥0 ‖T (t)‖ <∞.

We further observe that

t‖T (t)x‖p =
∫ t

0

‖T (t− s)T (s)x‖p ds ≤ Lp

∫ ∞

0

‖T (s)x‖p ds

for every x ∈ X and t ≥ 0. This implies boundedness of the set {t 1
pT (t)x, t > 0}

for every x ∈ X . By the uniform boundedness principle, supt≥0 t
1
p ‖T (t)‖ <∞ and

therefore T (·) is uniformly exponentially stable by Theorem 2.2 (iii). �
Datko [55] proved this theorem for p = 2 and Pazy [209, Theorem 4.4.1]

extended it to the case p ≥ 1.
There are various generalisations of the Datko–Pazy theorem. As an exam-

ple we state theorems due to van Neerven and Rolewicz, see van Neerven [204,
Corollary 3.1.6 and Theorem 3.2.2].

Theorem 2.11. Let T (·) be a C0-semigroup on a Banach space X, p ∈ [1,∞) and
β ∈ L1

loc(R+) a positive function satisfying∫ ∞

0

β(t)dt = ∞.

If ∫ ∞

0

β(t)‖T (t)x‖p dt <∞ for all x ∈ X,
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then T (·) is uniformly exponentially stable.

Theorem 2.12 (Rolewicz). Let T (·) be a C0-semigroup on a Banach space X. If
there exists a strictly positive increasing function φ on R+ such that∫ ∞

0

φ(‖T (t)x‖) dt <∞ for all x ∈ X, ‖x‖ ≤ 1,

then T (·) is uniformly exponentially stable.

For further discussion of the above result we refer to van Neerven [204, pp.
110–111].

The following theorem is a weak version of the Datko–Pazy theorem due to
Weiss [255].

Theorem 2.13 (Weiss). Let T (·) be a C0-semigroup on a Hilbert space X. If for
some p ∈ [1,∞),∫ ∞

0

|〈T (t)x, y〉|p dt <∞ for all x ∈ X and y ∈ X ′,

then T (·) is uniformly exponentially stable.

We refer to Weiss [256] for a discrete version of the above result.

Remark 2.14. The assertion of Theorem 2.13 also holds for bounded semigroups on
general Banach spaces, see van Neerven [204, Theorem 4.6.3]. However, without
the boundedness assumption it fails and ω0(T ) > 0 becomes possible even for
positive semigroups, see van Neerven [204, Theorem 4.6.5 and Example 1.4.4]. We
refer to Tomilov [242] and van Neerven [204, Section 4.6] for other generalisations
of Theorem 2.13.

For further generalisations of the Datko–Pazy theorem see, e.g., Vũ [252],
van Neerven [204, Sections 3.3-4] and Theorem 3.9 below.

2.4 Theorem of Gearhart

For C0-semigroups on Hilbert spaces there is a useful characterisation of uniform
exponential stability in terms of the generator’s resolvent on the right half plane.
This is the classical theorem of Gearhart [94] and can be considered as a gener-
alisation of the finite-dimensional Lyapunov theorem to the infinite-dimensional
case. To this theorem and its generalisations this subsection is dedicated.

We begin with the following result on uniform exponential stability using the
inverse Laplace transform method presented in Subsection I.3.2.

Theorem 2.15. Let A generate a C0-semigroup T (·) on a Banach space X such
that the resolvent of A is bounded on the right half plane {z : Re z > 0}. Assume
further that∫ ∞

−∞
|〈R2(is, A)x, y〉| ds <∞ for all x ∈ X and y ∈ X ′. (III.21)
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Then T (·) is uniformly exponentially stable.

Proof. We first observe that, since the resolvent is bounded on the right half plane,
it is also bounded on a half plane {z : Re z > −δ} for some δ > 0 by the power
series expansion of the resolvent and hence s0(A) < 0. Therefore, by condition
(III.21) and Theorem I.3.8 we have

〈T (t)x, y〉 =
1

2πt

∫ ∞

−∞
eist〈R2(is, A)x, y〉 ds for all x ∈ X, y ∈ X ′.

The uniform boundedness principle now implies

|〈T (t)x, y〉| ≤ 1
2πt

∫ ∞

−∞
|〈R2(is, A)x, y〉| ds ≤ 1

2πt
M‖x‖‖y‖

for some constant M and all x ∈ X , y ∈ X ′, hence ‖T (t)‖ ≤ M
2πt −→ 0 as

t→ ∞. �

Note that this result generalises a result of Xu and Feng [259].
We now present Gearhart’s theorem for which we give two proofs: one based

on the theorem above, i.e., on the properties of the inverse Laplace transform, and
the second using the Datko-Pazy theorem.

Theorem 2.16 (Gearhart, 1978). Let A generate a C0-semigroup T (·) on a Hilbert
space H. Then T (·) is uniformly exponentially stable if and only if there exists a
constant M > 0 such that

‖R(λ,A)‖ < M for all λ with Reλ > 0. (III.22)

Proof I. As in the proof of Theorem 2.15 we see, by the power series expansion for
the resolvent, that s0(A) < 0 holds. By Theorem 2.15 it suffices to check condition
(III.21).

Take a > ω0(T ) and x, y ∈ H . By the Laplace transform representation of
the resolvent of A and Plancherel’s theorem applied to the function t 	→ e−atT (t)x
we obtain ∫ ∞

−∞
‖R(a+ is, A)x‖2 ds =

∫ ∞

0

e−2at‖T (t)x‖2 dt <∞.

Further, by (III.22) and the resolvent identity, the estimate

‖R(is, A)x‖ = ‖[I + aR(is, A)]R(a+ is, A)x‖ ≤ [1 + aM ]‖R(a+ is, A)x‖

holds for every s ∈ R and hence∫ ∞

−∞
‖R(is, A)x‖2 ds <∞.
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Applying the same arguments to the operator A∗ and the function t 	→ T ∗(t)y we
obtain ∫ ∞

−∞
|〈R2(is, A)x, y〉| ds =

∫ ∞

−∞
|〈R(is, A)x,R(−is, A∗)y〉| ds

≤
(∫ ∞

−∞
‖R(is, A)x‖2 ds

) 1
2
(∫ ∞

−∞
‖R(is, A∗)y‖2 ds

) 1
2

<∞,

and the theorem is proved. �

Proof II. (Weiss [255]) Assume ω0 := ω0(T ) ≥ 0 and take x ∈ H and a, a0 with
0 ≤ ω0 < a < a0. By the resolvent equation and (III.22) we have

‖R(a+ is, A)x‖ = ‖(I + (a0 − a)R(a+ is, A))R(a0 + is, A)x‖
≤ (1 + a0M)‖R(a0 + is, A)x‖ for all s ∈ R.

Therefore, again by the representation R(a + is, A)x =
∫∞
0 e−(a+is)tT (t)xdt and

Plancherel’s theorem, we have∫ ∞

0

e−2at‖T (t)x‖2 dt =
∫ ∞

−∞
‖R(a+ is, A)x‖2 ds

≤ (1 + a0M)2
∫ ∞

−∞
‖R(a0 + is, A)x‖2 ds.

Since this holds for every a > ω0, we conclude now by the monotone convergence
theorem that ∫ ∞

0

e−2ω0t‖T (t)x‖2 dt <∞ for every x ∈ X.

By the Datko–Pazy theorem applied to the rescaled semigroup (e−ω0tT (t))t≥0,
this implies uniform exponential stability for this semigroup, contradicting the
definition of the growth bound. �

By the representation R(λ,A)x =
∫∞
0 e−λtT (t)xdt, Reλ > ω0(T ), condition

(III.22) is necessary for uniform exponential stability.

Remark 2.17. There are various other proofs of Gearhart’s theorem, see, e.g.,
Prüss [215], Greiner in Nagel (ed.) [196, pp. 94–95], Engel, Nagel [78, pp. 302–303]
or the original paper of Gearhart [94].

Remark 2.18. The boundedness of the resolvent on the right half plane in Gear-
hart’s theorem cannot be replaced by the existence of the resolvent on the right
half plane only. For an example of a semigroup on a Hilbert space satisfying
s(A) < s0(A) see e.g. Engel, Nagel [78, Counterexample IV.3.4].
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By the rescaling procedure one obtains the following corollary, see also Kaas-
hoek and Verduyn Lunel [139] for a similar assertion (but a different method of
proof).

Corollary 2.19. Let A generate a C0-semigroup (T (t))t≥0 on a Banach space X.
If for some δ > 0 the integrability condition∫ ∞

−∞
|〈R2(a+ is, A)x, y〉| ds <∞ for all x ∈ X, y ∈ X ′

holds for all s0(A) < a < s0(A) + δ, then s0(A) = ω0(T ).

In particular, we see that for C0-semigroups on Hilbert spaces the equality

s0(A) = ω0(T )

holds. This is not true on Banach spaces. For an example of a C0-semigroup
satisfying s0(A) < ω0(T ) see van Neerven [204, Example 4.2.9]. So the integrability
of the resolvent on vertical lines in the above result cannot be omitted. It is
interesting to know whether this condition can be weakened or what kind of other
additional assumptions on the resolvent imply s0(A) = ω0(T ).

Remark 2.20. One can apply Gearhart’s theorem to positive C0-semigroups on
Hilbert lattices (as in e.g. Greiner, Nagel [110]): A positive C0-semigroup with
generator A on a Hilbert lattice is uniformly exponentially stable if and only if
[0,∞) ⊂ ρ(A). This follows immediately from Gearhart’s theorem and the fact
that

‖R(a+ is, A)‖ ≤ ‖R(a,A)‖ for all s ∈ R

holds for every a > s(A), see e.g. Engel, Nagel [78, p.355].

For further generalisations of Gearhart’s theorem see e.g. Herbst [125], Huang
[132], Weis, Wrobel [258]. A Fourier multiplier approach to uniform exponential
stability and hyperbolicity and a generalisation of Gearhart’s theorem is in La-
tushkin, Shvydkoy [162] and Latushkin, Räbiger [161]. In addition, we refer to
Chicone, Latushkin [47, Section II.2.2] for analogues of Gearhart’s theorem in
Banach spaces in the context of the evolution semigroups.

3 Strong stability

In the following we consider concepts weaker than uniform exponential stability
and start with strong stability. This notion is not so well-understood and only in
1988 Arendt, Batty and Lyubich, Vũ obtained a simple sufficient spectral condition
which, however, is far from being necessary. In 2001 Tomilov found a resolvent
condition on the generator which is sufficient on Banach spaces and equivalent on
Hilbert spaces. The condition is not so simple as the one in Gearhart’s theorem
and uses the second power of the resolvent of the generator on vertical lines.
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3.1 Preliminaries

We first introduce strongly stable C0-semigroups and then deduce some funda-
mental properties.

Definition 3.1. A C0-semigroup T (·) on a Banach space X is called strongly stable
if limt→∞ ‖T (t)x‖ = 0 for every x ∈ X .

The first example below is, in a certain sense, typical on Hilbert spaces, see
Theorem 3.11 below.

Example 3.2. (a) (Shift semigroup). Consider H := L2(R+, H0) for a Hilbert space
H0 and T (·) defined by

T (t)f(s) := f(s+ t), f ∈ H, t, s ≥ 0. (III.23)

The semigroup T (·) is called the left shift semigroup on H and is strongly stable.
Note that the spectrum of its generator is the whole left halfplane.

The same semigroup on the spaces C0(R+, X) and Lp(R+, X), X a Banach
space, is also strongly stable for 1 ≤ p <∞, but not for p = ∞.

(b) (Multiplication semigroup, see Engel, Nagel [78, p. 323]). Consider X :=
C0(Ω) for a locally compact space Ω and the operator A given by

Af(s) := q(s)f(s), f ∈ X, s ∈ Ω,

with the maximal domain D(A) := {f ∈ X : qf ∈ X}, where q is a continuous
function on Ω. The operator A generates the C0-semigroup given by

T (t)f(s) = etq(s)f(s), f ∈ X, s ∈ Ω,

if and only if Re q is bounded from above. The semigroup is bounded if Re q(s) ≤ 0
for every s ∈ Ω. Moreover, the semigroup is strongly stable if and only if Re q(s) <
0 for every s ∈ Ω. Indeed, if Re q(s) < 0, then

‖T (t)f‖ ≤ sup
s∈K

etRe q(s)‖f‖ −→
t→∞

0

for every function f with compact support K. By the density of these functions
T (·) is strongly stable. Conversely, if q(s0) ∈ iR, then ‖T (t)f‖ ≥ |f(s0)| for every
f ∈ X and hence T (·) is not strongly stable.

Note that σ(A) = q(Ω) and therefore every closed set contained in the closed
left halfplane can occur as the spectrum of the generator of a strongly stable
C0-semigroup.

For a concrete example of strongly stable and strongly convergent semigroups
appearing in mathematical models of biological processes see, e.g., Bobrowski [36],
Bobrowski, Kimmel [37, 38].

The following property of strongly stable semigroups follows directly from
the uniform boundedness principle.
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Remark 3.3. Every strongly stable C0-semigroup T (·) is bounded, hence σ(A) ⊂
{z : Re z ≤ 0} holds for the generator A. Note that conditions Pσ(A)∩ iR = ∅ and
Pσ(A′) ∩ iR = ∅ are also necessary for strong stability by the spectral mapping
theorem for the point residual spectrum, see Engel, Nagel [78, Theorem IV.3.7].

We now state an elementary but very useful property implying strong stabil-
ity.

Lemma 3.4. Let T (·) be a bounded C0-semigroup on a Banach space X and let
x ∈ X.

(a) If there exists an unbounded sequence {tn}∞n=1 ⊂ R+ such that
limn→∞ ‖T (tn)x‖ = 0, then limt→∞ ‖T (t)x‖ = 0.

(b) If T (·) is a contraction semigroup, then lim
t→∞

‖T (t)x‖ exists.

Proof. The second part follows from the fact that for contraction semigroups the
function t 	→ ‖T (t)x‖ is non-increasing. To verify (a) assume that ‖T (tn)x‖ → 0
and take ε > 0, n ∈ N such that ‖T (tn)x‖ < ε and M := supt≥0 ‖T (t)‖. We obtain

‖T (t)x‖ ≤ ‖T (t− tn)‖‖T (tn)x‖ < Mε

for every t ≥ tn, and (a) is proved. �
Remark 3.5. As in the discrete case (see Remark II.2.5), assertion (b) in the above
lemma is not true for general bounded C0-semigroups. Indeed, consider the Hilbert
space L2(R+) endowed with the equivalent norm

‖f‖ :=
(
‖f · χ1‖2

2 +
1
4
‖f · χ2‖2

2

) 1
2

,

where χ1 and χ2 denote the characteristic functions of the sets
⋃

n=0,1,2,...[2n, 2n+
1] and

⋃
n=0,1,2,...[2n + 1, 2n+ 2], respectively. On this space take the right shift

semigroup T (·) satisfying supt≥0 ‖T (t)‖ = 2. Then ‖T (2n)χ1‖ = 1 and ‖T (2n+
1)χ1‖ = 1

2 holds for every n ∈ N and hence

1
2

= lim inf
t→∞

‖T (t)χ1‖ �= lim sup
t→∞

‖T (t)χ1‖ = 1.

An immediate corollary of Lemma 3.4 is the following.

Corollary 3.6. Let T (·) be a bounded C0-semigroup on a Banach space X and
x ∈ X. Then the following assertions are equivalent.

(a) limt→∞ ‖T (t)x‖ = 0;

(b) lim
t→∞

1
t

∫ t

0

‖T (s)x‖p ds = 0 for some/all p ≥ 1.

In particular, T (·) is strongly stable if and only if (b) holds for every x ∈ X.
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The following theorem, similar to Corollary 3.6, gives an equivalent descrip-
tion of strong stability without assuming boundedness, see Zwart [263] and Guo,
Zwart [113].

Theorem 3.7. For a C0-semigroup T (·) on a Banach space X and x ∈ X, the
following assertions are equivalent.

(a) limt→∞ T (t)x = 0.

(b) For some/all p, q > 1 with 1
p + 1

q = 1

lim
t→∞

1
t

∫ t

0

‖T (s)x‖p ds = 0,

sup
t≥0

1
t

∫ t

0

‖T ′(s)y‖q ds <∞ for all y ∈ X ′.

In particular, T (·) is strongly stable if and only if (b) holds for all x ∈ X.

The proof is an easy modification of the one of Theorem 1.6.

Remark 3.8. Note that for bounded C0-semigroups the second part of condition
(b) holds automatically.

We finally state a continuous analogue of the result of Müller (Theorem II.2.8)
on the asymptotic behaviour of semigroups which are not uniformly exponentially
stable, see van Neerven [204, Lemma 3.1.7].

Theorem 3.9 (van Neerven). Let T (·) be a C0-semigroup on a Banach space X
with ω0(T ) ≥ 0. Then for every function α : R+ → [0, 1) converging monotonically
to 0 there exists x ∈ X with ‖x‖ = 1 such that

‖T (t)x‖ ≥ α(t) for every t ≥ 0.

Theorem 3.9 means that strongly stable semigroups which are not exponen-
tially stable possess arbitrarily slowly decreasing orbits.

Strong stability of semigroups on Hilbert spaces can be characterised in terms
of strong stability of its cogenerator, see Subsection V.2.5. A necessary and suf-
ficient condition for strong stability on Hilbert spaces using the resolvent of the
generator is given in Subsection 3.4 below.

3.2 Representation as shift semigroups

We now give a representation of strongly stable semigroups following directly from
Theorem 1.9.

Proposition 3.10. (a) Every strongly stable contraction semigroup on a Banach
space X is isometrically isomorphic to the left shift semigroup on a closed
subspace of C0(R+, X).



3. Strong stability 103

(b) Every strongly stable C0-semigroup on a Banach space X is isomorphic to
the left shift semigroup on a closed subspace of C0(R+, X1), where X1 = X
endowed with an equivalent norm.

In analogy to Theorem II.2.11, Lax and Phillips showed that Example 3.2
(a) represents the general situation for contractive strongly stable C0-semigroups
on Hilbert spaces.

Theorem 3.11 (Lax, Phillips [164, p. 67], see also Lax [163, pp. 450–451]). Let
T (·) be a strongly stable contraction semigroup on a Hilbert space H. Then T (·) is
unitarily isomorphic to a left shift, i.e., there is a Hilbert space H0 and a unitary
operator U : H → H1 for some closed subspace H1 ⊂ L2(R+, H0) such that
UT (·)U−1 is the left shift on H1.

Proof. The idea is again to identify a vector x with its orbit s 	→ T (s)x.
Strong stability of T (·) implies the equality

‖x‖2 = −
∫ ∞

0

d

ds
(‖T (s)x‖2) ds =

∫ ∞

0

(−2Re 〈AT (s)x, T (s)x〉) ds (III.24)

for every x ∈ D(A).
Define now the new seminorm

‖x‖2
Y := −2Re 〈Ax, x〉 on D(A),

which is non-negative by the Lumer–Phillips theorem. Note that it comes from the
scalar semiproduct 〈x, y〉Y := −〈Ax, y〉 − 〈x,Ay〉. Consider the subspace H0 :=
{x ∈ D(A) : ‖x‖Y = 0} with its completion Y := (D(A)/H0, ‖ · ‖Y )̃ .

We now define the operator J : H → L2(Y ) by

(Jx)(s) := T (s)x, x ∈ H, s ≥ 0,

which is an isometry by equality (III.24). Therefore it is unitary from H to its
(closed) range. Since the semigroup (JT (t)J−1)t≥0 is the right shift semigroup on
rg J , the proof is complete. �
Note that in contrast to the analogous Proposition 3.10, the above representation
respects the Hilbert space structure.

3.3 Spectral conditions

In this subsection we discuss spectral conditions on the generator implying strong
stability of the semigroup. Analogously to the discrete case, these conditions use
“smallness” of the spectrum of the generator on the imaginary axis.

The first result is the stability theorem for C0-semigroups proved by Arendt,
Batty [9] and Lyubich, Vũ [180] independently, generalising a result of Sklyar,
Shirman [234] on semigroups with bounded generators. The discrete version of
this result has been treated in Subsection II.2.3.
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Theorem 3.12 (Arendt–Batty–Lyubich–Vũ, 1988). Let T (·) be a bounded semi-
group on a Banach space X with generator A. Assume that

(i) Pσ(A′) ∩ iR = ∅;
(ii) σ(A) ∩ iR is countable.

Then T (·) is strongly stable.

The proof based on the Lyubich and Vũ construction of the isometric limit
semigroup, which is a natural modification of the discrete case, can be found in
Engel, Nagel [78, pp. 263–264 and Theorem V.2.21]. For the alternative proof by
Arendt and Batty using the Laplace transform see Arendt, Batty [9] or Arendt,
Batty, Hieber, Neubrander [10, Theorem 5.5.5].

For generalisations and extensions of Theorem 3.12 see Batty, Vũ [27], Batty
[22], Batty, van Neerven, Räbiger [26]. For a concrete application of the above
result to semigroups arising in biology see Bobrowski, Kimmel [37].

Remark 3.13. 1) Conditions (i) and (ii) in the above theorem are of different
nature. The first one is necessary for strong stability while the second is a useful,
but restrictive assumption.

2) For weakly relatively compact semigroups, in particular for bounded semi-
groups on reflexive Banach spaces, condition (i) is equivalent to

Pσ(A) ∩ iR = ∅

by the mean ergodic theorem, see Subsection I.1.6.

An immediate corollary of the above theorem is the following simple spectral
criterion (see also Chill, Tomilov [50] for an alternative proof using a theorem of
Ingham on the Laplace transform).

Corollary 3.14. Let A generate a bounded C0-semigroup T (·) on a Banach space.
If σ(A) ∩ iR = ∅, then T (·) is strongly stable.

Proof. The assertion follows from Pσ(A′)∩ iR = Rσ(A)∩ iR = ∅ and the Arendt–
Batty–Lyubich–Vũ theorem. �

Theorem 3.12 is particularly useful if one combines it with the Perron–
Frobenius spectral theory for positive semigroups on Banach lattices (see Nagel
(ed.) [196] and Schaefer [227]).

Corollary 3.15. Let A generate a bounded, eventually norm continuous, positive
semigroup T (·) on a Banach lattice X. Then T (·) is strongly stable if and only if
0 /∈ Pσ(A′).

Proof. By the Perron–Frobenius theory, the spectrum of the generator of a posi-
tive bounded semigroup on the imaginary axis is additively cyclic, i.e., iα ∈ σ(A)
implies iαZ ∈ σ(A) for real α, see Nagel (ed.) [196, Theorem C-III.2.10 and Propo-
sition C-III.2.9]. Moreover, the spectrum of the generator of an eventually norm
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continuous semigroup is bounded on every vertical line, see Engel, Nagel [78, The-
orem II.4.18]. The combination of these two facts leads to σ(A) ∩ iR ⊂ {0}. The
theorem of Arendt–Batty–Lyubich–Vũ concludes the argument. �
Remark 3.16. We note that in the above result the condition 0 /∈ Pσ(A′) cannot
be replaced by 0 /∈ Pσ(A). This can be easily seen for A := Tr − I on l1, where Tr

is the right shift operator on l1.

Moreover, the following is a further direct corollary of Theorem 3.12 and the
mean ergodic theorem.

Corollary 3.17. Let T (·) be a bounded holomorphic C0-semigroup on a Banach
space with generator A. Then T (·) is strongly stable if and only if 0 /∈ Pσ(A′).

For an alternative proof see Bobrowski [35].
As in the discrete case, the theorem of Arendt–Batty–Lyubich–Vũ can be

extended to completely non-unitary contraction semigroups on Hilbert spaces.

Theorem 3.18. (see Foiaş and Sz.-Nagy [238, II.6.7] and Kérchy, van Neerven [148])
Let T (·) be a completely non-unitary contractive C0-semigroup on a Hilbert space
with generator A. If

σ(A) ∩ iR has Lebesgue measure 0,

then T (·) and T ∗(·) are both strongly stable.

See also Kérchy, van Neerven [148] for related results.
The following example shows that in the above theorem one cannot replace

a completely non-unitary by a contractive semigroup with Pσ(A) ∩ iR = ∅. The
idea of this elegant construction belongs to Dávid Kunszénti-Kovács (oral com-
munication).

Example 3.19. Take the Cantor set C on [0, 1] constructed from the intervals
(a1, b1) = (1

3 ,
2
3 ), (a2, b2) = (1

9 ,
2
9 ), (a3, b3) = (7

9 ,
8
9 ) and so on. Take further the

Cantor set C̃ constructed from the intervals {(ãn, b̃n)} such that C̃ has measure
1
2 . By the natural linear transformation mapping each (ãn, b̃n) onto (an, bn) and
its continuation we obtain a bijective monotone map j : C̃ → C being an analogue
of the Cantor step function. The image of the Lebesgue measure μ under j we
denote by μj . We observe that by construction μj is continuous. Note that, since
μj(C) = 1

2 , it is not absolutely continuous.
Consider H := L2(C, μj) and the bounded operator A on H defined by

Af(s) := isf(s). Note that the corresponding unitary group is defined by T (t)f(s)
= eistf(s). Since μj is continuous, Pσ(A′) = Pσ(A) = ∅. Moreover, σ(A) = iC and
therefore μ(σ(A)) = 0. However, T (·) is unitary and hence limt→∞ ‖T (t)x‖ = 0 or
limt→∞ ‖T ∗(t)x‖ = 0 implies x = 0.

We finish this subsection by the observation that σ(A)∩ iR for the generator
A of a strongly stable semigroup can be an arbitrary closed subset of iR, see
Example 3.2(b). So, “smallness” conditions on the boundary spectrum are far
from being necessary for strong stability.
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3.4 Characterisation via resolvent

We now present a powerful resolvent approach to strong stability introduced by
Tomilov [243]. In contrast to the spectral approach from the previous subsection,
resolvent conditions are necessary and sufficient at least for C0-semigroups on
Hilbert spaces.

Theorem 3.20 (Tomilov). Let A generate a C0-semigroup T (·) on a Banach space
X satisfying s0(A) ≤ 0 and x ∈ X. Consider the following assertions.

(a) lim
a→0+

a

∫ ∞

−∞
‖R(a+ is, A)x‖2 ds = 0,

lim sup
a→0+

a

∫ ∞

−∞
‖R(a+ is, A′)y‖2 ds <∞ for all y ∈ X ′;

(b) lim
t→∞

‖T (t)x‖ = 0.

Then (a) implies (b). Moreover, if X is a Hilbert space, then (a)⇔(b).
In particular, condition (a) for all x ∈ X implies strong stability of T (·) and,

on Hilbert spaces, is equivalent to it.

Proof. We first prove that (a)⇒(b). By Theorem I.3.9 (see also Theorem I.3.8)
and the Cauchy-Schwarz inequality we have

|〈T (t)x, y〉| ≤ eat

2πt

∫ ∞

−∞
|〈R2(a+ is, A)x, y〉| ds

≤ eat

2πt

(∫ ∞

−∞
‖R(a+ is, A)x‖2 ds

) 1
2
(∫ ∞

−∞
‖R(a+ is, A′)y‖2 ds

) 1
2

for every t > 0, a > 0 and y ∈ X ′. By (a) and the uniform boundedness principle
there exists a constant M > 0 such that

a

∫ ∞

−∞
‖R(a+ is, A′)y‖2 ds ≤M2‖y‖2 for every y ∈ X ′ and a > 0.

Therefore, we have

‖T (t)x‖ ≤ Meat

2πta

(
a

∫ ∞

−∞
‖R(a+ is, A)x‖2 ds

) 1
2

. (III.25)

By choosing a := 1
t , we obtain by (III.25) limt→∞ ‖T (t)x‖ = 0.

Assume now that T (·) is strongly stable on a Hilbert space X . By Parseval’s
equality

a

∫ ∞

−∞
‖R(a+ is, A)x‖2 ds = a

∫ ∞

0

e−2at‖T (t)x‖2 dt,

where the right-hand side is one half times the Abel mean of the function t 	→
‖T (t)x‖2. Therefore it converges to zero as a→ 0+ by the strong stability of T (·).
This proves the first part of (a).

The second condition in (a) follows from Theorem 1.11. �



3. Strong stability 107

Remark 3.21. Corollary 2.19 shows that on Banach spaces the integrals appearing
in (a) above do not converge in general.

We now show that in the above theorem (b) does not imply (a) in general
even for bounded generators for which all the integrals in (a) converge. This is the
following example which is a modification of Example 1.14.

Example 3.22. Take a bounded sequence {an}∞n=1 ⊂ {z : Re z < 0} such that
{an : n ∈ N}∩iR = i[−1, 1]. ConsiderX = l1 and the bounded operatorA given by
A(x1, x2, . . .) = (a1x1, a2x2, . . .) on X . The semigroup generated by A is strongly
stable by Example 3.2 (b).

The adjoint of A is given by A′(x1, x2, . . .) = (a1x1, a2x2, . . .) on l∞. So we
have for every a > 0, |b| < 1 and y ∈ U 1

2
(1),

‖R(a+ ib, A′)y‖ = sup
n∈N

|xn|
|a+ ib− an|

≥ 1
2dist(a+ ib, i[−1, 1])

=
1
2a
.

Therefore we obtain

a

∫ ∞

−∞
‖R(a+ ib, A′)y‖2 db ≥ a

∫ 1

−1

1
4a2

db =
1
2a

→ ∞ as a→ 0+,

so the second part of (a) in Theorem 3.20 does not hold for y from the open set
U 1

2
(1) in X ′.

By Theorems 1.11 and 3.20 one immediately obtains the following charac-
terisation of strong stability in the case of bounded C0-semigroups on Hilbert
spaces.

Corollary 3.23. Let A generate a bounded semigroup T (·) on a Hilbert space H
and x ∈ X. Then ‖T (t)x‖ → 0 if and only if

lim
a→0+

a

∫ ∞

−∞
‖R(a+ is, T )x‖2 ds = 0. (III.26)

In particular, T (·) is strongly stable if and only if (III.26) holds for every x in a
dense set of H.

It is still an open question whether the above characterisation holds for C0-
semigroups on Banach spaces.

Remark 3.24. There are more results on strong stability of C0-semigroups and
their connection to the behaviour of the generator’s resolvent. As some recent
contributions we mention papers by Batkai, Engel, Prüss, Schnaubelt [20], Batty,
Duyckaerts [25] and Borichev, Tomilov [39] on polynomial decay of the orbits and
Chill, Tomilov [49] on characterisations of strong stability on Banach spaces with
Fourier type. For so-called pointwise resolvent conditions see Tomilov [243] and
Batty, Chill, Tomilov [24]. We recommend the excellent overview by Chill, Tomilov
[50] for further results and references.
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4 Weak stability

In this section we consider stability of C0-semigroups with respect to the weak
operator topology. As in the discrete case, this turns out to be much more difficult
than its strong and uniform analogues.

4.1 Preliminaries

We begin with the definition and some examples.

Definition 4.1. A C0-semigroup T (·) on a Banach space X is called weakly stable
if limt→∞〈T (t)x, y〉 = 0 for every x ∈ X and y ∈ X ′.

Note that by the uniform boundedness principle every weakly stable semi-
group T (·) on a Banach space is bounded, hence ω0(T ) ≤ 0 holds. In particular,
the spectrum of the generator A belongs to the closed left half plane. Moreover,
the spectral conditions Pσ(A) ∩ iR = ∅ and Rσ(A) ∩ iR = Pσ(A′) ∩ iR = ∅ are
necessary for weak stability.

Example 4.2. (a) The left and right shift semigroups are weakly stable and iso-
metric (and hence not strongly stable) on the spaces C0(R, X) and Lp(R, X)
for every Banach space X and 1 < p <∞.

(b) The right shift semigroup on Lp(R+, X) for a Banach space X defined by

(T (t)f)(s) =

{
f(s− t), s ≥ t,

0, s < t

is an isometric semigroup (hence not strongly stable) but is weakly stable
for 1 < p < ∞. When p = 2 and X is a Hilbert space, this semigroup is
called the (continuous) unilateral shift, see, e.g., Sz.-Nagy and Foiaş [238,
p. 150]. Note that the adjoint semigroup of the unilateral shift is the left
shift on the same space and hence is strongly stable. Therefore, there is
no subspace on which the restriction of a unilateral shift becomes unitary.
We will see in Subsection 4.2 that unilateral shifts represent the general
situation of isometric completely non-unitary weakly stable semigroups on
Hilbert spaces.

(c) Consider H := L2(R) and the multiplication semigroup T (·) given by

T (t)f(s) := etq(s)f(s)

for some measurable function q with sups∈R Re q(s) < ∞. Then T (·) is
strongly stable if and only if Re q(s) < 0 a.e., see Example 3.2 (b). If
sup Re q(s) ≤ 0, then T (·) is weakly stable if and only if limt→∞

∫ b

a e
tq(s) ds =

0 for every [a, b] ⊂ R. This is the case for, e.g., q(s) = iαsβ for any α, β ∈
R \ {0}.
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We now present a simple condition implying weak stability of C0-semigroups
using the following concept, cf. Definition II.3.3.

Definition 4.3. A set M ⊂ R+ is relatively dense or syndetic in R+ if there exists
a number � > 0 such that M intersects every sub-interval of R+ of length �.

It turns out that weak convergence to zero for such a sequence already implies
weak stability.

Theorem 4.4. Let T (·) be a C0-semigroup and suppose that weak-limn→∞ T (tn) =
0 for some relatively dense sequence {tn}∞j=1. Then T (·) is weakly stable.

Proof. Without loss of generality, by passing to a subsequence if necessary, we
assume that {tn}∞n=1 is monotone increasing and set � := supn∈N(tn+1 − tn),
which is finite by assumption. Since every C0-semigroup is bounded on compact
time intervals and (T (tn))n∈N is weakly converging, hence bounded, we obtain
that the semigroup (T (t))t≥0 is bounded.

Fix x ∈ X , y ∈ X ′. For t ∈ [tn, tn+1] we have

〈T (t)x, y〉 = 〈T (t− tn)x, T ′(tn)y〉,

where (T ′(t))t≥0 is the adjoint semigroup. We note that by assumption T ′(tn)y →
0 in the weak*-topology.

Further, the set Kx := {T (s)x : 0 ≤ s ≤ �} is compact in X and T (t− tn)x ∈
Kx for every n ∈ N. Since pointwise convergence is equivalent to the uniform
convergence on compact sets (see, e.g., Engel, Nagel [78, Prop. A.3]), we see that
limt→∞〈T (t)x, y〉 = 0. �
Remark 4.5. Taking tn = n in the above theorem, we see that a C0-semigroup
T (·) is weakly stable if and only if the operator T (1) is weakly stable. This builds
a bridge between weak stability of discrete and continuous semigroups, and we
will return to this aspect later in Section V.1.

Remark 4.6. One cannot drop the relative density assumption in Theorem 4.4 or
even replace it by the assumption of density 1, see Section 5 below.

We finally mention that by Theorem II.3.8, weak orbits of a C0-semigroup
T (·) which is not exponentially stable can decrease arbitrary slowly. More precisely,
for every positive function a : R+ → R+ decreasing to zero, there exist x ∈ X
and y ∈ X ′ such that the corresponding weak orbit satisfies |〈T (tj)x, y〉| ≥ a(tj)
for some sequence {tj}∞j=1 converging to infinity and all j ∈ N. However, it is not
clear whether the result of Badea, Müller [12] holds in the continuous case, i.e.,
whether one may replace {tj}∞j=1 by R+ for weakly stable semigroups.

4.2 Contraction semigroups on Hilbert spaces

In this subsection we present some classical theorems on the decomposition of
contractive C0-semigroups on Hilbert spaces with respect to their qualitative be-
haviour.
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We begin with the decomposition into unitary and completely non-unitary
parts due to Foiaş and Sz.-Nagy [237].

Theorem 4.7 (Foiaş, Sz.-Nagy). Let T (·) be a contraction semigroup on a Hilbert
space H. Then H is the orthogonal sum of two T (·)- and T ∗(·)-invariant subspaces
H1 and H2 such that

(a) H1 is the maximal subspace on which the restriction T1(·) of T (·) is unitary;

(b) the restrictions of T (·) and T ∗(·) to H2 are weakly stable.

We present the proof of Foguel given in [86] being analogous to the proof of
the discrete version of this result (Theorem II.3.9).

Proof. Define

H1 := {x ∈ H : ‖T (t)x‖ = ‖T ∗(t)x‖ = ‖x‖ for all t ≥ 0}.

Observe that for every 0 �= x ∈ H1 and t ≥ 0,

‖x‖2 = 〈T (t)x, T (t)x〉 = 〈T ∗(t)T (t)x, x〉 ≤ ‖T ∗(t)T (t)x‖‖x‖ ≤ ‖x‖2.

Therefore, by the equality in the Cauchy-Schwarz inequality and the positivity of
‖x‖2, we obtain T ∗(t)T (t)x = x. Analogously, T (t)T ∗(t)x = x. On the other hand,
every x with these two properties belongs to H1. So we proved the equality

H1 = {x ∈ H : T ∗(t)T (t)x = T (t)T ∗(t)x = x for all t ≥ 0} (III.27)

which shows, in particular, that H1 is the maximal (closed) subspace on which
T (·) is unitary. The T (t)- and T ∗(t)-invariance of H1 follows from the definition
of H1 and the equality T ∗(t)T (t) = T (t)T ∗(t) on H1.

To show (b) take x ∈ H2 := H⊥
1 . We first note that H2 is T (·)- and T ∗(·)-

invariant since H1 is so. Suppose now that T (t)x does not converge weakly to
zero as t → ∞, or, equivalently, that there exists y ∈ H , ε > 0 and a sequence
{tn}∞n=1 such that |〈T (tn)x, y〉| ≥ ε for every n ∈ N. On the other hand, there
exists a weakly converging subsequence of {T (tn)x}∞n=1. For convenience we denote
the subsequence again by {tn}∞n=1 and its limit by x0. The closedness and T (t)-
invariance of H2 imply that x0 ∈ H2.

For a fixed t0 ≥ 0 we obtain

‖T ∗(t0)T (t0)T (t)x− T (t)x‖2

= ‖T ∗(t0)T (t+ t0)x‖2 − 2〈T ∗(t0)T (t+ t0)x, T (t)x〉 + ‖T (t)x‖2

≤ ‖T (t+ t0)x‖2 − 2‖T (t+ t0)x‖2 + ‖T (t)x‖2

= ‖T (t)x‖2 − ‖T (t+ t0)x‖2.

The right-hand side converges to zero as t → ∞ since the function t 	→ ‖T (t)x‖
is monotone decreasing on R+. Therefore we obtain limt→∞ ‖T ∗(t0)T (t0)T (t)x−
T (t)x‖ = 0.
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We now remember that weak-limn→∞ T (tn)x = x0. This implies immedi-
ately that weak-limn→∞ T ∗(t0)T (t0)T (tn)x = T ∗(t0)T (t0)x0. By the considera-
tions above, we have on the other hand that weak-limn→∞ T ∗(t0)T (t0)T (tn)x = x0

and therefore T ∗(t0)T (t0)x0 = x0. One shows analogously that T (t0)T ∗(t0)x0 = x0

and x0 ∈ H1. By H1 ∪H2 = {0} this implies x0 = 0, which is a contradiction.
Analogously one shows that the restriction of T ∗(·) to H2 converges weakly

to zero as well. �
Remark 4.8. The restriction of T (·) to the subspace H2 in Theorem 4.7 is com-
pletely non-unitary (c.n.u. for short), i.e., there is no subspace of H2 on which
the restriction of T (·) becomes unitary. In other words, Theorem 4.7 states that
every Hilbert space contraction semigroup can be decomposed into a unitary and
a c.n.u. part and the c.n.u. part is weakly stable.

For a systematic study of completely non-unitary semigroups as well as an
alternative proof of Theorem 4.7 (except weak stability on H2) using unitary
dilation theory see the monograph of Sz.-Nagy and Foiaş [238, Proposition 9.8.3].

On the other hand, the following theorem gives a decomposition into weakly
stable and weakly unstable parts due to Foguel [86]. We give a simplified proof of
it.

Theorem 4.9 (Foguel). Let T (·) be a contraction semigroup on a Hilbert space H.
Define

W := {x ∈ H : lim
t→0

〈T (t)x, x〉 = 0}.

Then

W = {x ∈ H : lim
t→0

T (t)x = 0 weakly} = {x ∈ H : lim
t→0

T ∗(t)x = 0 weakly},

W is a closed T (·)- and T ∗(·)-invariant subspace of H and the restriction of T (·)
to W⊥ is unitary.

Proof. We first show that weak-limt→∞ T (t)x = 0 for a fixed x ∈W . By Theorem
4.7 we may assume that x ∈ H1. If we take S := lin{T (t)x : t ≥ 0}, then by the
decomposition H = S⊕S⊥ it is enough to show that limt→∞〈T (t)x, y〉 = 0 for all
y ∈ S. For y := T (t0)x we obtain

〈T (t)x, y〉 = 〈T ∗(t0)T (t)x, x〉 = 〈T (t− t0)x, y〉 → 0 for t0 ≤ t→ ∞,

since the restriction of T (·) to H1 is unitary. The density of lin{T (t)x : t ≥ 0} in S
implies limt→∞〈T (t)x, y〉 = 0 for every y ∈ S and therefore weak-limt→∞ T (t)x =
0. Analogously, weak-limt→∞ T ∗(t)x = 0. The converse implication, the closedness
and the invariance of W are clear.

The last assertion of the theorem follows directly from Theorem 4.7. �
Combining Theorem 4.7 and Theorem 4.9 we obtain the following decompo-

sition into three orthogonal subspaces.
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Theorem 4.10. Let T (·) be a contraction semigroup on a Hilbert space H. Then H
is the orthogonal sum of three closed T (·)- and T ∗(·)-invariant subspaces H1, H2

and H3 such that the restrictions T1(·), T2(·) and T3(·) satisfy the following.

(a) T1(·) is unitary and has no non-zero weakly stable orbit;

(b) T2(·) is unitary and weakly stable;

(c) T3(·) is completely non-unitary and weakly stable.

As in the discrete case (see Subsection II.3.2), we see from the above theorem
that a characterisation of weak stability for unitary groups on Hilbert spaces is
of special importance. We will discuss more aspects of this problem in Subsection
IV.1.1.

At the end of this subsection we present the following classical result describ-
ing the part T3(·) in the above theorem if the semigroup consists of isometries, see
Foiaş, Sz.-Nagy [238, Theorem III.9.3].

Theorem 4.11 (Wold decomposition). Let T (·) be an isometric C0-semigroup on a
Hilbert space H. Then H can be decomposed into an orthogonal sum H = H0⊕H1

of T (·)-invariant subspaces such that the restriction of T (·) to H0 is a unitary
semigroup and the restriction of T (·) to H1 is unitarily equivalent to the unilateral
shift on L2(R+, Y ) for a Hilbert space Y . In addition, dim Y = dim(rg V )⊥ where
V is the cogenerator of T (·).

4.3 Characterisation via resolvent

In this subsection we discuss a resolvent approach due to Chill, Tomilov [49], see
also Eisner, Farkas, Nagel, Serény [67].

The following main result gives some sufficient conditions for weak stability,
see Chill, Tomilov [49] and Eisner, Farkas, Nagel, Sereny [67].

Theorem 4.12. Let T (·) be a C0-semigroup on a Banach space X with generator
A satisfying s0(A) ≤ 0. For x ∈ X and y ∈ X ′ fixed, consider the following
assertions.

(a)
∫ 1

0

∫ ∞

−∞
|〈R2(a+ is, A)x, y〉| ds da <∞;

(b) lim
a→0+

a

∫ ∞

−∞
|〈R2(a+ is, A)x, y〉| ds = 0;

(c) lim
t→∞

〈T (t)x, y〉 = 0.

Then (a)⇒(b)⇒(c). In particular, if T (·) is bounded and (a) or (b) holds for all
x from a dense subset of X and all y from a dense subset of X ′, then (T (t))t≥0 is
weakly stable.
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Proof. We first show that (a) implies (b).
From the theory of Hardy spaces, see, e.g., Rosenblum, Rovnyak [223, The-

orem 5.20], we know that the function f : (0, 1) 	→ R+ defined by

f(a) :=
∫ ∞

−∞
|〈R2(a+ is, A)x, y〉| ds

is monotone decreasing for a > 0. Assume now that (b) is not true. Then there
exists a monotone decreasing null sequence {an}∞n=1 such that

anf(an) ≥ c (III.28)

holds for some c > 0 and all n ∈ N .
Take now n,m ∈ N such that an ≤ am

2 . By (III.28) and the monotonicity of
f we have∫ am

an

f(a) da ≥ f(am)(am − an) ≥ c

am
(am − an) = c

(
1 − an

am

)
≥ c

2
.

This contradicts (a) and the implication (a)⇒(b) is proved.
It remains to show that (b) implies (c). By (b) we have∫ ∞

−∞
|〈R2(a+ is, A)x, y〉| ds <∞

for every a > 0. Since s0(A) ≤ 0, Theorem I.3.9 (see also Theorem I.3.8) implies
the inverse Laplace transform representation

〈T (t)x, y〉 =
1

2πt

∫ ∞

−∞
e(a+is)t〈R2(a+ is, A)x, y〉 ds (III.29)

for all a > 0. We now take t = 1
a to obtain

|〈T (t)x, y〉| ≤ a

∫ ∞

−∞
|〈R2(a+ is, A)x, y〉| ds→ 0

as a→ 0+, so t = 1
a → ∞, proving (c).

The last part of the theorem follows from the standard density argument. �
Remark 4.13. Convergence of the integrals in (b) and hence in (a) in Theorem
4.12 for all x ∈ X and y ∈ X ′ implies s0(A) = ω0(T ) by Corollary 2.19, and hence
is not necessary for weak stability of a C0-semigroup on a Banach space.

A useful necessary and sufficient resolvent condition for weak stability is still
unknown. In particular, it is not clear whether condition (b) in Theorem b holds
for all x and y from dense subsets for weakly stable C0-semigroups on Banach
spaces (and even for unitary groups on Hilbert spaces).
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5 Almost weak stability

In this section we investigate almost weak stability, a concept looking more com-
plicated, but being much easier to characterise than weak stability. We will follow
Eisner, Farkas, Nagel, Serény [67].

5.1 Characterisation

In this part we always assume T (·) to be a relatively compact semigroup. (This is
for example the case if T (·) is bounded and X is reflexive, see Example I.1.7(a)).
Since every weakly stable semigroup is relatively weakly compact, it is not a severe
restriction.

We begin with a list of equivalent properties motivating our definition of
almost weak stability.

Theorem 5.1. Let (T (t))t≥0 be a relatively weakly compact C0-semigroup on a
Banach space X with generator A. The following assertions are equivalent.

(i) 0 ∈ {T (t)x : t ≥ 0}σ
for every x ∈ X;

(i′) 0 ∈ {T (t) : t ≥ 0}Lσ ;

(ii) For every x ∈ X there exists a sequence {tj}∞j=1 ⊂ R+ converging to ∞ such
that limj→∞ T (tj)x = 0 weakly;

(iii) For every x ∈ X there exists a set M ⊂ R+ with density 1 such that
lim

t→∞, t∈M
T (t)x = 0 weakly;

(iv) lim
t→∞

1
t

∫ t

0

|〈T (s)x, y〉| ds = 0 for all x ∈ X, y ∈ X ′;

(v) lim
a→0+

a

∫ ∞

−∞
|〈R(a+ is, A)x, y〉|2 ds = 0 for all x ∈ X, y ∈ X ′;

(vi) lim
a→0+

aR(a+ is, A)x = 0 for all x ∈ X and s ∈ R;

(vii) Pσ(A) ∩ iR = ∅, i.e., A has no eigenvalues on the imaginary axis.

If, in addition, X ′ is separable, then the conditions above are also equivalent to

(ii∗) There exists a sequence {tj}∞j=1 ⊂ R+ converging to ∞ such that
limj→∞ T (tj) = 0 in the weak operator topology;

(iii∗) There exists a set M ⊂ R+ with density 1 such that lim
t→∞, t∈M

T (t) = 0 in the

weak operator topology.

Analogously to the discrete case, the (asymptotic) density of a measurable
set M ⊂ R+ is

d(M) := lim
t→∞

1
t
λ([0, t] ∩M),
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whenever the limit exists (here λ is the Lebesgue measure on R). Note that 1 is
the greatest possible density.

We will use the following elementary fact, being the continuous analogue of
Lemma II.4.2.

Lemma 5.2 (Koopman–von Neumann, 1932). Let f : R+ → R+ be measurable and
bounded. The following assertions are equivalent.

(a) lim
t→∞

1
t

∫ t

0

f(s) ds = 0;

(b) There exists a set M ⊂ R+ with density 1 such that lim
t→∞, t∈M

f(t) = 0.

Proof. Assume (b). Then we have for C := supt≥0 f(t) that

1
t

∫ t

0

f(s) ds =
1
t

∫ t

0

f(s)1M (s) ds+
1
t

∫ t

0

f(s)1Mc(s) ds

≤ 1
t

∫ t

0

f(s)1M (s) ds+
C

t
λ(M c ∩ [0, t]),

where M c denotes the complement of M in R+. The first summand on the right-
hand side converges to 0 as t→ ∞ since convergence implies Cesàro convergence,
and the second summand converges to 0 as t→ ∞ since M c has density 0, proving
(a).

For the converse implication assume (a) and define for k ∈ N the sets

Nk :=
{
s ∈ R+ : f(s) >

1
k

}
.

We have Nk ⊂ Nk+1 for all k ∈ N. Moreover, since 1Nk
(s) < kf(s) holds for

every s ≥ 0, (a) implies d(Nk) = 0. Therefore there exists an increasing sequence
{tk}∞k=1 with limk→∞ tk = ∞ such that

1
t

∫ t

0

1Nk
(s) ds <

1
k

for all t ≥ tk−1. (III.30)

We show that the set

M :=
∞⋃

k=1

N c
k ∩ [tk−1, tk]

has the desired properties.
Observe first that for t ∈ [tk−1, tk]∩M we have t /∈ Nk, i.e., f(t) ≤ 1

k , which
implies

lim
t→∞, t∈M

f(t) = 0.
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Moreover, since the sets N c
k descrease in k, (III.30) implies that for every k and

t ∈ [tk−1, tk]

1
t

∫ t

0

1M (s) ds ≥ 1
t

∫ t

0

1Nc
k
(s) ds = 1 − 1

t

∫ t

0

1Nk
(s) ds > 1 − 1

k
.

So d(M) = 1 and (b) is proved. �
Proof of Theorem 5.1. The proof of the implication (i′) ⇒ (i) is trivial. The im-
plication (i) ⇒ (ii) holds since in Banach spaces weak compactness and weak se-
quential compactness coincide by the Eberlein–Šmulian theorem (Theorem I.1.1).
If (vii) does not hold, then (ii) cannot be true by the spectral mapping theorem
for the point spectrum (see Engel, Nagel [78, Theorem IV.3.7]), hence (ii) ⇒ (vii).
The implication (vii) ⇒ (i′) is the main consequence of the Jacobs–Glicksberg–de
Leeuw decomposition (Theorem I.1.19) and follows from the construction in its
proof, see Engel, Nagel [78], p. 313.

This proves the equivalences (i) ⇔ (i′) ⇔ (ii) ⇔ (vii).
(vi) ⇔ (vii): Since the semigroup (T (t))t≥0 is bounded and mean ergodic by Theo-
rem I.2.25, we have by Proposition I.2.24 that the decomposition X = kerA⊕rgA
holds and the limit

Px := lim
a→0+

aR(a,A)x

exists for all x ∈ X with a projection P onto kerA. Therefore, 0 /∈ Pσ(A) if
and only if P = 0. Take now s ∈ R. The semigroup (eistT (t))t≥0 is also rela-
tively weakly compact and hence mean ergodic. Repeating the argument for this
semigroup we obtain (vi) ⇔ (vii).

(i′) ⇒ (iii): Let S := {T (t) : t ≥ 0}Lσ ⊆ L(X) which is a compact semitopologi-
cal semigroup if considered with the usual multiplication and the weak operator
topology. By (i) we have 0 ∈ S. Define the operators T̃ (t) : C(S) → C(S) by

(T̃ (t)f)(R) := f(T (t)R), f ∈ C(S), R ∈ S.

By Nagel (ed.) [196], Lemma B-II.3.2, (T̃ (t))t≥0 is a C0-semigroup on C(S).
By Example I.1.7 (c), the set {f(T (t) ·) : t ≥ 0} is relatively weakly compact

in C(S) for every f ∈ C(S). It means that every orbit {T̃ (t)f : t ≥ 0} is relatively
weakly compact, and, by Lemma I.1.6, (T̃ (t))t≥0 is a relatively weakly compact
semigroup.

Denote by P̃ the mean ergodic projection of (T̃ (t))t≥0. We have

Fix(T̃ ) =
⋂
t≥0

Fix(T̃ (t)) = 〈1〉.

Indeed, for f ∈ Fix(T̃ ) one has f(T (t)I) = f(I) for all t ≥ 0 and therefore f must
be constant. Hence P̃ f is constant for every f ∈ C(S). By definition of the ergodic
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projection

(P̃ f)(0) = lim
t→∞

1
t

∫ t

0

T̃ (s)f(0) ds = f(0). (III.31)

Thus we have
(P̃ f)(R) = f(0) · 1, f ∈ C(S), R ∈ S. (III.32)

Take now x ∈ X . By Theorem I.1.5 and its proof (see Dunford, Schwartz [63,
p. 434]), the weak topology on the orbit {T (t)x : t ≥ 0} is metrisable and coincides
with the topology induced by some sequence {yn}∞n=1 ⊂ X ′ \ {0}. Consider fx,n ∈
C(S) defined by

fx,n(R) := |〈Rx, yn

‖yn‖ 〉|, R ∈ S,

and fx ∈ C(S) defined by

fx(R) :=
∑
n∈N

1
2n
fx,n(R), R ∈ S.

By (III.32) we obtain

0 = lim
t→∞

1
t

∫ t

0

T̃ (s)fx,y(I) ds = lim
t→∞

1
t

∫ t

0

fx(T (s)) ds.

Lemma 5.2 applied to the continuous and bounded function R+ � t 	→ f(T (t)I)
yields a set M ⊂ R with density 1 such that

lim
t→∞, t∈M

fx(T (t)) = 0.

By definition of fx and by the fact that the weak topology on the orbit is induced
by {yn}∞n=1 we have in particular that

lim
t→∞, t∈M

T (t)x = 0 weakly,

proving (iii).

(iii) ⇒ (iv) follows directly from Lemma 5.2.

(iv) ⇒ (vii) holds by the spectral mapping theorem for the point spectrum, see
Engel, Nagel [78, Theorem IV.3.7].

(iv) ⇔ (v): Clearly, the semigroup (T (t))t≥0 is bounded. Take x ∈ X , y ∈ X ′ and
let a > 0. By the Plancherel theorem applied to the function t 	→ e−at〈T (t)x, y〉
we have ∫ ∞

−∞
|〈R(a+ is, A)x, y〉|2 ds = 2π

∫ ∞

0

e−2at|〈T (t)x, y〉|2 dt.
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We obtain by the equivalence of Abel and Cesàro limits, see Lemma I.2.23,

lim
a→0+

a

∫ ∞

−∞
|〈R(a+ is, A)x, y〉|2 ds = lim

a→0+
a

∫ ∞

0

e−2at|〈T (s)x, y〉|2 ds

= lim
t→∞

1
t

∫ t

0

|〈T (s)x, y〉|2 ds. (III.33)

Note that for a bounded continuous function f : R+ → R+ with C := sup f(R+)
we have (

1
Ct

∫ t

0

f2(s) ds
)2

≤
(

1
t

∫ t

0

f(s) ds
)2

≤ 1
t

∫ t

0

f2(s) ds,

which together with (III.33) gives the equivalence of (iv) and (v).

For the remaining part of the theorem suppose X ′ to be separable. Then so
is X , and we can take dense subsets {xn �= 0 : n ∈ N} ⊆ X and {ym �= 0 : m ∈
N} ⊆ X ′. Consider the functions

fn,m : S → R, fn,m(R) :=
∣∣〈R xn

‖xn‖ ,
ym

‖ym‖
〉∣∣, n,m ∈ N,

which are continuous and uniformly bounded in n,m ∈ N. Define the function

f : S → R, f(R) :=
∑

n,m∈N

1
2n+m

fn,m(R).

Then clearly f ∈ C(S). Thus, as in the proof of the implication (i′) ⇒ (iii), i.e.,
using (III.31) we obtain

lim
t→∞

1
t

∫ t

0

f(T (s)I) ds = 0.

Hence, applying Lemma 5.2 to the continuous and bounded function R+ � t 	→
f(T (t)I), we obtain the existence of a set M with density 1 such that f(T (t)) → 0
as t → ∞, t ∈ M . In particular, |〈T (t)xn, ym〉| → 0 for all n,m ∈ N as t → ∞,
t ∈M , which, together with the boundedness of (T (t))t≥0, proves the implication
(i′) ⇒ (iii∗). The implications (iii∗) ⇒ (ii∗) ⇒ (i′) are straightforward, hence the
proof is complete. �

The above theorem shows that starting from

“no eigenvalues of the generator on the imaginary axis”,

one arrives at properties like (iii) on the orbits of the semigroup. This justifies the
following terminology.

Definition 5.3. A relatively weakly compact C0-semigroup is almost weakly stable
if it satisfies condition (iii) in Theorem 5.1.
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Historical remark 5.4. Theorem 5.1 and especially the implication (vii) ⇒ (iii)
were first proved for discrete semigroups and has a long history, see Remark II.4.4.
The conditions (i), (iii) and (iv) were studied by Hiai [129] even for strongly mea-
surable semigroups. He related it to the discrete case as well. See also Kühne
[156, 157]. The implication (vii)⇒(i) appears also in Ruess, Summers [224] in a
more abstract context. Note that the equivalence (vii)⇔(iv) for contraction semi-
groups on Hilbert spaces is a consequence of the Wiener theorem, see Goldstein
[101].

Remark 5.5. The conditions in Theorem 5.1 are of quite different natures. Con-
ditions (i)–(iv) as well as (ii∗) and (iii∗) give information on the behaviour of the
semigroup, while conditions (v)–(vii) deal with the spectrum and the resolvent of
the generator near the imaginary axis. Among them condition (vii) apparently is
the simplest to verify. Moreover, as in the discrete case one can add the equivalent
condition

(iv′) lim
t→∞

sup
y∈X′, ‖y‖≤1

1
t

∫ t

0

|〈T (s)x, y〉| = 0 for every x ∈ X ,

see Hiai [129].

The equivalence (i′) ⇔ (v) in Theorem 5.1 is a weak analogue to Tomilov’s
characterisation of strong stability given in Corollary 3.23.

Remark 5.6. It is also quite surprising that the set M ⊂ R+ of density 1 ap-
pearing in condition (iii) has certain algebraic structure. As we saw in Theorem
4.4, if M contains a relatively dense set, then the semigroup T (·) is automatically
weakly stable. In other words, if we have an almost weakly but not weakly stable
semigroup, then the set M in condition (iii) does not contain any relatively dense
set.

We now can state the following version of the Jacobs–Glicksberg–de Leeuw
decomposition (see Theorem I.1.19).

Theorem 5.7 (Jacobs–Glicksberg–de Leeuw decomposition, extended version). Let
X be a Banach space and T (·) be a relatively weakly compact C0-semigroup on X.
Then X = Xr ⊕Xs, where

Xr := lin
{
x ∈ X : T (t)x = eiαtx for some α ∈ R and all t ≥ 0

}
,

Xs :=
{
x∈X : lim

t→∞, t∈M
T (t)x = 0 weakly for some set M⊂R+ with density 1

}
.

Jan van Neerven (private communication) pointed out that there is a version
of Theorem 5.1 for single orbits.

Corollary 5.8. Let A generate a C0-semigroup T (·) on a Banach space X and
x ∈ X. Assume that the orbit {T (t)x : t ≥ 0} is relatively weakly compact in X
and that the restriction of T (·) to lin{T (t)x : t ≥ 0} is bounded. Then there is a
holomorphic continuation of the resolvent function R(·, T )x to {λ : Re(λ) > 0}
denoted by Rx(·) and the following assertions are equivalent.
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(i) 0 ∈ {T (t)x : t ≥ 0}σ
.

(ii) There exists a sequence {tj}∞j=1 converging to ∞ such that limj→∞ T (tj)x = 0
weakly.

(iii) There exists a set M ⊂ R+ with density 1 such that lim
t→∞, t∈M

T (t)x = 0

weakly.

(iv) lim
t→∞

1
t

∫ t

0

|〈T (s)x, y〉| ds = 0 for all y ∈ X ′.

(v) lim
a→0+

a

∫ ∞

−∞
|〈Rx(a+ is), y〉|2 ds = 0 for all y ∈ X ′.

(vi) lim
a→0+

aRx(a+ is) = 0 for all s ∈ R.

(vii) The restriction of A to lin{T (t)x : t ≥ 0} has no eigenvalue on the imaginary
axis.

Proof. For the first part of the theorem define

Rx(λ) :=
∫ ∞

0

e−λtT (t)xdt whenever Reλ > 1.

Denote now by Z the closed linear span of the orbit {T (t)x : t ≥ 0}. Then
Z is a T (·)-invariant closed subspace of X and we can take a restriction of T (·)
denoted by TZ(·) which is, by Lemma I.1.6, relatively weakly compact as well. By
the uniqueness of the Laplace transform we obtain that R(AZ , λ)x = Rx(λ) for
every λ with Re (λ) > 0, where AZ denotes the generator of TZ(·).

The rest follows from the canonical decomposition X ′ = Z ′ ⊕Z0 with Z0 :=
{y ∈ X ′ : 〈z, y〉 = 0 for all z ∈ Z} and Theorem 5.1. �

5.2 Concrete example

We now give a concrete example of an almost weakly stable but not weakly stable
C0-semigroup, again following Eisner, Farkas, Nagel, Serény [67].

Example 5.9. As in Nagel (ed.) [196], p. 206, we start from a flow on C\{0} with
the following properties:

1) The orbits starting in z with |z| �= 1 spiral towards the unit circle Γ;

2) 1 is the fixed point of ϕ and Γ \ {1} is a homoclinic orbit, i.e., lim
t→−∞

ϕt(z) =

lim
t→∞

ϕt(z) = 1 for every z ∈ Γ.

A concrete example comes from the differential equation in polar coordinates
(r, ω) = (r(t), ω(t)): {

ṙ = 1 − r,
ω̇ = 1 + (r2 − 2r cosω),

see the following picture.



5. Almost weak stability 121

Take x0 ∈ C with 0 < |x0| < 1 and denote by Sx0 := {ϕt(x0) : t ≥ 0} the
orbit starting from x0. Then S := Sx0 ∪ Γ is compact for the usual topology of C.

We define a multiplication on S as follows. For x = ϕt(x0) and y = ϕs(x0)
we put

xy := ϕt+s(x0).

For x ∈ Γ, x = limn→∞ xn, xn = ϕtn(x0) ∈ Sx0 and y = ϕs(x0) ∈ Sx0 , we
define xy = yx := limn→∞ xny. Note that by |xny − ϕs(x)| = |ϕs(xn) − ϕs(x)| ≤
C|xn − x| −→

n→∞
0 the definition is correct and satisfies

xy = ϕs(x).

For x, y ∈ Γ we define xy := 1. This multiplication on S is separately continuous
and makes S a semi-topological semigroup (see Engel, Nagel [78], Sec. V.2).

Consider now the Banach space X := C(S). By Example I.1.7 (c) the set

{f(s ·) : s ∈ S} ⊂ C(S)

is relatively weakly compact for every f ∈ C(S). By definition of the multiplication
on S this implies that

{f(ϕt(·)) : t ≥ 0}

is relatively weakly compact in C(S). Consider the semigroup induced by the flow,
i.e.,

(T (t)f)(x) := f(ϕt(x)), f ∈ C(S), x ∈ S.

By the above, each orbit {T (t)f : t ≥ 0} is relatively weakly compact in C(S)
and hence, by Lemma I.1.6, (T (t))t≥0 is weakly compact. Note that the strong
continuity of (T (t))t≥0 follows, as shown in Nagel (ed.) [196, Lemma B-II.3.2],
from the separate continuity of the flow.



122 Chapter III. Stability of C0-semigroups

Next, we take X0 := {f ∈ C(S) : f(1) = 0} and identify it with the Banach
lattice C0(S \ {1}). Then both subspaces in the decomposition C(S) = X0 ⊕ 〈1〉
are invariant under (T (t))t≥0. Denote by (T0(t))t≥0 the semigroup restricted to
X0 and by A0 its generator. The semigroup (T0(t))t≥0 remains relatively weakly
compact.

Since Fix(T0) =
⋂

t≥0 Fix(T0(t)) = {0}, we have that 0 /∈ Pσ(A0). Moreover,
Pσ(A0) ∩ iR = ∅ holds, which implies by Theorem 5.1 that (T0(t))t≥0 is almost
weakly stable.

To see that (T0(t))t≥0 is not weakly stable it is enough to consider δx0 ∈ X ′
0.

Since
〈T0(t)f, δx0〉 = f(ϕ(t, x0)), f ∈ X0,

f(Γ) always belongs to the closure of {〈T0(t)f, δx0〉 : t ≥ 0} and hence the
semigroup (T0(t))t≥0 cannot be weakly stable.

We summarise the above as follows.

Theorem 5.10. There exist a locally compact space Ω and a positive, relatively
weakly compact C0-semigroup on C0(Ω) which is almost weakly but not weakly
stable.

The above phenomenon cannot occur for positive semigroups on special Ba-
nach lattices; for details and discussion see Chill, Tomilov [50].

Theorem 5.11 (Groh, Neubrander [112, Theorem. 3.2]; Chill, Tomilov [50, The-
orem. 7.7]). For a bounded, positive, mean ergodic C0-semigroup (T (t))t≥0 on a
Banach lattice X with generator (A,D(A)), the following assertions hold.

(i) If X ∼= L1(Ω, μ), then Pσ(A′) ∩ iR = ∅ is equivalent to the strong stability
of (T (t))t≥0.

(ii) If X ∼= C(K), K compact, then Pσ(A′)∩ iR = ∅ is equivalent to the uniform
exponential stability of (T (t))t≥0.

Example 5.9 above shows that (ii) does not hold in spaces C0(Ω), Ω locally
compact.

6 Category theorems

In this section we compare weak and almost weak stability and show that (at
least on Hilbert spaces) these two related notions differ drastically. Analogously
to the discrete case (see Section II.5), we show following Eisner, Serény [70] that
a “typical” unitary C0-group as well as a “typical” isometric C0-semigroup on a
separable Hilbert space is almost weakly but not weakly stable for an appropriate
topology. An even stronger result will be shown in Section IV.3.
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6.1 Unitary case

We start from the set Ucont of all unitary C0-groups on a separable infinite-
dimensional Hilbert space H .

A first step in our construction is the following density result.

Proposition 6.1. For every n ∈ N the set of all periodic unitary C0-groups with
period greater than n is dense in Ucont in the norm topology uniform on compact
time intervals.

Proof. Take U(·) ∈ Ucont and n ∈ N. By the spectral theorem H is isomorphic
to L2(Ω, μ) for some locally compact space Ω and finite measure μ and U(·) is
unitarily equivalent to a multiplication semigroup Ũ(·) with

(Ũ(t)f)(ω) = eitq(ω)f(ω) ∀ω ∈ Ω, t ≥ 0, f ∈ L2(Ω, μ)

for some measurable q : Ω → R.
We approximate the semigroup Ũ(·) as follows. For k > n define

qk(ω) :=
2πj
k

∀ω ∈ q−1

([
2πj
k
,
2π(j + 1)

k

])
, j ∈ Z.

The multiplication operator with eitqk(·) we denote by Ṽk(t), and Ṽk(·) is a periodic
unitary group with period greater than or equal to k > n. Moreover,

‖Ũ(t)f − Ṽk(t)f‖ =
∫

Ω

|eitq(ω) − eitqk(ω)|2‖f(ω)‖2 dω

≤ 2|t| sup
ω

|q(ω) − qk(ω)| · ‖f‖2 =
4π|t|
k

‖f‖2

holds. So limk→∞ ‖Ũ(t)− Ṽk(t)‖ = 0 uniformly for t in compact intervals, and the
proposition is proved. �
Remark 6.2. By a modification of the proof of Proposition 6.1 one can choose the
approximating periodic unitary groups Ṽ (·) to have bounded generators.

For the second step we need the following lemma.

Lemma 6.3. Let H be a separable infinite-dimensional Hilbert space. Then there
exists a sequence {Un(·)}∞n=1 of almost weakly stable unitary groups with bounded
generator satisfying limn→∞ ‖Un(t) − I‖ = 0 uniformly in t in compact intervals.

Proof. By isomorphy of all separable infinite-dimensional Hilbert spaces we can
assume that H = L2(R) with respect to the Lebesgue measure.

Take n ∈ N and define Un(·) on L2(R) by

(Un(t)f)(s) := e
itq(s)

n f(s), s ∈ R, f ∈ L2(R),

where q : R → [0, 1] is a strictly monotone increasing function.
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Then all Un(·) are almost weakly stable by Theorem 5.1 and we have

‖Un(t) − I‖ = sup
s∈R

|e
itq(s)

n − 1| ≤ [for t ≤ πn] ≤ |e it
n − 1| ≤ 2t

n
→ 0, n→ ∞,

uniformly for t in compact intervals. �
We consider the topology on the space Ucont coming from the metric

d(U(·), V (·)) :=
∞∑

n,j=1

supt∈[−n,n] ‖U(t)xj − V (t)xj‖
2j‖xj‖

for U, V ∈ Ucont,

where {xj}∞j=1 is some fixed dense subset of H \ {0}. Note that this topology
corresponds to the strong convergence uniform on compact time intervals in R and
is a continuous analogue of the strong*-topology for operators used in Subsection
II.5.1.

We further denote by Scont
U the set of all weakly stable unitary groups on H

and by Wcont
U the set all almost weakly stable unitary groups on H .

The following result shows density of Wcont
U in Ucont.

Proposition 6.4. The set Wcont
U of all almost weakly stable unitary groups with

bounded generator is dense in Ucont.

Proof. By Proposition 6.1 it is enough to approximate periodic unitary groups by
almost weakly unitary groups. Let U(·) be a periodic unitary group with period
τ . Take ε > 0, n ∈ N, x1, . . . , xn ∈ H \ {0} and t0 > 0. We have to find an almost
weakly stable unitary group V (·) with ‖U(t)xj − V (t)xj‖ ≤ ε for all j = 1, . . . , n
and all t with |t| ≤ t0.

By Engel, Nagel [78, Theorem IV.2.26] we have

H = ⊕⊥
k∈Z ker

(
A− 2πik

τ

)
,

where A denotes the generator of U(·). So we can assume without loss of generality
that {xj}n

j=1 is an orthonormal system of eigenvalues of A.
Define now the T (·)-invariant subspace H0 := lin{x1, . . . , xn} and B := A on

H0. Further, since H is separable, the decomposition

H = ⊕⊥
k∈NHk

holds, where dimHk = dimH0 for every k ∈ N. For a fixed orthonormal basis
{ek

j }n
j=1 of each Hk we define Bek

j := Bxj and extend B to a bounded linear
operator on H .

From the construction follows that

H = ker
(
B − 2πiλ1

τ

)
⊕⊥ . . .⊕⊥ ker

(
B − 2πiλn

τ

)
,
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where 2πiλj

τ is the eigenvalue of A (and therefore of B) corresponding to the
eigenvector xj .

Let Xj := ker
(
B − 2πiλ1

τ

)
for every j = 1, . . . , n. On every Xj the operator

B is equal to 2πiλj

τ I. Note further that all Xj are infinite-dimensional. By Lemma
6.3 for every j there exists an almost weakly stable unitary group Tj(·) on Xj

such that ‖Tj(t) − e
2πtiλj

τ I‖ < ε for every t with |t| ≤ t0. Denote now by T (·)
the orthogonal sum of Tj(·) which is a weakly stable unitary group with bounded
generator. Moreover, we obtain that

‖T (t)xj − U(t)xj‖ = ‖T (t)xj − e
2πitλj

τ xj‖ ≤ ε

for every t with |t| ≤ t0 and the proposition is proved. �

We now prove a category theorem for weakly and almost weakly stable uni-
tary groups, being analogous to its discrete counterpart given in Subsection II.5.1.

Theorem 6.5. The set Scont
U of weakly stable unitary groups is of first category and

the set Wcont
U of almost weakly stable unitary groups is residual in Ucont.

Proof. We first prove that Scont
U is of first category in Ucont. Fix x ∈ H with

‖x‖ = 1 and consider

Mt :=
{
U(·) ∈ Ucont : |〈U(t)x, x〉| ≤ 1

2

}
.

Note that all sets Mt are closed.
For every weakly stable U(·) ∈ Ucont there exists t > 0 such that U ∈Ms for

all s ≥ t, i.e., U(·) ∈ Nt := ∩s≥tMt. So we obtain

Scont
U ⊂

⋃
t>0

Nt. (III.34)

Since all Nt are closed, it remains to show that Ucont \Nt is dense for every t.
Fix t > 0 and let U(·) be a periodic unitary group. Then U(·) /∈Ms for some

s ≥ t and therefore U(·) /∈ Nt. Since, by Proposition 6.1, periodic unitary groups
are dense in Ucont, the set Scont

U is of first category.
To show that Wcont

U is residual we take a dense subspace D = {xj}∞j=1 of H
and define

Wjkt :=
{
U(·) ∈ Ucont : | 〈U(t)xj , xj〉 | <

1
k

}
.

All these sets are open, and therefore the sets Wjk := ∪t>0Wjkt are also open.
We now show the equality

Wcont
U =

∞⋂
j,k=1

Wjk. (III.35)
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The inclusion “⊂” follows from the definition of almost weak stability. To
prove the converse inclusion we take U(·) /∈ Wcont

U and t > 0. Then there exists
x ∈ H with ‖x‖ = 1 and ϕ ∈ R such that U(t)x = eitϕx for all t > 0, which
implies | 〈U(t)x, x〉 | = 1. Take xj ∈ D with ‖xj − x‖ ≤ 1

4 . Then we have

| 〈U(t)xj , xj〉 | = | 〈U(t)(x − xj), x− xj〉 + 〈U(t)x, x〉 − 〈U(t)x, x− xj〉

− 〈U(t)(x− xj), x〉 | ≥ 1 − ‖x− xj‖2 − 2‖x− xj‖ >
1
3
.

So U(·) /∈ Wj3, hence U(·) /∈ ∩∞
j,k=1Wjk, and equality (III.35) holds. Therefore

Wcont
U is residual as a dense countable intersection of open sets. �

6.2 Isometric case

In this subsection we consider the space Icont of all isometric C0-semigroups on H
endowed with the strong topology uniform on compact time intervals and prove
category results as in the previous subsection. We again assume H to be separable
and infinite-dimensional. Note that Icont is a complete metric space with respect
to the metric given by the formula

d(T (·), S(·)) :=
∞∑

n,j=1

supt∈[0,n] ‖T (t)xj − S(t)xj‖
2j‖xj‖

for T (·), S(·) ∈ Icont,

where {xj}∞j=1 is a fixed dense subset of H \ {0}.
We further denote by Scont

I the set of all weakly stable, and by Wcont
I the set

of all almost weakly stable isometric C0-semigroups on H .
The main tool is the classical Wold decomposition from Theorem 4.11. In

addition, we need the following easy lemma (see also Peller [211]).

Lemma 6.6. Let Y be a Hilbert space and let R(·) be the right shift semigroup on
H := l2(N, Y ). Then there exists a sequence {Un(·)}∞n=1 of periodic unitary groups
on H converging strongly to R(·) uniformly on compact time intervals.

Proof. For every n ∈ N we define Un(t) by

(Un(t)f)(s) :=

{
f(s), s ≥ n;
Rn(t)f(s), s ∈ [0, n],

where Rn(·) denotes the n-periodic right shift on the space L2([0, n], Y ). Then
every Un(·) is a C0-semigroup on L2(R+, Y ) which is isometric and n-periodic,
and therefore unitary.
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Fix f ∈ L2(R+, Y ) and T > 0. Then for t ≤ T and n > T we have

‖Un(t)f −R(t)f‖2 =
∫ ∞

n

‖f(s) − f(s+ n− t)‖2ds+
∫ t

0

‖f(s+ n− t)‖2ds

≤
∫ ∞

n

‖f(s)‖2ds+
∫ ∞

n−t

‖f(s)‖2ds+
∫ n

n−t

‖f(s)‖2ds

= 2
∫ ∞

n−t

‖f(s)‖2ds ≤ 2
∫ ∞

n−T

‖f(s)‖2ds −→
n→∞

0

uniformly on [0, T ], and the lemma is proved. �
As a consequence we obtain the following density result for periodic C0-

groups in Icont.

Proposition 6.7. The set of all periodic unitary C0-groups is dense in Icont.

Proof. Let V (·) be an isometric semigroup on H . Then by Theorem 4.11 the or-
thogonal decomposition H = H0 ⊕H1 holds, where the restriction V0(·) of V (·) to
H0 is unitary, H1 is unitarily equivalent to L2(R+, Y ) for some Y and the restric-
tion V1(·) of V (·) on H1 corresponds to the right shift semigroup on L2(R+, Y ). By
Proposition 6.1 and Lemma 6.6 and their proofs we can approximate both semi-
groups V0(·) and V1(·) by unitary periodic ones with period in N and the assertion
follows. �

Also the following density result for almost weakly stable semigroups is a
consequence of Wold’s decomposition and the results of the previous subsection.

Proposition 6.8. The set Wcont
I of almost weakly stable isometric C0-semigroups

is dense in Icont.

Proof. Let V (·) be an isometric C0-semigroup on H , H0 and H1 the orthogonal
subspaces from Theorem 4.11 and V0(·), V1(·) the corresponding restrictions of
V (·). By Lemma 6.6, the semigroup V1(·) can be approximated by unitary C0-
groups on H1. The assertion now follows from Proposition 6.4. �

Using the same idea as in the proofs of Theorem 6.5, Propositions 6.7 and
6.8, we obtain the following category theorem for weakly and almost weakly stable
isometric C0-semigroups.

Theorem 6.9. The set Scont
I of all weakly stable isometric C0-semigroups is of first

category and the set Wcont
I of all almost weakly stable isometric C0-semigroups is

residual in Icont.

6.3 Contractive case: remarks

It is not clear whether one can prove results analogous to Theorems 6.5 and 6.9
for contractive C0-semigroups (as in the discrete case in Section II.5.3). We point
out the main difficulty.
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Let Ccont denote the set of all contraction semigroups on H endowed with
the metric

d(T (·), S(·)) :=
∞∑

n,i,j=1

supt∈[0,n] | 〈T (t)xi, xj〉 − 〈S(t)xi, xj〉 |
2i+j+n‖xi‖‖xj‖

for T, S ∈ Ccont,

where {xj}∞j=1 is a fixed dense subset of H \ {0}. The corresponding convergence
is the weak convergence of semigroups uniform on compact time intervals. Note
that this metric is a continuous analogue of the metric used in Section II.5.3.

The following example, see Eisner, Serény [71], shows that the space Ccont

is not complete (or compact) in general, and hence the Baire category theorem
cannot be applied as it was done in the proofs of Theorems 6.5 and 6.9.

Example 6.10. Consider X := lp, 1 ≤ p <∞, and the operators Ãn defined by

Ãn(x1, . . . , xn, xn+1, . . . , x2n, . . .)
:= (xn+1, xn+2, . . . , x2n, x1, x2, . . . , xn, x2n+1, x2n+2, . . .)

exchanging the first n coordinates of a vector with its next n coordinates. Then
‖Ãn‖ ≤ 1 implies that Ãn generates a C0-semigroup T̃n(·) satisfying ‖T̃n(t)‖ ≤ et

for every n ∈ N and t ≥ 0.
The operators Ãn converge weakly to zero as n→ ∞. Moreover, Ã

2

n = I for
every n ∈ N. Therefore

T̃n(t) =
∞∑

k=0

tkÃ
k

n

k!
=

∞∑
k=0

t2k+1

(2k + 1)!
Ãn +

∞∑
k=0

t2k

(2k)!
I

=
et − e−t

2
Ãn +

et + e−t

2
I

σ−→ et + e−t

2
I �= I,

where “σ” denotes the weak operator topology, and this convergence is uniform
on compact time intervals. However, the limit does not satisfy the semigroup law.

By rescaling An := Ãn − I we obtain a sequence of contractive semigroups
converging weakly and uniformly on compact time intervals to a family which is
not a semigroup while the bounded generators converge weakly to −I (which is a
generator).

Thus it is not clear whether Ccont is a Baire space.

Note finally that related residuality results appear in the context of positive
semigroups, see Bartoszek and Kuna [17] for recent category results for Markov
semigroups on the Schatten class C1 and Lasota, Myjak [160] for an analogous
result for stochastic semigroups.

Remark 6.11. In Section IV.3 we improve the above results using the notion of
rigidity.
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7 Stability via Lyapunov’s equation

In the last section of this chapter we characterise stability and boundedness of
C0-semigroups on Hilbert spaces via a Lyapunov equation. This goes back to
Lyapunov [166] in 1892 where he investigated uniform exponential stability of
matrix semigroups.

As in the discrete case, we use a positivity approach as, e.g., Nagel (ed.) [196,
Section D-IV.2], Nagel, Rhandi [199], Groh, Neubrander [112], Batty, Robinson
[28] and Alber [4, 5]. A different approach is in Guo, Zwart [113], see also Datko
[55]. In what follows, only the characterisation of uniform exponential stability
is classical, while the other results are recent. Our main tools are implemented
semigroups as defined in Subsection I.4.4.

7.1 Uniform exponential stability

We start with the infinite-dimensional version of Lyapunov’s result and charac-
terise uniform exponential stability.

Theorem 7.1. Let T (·) be a C0-semigroup on a Hilbert space H with generator A
and T (·) be the corresponding implemented semigroup with generator A. Then the
following assertions are equivalent.

(i) T (·) is uniformly exponentially stable.

(ii) T (·) is uniformly exponentially stable.

(iii) 0 ∈ ρ(A) and 0 ≤ R(0,A).

(iv) There exists 0 ≤ Q ∈ L(H) with Q(D(A)) ⊂ D(A∗) such that

AQ = A∗Q+QA = −I on D(A). (III.36)

(v) There exists 0 ≤ Q ∈ L(H) with Q(D(A)) ⊂ D(A∗) such that

AQ = A∗Q+QA ≤ −I on D(A).

In this case, the solution Q of (III.36) is unique and given as Q = R(0,A)I =∫∞
0 T (t)∗T (t) dt, where the integral is defined with respect to the strong operator

topology.

Equation (III.36) is called Lyapunov equation.

Proof. (i)⇔(ii) follows directly from Lemma I.4.8(a), and (ii)⇔(iii) by Theorem
I.4.9.

We now show (iii)⇒(iv). By Theorem I.4.9, (iii) implies that T (·) is uniformly
exponentially stable and the representation R(0,A)Xx =

∫∞
0 T (t)Xxdt holds for

every X ∈ L(H) and x ∈ H . Define Q ∈ L(H) by

Q := R(0,A)I = −A−1I ∈ D(A)
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which is positive semidefinite and satisfies

Qx = R(0,A)Ix =
∫ ∞

0

T (t)∗T (t)xdt

for every x ∈ H . Moreover, we have by the definition of A that A∗Q + QA =
AQ = −I, and (iv) follows.

(iv)⇒(v) is trivial, and it remains to show that (v)⇒(i).
Assume (v). We have by (v)

∫ t

0

T (s)I ds ≤ −
∫ t

0

T (s)AQds = Q− T (t)Q ≤ Q,

where all integrals are defined strongly in L(H). Since the family
(∫ t

0
T (s)I ds

)
t≥0

is monotone increasing in L(H), the integral
∫∞
0

T (s)I ds converges for the weak
operator topology, cf. Lemma I.4.1(b). In particular, the integral∫ ∞

0

〈T (s)Ix, x〉 ds =
∫ ∞

0

‖T (s)x‖2 ds

converges for every x ∈ H , and therefore T (·) is uniformly exponentially stable by
Datko’s theorem, see Theorem 2.10. �

7.2 Strong stability

The idea to characterise also strong stability via Lyapunov equations appears in
Guo, Zwart [113]. We give an alternative proof.

Theorem 7.2. Let T (·) be a C0-semigroup with generator A on a Hilbert space H,
and let T (·) be its implemented semigroup with generator A. Then the following
assertions are equivalent.

(i) T (·) is strongly stable.

(ii) limt→∞〈T (t)Sx, x〉 = 0 for all S ∈ L(H) and x ∈ H.

(iii) For every a > 0 there exist (unique) 0 ≤ Qa, Q̃a ∈ L(H) with Qa(D(A)) ⊂
D(A∗) and Q̃a(D(A∗)) ⊂ D(A) satisfying

(A− aI)∗Qa +Qa(A− aI) = −I on D(A),
(A− aI)Q̃a + Q̃a(A− aI)∗ = −I on D(A∗)

such that

lim
a→0+

a〈Qax, x〉 = 0 and sup
a>0

a〈Q̃ax, x〉 <∞ for all x ∈ H. (III.37)
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In this case,

Qa = R(a,A)I =
∫ ∞

0

e−atT (t)∗T (t) dt, (III.38)

Q̃a = R(a,A∗)I =
∫ ∞

0

e−atT (t)T (t)∗ dt, (III.39)

where the integrals are defined strongly.

Proof. (ii)⇒(i) follows directly from 〈T (t)Ix, x〉 = ‖T (t)x‖2.
(i)⇒(ii): Let x ∈ H and S ∈ L(H)sa. Then there is a constant c > 0 such

that −cI ≤ S ≤ cI. This implies |〈T (t)Sx, x〉| ≤ c|〈T (t)Ix, x〉| = c‖T (t)x‖2. By
(i) we thus have limn→∞〈T (t)Sx, x〉 = 0 for every S ∈ L(H)sa and hence for every
S ∈ L(H).

We prove (i)⇔(iii) simultaneously. Assume that (i) or (iii) holds. From The-
orem 7.1 applied to the semigroups (e−atT (t))t≥0 we know that the rescaled
Lyapunov equations in (iii) are satisfied by (the unique) Qa := R(a,A)I =∫∞
0
e−atT ∗(t)T (t) dt, where the integral is defined strongly on H . Therefore we

have
〈Qax, x〉 =

∫ ∞

0

e−at‖T (t)x‖2 dt.

Analogously, Q̃a := R(a,A∗)I and

〈Q̃ax, x〉 =
∫ ∞

0

e−at‖T (t)∗x‖2 dt.

The condition Q̃a(D(A∗)) ⊂ D(A) follows from D(A∗∗) = D(A) and Theorem 7.1
(iv). By Lemma I.2.6 we have that (III.37) is equivalent to

lim
t→∞

1
t

∫ t

0

‖T (s)x‖2 ds = 0 and sup
t>0

1
t

∫ t

0

‖T (s)∗x‖2 ds <∞

for all x ∈ H . By Theorem 3.7 for p = q = 2 this is equivalent to strong stability
of T (·), and the proof is finished. �
Remark 7.3. By the above proof, one can replace “=” by “≤” in the rescaled
Lyapunov equations in (iii).

7.3 Boundedness

We now characterise boundedness of C0-semigroups on Hilbert spaces via Lya-
punov equations, see Guo, Zwart [113] for the result and a different proof.

Theorem 7.4. Let T (·) be a C0-semigroup on a Hilbert space H. Then the following
assertions are equivalent.

(i) T (·) is bounded.
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(ii) For every a > 0 there exist (unique) 0 ≤ Qa, Q̃a ∈ L(H) with Qa(D(A)) ⊂
D(A∗) and Q̃a(D(A∗)) ⊂ D(A) such that

(A− aI)∗Qa +Qa(A− aI) = −I on D(A),
(A− aI)Q̃a + Q̃a(A− aI)∗ = −I on D(A∗)

with

sup
a>0

a〈Qax, x〉 <∞ and sup
a>0

a〈Q̃ax, x〉 <∞ ∀x ∈ H. (III.40)

In this case, Qa and Q̃a satisfy representations (III.38) and (III.39), respectively,
where the integrals are defined strongly.

The proof is analogous to the one of Theorem 7.2 using Theorem 1.6 instead
of Theorem 3.7. Moreover, one can replace “= −I” by “≤ −I” in both equalities
in (ii) as well. Moreover, one can replace (III.40) by the condition used in Guo,
Zwart [113]

sup
a>0

a‖Qa‖ <∞ and sup
a>0

a‖Q̃a‖ <∞

which is equivalent to (III.40) by the polarisation identity and the uniform bound-
edness principle.

Final remark

As in the discrete case, see Section II.6, weak stability is much more delicate to
treat. The main problem occurs again when T (·) is a unitary group.

Open question 7.5. Is it possible to characterise weak stability of C0-semigroups
on Hilbert spaces via some kind of Lyapunov equations?



Chapter IV

Connections to ergodic and
measure theory

Ergodic theory has motivated important notions and results in operator theory
such as, e.g., the mean ergodic theorem. In this chapter we connect stability of
operators and C0-semigroups back to analogous notions in harmonic analysis and
ergodic theory. In the last section we describe “typical” asymptotics of discrete
and continuous semigroups using rigidity, a notion well-known in these two areas.

1 Stability and the Rajchman property

In this section we show parallels between operator theory and measure theory. It
turns out that weak stability of operators and C0-semigroups has a direct analogue
in measure theory called the Rajchman property.

Rajchman measures are certain measures on the unit circle or on the real line
(or, more generally, on a locally compact abelian group). Starting his investigation
in 1922, Rajchman was motivated by questions on the uniqueness of trigonometric
series. Since then many people have worked on Rajchman measures (see, e.g.,
Rajchman [216, 217], Milicer-Grużewska [185], Lyons [174, 175, 176, 177, 178],
Bluhm [34], Koerner [151], Goldstein [98, 99], Ransford [218]), and we refer to
Lyons [179] for a historical overview.

1.1 From stability to the Rajchman property and back

We now introduce the Rajchman property for measures and relate it to weak
stability of unitary operators and semigroups.
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Discrete case

We first consider an example which will help us to understand the general situation.

Example 1.1. Let μ be some probability measure on the unit circle Γ and consider
the multiplication operator T on the space H := L2(Γ, μ) defined by

(Tf)(z) := zf(z), z ∈ Γ.

Then T is unitary, hence not strongly stable, and we are interested in its weak
stability.

Since z ∈ Pσ(T ) if and only if μ({z}) > 0, the Jacobs–Glicksberg–de Leeuw
decomposition (Theorem I.1.15) implies the following equivalence.

T is almost weakly stable ⇐⇒ μ is a continuous measure, i.e.,
μ({z}) = 0 for all z ∈ Γ.

To characterise weak stability, we first observe that

〈T nf, f〉 =
∫ 2π

0

eins|f(eis)|2 dμ(s)

for every f ∈ H , where we identify Γ with [0, 2π]. Therefore, if T is weakly stable
and for f = 1, we obtain that the Fourier coefficients μ̂n of μ must satisfy

μ̂n :=
∫ 2π

0

eins dμ(s) → 0 as n→ ∞. (IV.1)

Conversely, assume that condition (IV.1) holds. Take f, g defined by f(s) := eims

and g(s) := eils and observe that

〈T nf, g〉 =
∫ 2π

0

ei(n+m−l)s dμ(s) → 0 as n→ ∞.

By the standard linearity and density argument we obtain limn→∞〈T nf, g〉 = 0
for every f, g ∈ L2(Γ, μ), i.e., T is weakly stable.

Note that a unitary operator is weakly stable if and only if its inverse is,
hence in condition (IV.1) we can also take n→ −∞.

This and Theorem II.4.1 prove the following proposition (see Lyons [175] for
the first equivalence in (a)).

Proposition 1.2. For the operator T defined above, the following holds.

(a) T is weakly stable ⇐⇒ limn→∞ μ̂n = 0 ⇐⇒ lim|n|→∞ μ̂n = 0.

(b) T is almost weakly stable ⇐⇒ μ is continuous ⇐⇒ limj→∞ μ̂nj = 0 for some
nj → ∞ ⇐⇒ limj→∞ μ̂nj = 0 for some {nj}∞j=1 with density 1.
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Remark 1.3. The fact that a measure μ is continuous if and only if its Fourier
coefficients converge to zero on a subsequence of N (or, equivalently, of Z) with
density 1 also follows from Wiener’s lemma, see e.g. Katznelson [146, p. 42], and
Lemma II.4.2.

Measures satisfying (a) in the above proposition were given their own name.

Definition 1.4. A Radon measure on Γ is called Rajchman if its Fourier coefficients
converge to zero.

Proposition 1.2 states that the operator T is weakly stable if and only if the
measure μ is Rajchman.

For the properties of Rajchman measures we refer to Lyons [175, 179]. We
only remark that every absolutely continuous measure is Rajchman by the Rie-
mann-Lebesgue lemma and every Rajchman measure is continuous by Wiener’s
lemma, but none of the converse implications holds. The first example of a singu-
lar Rajchman measure was a modified Cantor-Lebesgue measure constructed by
Menshov [184] in 1916. Not absolutely continuous Rajchman measures with re-
markable properties have been constructed later, see, e.g., Bluhm [34] and Körner
[151]. On the other side, the classical Cantor-Lebesgue middle-third measure is an
example of a continuous measure which is not Rajchman.

By our considerations above, each continuous non-Rajchman measure μ on
Γ induces an almost weakly but not weakly stable unitary operator on Lp(Γ, μ).

By the spectral theorem (see e.g. Conway [52, Theorem IX.4.6]), one can
reduce the general situation to the previous example.

Indeed, consider a contraction T on a Hilbert space H . By Theorem III.4.7,
its restriction T1 to the subspace H1 := {x : ‖T nx‖ = ‖T ∗nx‖ = ‖x‖ ∀n ∈ N} is
unitary and its restriction to H⊥

1 is weakly stable. So T is weakly stable if and
only if T1 is weakly stable.

We now apply the spectral theorem to the unitary operator T1 and obtain,
for each x ∈ H1, a measure μx on Γ such that the restriction of T to lin{T nx :
n = 0, 1, 2, . . .} is isomorphic to the multiplication operator Mzf(z) := zf(z) on
L2(Γ, μx). So we are in the context of Example 1.1 and see that

lim
n→∞

T nx = 0 weakly ⇐⇒ μx is Rajchman.

Thus we have the following characterisation of stability of unitary operators via
spectral measures.

Proposition 1.5. Let H be a Hilbert space with orthonormal basis S and U be a
unitary operator on H. Then U is weakly stable if and only if the spectral measures
μx are Rajchman for every x ∈ S. Moreover, U is almost weakly stable if and only
if μx is continuous for every x ∈ S.

This gives a measure theoretic approach to weak stability of operators. How-
ever, since there is no simple characterisation of Rajchman measures, this approach
is difficult to use in concrete situations.
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Continuous case

We now relate weak stability of C0-semigroups to the Rajchman property of mea-
sures on the real line. The results are analogous to the discrete case discussed in
the previous subsection.

We again begin with an example which is typical for the general situation.

Example 1.6. Let μ be a probability measure on R and, on the space H :=
L2(R, μ), take the multiplication operator

(Af)(s) := isf(s), s ∈ R,

with its maximal domain D(A) := {f ∈ H : g ∈ H for g(s) := isf(s)}. The
C0-group T (·) generated by A is

(T (t)f)(s) := eistf(s), s, t ∈ R, f ∈ H.

It is unitary and hence not strongly stable, but we can ask for weak or almost
weak stability.

Note that is ∈ Pσ(A) if and only if μ({s}) > 0 and the Jacobs–Glicksberg–de
Leeuw decomposition (Theorem I.1.19) implies

T (·) is almost weakly stable ⇐⇒ μ is continuous, i.e., μ({s}) = 0 ∀s ∈ R.

On the other hand, we see that

〈T (t)f, f〉 =
∫ ∞

−∞
eist|f(s)|2dμ(s)

holds for every f ∈ H . Therefore, if T (·) is weakly stable, then

Fμ(t) :=
∫ ∞

−∞
eist dμ(s) → 0 as t→ ∞, (IV.2)

where Fμ denotes the Fourier transform of μ.
Conversely, if (IV.2) holds, then limt→∞〈T (t)f, f〉 = 0 for every f having

constant absolute value. Since the linear span of {ein·}∞n=−∞ is dense in H and
T (·) is contractive, limt→∞〈T (t)f, f〉 = 0 for every f ∈ H , so by the polarisation
identity T (·) is weakly stable. Note further that a unitary group is weakly stable
for t→ +∞ if and only if it is weakly stable for t→ −∞. This proves the following
proposition (see Lyons [175]).

Proposition 1.7. The following assertions hold for the above semigroup T (·).
(a) T (·) is weakly stable ⇐⇒ limt→∞ Fμ(t) = 0 ⇐⇒ lim|t|→∞ Fμ(t) = 0.

(b) T (·) is almost weakly stable ⇐⇒ μ is continuous ⇐⇒ limj→∞ Fμ(tj) = 0 for
some |tj | → ∞ ⇐⇒ lim|t|→∞, t∈M Fμ(t) = 0 for some M ⊂ R with density
1.
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As before, a finite measure on R is called Rajchman if its Fourier transform
converges to zero at infinity.

We refer to Lyons [175, 179] and Goldstein [98, 99] for a brief overview on
Rajchman measures on the real line and their properties (the second author uses
the term “Riemann–Lebesgue measures”). We just mention that, as in the dis-
crete case, absolutely continuous measures are always Rajchman by the Riemann–
Lebesgue lemma, and all Rajchman measures are continuous by Wiener’s theorem.
However, there are continuous measures which are not Rajchman and Rajchman
measures which are not absolutely continuous (see Lyons [179] and Goldstein [99]).

It is now a consequence of the considerations above that each continuous non-
Rajchman measure gives rise to an almost weakly but not weakly stable unitary
C0-group. For a concrete example of a unitary group with bounded generator
whose spectral measures are not Rajchman see Engel, Nagel [78, p. 316].

Finally, we can connect Rajchman measures on R to Rajchman measures on
Γ (as defined in Example 1.1). Indeed, for a probability measure μ on R take its
image ν under the map s 	→ eis. Then μ is Rajchman if and only if ν is so.

Using the spectral theorem for unitary operators on Hilbert spaces, questions
concerning weak (and almost weak) stability of C0-semigroups can be reduced to
the previous example.

Indeed, consider an arbitrary contraction semigroup T (·) on a Hilbert space
H . By Theorem III.4.7 the restriction T1(·) of T (·) to the subspace W := {x :
‖T (t)x‖ = ‖T ∗(t)x‖ = ‖x‖ ∀t ≥ 0} is unitary and the restriction to W⊥ is
weakly stable. In order to check weak stability, it remains to investigate the unitary
(semi)group T1(·).

Applying the spectral theorem to A1 we obtain for each x ∈ H1 a measure
μx on R such that the restriction of A1 to lin{T (t)x : t ≥ 0} is isomorphic to the
multiplication operator Misf(s) := isf(s) on L2(R, μx). By Example 1.6, we see
that

lim
t→∞

T (t)x = 0 weakly ⇐⇒ μx is Rajchman.

Note further that by Theorem 5.1 T (·) is almost weakly stable if and only if μx is
continuous for every x. So we have the following.

Proposition 1.8. A unitary C0-group U(·) on a Hilbert space H with orthonormal
basis S is weakly stable if and only if μx is Rajchman for every x ∈ S. Moreover,
U(·) is almost weakly stable if and only if μx is continuous for every x ∈ S.

1.2 Category result, discrete case

Inspired by the connection of stability and the Rajchman property, one can ask
whether results analogous to the category results for operators and C0-semigroups
(see Sections II.5 and III.6) hold for measures, i.e., whether a “typical” Radon
measure is continuous and not Rajchman for some appropriate topology. In fact,
a much stronger fact holds, see also Nadkarni [193, Chapter 7].
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Denote by M the set of all Radon probability measures on Γ. On this set we
consider the weak∗ topology, i.e., limn→∞ μn = μ if and only if limn→∞

∫
Γ
f dμn =∫

Γ f dμ for every f ∈ C(Γ) or, equivalently, limn→∞ μn(A) = μ(A) for every
open set A ⊂ Γ. Since M is a closed subset of the closed unit ball of the dual
space (C(Γ))′ endowed with the weak∗ topology, it is a complete metric (and also
compact) space and hence a Baire space.

In the following we identify Γ with [0, 1) and a measure μ on Γ with its
canonical image on [0, 1] again denoted by μ with convention μ({0}) = μ({1}).
Further we write Mrat := conv{δλ : λ ∈ Q ∩ [0, 1]}.

The following well-known approximation property will play a role later.

Proposition 1.9. The set Mrat is dense in M.

Proof. Take μ ∈ M, ε > 0, n ∈ N, and arbitrary open sets A1, . . . , An ⊂ [0, 1]. We
have to find μr ∈ Mrat such that |μ(Aj)−μr(Aj)| < ε holds for every j = 1, . . . , n.
It suffices to prove the statement if all Aj are disjoint open intervals of [0, 1]. We
now define for some aj ∈ Aj ∩ Q

μr := μ(A1)δa1 + . . .+ μ(An)δan + (1 − μ(A1) − . . .− μ(An))δ0

Then μr ∈ Mrat and μ(Aj) = μr(Aj) for every j = 1, . . . , n. �

We will also need an analogous statement for the set of all continuous mea-
sures denoted by Mcont.

Proposition 1.10. The set Mcont is dense in M.

Proof. Let μ ∈ M be arbitrary, ε > 0 and f1, . . . , fn ∈ Cper([0, 1]). We have
to find a continuous probability measure ν with |〈fj , (μ − ν)〉| < ε for every
j = 1, . . . , n. Denote by μcont the continuous and by μdiscr the discrete component
of μ, assuming μdiscr �= 0. Denote the set of atoms of μdiscr by {sj} which is at most
countable. Moreover, by

∑
j μ({sj}) ≤ 1 we can assume without loss of generality

that this set is finite. (Otherwise change the measure of the atoms with big indices
appropriately).

Fix sj . Since f1, . . . , fn are continuous, there exists a > 0 such that

|fl(sj) −
1
a

∫ sj+a

sj

fl dλ| < ε ∀l = 1, . . . , n,

where λ denotes Lebesgue’s measure. (If sj = 1, we take
∫ 1

1−a fl dμ instead of∫ sj+a

sj
fl dλ.) Moreover, we may assume that the intervals [sj , sj +a] (respectively,

[1 − a, 1]) are disjoint.
Define now νj := μ({sj})

a 1[sj ,sj+a]λ and ν := μcont +
∑

j νj . Then ν is con-
tinuous and ν([0, 1]) = μcont([0, 1]) +

∑
j μ({sj}) = μ([0, 1]) = 1. Moreover, for
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l = 1, . . . , n we have

|〈fl, (μ− ν)〉| = |〈fl, (μdiscr −
∑

j

νj)〉| ≤
∑

j

∣∣∣∣∣fl(sj) −
1
a

∫ sj+a

sj

fl dλ

∣∣∣∣∣μ({sj})

< ε
∑

j

μ({sj} ≤ ε,

and the proposition is proved. �
We now introduce a class of measures having a much stronger property than

being non-Rajchman.

Definition 1.11. A probability measure μ on the unit circle Γ is called rigid if its
Fourier coefficients satisfy limj→∞ μ̂nj = 1 for some subsequence {nj}∞j=1 ⊂ N.
Analogously, μ is called λ-rigid for some λ ∈ Γ if there exists an increasing sequence
{nj}∞j=1 ⊂ N such that limj→∞ μ̂nj = λ. We finally call a measure Γ-rigid if it is
λ-rigid for every λ ∈ Γ.

Note that, μ being a probability measure, one always has |μ̂n| ≤ 1 for all
n ∈ Z, so λ-rigidity is a kind of extremal property.

Remark 1.12. 1) For any λ ∈ Γ, λ-rigidity implies rigidity. This follows from
1 ∈ {λn : n ∈ N} and the fact that the limit sets are closed.

2) If λ is irrational, i.e., satisfying λ /∈ eiπQ, then every λ-rigid measure is
automatically Γ-rigid, since {λn : n ∈ N} is dense in Γ.

3) As a converse to 1), there is an elegant argument how to produce λ-rigid
(and hence Γ-rigid if λ is irrational) measures from a given rigid one via a
rescaling argument, see Nadkarni [193, p. 50].

The easiest example of rigid measures are point measures. Indeed, a point
measure δλ is always rigid, and it is Γ-rigid if and only if λ is irrational. Examples
of singular rigid measures will be briefly discussed in Subsection 2.2.

We are now ready to prove the following category result due to Choksi,
Nadkarni [51], see also Nadkarni [193, Chapter 7].

Theorem 1.13. The set of all continuous rigid measures is residual in M. In
particular, the set MR of all Rajchman measures is of first category, while the set
Mcont of all continuous measures is residual.

Proof. We start by proving that the set Mrig of all rigid measures is residual.
Consider the sets

Mk,n = {μ : |μ̂n − 1| < 1
k
},

where μ̂n is the n-th Fourier coefficient of μ. These sets are open for the weak∗

topology by the definition of Fourier coefficients. Define furthermore the sets

Nk,l := ∪n≥lMk,n = {μ : |μ̂n − 1| < 1
k

for some n ≥ l}
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which are open as well. So we have that

Mrig = ∩∞
k=1Nk,l

is a Gδ set. Moreover, since Mrat ⊂ Mrig and Mrat is dense in M by Proposition
1.9, Mrig is residual as a dense countable intersection of open sets.

We now prove that Mcont is residual. Consider the countable set Y :=
linQ{en : n ∈ Z} of all linear combinations of {en} with rational coefficients,
where en(s) := e2πins. By the Weierstrass approximation theorem, Y is dense in
Cper([0, 1]). We numerate the elements of Y by {fj}∞j=1.

Define the open sets

Wjkn := {μ ∈ M : |〈en, fjμ〉| <
1
k
}

(here and later fμ stands for the measure f dμ) and

Wjk :=
∞⋃

n=1

Wjkn = {μ ∈ M : |〈en, fjμ〉| <
1
k

for some n ∈ N}.

We show

Mcont =
∞⋂

j,k=1

Wjk. (IV.3)

By Proposition 1.2 we have the inclusion “ ⊂”. To show the converse consider
μ /∈ Mcont. Then there exists s ∈ [0, 1] with μ({s}) =: d > 0. For f := 1{s} ∈
L1([0, 1], μ) we obtain

〈en, fμ〉 = e2πinsd.

Since {fj}∞j=1 is dense in L1([0, 1], μ) (recall the convention μ({0}) = μ({1})),
there is some j ∈ N such that

∫ 1

0
|fj − f | dμ ≤ d/2. This implies

|〈en, fjμ〉| ≥ |〈en, fμ〉| − |〈en, (f − fj)μ〉| ≥ d− d

2
=
d

2

for all n ∈ Z. So for an arbitrary fixed k > 2/d we obtain that μ /∈ Wjk, therefore
μ /∈ ∩∞

j,k=1Wk and (IV.3) is proved. Thus Wcont is a dense countable intersection
of open sets by the above and Proposition 1.10. This proves the assertion. �

Analogously to the first part of the above proof and using a delicate rescaling
argument mentioned in Remark 1.12, one can prove that for λ ∈ Γ, all λ-rigid mea-
sures are residual in M as well, see Nadkarni [193, 7.17]. Using this and Remark
1.12 2), we obtain the following result.

Theorem 1.14. The set of measures μ satisfying

(a) μ is continuous, i.e., limj→∞ μ̂nj = 0 for some {nj} ⊂ Z with density 1,
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(b) Γ is contained in the limit set of the Fourier coefficients of μ

is residual in M for the weak∗ topology.

Remark 1.15. One can add several other interesting properties to the above list of
“typical” properties for measures. For example, the measures which are orthogonal
to a given one are residual, which implies in particular that singular measures
are residual. For a detailed discussion of this subject we refer to Nadkarni [193,
Chapter 7].

1.3 Category result, continuous case

Analogous phenomena hold for probability measures on the real line. By MR we
denote the set of all probability measures μ on R endowed with the weak∗ topology,
i.e., μn → μ if and only if 〈f, μn〉 → 〈f, μ〉 for every f ∈ Cb(R). Since MR is a
closed subset of the unit ball in (Cb(R))′ for the weak∗ topology, it is a complete
metric (and compact) space.

By just the same arguments as in the discrete case, we obtain the following.

Theorem 1.16. The set of measures μ satisfying

(a) μ is continuous,

(b) μ is Γ-rigid, i.e., Γ is contained in the limit set of the Fourier transform of
μ

is residual in MR for the weak∗ topology. In particular, the set of all Rajchman
measures on R is of first category, while the set of all continuous measures is
residual.

In Example 3.21 b) below we briefly discuss abstract examples of such mea-
sures coming from weakly mixing Γ-rigid automorphisms.

2 Stability and mixing

We now turn our attention to the analogue of stability in ergodic theory.
Ergodic theory deals with a probability space (Ω,Σ, μ) and a measure pre-

serving transformation (m.p.t.) ϕ : Ω → Ω, i.e., a measurable map satisfying
μ(ϕ−1(B)) = μ(B) for all B ∈ Σ. The continuous analogue is a measure pre-
serving semiflow (m.p. semiflow) (ϕt)t≥0, where each ϕt is a m.p.t., the function
(ω, t) 	→ ϕt(ω) is measurable and ϕ0 = Id, ϕt+s = ϕtϕs holds for all t, s ≥ 0. We
refer to Cornfeld, Fomin, Sinai [53], Krengel [154], Petersen [212], Halmos [118],
or Tao [240, Chapter II] for basic facts and further information.

To translate the above concepts into operator theoretic language, fix 1 ≤ p <
∞ and define X := Lp(Ω,Σ, μ) and T ∈ L(X) by Tf := f ◦ϕ, f ∈ Lp(Ω, μ). Then
T is a linear operator on X which is isometric since, ϕ being measure preserving,

‖Tf‖p =
∫

Ω

|f(ϕ(ω))|p dμ =
∫

Ω

|f(ω)|p dμ = ‖f‖p.
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Thus, for ϕ invertible and p = 2, we obtain a unitary operator T . Note that the
operator T has relatively weakly compact orbits for p > 1 by the theorem of
Banach-Alaoglu and for p = 1 by Example I.1.7 (b) with u = 1.

Analogously, for a m.p. semiflow (ϕt) define (T (t))t≥0 by T (t)f := f ◦ ϕt,
f ∈ Lp(Ω, μ). Then (T (t))t≥0 is a semigroup of linear isometries which is strongly
continuous by Krengel [154], §1.6, Thm. 6.13. Thus, if one/each ϕt is invertible
(i.e., we start with a flow) and p = 2, then T (·) becomes a unitary C0-group.
Moreover, T (·) is relatively weakly compact (for p = 1 use again Example I.1.7
(b) with u = 1).

We call T the induced operator and T (·) the induced C0-semigroup. This oper-
ator (and each operator of the C0-semigroup) has remarkable additional properties:
it is multiplicative on the Banach algebra L∞(Ω, μ) and positive on each of the
Banach lattices Lp(Ω, μ), i.e., it maps positive functions into positive functions.
This implies, as an easy consequence of the Perron–Frobenius theory for such op-
erators (see Schaefer [227, Section V.4]), that the boundary spectrum σ(T ) ∩ Γ
as well as the boundary point spectrum Pσ(T ) ∩ Γ are cyclic subsets of Γ, i.e.,
λ ∈ σ(T ) ∩ Γ implies λn ∈ σ(T ) ∩ Γ for all n ∈ Z, and analogously for Pσ(T ).

2.1 Ergodicity

We begin with ergodicity, the basic notion in ergodic theory.

Discrete case

For a m.p.t. ϕ on (Ω,Σ, μ), a set B ∈ Σ is called ϕ-invariant if μ(ϕ−1(B)�B) = 0,
and ϕ is ergodic if for every ϕ-invariant set B either μ(B) = 0 or μ(B) = 1 holds.
In other words, ergodic transformations leave no non-trivial set invariant.

Translating this property into a property of the induced operator leads to
the following.

Theorem 2.1. A m.p.t. ϕ is ergodic if and only if the induced operator satisfies
FixT = 〈1〉. In this case every eigenvalue of T is simple.

Proof. Note first that the constant functions are fixed under T . Assume FixT =
〈1〉. If B ∈ Σ is ϕ-invariant, we obtain T1B = 1B, hence 1B = 1 or 1B = 0
by assumption, and thus ϕ is ergodic. Assume now that ϕ is ergodic and take
f ∈ FixT . Since each set Br := {ω ∈ Ω : Re f(ω) > r}, r ∈ R, is ϕ-invariant,
it must be trivial, hence Re f is constant a.e.. Analogously, Im f is constant and
thus f ∈ 〈1〉. The first part of the theorem is proved.

To show the second part take λ ∈ Pσ(T ) and 0 �= f ∈ X with Tf = f ◦ ϕ =
λf . Then Tf = λ · f and, since T is isometric, λ ∈ Γ and therefore T |f | = |f |.
Thus |f | is a non-zero constant function by FixT = 〈1〉. Assume |f | = 1 and
take another eigenfunction g corresponding to the eigenvalue λ with |g| = 1. Then
T (gf) = gf implies gf = 1, so f = g and λ is simple. �
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By the mean ergodic theorem applied to the induced operator T , ergodicity
can be reformulated into an asymptotic property of the transformation ϕ and the
operator T .

Corollary 2.2. For a m.p.t. ϕ on (Ω,Σ, μ), 1 ≤ p < ∞, and the induced operator
T on X = Lp(Ω, μ), the following assertions are equivalent.

(i) ϕ is ergodic.

(ii) lim
N→∞

1
N + 1

N∑
n=0

μ(ϕ−n(B) ∩ C) = μ(B)μ(C) for every B,C ∈ Σ.

(iii) lim
N→∞

1
N + 1

N∑
n=0

T nf =
∫

Ω

f dμ · 1 for every f ∈ X.

Proof. (i)⇒(iii) As mentioned above, T has relatively weakly compact orbits and
is therefore mean ergodic by Theorem I.2.9. If P is the mean ergodic projection
of T and f ∈ X , we obtain by ergodicity of ϕ that Pf = C1 for some constant C
by Proposition I.2.8. To determine this constant observe that

lim
N→∞

1
N + 1

N∑
n=0

∫
Ω

T nf dμ =
∫

Ω

f dμ,

where we used that ϕ preserves the measure μ. This implies C =
∫
Ω fdμ, and the

claim follows.
(iii)⇒(ii) For B,C ∈ Σ and f := 1B, we have by (iii),

1
N + 1

N∑
n=0

μ(ϕ−n(B) ∩C) =
1

N + 1

N∑
n=0

∫
C

1ϕ−n(B) dμ =
1

N + 1

N∑
n=0

∫
C

T nf dμ

→
∫

Ω

1B dμ

∫
C

1 dμ = μ(B)μ(C)

as N → ∞.
To show (ii)⇒(i), take B with μ(ϕ−1(B)�B) = 0. Property (ii) implies

μ(B)2 = lim
N→∞

1
N + 1

N∑
n=0

μ(ϕ−n(B) ∩B) = μ(B).

Hence either μ(B) = 0 or μ(B) = 1 showing ergodicity of ϕ. �
It follows from the proof that it suffices to take C = B in (ii).

Remark 2.3. One can interpret (iii) as “time mean equals space mean” which is
a version of the famous ergodic hypothesis by Boltzmann from around 1880 (see,
e.g., Halmos [118, Introduction] and [68, Chapter 1]).
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Continuous case

Ergodicity for semiflows is defined analogously, and we state the relevant properties
without proof, see, e.g., Cornfeld, Fomin, Sinai [53, §1.2, 1.4].

A measure preserving semiflow (ϕt)t≥0 is called ergodic if the only invariant
sets under all ϕt are trivial, i.e., if μ(ϕ−1

t (B)�B) = 0 for every t ≥ 0 implies
either μ(B) = 0 or μ(B) = 1. Again, ergodicity can be characterised in terms of
the induced C0-semigroup T (·).

Theorem 2.4. Let ϕ be a measure preserving semiflow and T (·) the induced C0-
semigroup with generator A on Lp(Ω, μ), 1 ≤ p < ∞. Then ϕ is ergodic if and
only if FixT (·) :=

⋂
t≥0 FixT (t) = kerA = 〈1〉. In this case every eigenvalue of A

is simple.

Analogously to the discrete case, mean ergodicity of T (·) allows the following
characterisation of ergodicity of (ϕt)t≥0.

Corollary 2.5. For a measure preserving semiflow (ϕt)t≥0 and the induced semi-
group T (·) on Lp(Ω, μ), 1 ≤ p <∞, the following assertions are equivalent.

(i) (ϕt)t≥0 is ergodic.

(ii) lim
t→∞

1
t

∫ t

0

μ(ϕ−1
s (B) ∩ C)ds = μ(B)μ(C) for every B,C ∈ Σ.

(iii) lim
t→∞

1
t

∫ t

0

T (s)fds =
∫

Ω

fdμ · 1 for every f ∈ Lp(Ω, μ).

Again one can take C = B in (ii).

We see that, in the discrete and in the continuous case, ergodicity is equivalent
to an asymptotic property of ϕ expressed by assertions (ii) and (iii) in Corollaries
2.2 and 2.5. Property (ii) means that ϕ−1

t (A) becomes “equidistributed” in the
Cesàro sense. Stronger asymptotic properties are discussed below.

2.2 Strong and weak mixing

The so-called “mixing properties” in ergodic theory are closely related to weak
and almost weak stability as studied in Sections II.4 and III.5. We explain this
relation now.

Discrete case

A measure preserving transformation ϕ on a probability space (Ω,Σ, μ) is called
strongly mixing if

lim
n→∞

μ(ϕ−n(B) ∩ C) = μ(B)μ(C)
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for any two measurable sets B,C ∈ Σ. The transformation ϕ is called weakly
mixing if

lim
N→∞

1
N + 1

N∑
n=0

|μ(ϕ−n(B) ∩ C) − μ(B)μ(C)| = 0

holds for all B,C.
These concepts play an important role in ergodic theory, and we refer to

Cornfeld, Fomin, Sinai [53], Krengel [154], Petersen [212], Walters [254] or Halmos
[118] for further information.

Strong mixing implies weak mixing and weak mixing implies ergodicity by
Corollary 2.2, but the converse implications do not hold in general. A famous result
of Halmos [116] and Rohlin [221] states that a “typical” m.p.t. (for the strong
operator topology for the induced operators) is weakly but not strongly mixing.
However, explicit examples of weakly but not strongly mixing transformations are
not easy to construct, see e.g. Lind [171] for a concrete example and Petersen [212,
p. 209] for a method of constructing such transformations. An important class of
weakly but not strongly mixing transformations are so-called rigid transformations
discussed briefly in Example 3.12 b) below.

We first translate the above concepts into the operator-theoretic language
(see, e.g., Halmos [118, pp. 37–38]).

Proposition 2.6. Let ϕ be a m.p.t. on a probability measure space (Ω,Σ, μ), 1 ≤
p < ∞, and let T be the induced linear operator on X := Lp(Ω, μ) defined by
Tf := f ◦ ϕ. Denote further by P the projection given by Pf :=

∫
Ω
f dμ · 1,

f ∈ X. Then the following assertions hold.

(a) ϕ is strongly mixing if and only if

lim
n→∞

〈T nf, g〉 = 〈Pf, g〉 for all f ∈ X, g ∈ X ′.

(b) ϕ is weakly mixing if and only if

lim
N→∞

1
N + 1

N∑
n=0

|〈T nf, g〉 − 〈Pf, g〉| = 0 for all f ∈ X, g ∈ X ′.

Proof. (a) By definition, ϕ is strongly mixing if and only if

lim
n→∞

∫
Ω

T n1B · 1C dμ =
∫

Ω

1B dμ ·
∫

Ω

1C dμ

for every B,C ∈ Σ, which, by a standard density argument in the Banach space
X , is equivalent to

lim
n→∞

∫
Ω

T nf · g dμ =
∫

Ω

f dμ ·
∫

Ω

g dμ
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for every f ∈ X and g ∈ X ′.
(b) Analogously to the above, ϕ is weakly mixing if and only if

lim
N→∞

1
N + 1

N∑
n=0

|〈T nf, g〉 − 〈Pf, g〉| = lim
N→∞

1
N + 1

N∑
n=0

|〈(T n − P )f, g〉| = 0

holds for every f := 1B and g := 1C with B,C ∈ Σ. By the triangle inequality, this
is equivalent to the same property for every f, g in the linear hull of characteristic
functions and, by the standard density argument, for every f ∈ X and g ∈ X ′. �

In order to relate mixing to stability properties, i.e., convergence to 0, we
only need to eliminate the constant functions which are always fixed under T . To
this end consider the decomposition X = 〈1〉 ⊕X0, where

X0 :=
{
f ∈ X :

∫
Ω

f dμ = 0
}

is closed and T -invariant. Note that the restriction T0 := T |X0 has relatively
weakly compact orbits as well.

The following connects mixing properties of ϕ to stability properties of T0

and follows directly from the above proposition.

Corollary 2.7. For a m.p.t. ϕ on a probability space (Ω,Σ, μ) and the corresponding
operator T0 on X0 ⊂ Lp(Ω, μ), 1 ≤ p <∞, the following assertions hold.

(a) ϕ is strongly mixing if and only if T0 is weakly stable.

(b) ϕ is weakly mixing if and only if T0 is almost weakly stable.

Remark 2.8. Every weakly but not strongly mixing transformation induces an
almost weakly but not weakly stable operator. However, as mentioned above, an
explicit example of such a transformation and hence of such an operator is not easy
to construct, see e.g. Petersen [212, Section 4.5], Example 3.12 b) and Example
3.17 below.

Continuous case

We now give the continuous analogues of the above concepts and present some
results connecting mixing flows to stable C0-semigroups.

A measure preserving semiflow (ϕt)t≥0 on a probability space (Ω,Σ, μ) is
called strongly mixing (or just mixing) if

lim
t→∞

μ(ϕ−1
t (B) ∩ C) = μ(B)μ(C)

holds for every B,C ∈ Σ. The semiflow (ϕt)t≥0 is called weakly mixing if for all
B,C ∈ Σ we have

lim
t→∞

1
t

∫ t

0

|μ(ϕ−1
s (B) ∩C) − μ(B)μ(C)| ds = 0.
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Strong mixing implies weak mixing and weak mixing implies ergodicity, but the
converse implications do not hold in general. For an example of a weakly mixing
flow which is not mixing see, e.g., Cornfeld, Fomin, Sinai [53, Chapter 14], Katok
[141], Katok, Stepin [144], Avila, Forni [11], Ulcigrai [244], Scheglov [228], Kulaga
[159] and also Example 3.21 b) below. Note that there seems to be no continuous
analogue of Halmos’ and Rohlin’s result on “typicality” of weakly but not strongly
mixing flows.

The following continuous analogue of Proposition 2.6 holds.

Proposition 2.9. Let (ϕt)t≥0 be a measurable measure preserving semiflow on a
probability measure space (Ω,Σ, μ), 1 ≤ p < ∞, and let T (·) be the induced C0-
semigroup on X = Lp(Ω, μ). Let further P be the projection given by Pf :=∫
Ω f dμ · 1, f ∈ X. Then the following assertions hold.

(a) (ϕt)t≥0 is strongly mixing if and only if

lim
t→∞

〈T (t)f, g〉 = 〈Pf, g〉 for all f ∈ X, g ∈ X ′.

(b) (ϕt)t≥0 is weakly mixing if and only if

lim
t→∞

1
t

∫ t

0

|〈T (s)f, g〉 − 〈Pf, g〉| ds = 0 for all f ∈ X, g ∈ X ′.

As before, the constant functions are fixed under the induced C0-semigroup.
So we again consider the decomposition X = 〈1〉⊕X0 for the closed and (T (t))t≥0-
invariant subspace

X0 :=
{
f ∈ X :

∫
Ω

f dμ = 0
}
.

We denote the restriction of (T (t))t≥0 to X0 by (T0(t))t≥0 and its generator by
A0. The semigroup (T0(t))t≥0 remains relatively weakly compact.

This leads to the following characterisation of mixing of (ϕt)t≥0 in terms of
stability of the semigroup (T0(t))t≥0.

Corollary 2.10. For a measure preserving semiflow (ϕt)t≥0 on a probability space
(Ω,Σ, μ), 1 ≤ p < ∞, and the corresponding semigroup T0(·) on X0 ⊂ Lp(Ω, μ),
the following assertions hold.

(a) (ϕt)t≥0 is strongly mixing if and only if T0(·) is weakly stable.

(b) (ϕt)t≥0 is weakly mixing if and only if T0(·) is almost weakly stable.

So every weakly but not strongly mixing flow yields an almost weakly but
not weakly stable C0-semigroup.
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3 Rigidity phenomena

Inspired by results in ergodic and measure theory, we now describe the “typical”
(in the Baire category sense) asymptotic behaviour of unitary, isometric and con-
tractive operators on separable Hilbert spaces using the notion of rigidity. We will
see that the “typical” behaviour is quite counterintuitive and can be viewed as
“random”: The strong limit set of the powers of a “typical” contraction contains
the unit circle times the identity operator, while most of the powers converge
weakly to zero. We also give the continuous analogue for unitary and isometric
C0-(semi)groups. This in particular generalises category results from Sections II.4
and III.5.

3.1 Preliminaries

We first define rigid and Γ-rigid operators and C0-semigroups and make some
elementary observations.

Definition 3.1. A bounded operator T on a Banach space X is called rigid if

strong- lim
j→∞

T nj = I for some subsequence {nj}∞j=1 ⊂ N.

Note that in the above definition one can remove the assumption limj→∞ nj =
∞. (Indeed, if nj does not converge to ∞, then T n0 = I for some n0 implying
T nn0 = I for every n ∈ N.)

Remark 3.2. Rigid operators have no non-trivial weakly stable orbit. In particular,
by the Foiaş–Sz.-Nagy decomposition (see Theorem II.3.9), rigid contractions on
Hilbert spaces are necessarily unitary.

As trivial examples of rigid operators take T := λI for |λ| = 1. Moreover,
arbitrary (countable) combinations of such operators are rigid as well, as the fol-
lowing proposition shows.

Proposition 3.3. Let X be a separable Banach space and let T ∈ L(X) be power
bounded with discrete spectrum, i.e., satisfying

H = lin{x ∈ X : Tx = λx for some λ ∈ Γ}.

Then T is rigid.

Proof. SinceX is separable, the strong operator topology is metrisable on bounded
sets of L(H) (take for example the metric d(T, S) :=

∑∞
j=0 ‖Tzj − Szj‖/(2j‖zj‖)

for a dense sequence {zj}∞j=1 ⊂ X \ {0}). So it suffices to show that I belongs to
the strong closure of {T n}n∈N. For ε > 0, m ∈ N and x1, . . . , xm ∈ X , we have to
find n ∈ N such that ‖T nxj − xj‖ < ε for every j = 1, . . . ,m.

Assume first that each xj is an eigenvector with ‖xj‖ = 1 corresponding to
some unimodular eigenvalue λj , and hence ‖T nxj − xj‖ = |λn

j − 1|‖x‖. Consider
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the compact group Γm and the rotation ϕ : Γm → Γm given by ϕ(z) := az for
a := (λ1, . . . , λm). By a classical recurrence theorem, see e.g. Furstenberg [92,
Theorem 1.2], there exists n such that |ϕn(1) − 1| < ε, i.e.,

|λn
j − 1| < ε for every j = 1, . . . ,m,

implying ‖T nxj − xj‖ < ε for every j = 1, . . . ,m.
Assume now 0 �= xj ∈ lin{x ∈ X : Tx = λx for some λ ∈ Γ} for all j. Then

we have xj =
∑K

k=1 cjkyk for K ∈ N, eigenvectors yk ∈ X with ‖yk‖ = 1, and
cjk ∈ C, k = 1, . . . ,K, j = 1, . . . ,m. Take ε2 := ε

K maxj,k |cjk| . By the above, there
exists n ∈ N such that ‖T nyk − yk‖ < ε2 for every k = 1, . . . ,K and therefore

‖Txj − xj‖ ≤
K∑

k=1

|cjk|‖Tyk − yk‖ < ε

for every j = 1, . . . ,m. The standard density argument covers the case of arbitrary
xj ∈ X . �

Analogously, one defines λ-rigid operators by replacing I by λI in the above
definition.

Definition 3.4. Let X be a Banach space, T ∈ L(X) and λ ∈ Γ. We call T λ-rigid
if there exists a subsequence {nj}∞j=1 ⊂ N such that

strong- lim
j→∞

T nj = λI.

Again one can remove the assumption limnj = ∞. Finally, T is Γ-rigid if T
is λ-rigid for every λ ∈ Γ.

Remark 3.5. Since every λ-rigid operator is λn-rigid for every n ∈ N, we see that λ-
rigidity implies rigidity. Moreover, λ-rigidity is equivalent to Γ-rigidity whenever λ
is irrational, i.e., λ /∈ e2πiQ. (We used the fact that for irrational λ the set {λn}∞n=1

is dense in Γ and that limit sets are always closed.)

The simplest examples are again operators of the form λI, |λ| = 1. Indeed,
T = λI is λ-rigid, and it is Γ-rigid if and only if λ is irrational.

Analogously, one can define rigidity for strongly continuous semigroups.

Definition 3.6. A C0-semigroup (T (t)t≥0) on a Banach space is called λ-rigid for
λ ∈ Γ if there exists a sequence {tj}∞j=1 ⊂ R+ with limj→∞ tj = ∞ such that

strong- lim
j→∞

T (tj) = λI.

Semigroups which are 1-rigid are called rigid, and if they are rigid for every λ ∈ Γ
they are called Γ-rigid.
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As in the discrete case, λ-rigidity for some λ implies rigidity, and λ-rigidity
for some irrational λ is equivalent to Γ-rigidity.

Remark 3.7. Again, rigid semigroups have no non-zero weakly stable orbit. This
implies by the Foiaş–Sz.-Nagy decomposition, see Theorem III.4.7, that every rigid
semigroup on a Hilbert space is automatically unitary.

The simplest examples of rigid C0-semigroups are given by T (t) = eiatI for
some a ∈ R. In this case, T (·) is automatically Γ-rigid whenever a �= 0. Moreover,
one has the following continuous analogue of Proposition 3.3.

Proposition 3.8. Let X be a separable Banach space and let T (·) be a bounded
C0-semigroup with discrete spectrum, i.e., satisfying

H = lin{x ∈ X : T (t)x = eitax for some a ∈ R and all t ≥ 0}.

Then T (·) is rigid.

So rigidity becomes non-trivial for operators (C0-semigroups) having no point
spectrum on the unit circle. Recall that for operators with relatively compact
orbits, the absence of point spectrum on Γ is equivalent to almost weak stability,
i.e.,

weak- lim
j→∞

T nj = 0 for some subsequence {nj} with density 1,

and analogously for C0-semigroups, see Theorems II.4.1 and III.5.1.
Restricting ourselves to Hilbert spaces, we will see that almost weakly stable

and Γ-rigid operators and semigroups are the rule and not just an exception.

3.2 Discrete case: powers of operators

In this section we describe the “typical” (in the Baire category sense) asymptotic
behaviour of unitary, isometric and contractive operators on separable Hilbert
spaces.

As in Section II.5, we take a separable infinite-dimensional Hilbert space H
and denote by U the set of all unitary operators on H endowed with the strong∗

operator topology. The set of all isometric operators on H with the strong operator
topology is denoted by I, and C will be the space of all contractions on H with
the weak operator topology. All these spaces are complete metric and hence Baire.

We now prove the first but basic step to describe the asymptotics of contrac-
tions.

Theorem 3.9. Let H be a separable infinite-dimensional Hilbert space. The set

M := {T : lim
j→∞

T nj = I strongly for some nj → ∞}

is residual for the weak operator topology in the set C of all contractions on H. This
set is also residual for the strong operator topology in the set I of all isometries
and in the set U of all unitary operators for the strong∗ operator topology.
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Proof. We begin with the isometric case.
Let {xl}∞l=1 be a dense subset ofH\{0}. Since one can remove the assumption

limj→∞ nj = ∞ from the definition of M , we have

M = {T ∈ I : ∃{nj}∞j=1 ⊂ N with lim
j→∞

T njxl = xl ∀l ∈ N}. (IV.4)

Consider the sets

Mk :=

{
T ∈ I :

∞∑
l=1

1
2l‖xl‖

‖T nxl − xl‖ <
1
k

for some n

}

which are open in the strong operator topology. Therefore,

M =
∞⋂

k=1

Mk

implies that M is a Gδ-set. To show that M is residual it just remains to prove
that M is dense. Since M contains all periodic unitary operators which are dense
in I by Proposition II.5.7, the assertion follows.

While for unitary operators the above arguments work as well, we need to
be more careful in the space C of all contractions.

We first show that

M = {T ∈ C : ∃{nj} ⊂ N with lim
j→∞

〈T njxl, xl〉 = ‖xl‖2 ∀l ∈ N}. (IV.5)

The inclusion “⊂” is clear. To prove the converse inclusion, assume that
limj→∞〈T njxl, xl〉 = ‖xl‖2 for each l ∈ N. By the standard density argument we
have limj→∞〈T njx, x〉 = ‖x‖2 for every x ∈ H , and strong convergence of T nj to
I follows from

‖(T nj − I)x‖2 = ‖T njx‖2 − 2Re 〈T njx, x〉 + ‖x‖2 ≤ 2(‖x‖2 − 〈T njx, x〉).

We now define

Mk :=

{
T ∈ C :

∞∑
l=1

1
2l‖xl‖2

|〈(T n − I)xl, xl〉| <
1
k

for some n

}
,

and observe again that M =
⋂

k Mk.
It remains to show that the complement M c

k of Mk is a nowhere dense set.
Since the set of periodic unitary operators Uper on H is dense in the set of all
contractions for the weak operator topology (see Proposition II.5.10), it suffices
to show Uper ∩M c

k = ∅. Assume that this is not the case, i.e., that there exists
a sequence {Tm}∞m=1 ⊂ M c

k converging weakly to a periodic unitary operator U .
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Then by Lemma II.5.11 we have limm→∞ Tm = U strongly, hence limm→∞ T n
m =

Un strongly for every n ∈ N. However, Tm ∈M c
k means that

∞∑
l=1

1
2l‖xl‖2

|〈(T n
m − I)xl, xl〉| ≥

1
k

for every n,m ∈ N.

Since T n
m converges strongly and hence weakly to Un for every n, and hence the

lth summand on the left-hand side of the above inequality is dominated by 1
2l−1

which form a sequence in l1, we obtain by letting m→ ∞ that

∞∑
l=1

1
2l‖xl‖2

|〈(Un − I)xl, xl〉| ≥
1
k

for every n,

contradicting the periodicity of U . �

We now show that one can replace I in Theorem 3.9 by λI for any λ ∈ Γ. To
this purpose we need the following modification of Proposition II.5.1.

Lemma 3.10. Let H be a Hilbert space, λ ∈ Γ and N ∈ N. Then the set of all
unitary operators U with Un = λI for some n ≥ N is dense in the set of all
unitary operators for the norm topology.

Proof. Let U be a unitary operator, λ = eiα ∈ Γ, N ∈ N and ε > 0. By the
spectral theorem U is unitarily equivalent to a multiplication operator Ũ on some
L2(Ω, μ) with

(Ũf)(ω) = ϕ(ω)f(ω), ∀ω ∈ Ω,

for some measurable ϕ : Ω → Γ := {z ∈ C : |z| = 1}.
We now approximate the operator Ũ as follows. Take n ≥ N such that

|1 − e
2πi
n | ≤ ε and define for αj := ei(α

n + 2πj
n ), j = 0, . . . , n,

ψ(ω) := αj−1, ∀ω ∈ ϕ−1({z ∈ Γ : arg(αj−1) ≤ arg(z) < arg(αj)}).

The multiplication operator P̃ corresponding to ψ satisfies P̃n = eiα. Moreover,

‖Ũ − P̃‖ = sup
ω∈Ω

|ϕ(ω) − ψ(ω)| ≤ ε

proving the assertion. �

We now describe the “typical” asymptotic behaviour of contractions (iso-
metries, unitary operators) on separable Hilbert spaces. For an alternative proof
in the unitary case based on the spectral theorem and an analogous result for
measures on Γ see Nadkarni [193, Chapter 7].

Theorem 3.11. Let H be a separable infinite-dimensional Hilbert space. Then the
set of all operators T satisfying the properties
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(1) there exists {nj}∞j=1 ⊂ N with density 1 such that

lim
j→∞

T nj = 0 weakly,

(2) for every λ ∈ Γ there exists {n(λ)
j }∞j=1 with limj→∞ n

(λ)
j = ∞ such that

lim
j→∞

T n
(λ)
j = λI strongly

is residual for the weak operator topology in the set C of all contractions. This set
is also residual for the strong operator topology in the set I of all isometries as
well as for the strong∗ operator topology in the set U of all unitary operators.

Recall that every contraction satisfying (2) is unitary, cf. Remark 3.2.

Proof. By Theorems II.5.4, II.5.9, II.5.12, operators satisfying (1) are residual in
C, I and U .

We now show that for a fixed λ ∈ Γ, the set M of all operators T satisfying
limj→∞ T nj = λI strongly for some sequence {nj}∞j=1 is residual. We again prove
this first for isometries and the strong operator topology.

Take a dense set {xl}∞l=1 of H \ {0} and observe that

M = {T ∈ I : ∃{nj} with lim
j→∞

T njxl = λxl ∀l ∈ N}.

We see that M =
⋂∞

k=1Mk for the sets

Mk :=

{
T ∈ I :

∞∑
l=1

1
2l‖xl‖

‖T nxl − λxl‖ <
1
k

for some n

}

which are open for the strong operator topology. Therefore M is a Gδ-set which
is dense by Lemma 3.10, and the residuality of M follows.

The unitary case goes analogously, and we now prove the more delicate con-
traction case. To do so we first show that

M = {T ∈ C : ∃{nj}∞j=1 with lim
j→∞

〈T njxl, xl〉 = λ‖xl‖2 ∀l ∈ N}.

As in the proof of Theorem 3.9, the non-trivial inclusion follows from

‖(T nj − λI)x‖2 = ‖T njx‖2 − 2Re 〈T njx, λx〉 + ‖x‖2

≤ 2Re (‖x‖2 − 〈T njx, λx〉) = 2Re (λ〈(λI − T nj )x, x〉).

For the sets

Mk :=

{
T ∈ C :

∞∑
l=1

1
2l‖xl‖2

|〈(T n − λI)xl, xl〉| <
1
k

for some n

}
,
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we have the equality M =
⋂∞

k=1Mk. Note again that it is not clear whether the
sets Mk are open for the weak operator topology, so we use another argument to
show that the complements M c

k are nowhere dense. By Lemma 3.10 it suffices to
show that M c

k ∩ Uλ = ∅ for the complement M c
k and the set Uλ of all unitary

operators U satisfying Un = λI for some n ∈ N. This can be shown as in the proof
of Theorem 3.9 by replacing I by λI.

Since λ-rigidity for an irrational λ implies Γ-rigidity, the proof is complete.
�

We now present basic constructions leading to examples of operators with
properties described in Theorem 3.11.

Example 3.12. a) A large class of abstract examples of Γ-rigid unitary operators
which are almost weakly stable comes from harmonic analysis, more precisely, from
Γ-rigid measures, see Subsection 1.1. Recall that λ-rigid continuous measures form
a dense Gδ (and hence a residual) set in the space of all probability measures with
respect to the weak∗ topology, see Theorem 1.14.

Take a λ-rigid measure μ for some irrational λ. The unitary operator given
by (Uf)(z) := zf(z) on L2(Γ, μ) satisfies conditions (1) and (2) of Theorem 3.11.
To show (2), it again suffices to prove that U is λ-rigid since λ is irrational. By
our assumption on μ, there exists a subsequence {nj}∞j=1 such that the Fourier
coefficients of μ satisfy limj→∞ μ̂nj = limj→∞

∫ 2π

0 einjsdμ(s) = λ, where we again
identify Γ with [0, 2π]. Thus, limj→∞〈Unjf, f〉 = λ‖f‖2 for every f ∈ L2(Γ, μ)
with absolute value 1. By

‖Unjf − λf‖2 = ‖Unjf‖2 − 2Re (λ〈Unjf, f〉) + ‖f‖2 = 2(‖f‖2 − Re (λ〈Unjf, f〉))

we see that limj→∞ Unjf = λf for every character, and therefore for every f ∈
L2(Γ, μ) by the density argument, implying that U is Γ-rigid.

Generally, a unitary operator U on a separable Hilbert space satisfies condi-
tions (1) and (2) of Theorem 3.11, i.e., is Γ-rigid and almost weakly stable if and
only if every spectral measure of U is continuous and Γ-rigid. The “if” direction
follows by arguments as in the proof of Proposition 3.3.

b) Another class of examples of rigid almost weakly stable unitary operators
comes from ergodic theory. A measure preserving transformation ϕ on a prob-
ability space (Ω,Σ, μ) is called rigid if there exists a subsequence {nj}∞j=1 such
that

lim
j→∞

μ(A�ϕ−nj (A)) = 0 for every A ∈ Σ.

Consider now the induced operator T on H := L2(Ω, μ) defined by (Tf)(ω) :=
f(ϕ(ω)). By

μ(A�ϕ−nj (A)) =
∫

Ω

|1ϕ−nj (A) − 1A|2dμ = ‖T nj1A − 1A‖2
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and since characteristic functions span L2(Ω, μ), we see that T is rigid if and only if
the transformation ϕ is rigid. Thus, restricting T to the invariant subspace H0 :=
{f :

∫
Ω fdμ = 0}, we obtain that every rigid weakly mixing transformation induces

a rigid almost weakly stable unitary operator, cf. Corollary 2.7. Analogously, a
transformation ϕ is called λ-rigid (or λ-weakly mixing) if the restriction T0 of
T to H0 is λ-rigid. Thus, each weakly mixing λ-rigid transformation leads to a
unitary operator satisfying conditions (1) and (2) in Theorem 3.11.

Katok [142] proved that rigid transformations form a dense Gδ-set in the
set of all measure preserving transformations, and Choksi, Nadkarni [51] gen-
eralised this to λ-rigid transformations. For more information we refer to Nad-
karni [193, p. 59] and for concrete examples of rigid weakly mixing transforma-
tions using adding machines and interval exchange transformations see Goodson,
Kwiatkowski, Lemańczyk, Liardet [109] and Ferenczi, Holton, Zamboni [83], re-
spectively. For examples of rigid weakly mixing transformations given by Gaussian
automorphisms see Cornfeld, Fomin, Sinai [53, Chapter 14]. Finally, a whole class
of examples of rigid weakly mixing transformations comes from special flows, see
Lemanczyk, Mauduit [165].

Furthermore, there is an (abstract) method of constructing λ-rigid operators
from a rigid one. The idea of this construction in the context of measures belongs
to Nadkarni [193, Chapter 7].

Example 3.13. Let T be a rigid contraction with limj→∞ T nj = I strongly. We
construct a class of λ-rigid operators from T . Note that if λ is irrational and if T
is unitary with no point spectrum, this construction gives us a class of examples
satisfying (1)–(2) of Theorem 3.11.

Take α ∈ Γ and consider the operator Tα := αT . Then we see that Tα is
λ-rigid if limj→∞ αnj = λ for the above sequence {nj}. Nadkarni [193, pp. 49–
50] showed that the set of all α such that the limit set of {αnj}∞j=1 contains an
irrational number has full Lebesgue measure in Γ. Every such α leads to a Γ-rigid
operator αT .

We now show that one cannot replace the operators λI in Theorem 3.11 by
any other operator.

Proposition 3.14. Let V ∈ L(H) be such that the set

MV := {T : ∃{nj}∞j=1 such that lim
j→∞

T nj = V strongly}

is dense in one of the spaces U , I or C. Then V is a multiple of identity.

Proof. Consider the contraction case and assume that the set of all contractions
T such that weak-limj→∞ T nj = V for some {nj}∞j=1 is dense in C. Since every
such operator T commutes with V by TV = limj→∞ T nj+1 = V T , we obtain by
assumption that V commutes with every contraction. In particular, V commutes
with every one-dimensional projection implying that V = λI for some λ ∈ C.
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The same argument works for the spaces I and U using the density of unitary
operators in the set of all contractions for the weak operator topology. �

Remark 3.15. In the above proposition, one has V = λI for some λ ∈ Γ in the
unitary and isometric case. Moreover, the same holds in the contraction case if MV

is residual. (This follows from the fact that the set of all non-unitary contractions
is of first category in C by Remark 3.2 and Theorem 3.9, see also Theorem V.1.22
below.

Remark 3.16. It is not clear whether Theorem 3.11 remains valid under the addi-
tional requirement

{λ ∈ C : |λ| < 1} · I ⊂ {T n : n ∈ N}σ
, (IV.6)

where σ denotes the weak operator topology. Since countable intersections of resid-
ual sets are residual and the right-hand side of (IV.6) is closed, this question takes
the following form: Is, for a fixed λ with 0 < |λ| < 1, the set Mλ of all contractions
T satisfying λI ∈ {T n : n ∈ N}σ

residual? Note that each Mλ is dense in C since,
for λ = reis, it contains the set

{cU : 0 < c < 1, cn = r and Un = eisI for some n}

which is dense in C by the density of unitary operators and a natural modification
of Lemma 3.10.

We finally mention that absence of rigidity does not imply weak stability, or,
equivalently, absence of weak stability does not imply rigidity, as shown by the
following example.

Example 3.17. There exist unitary operators T with no non-trivial weakly stable
orbit which are nowhere rigid, i.e., such that limj→∞ T njx = x for some subse-
quence {nj}∞j=1 implies x = 0. (Note that such operators are automatically almost
weakly stable by Proposition 3.3 and the Jacobs–Glicksberg–de Leeuw decompo-
sition.) A class of such examples comes from mildly mixing transformations which
are not strongly mixing, see Furstenberg, Weiss [93], Fraçzek, Lemańczyk [90] and
Fraçzek, Lemańczyk, Lesigne [91].

3.3 Continuous case: C0-semigroups

We now give the continuous analogue of the above results for unitary and isometric
strongly continuous (semi)groups.

Let H be again a separable infinite-dimensional Hilbert space. We recall the
objects introduced in Section III.6. We denote by Ucont the set of all unitary C0-
groups on H endowed with the topology of strong convergence of semigroups and
their adjoints uniformly on compact time intervals. This is a complete metric and
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hence a Baire space for

d(U(·), V (·)) :=
∞∑

n,j=1

supt∈[−n,n] ‖U(t)xj − V (t)xj‖
2j‖xj‖

for U(·), V (·) ∈ Ucont,

where {xj}∞j=1 is a fixed dense subset of H \ {0}. We further denote by Icont

the set of all isometric C0-semigroups on H endowed with the topology of strong
convergence uniform on compact time intervals. Again, this is a complete metric
space for

d(T (·), S(·)) :=
∞∑

n,j=1

supt∈[0,n] ‖T (t)xj − S(t)xj‖
2j‖xj‖

for T (·), S(·) ∈ Icont.

The proofs of the following results are similar to the discrete case, but require
some additional technical details.

Theorem 3.18. Let H be a separable infinite-dimensional Hilbert space. The set

M cont := {T (·) : lim
j→∞

T (tj) = I strongly for some tj → ∞}

is residual in the set Icont of all isometric C0-semigroups for the topology cor-
responding to strong convergence uniform on compact time intervals in R+. The
same holds for unitary C0-groups and the topology of strong convergence uniform
on compact time intervals in R.

Proof. We begin with the unitary case.
Choose {xl}∞l=1 as a dense subset ofH\{0}. Since one can replace limj→∞ tj =

∞ in the definition of M cont by {tj}∞j=1 ⊂ [1,∞) we have

M cont = {T (·) ∈ Ucont : ∃{tj} ∈ [1,∞) : lim
j→∞

T (tj)xl = xl ∀l ∈ N}. (IV.7)

Consider now the open sets

Mk,t :=

{
T (·) ∈ Ucont :

∞∑
l=1

1
2l‖xl‖

‖T (t)xl − xl‖ <
1
k

}

and M cont
k :=

⋃
t≥1Mk,t. We have

M cont =
∞⋂

k=1

M cont
k ,

and hence M cont is a Gδ-set. Since periodic unitary C0-groups are dense in Ucont

by Proposition III.6.1, and since they are contained in M cont, we see that M cont

is residual as a countable intersection of dense open sets.
The same arguments and the density of periodic unitary operators in Icont

(see Proposition III.6.7) imply the assertion in the isometric case. �
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The following continuous analogue of Lemma 3.10 allows us to replace I by
λI.

Lemma 3.19. Let H be a Hilbert space and fix λ ∈ Γ and N ∈ N. Then for every
unitary C0-group U(·) there exists a sequence {Un(·)}∞n=1 of unitary C0-groups
such that

(a) For every n ∈ N there exists τ ≥ N with Un(τ) = λI,

(b) limn→∞ ‖Un(t) − U(t)‖ = 0 uniformly on compact intervals in R.

Proof. Let U(·) be a unitary C0-group onH , λ = eiα ∈ Γ. By the spectral theorem,
H is isomorphic to L2(Ω, μ) for some finite measure space (Ω, μ) and U(·) is
unitarily equivalent to a multiplication group Ũ(·) given by

(Ũ(t)f)(ω) = eitq(ω)f(ω), ω ∈ Ω,

for some measurable q : Ω → R.
To approximate Ũ(·), let N ∈ N, ε > 0, t0 > 0 and take m ≥ N , m ∈ N, such

that ‖1 − e
2πi
m ‖ ≤ ε/(2t0). Define for αj := ei( α

m + 2πj
m ), j = 0, . . . ,m,

p(ω) := αj−1 for all ω ∈ ϕ−1({z ∈ Γ : arg(αj−1) ≤ arg(z) < arg(αj)}).

The multiplication group Ṽ (·) defined by Ṽ (t)f(ω) := eitp(ω)f(ω) satisfies Ṽ (m) =
eiα. Moreover,

‖Ũ(t)f − Ṽ (t)f‖2 =
∫

Ω

|eitq(ω) − eitp(ω)|2‖f(ω)‖2

≤ 2|t| sup
ω∈Ω

|q(ω) − p(ω)|‖f‖2 < ε‖f‖2

uniformly in t ∈ [−t0, t0]. �

We now obtain the following characterisation of the “typical” asymptotic
behaviour of isometric and unitary C0-(semi)groups on separable Hilbert spaces.

Theorem 3.20. Let H be a separable infinite-dimensional Hilbert space. Then the
set of all C0-semigroups T (·) on H satisfying the following properties

(1) there exists a set M ⊂ R+ with density 1 such that

lim
t→∞,t∈M

T (t) = 0 weakly,

(2) for every λ ∈ Γ there exists {t(λ)
j }∞j=1 with limj→∞ t

(λ)
j = ∞ such that

lim
j→∞

T (t(λ)
j ) = λI strongly
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is residual in the set of all isometric C0-semigroups for the topology of strong
convergence uniform on compact time intervals in R+. The same holds for unitary
C0-groups for the topology of strong convergence uniform on compact time intervals
in R.

Proof. By Theorems III.6.5 and III.6.9, C0-(semi)groups satisfying (1) are residual
in Icont and Ucont.

We show, for a fixed λ ∈ Γ, the residuality of the setM (λ) of all C0-semigroups
T (·) satisfying strong-limj→∞ T (tj) = λI for some sequence {tj}∞j=1 converging to
infinity. We prove this property for the space Icont of all isometric semigroups and
the strong operator convergence uniform on compact intervals, the unitary case
goes analogously.

Take λ ∈ Γ and observe

M (λ) = {T (·) ∈ Icont : ∃{tj} ⊂ [1,∞) with lim
j→∞

T (tj)xl = λxl ∀l ∈ N}

for a fixed dense sequence {xl}∞l=1 ⊂ H \ {0}. Consider now the open sets

Mk,t :=

{
T (·) ∈ Icont :

∞∑
l=1

‖(T (t) − λI)xl‖
2l‖xl‖

<
1
k

}

and their union Mk :=
⋃

t≥1Mk,t being open as well. The equality M (λ) =⋂∞
k=1Mk follows as in the proof of Theorem 3.18. Since every Mk is dense by

Lemma 3.19, M (λ) is residual as a dense countable intersection of open sets.
Since λ-rigidity for some irrational λ implies λ-rigidity for every λ ∈ Γ, the

theorem is proved. �
Note that every semigroup satisfying (1) and (2) above is a unitary group by

Remark 3.7.

Example 3.21. a) There is the same correspondence between rigid (or λ-rigid) uni-
tary C0-groups and rigid (or λ-rigid) probability measures on R as in the discrete
case, see Example 3.12. More precisely, to a probability measure μ on R one asso-
ciates the multiplication group given by (T (t))f(s) := eistf(s) on H = L2(R, μ).
For λ ∈ Γ, we call a measure μ on R λ-rigid if there exists tj → ∞, tj ∈ R, such
that the Fourier transform of μ satisfies limj→∞ Fμ(tj) = λ. By Theorem 1.16 the
set of all continuous Γ-rigid measures on R is a residual (in fact a dense Gδ) set in
the set of all Radon measures with respect to the weak∗ topology. For each such
measure, the associated unitary C0-group is Γ-rigid and almost weakly stable, and
conversely, the spectral measures of an almost weakly stable Γ-rigid unitary group
are continuous and Γ-rigid.

b) Again, another large class of examples comes from ergodic theory. Consider
a measure preserving semiflow {ϕt}t≥0 on a probability space (Ω, μ). The induced
semigroup T (·) on L2(Ω, μ) is almost weakly stable and λ-rigid if and only if
the semiflow (ϕt) is weakly mixing and λ-rigid, where the last notion is defined
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analogously to the discrete case. However, it seems that there is no result in ergodic
theory stating that a “typical” (semi)flow is rigid and weakly mixing. So we apply
the following abstract argument to present a large class of such flows.

We start from a probability space (Ω, μ). As discussed above, a “typical”
measure preserving transformation ϕ on (Ω, μ) is weakly mixing and Γ-rigid. On
the other hand, by de la Rue, de Sam Lazaro [59] a “typical” (for the same topol-
ogy) measure preserving transformation ϕ is embeddable into a flow, i.e., there
exists a flow (ϕt)t∈R such that ϕ = ϕ1. Therefore, a “typical” transformation is
weakly mixing, Γ-rigid and embeddable, and every such transformation leads to
an almost weakly stable Γ-rigid unitary group.

For examples of weakly mixing special flows which are rigid see, e.g., Le-
manczyk, Mauduit [165].

c) Analogously to b), we can construct a more general class of examples on
Hilbert spaces. We use that every unitary operator T is embeddable into a unitary
C0-group T (·), see Corollary V.1.15. Take now any operator satisfying assertions
of Theorem 3.11. Since such an operator is automatically unitary by Remark 3.2,
it is embeddable. Thus, every such operator leads to an example of a C0-group
satisfying (1) and (2) of Theorem 3.20. (Note that condition (1) follows from
the spectral mapping theorem for the point spectrum, see e.g. Engel, Nagel [78,
Theorem IV.3.7].)

We again show that the limit operators λI, |λ| = 1, cannot be replaced by
any other operator.

Proposition 3.22. Let for some V ∈ L(H) the set

Mcont
V := {T (·) : ∃tj → ∞ such that lim

j→∞
T (tj) = V strongly}

be dense in Icont or Ucont. Then V = λI for some λ ∈ Γ.

Proof. We prove this assertion for I, the unitary case is analogous.
Observe that V commutes with every T (·) ∈M cont

V by

V T (t) = strong- lim
j→∞

T (tj + t) = T (t)V

implying by assumption that V commutes with every unitary C0-group. Since
unitary C0-groups are dense in the set of all contractive C0-semigroups for the
topology of weak operator convergence uniform on compact time intervals, proven
by Król [155], we see that V commutes with every contractive C0-semigroup.
Since orthogonal one-dimensional projections are embeddable into a contractive
C0-semigroup by Proposition V.1.13, V commutes with every orthogonal one-
dimensional projection, which implies V = λI for some λ ∈ C. Moreover, |λ| = 1
holds since V is the strong limit of isometric operators. �
Remark 3.23. It is again not clear whether one can formulate an analogue of
the above result for contractive C0-semigroups as done in the discrete case, cf.
Subsection III.6.3.



3. Rigidity phenomena 161

3.4 Further remarks

We now consider some generalisations of the above results.

“Controlling” the sequences {nj} and {tj}

We take a closer look at the sequences {nj} and {tj} occuring in Theorems 3.11(2)
and 3.20(2).

Observe first, by the same arguments as in the proofs of Theorems 3.9 and
3.11, that we can replace T by Tm for a fixed m. Changing appropriately the
assertion and the proof of Lemma 3.10, we see that one can add the condition
{nj}∞j=1 ⊂ mN to the sequence yielding rigidity and λ-rigidity. More precisely, for
every λ ∈ Γ andm ∈ N, the set of all operators T such that strong-limj→∞ T nj = I
for some {nj} ⊂ mN is residual in U , I and C, and analogously for λI.

It is a hard problem to determine the sequences {nj} and {tj} exactly. How-
ever, one can generalise the above observation and “control” these sequences in
the following sense. Let Λ ⊂ N be an unbounded set. We call an operator T rigid
along Λ if strong-limj→∞ T nj = I for some increasing sequence {nj}∞j=1 ⊂ Λ.
Similarly, we define rigidity along an unbounded set Λ ⊂ R+ for C0-semigroups,
as well as λ- and Γ-rigidity. It follows from a natural modification of Lemmas 3.10
and 3.19 that, for a fixed unbounded set Λ in N and R+, respectively, one can
assume {n(λ)

j } ⊂ Λ and {t(λ)
j } ⊂ Λ in Theorems 3.11(2) and 3.20(2). Thus, the set

of all Γ-rigid operators (semigroups) along a fixed unbounded set is residual in U ,
I and C (Ucont and Icont, respectively).

Banach space case

We finally discuss briefly the situation in Banach spaces.
Note first that Theorems 3.11 and 3.20 are not true in general separable

Banach spaces. Indeed, since weak convergence in l1 implies strong convergence,
we see that (2) implies strong convergence to zero of T n (or of T (t), respectively),
making (3) or just rigidity impossible.

We now consider the question in which Banach spaces rigid and Γ-rigid oper-
ators are residual. Since in the contraction case our techniques heavily use Hilbert
space methods, we only consider the isometric and unitary case. Let X be a sep-
arable infinite-dimensional Banach space, and I be the set of all isometries on X
endowed with the strong operator topology. Observe that the sets

Mk := {T ∈ I :
∞∑
l=1

1
2l‖xl‖

‖(T n − I)xl‖ <
1
k

for some n}

appearing in the proof of Theorem 3.9 for the isometric case are still open, and
therefore M is a Gδ-set containing periodic isometries. Thus Theorem 3.9 holds
in all separable infinite-dimensional Banach spaces such that periodic isometries
form a dense set of I. Analogously, the set of operators satisfying (1) and (2) of
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Theorem 3.11 is residual in I if and only if it is dense in I. The same assertions
hold for the set U of all invertible isometric operators with the topology induced
by the seminorms px(T ) =

√
‖Tx‖2 + ‖T−1x‖2, which is a complete metric space

with respect to the metric

d(T, S) =
∞∑

j=1

‖Txj − Sxj‖ + ‖T−1xj − S−1xj‖
2j‖xj‖

for a fixed dense sequence {xj}∞j=1 ⊂ X \ {0}.



Chapter V

Discrete vs. continuous

Having investigated discrete and continuous systems {T n}∞n=0 and (T (t))t≥0 sep-
arately, we now try to “build bridges” between them.

In the first section we embed discrete systems into continuous ones, a deli-
cate problem to which we can give some partial, but new, answers. In the second
part we associate to each continuous system a bounded operator, the cogenerator,
introduced in Section I.3. We show that many asymptotic properties of the con-
tinuous system are reflected by analogous properties of the discrete powers of this
cogenerator.

1 Embedding operators into C0-semigroups

It is an old philosophical question whether time should be considered to be discrete
or continuous. So, it is very natural to ask which discrete dynamical systems come
from continuous ones. More precisely, we study the following property.

Definition 1.1. We will say that a linear operator T on a Banach space X can
be embedded into a C0-semigroup (shortly, is embeddable) if there exists a C0-
semigroup (T (t))t≥0 on X such that T = T (1).

In other words, we are interested in operators which appear as an element of
a C0-semigroup.

Note that the embedding property implies the existence of roots of all orders
of T . Furthermore, T and (T (t))t≥0 share properties such as norm/strong/weak/
almost weak stability by Theorem III.2.2, Lemma III.3.4, Theorem III.4.4, the
spectral mapping theorem for the point spectrum and Remark I.1.18, respectively.
Clearly, the semigroup T (·) is not unique since, e.g., all semigroups
(Tn(t)) := (e2πintT (t)) again satisfy Tn(1) = T (1). We will concentrate on the
problem to find a C0-semigroup into which a given operator can be embedded.

The question is difficult and has analogues in other areas of mathematics
like ergodic theory (see e.g. King [149], de la Rue, de Sam Lasaro [59], Stepin,



164 Chapter V. Discrete vs. continuous

Eremenko [235]), stochastics and measure theory (see e.g. Heyer [128, Chapter
III] and Fischer [84]). As a first answer we discuss how spectral calculus leads to a
sufficient condition for embeddability which, however, is far from being necessary.
We also present a completely different, but simple, necessary condition which is, for
some classes of operators, also sufficient. Finally, we show that a “typical” (in the
sense of Baire category) contraction on a separable Hilbert space is embeddable.
We follow [66].

1.1 Sufficient conditions via functional calculus

We start with the classical approach using functional calculus. It is based on a
sufficient spectral condition allowing us to construct the generator of T (·) as a
logarithm of T .

Theorem 1.2. Assume that σ(T ) is contained in a simply connected open domain
which does not include {0}. Then T can be embedded into a uniformly continuous
C0-semigroup.

Proof. By the Dunford functional calculus, we can define A := ln(T ) as a bounded
operator. Then we have T = eA and T can be embedded into the semigroup
(T (t))t≥0 = (etA)t≥0 which is uniformly continuous. �

For an abstract version of this result and basic properties of the exponential
function and the logarithm in the context of unital Banach algebras see Palmer
[208, Theorems 2.1.12 and 3.4.4].

Remark 1.3. Note that one can construct lnT as a bounded operator also in
some more cases. For example, if X is a UMD-space and the Cayley transform
A := (I + T )(I − T )−1 exists and generates a C0-group with exponential growth
< 1, then ln(T ) exists and is bounded, and hence T can be embedded into a
uniformly continuous C0-semigroup. For details see Haase [115, Example 3.7].

There are several extensions of Theorem 1.2. One is the following result
allowing us to construct semigroups with unbounded generators. Recall that an
operator is called sectorial if there exists a sector Σδ = {z : |argz| ≤ δ} ∪ {0},
0 < δ < π, such that σ(T ) ⊂ Σδ and for every ω > δ one has ‖R(λ, T )‖ ≤ M

|λ| for
some M and every λ �∈ Σω.

Theorem 1.4. (See Haase [114, Prop. 3.1.1 and 3.1.15]) Let T be a bounded sectorial
operator with dense range. Then T can be embedded into an analytic C0-semigroup.

Since T is embeddable if and only if cT is embeddable for any 0 �= c ∈ C

(consider Tc(t) := rteiϕtT (t) for c = reiϕ), one can also formulate an analogous
result for operators with spectrum in a rotated sector {z : |argz − ϕ| < δ}.

We now show that the spectrum of an embeddable operator can be arbi-
trary, hence conditions on the location of the spectrum are not necessary and the
functional calculus method works only in particular cases.
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Example 1.5. Let K �= ∅ be an arbitrary closed subset in C. Assume first that 0 is
not an isolated point of K and take a dense subset {λk}∞k=1 of K \ {0}. Consider
the space X := l2 and the multiplication operator T given by

T (x1, x2, . . .) := (λ1x1, λ2x2, . . .)

on X with σ(T ) = K. Define now the semigroup (T (t))t≥0 by

T (t)(x1, x2, . . .) := (et ln λ1x1, e
t ln λ2x2, . . .),

where we take an arbitrary value of the logarithm of each λk. The family T (·) forms
a semigroup of contractions which is strongly continuous since limt→0+ T (t)ek = ek

for every basis vector ek and T (·) is uniformly bounded on compact time intervals.
Assume now that 0 is an isolated point of K, i.e., K = {0}∪K1 for a compact set
K1 with 0 /∈ K1, and define T1 with σ(T1) = K1 as above. Define further T2 := 0
on l2 which is embeddable into a nilpotent semigroup by Lemma 1.12 below. Thus
the direct sum of T1 and T2 is embeddable with spectrum equal to K.

Remark 1.6. Using an analogous method, one can construct for every compact set
K a non-embeddable operator T with σ(T ) = K ∪ {0}: Take just the direct sum
of the operator constructed in the first part of Example 1.5 with the zero operator
on the one-dimensional space. This sum is not embeddable by Theorem 1.7 below.

1.2 A necessary condition

In this section we present a (simple) necessary condition for embeddability using
information on the spectral value 0.

Theorem 1.7. Let X be a Banach space and T ∈ L(X). If T can be embedded into
a C0-semigroup, then dim(kerT ) and codim(rg T ) are zero or infinite.

In other words, operators with 0 < dim(kerT ) <∞ or 0 < codim(rg T ) <∞
cannot be embedded into a C0-semigroup.

Proof. Assume that 0 < dim(kerT ) < ∞ holds and T = T (1) for some C0-
semigroup T (·) on X . Since T is not injective, neither is its square root T

(
1
2

)
.

Analogously, every T
(

1
2n

)
is not injective. Take xn ∈ kerT

(
1
2n

)
with ‖xn‖ = 1 for

every n ∈ N. Then we have {xn}∞n=1 ⊂ kerT and, since kerT is finite-dimensional,
there exists a subsequence {xnk

}∞k=1 converging to some x0 with ‖x0‖ = 1.
Since kerT

(
1

2n+1

)
⊂ kerT

(
1
2n

)
, we have T

(
1
2n

)
x0 = 0 for every n ∈ N

contradicting the strong continuity of T (·).
Assume now that 0 < codim(rg T )= dim(kerT ′) <∞ holds. If T is embedded

into a C0-semigroup T (·), then T ′ embeds into the adjoint semigroup T ′(·) on X ′

which is weak* continuous. The same arguments as above contradict the weak*
continuity. �

A direct corollary is the following.
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Corollary 1.8. Non-bijective Fredholm operators are not embeddable.

Remark 1.9. As we will see in Subsection 1.4, all four possibilities given in Theo-
rem 1.7 (dimension 0 or ∞ of the kernel and codimension 0 or ∞ of the closure
of the range) can appear for operators having the embedding property. The ex-
amples are provided by unitary operators, the left and right shifts on l2(Y ) for
an infinite-dimensional Hilbert space Y and their direct sum, respectively. Note
moreover that, by Theorems 1.7 and 1.2, an operator on a finite-dimensional space
is embeddable if and only if its spectrum does not contain 0.

In the following we ask the converse question.

Question 1.10. For which (classes of) operators is the necessary condition given
in Theorem 1.7 also sufficient for embeddability?

Note that this condition is not sufficient for embeddability in general. For
example, Halmos, Lumer and Schäffer [122] constructed a class of invertible oper-
ators on Hilbert spaces having no square root and hence not being embeddable.
Later, Deckard and Pearcy [58] presented another class of such operators using a
matrix construction. We present here the example by Halmos, Lumer and Schäffer
[122].

Example 1.11. Consider D := {z ∈ C : 1 < |z| < 2} and the corresponding
Bergman space H consisting of all holomorphic functions f : D → C satisfying
‖f‖2

2 :=
∫

D |f(z)|2 dμ < ∞ for the planar Lebesgue measure μ. Then H is a
Hilbert space with the standard scalar product 〈f, g〉 =

∫
D f(z)g(z)dμ. (For basic

properties of Bergman spaces see Hedenmalm, Korenblum, Zhu [124] or Bergman
[32].) Consider further the multiplication operator T given by (Tf)(z) := zf(z).
Then σ(T ) = D, and hence T is invertible.

We now need more detailed information on the spectrum of T . Take λ ∈ D.
We first show that

f ∈ rg(λI − T ) if and only if f(λ) = 0. (V.1)

Indeed, f = λg − Tg implies f(λ) = λg(λ) − λg(λ) = 0. Conversely, if f(λ) = 0,
then by the local power series representation of f we see that g(z) := f(z)

λ−z is

holomorphic in D. To show that g ∈ H , i.e., ‖g‖2 < ∞, let δ := dist(λ,∂D)
2 , where

∂D denotes the boundary of D. On Uδ(λ) the function g is bounded, hence square
integrable. On the other hand, g is dominated by f/δ on D \ Uδ(λ) and therefore
square integrable as well. This implies g ∈ H and thus f ∈ rg(λI − T ).

It is well-known that the point evaluation ϕ(f) := f(λ) is continuous on
H , see e.g. Bergman [32, p. 24] or Halmos, Lumer and Schäffer [122]. We can
reformulate (V.1) as rg(λI − T ) = kerϕ. So the subspace ker(λI − T ′) = rg(λI −
T )⊥ = (kerϕ)⊥ is one-dimensional, and we obtain the following key property:

every λ ∈ D is a simple eigenvalue of T ′. (V.2)
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This implies in particular that D ⊂ Rσ(T ).
We now show that T has no square root. Observe first that

√
D := {z ∈

C : z2 ∈ D} = {z ∈ C : 1 < |z| <
√

2} is connected. Assume that there exists
S ∈ L(X) with S2 = T and take λ ∈

√
D. By the spectral mapping theorem for

polynomials, λ or −λ belong to σ(S) and more precisely to Rσ(S). Moreover, by
(V.2) and the spectral mapping theorem again, only one of the numbers λ and −λ
can belong to Rσ(S). Consequently, we obtain the decomposition

√
D = (

√
D ∩ σ(S)) ∪ (

√
D ∩ (−σ(S)))

into two closed subsets in the relative topology. This contradicts the connectedness
of

√
D, and so T has no square root.
The same arguments show that T has no nth root for every n ∈ {2, 3, . . .}.

Note further that the above construction works for any domain D with connected√
D or n

√
D, respectively.

1.3 Normal operators and projections on Hilbert spaces

It follows from the spectral theorem that every unitary operator can be embedded
into a unitary group (cf. Corollary 1.15 below). We show that the condition in
Theorem 1.7 suffices to embed normal operators and projections on Hilbert spaces.
To do this we first need the following simple lemma.

Lemma 1.12. Let H be an infinite-dimensional Hilbert space. Then the zero oper-
ator on H can be embedded into a C0-semigroup.

Proof. Observe that the Hilbert space H is unitarily isomorphic to L2([0, 1], H).
The assertion follows from the fact that the zero operator on L2([0, 1], H) can be
embedded into the nilpotent shift semigroup given by T (t) = 0 for t ≥ 1 and

(T (t)f)(s) =

{
f(t− s), s ∈ [0, t],
0, s ∈ (t, 1]

for t ∈ [0, 1), f ∈ L2([0, 1], H), s ∈ [0, 1]. �
Embedding projections on Hilbert spaces is a direct corollary.

Proposition 1.13. Let P be a projection on a Hilbert space H. Then P is embeddable
if and only if P = I or dim(kerP ) = ∞. Moreover, in this case P can be embedded
into a contractive C0-semigroup if and only if P is an orthogonal projection.

Proof. If 0 < dim(kerP ) < ∞, P is not embeddable by Theorem 1.7. The rest
follows from the decomposition H = kerP ⊕ rgP (which is orthogonal if and only
if P is orthogonal), Lemma 1.12 and embeddability of the identity operator (on
any Banach space) into the identity semigroup. �

We now characterise embeddable normal operators.
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Theorem 1.14. Let T be a normal operator on a Hilbert space. Then T is embed-
dable if and only if T is injective or dim kerT = ∞.

Proof. By the spectral theorem we may assume that T is a multiplication operator
on H = L2(Ω, μ) for Ω = σ(T ) and some Borel measure μ, say Tf = mf with
m ∈ L∞(Ω, μ). Note that the essential image of m equals σ(T ).

Assume first that T is injective, whence μ(m−1(0)) = 0. Using the principle
value of the logarithm on C \ {0} which is measurable, define (T (t))t≥0 by

T (t)f := et log mf, f ∈ L2(Ω, μ), t ≥ 0.

Each T (t) is a bounded operator on L2(Ω, μ). Moreover, the family (T (t))t≥0

is strongly continuous by Lebesgue’s dominated convergence theorem. The semi-
group law and the property T (1) = T are clear, so T is embeddable.

Assume now dim kerT = ∞. Since T is normal, we have rgT ∗ = (kerT )⊥ =
(kerT ∗)⊥ = rgT . Therefore kerT and rgT reduce T and H = kerT ⊕ rgT . The
restriction T |kerT is embeddable by Lemma 1.12. On the other hand, T |rg T is a
normal injective operator and hence embeddable by the first part of the proof.
This shows that T is embeddable as well.

The remaining case is answered in the negative by Theorem 1.7. �
By Theorem 1.14 and its proof we obtain the following well-known result.

Corollary 1.15. Every unitary operator can be embedded into a unitary C0-group
with bounded generator.

Remark 1.16. More generally, the proof of Theorem 1.14 shows that T can be
embedded into a normal C0-semigroup whenever T is injective. Moreover, if T is
invertible, then 0 has positive distance to σ(T ) and T can be even embedded into a
normal C0-group with bounded generator employing the same definition for t ∈ R.

Remark 1.17. Note that every operator similar to a normal operator is also em-
beddable. For example, Sz.-Nagy [236] showed that a bijective operator T on a
Hilbert space satisfying supj∈Z ‖T j‖ < ∞ is similar to a unitary operator. Hence
such operators can be embedded into a C0-group by Corollary 1.15. We refer also
to van Casteren [45] for a characterisation of similarity to a self-adjoint operator.
We finally refer to Benamara, Nikolski [29] for more on the similarity problem.

1.4 Isometries and co-isometries on Hilbert spaces

In this subsection we characterise the embedding property of isometries and co-
isometries (i.e., operators with isometric adjoint) on Hilbert spaces. Note that the
spectrum of a non-invertible isometry is the unit disc (see Conway [52, Exercise
VII.6.7] for Banach spaces or Theorem II.5.5 for Hilbert spaces), and hence the
spectral calculus method is not applicable.

The key is the Wold decomposition of isometries, see Theorem II.5.5. By this
decomposition and Corollary 1.15, the question of embedding an isometry reduces
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to embedding the right shift on the space l2(N, Y ) for some Hilbert space Y . The
following result shows how this can be achieved.

Proposition 1.18. Let S be the right shift on l2(N, Y ) for an infinite-dimensional
Hilbert space Y . Then S can be embedded into an isometric C0-semigroup.

Proof. Let S be the right shift on l2(N, Y ), i.e.,

S(x1, x2, x3, . . .) := (0, x1, x2, . . .).

As before, Y is unitarily isomorphic to the space L2([0, 1], Y ), hence there is a
unitary operator J : l2(N, Y ) → l2(N, L2([0, 1], Y )) such that JTJ−1 is again the
right shift operator on l2(N, L2([0, 1], Y )). We now observe that l2(L2([0, 1], Y ))
can be identified with L2(R+, Y ) by

(f1, f2, f3, . . .) 	→ (s 	→ fn(s− n), s ∈ [n, n+ 1]).

By this identification the right shift operator on l2(N, L2([0, 1], Y )) corresponds to
the operator

(Sf)(s) :=

{
f(s− 1), s ≥ 1,
0, s ∈ [0, 1)

on L2(R+, Y ) which can be embedded into the right shift semigroup on L2(R+, Y ).
Going back we see that our original operator S can be embedded into an isometric
C0-semigroup. �

We can now characterise all isometries on Hilbert spaces having the embed-
ding property.

Theorem 1.19. An isometry V on a Hilbert space can be embedded into a C0-
semigroup if and only if V is unitary or codim(rgV ) = ∞. In this case, one can
embed V into an isometric C0-semigroup.

Proof. Let V be an isometry on a Hilbert space H . By the Wold decomposition
we have the orthogonal decomposition H = H0 ⊕H1 into two invariant subspaces
such that V |H0 is unitary and V |H1 is unitarily equivalent to the right shift on
l2(N, Y ) for Y := (rg V )⊥.

By Corollary 1.15, we can embed V |H0 into a unitary C0-group. If Y = {0},
the assertion follows. Now, if dimY = codim(rg V ) = ∞, then we can embed V |H1

and therefore V by Proposition 1.18. Moreover, since the Wold decomposition is
orthogonal and the semigroup from Proposition 1.18 is isometric, the constructed
semigroup is isometric.

On the other hand, if 0 < dimY = codim(rg V ) < ∞, then V cannot be
embedded into a C0-semigroup by Theorem 1.7. �

Since an operator on a Hilbert space is embeddable if and only if its ad-
joint is (see Engel, Nagel [78, Proposition I.5.14]), we also obtain the following
characterisation for operators with isometric adjoint.
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Corollary 1.20. Let T be a co-isometry on a Hilbert space. Then T can be embedded
into a C0-semigroup if and only if T is injective or dim(kerT ) = ∞.

As an example we obtain that the left shift on l2(Y ) for some Hilbert space
Y has the embedding property if and only if dim(Y ) = ∞.

Open question 1.21. Does the necessary condition given in Theorem 1.7 suffice to
embed partial isometries on Hilbert spaces?

Note that the answer is “yes” in each of the following cases:

(a) T is injective, i.e., T is an isometry (Theorem 1.19);

(b) T is surjective, i.e., T ∗ is an isometry (Corollary 1.20);

(c) kerT reduces T .

The argument in (c) is similar to the proof of Proposition 1.13 using Theorem
1.19.

1.5 Abstract examples: a residuality result

We now show that the embedding property is natural for operators, at least on
Hilbert spaces. More precisely, we show that a “typical” (in the sense of Baire
categories) contraction on a separable Hilbert space is embeddable.

The key to our result is the following theorem showing that a “typical”
contraction as well as a “typical” isometry is unitary which is also of independent
interest. This is a consequence of Theorem IV.3.9 and Remark IV.3.2, but we give
here a direct proof following [66].

Theorem 1.22. Let H be a separable infinite-dimensional Hilbert space. Then the
set U of all unitary operators is residual in the set C of all contractions for the
weak operator topology. In addition, U is residual in the set I of all isometries for
the strong operator topology as well.

Recall that the space of all contractions on H is a complete metric space for
the weak operator topology, see Subsection II.5.3.

Proof. The proof is divided into two parts. We first show that a “typical” isometry
is unitary for the strong operator topology and then consider contractions.

Part 1: isometries. We prove residuality of U in the set of all isometries I on
H endowed with the strong operator topology.

Fix a dense subset {xj}∞j=1 ⊂ H \ {0} and let T be a non-invertible isom-
etry. Then rgT is closed and different from H . Therefore there exists xj with
dist(xj , rgT ) > 0, hence

I \ U =
∞⋃

k,j=1

Mj,k with Mj,k :=
{
T : dist(xj , rgT ) >

1
k

}
.
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We now prove that every set Mj,k is nowhere dense in I. By Proposition II.5.7,
unitary operators are dense in I and therefore it suffices to show that

U ∩Mj,k = ∅ ∀j, k. (V.3)

Assume the contrary, i.e., that there exists a sequence {Tn}∞n=1 ⊂ Mj,k for some
j, k and a unitary operator U with limn→∞ Tn = U strongly. In particular,
limn→∞ Tny = Uy = xj for y := U−1xj . This however implies the contradic-
tion limn→∞ dist(xj , rgTn) = 0. So (V.3) is proved, every set Mj,k is nowhere
dense, and U is residual in I.

Part 2: contractions. We first prove that the set I \U of non-invertible isome-
tries is of first category in C. As in Part 1, I \ U is given as

I \ U =
∞⋃

k,j=1

Mj,k with Mj,k :=
{
T isometric : dist(xj , rgT ) >

1
k

}
.

Since unitary operators are dense in C, see Takesaki [239, p. 99] or Peller [211], it
is enough to show that

U ∩Mj,k = ∅ ∀j, k.
Assume that for some j, k there exists a sequence {Tn}∞n=1 ⊂ Mj,k converging
weakly to a unitary operator U . Then, by Lemma II.5.11, Tn converges to U
strongly. As in Part 1, this implies limn→∞ Tny = Uy = xj for y := U−1xj .
Hence limn→∞ dist(xj , rgTn) = 0 contradicting {Tn}∞n=1 ⊂Mj,k, so every Mj,k is
nowhere dense and I \ U is of first category.

We now show that the set of non-isometric operators is of first category in
C as well. Let T be a non-isometric contraction. Then there exists xj such that
‖Txj‖ < ‖xj‖, hence

C \ I =
∞⋃

k,j=1

Nj,k with Nj,k :=
{
T :

‖Txj‖
‖xj‖

< 1 − 1
k

}
.

It remains to show that every Nj,k is nowhere dense in C. By density of U in C it
again suffices to show that

U ∩Nj,k = ∅ ∀j, k.

Assume that for some j, k there exists a sequence {Tn}∞n=1 ⊂ Nj,k converging
weakly to a unitary operator U . Then Tn converges to U strongly by Lemma
II.5.11. This implies that limn→∞ ‖Tnxj‖ = ‖Uxj‖ = ‖xj‖ contradicting ‖Tnxj‖

‖xj‖ <

1 − 1
k for every n ∈ N. �

Remark 1.23. It is an interesting question for which W∗-algebras the corresponding
result holds, i.e., the unitary elements are residual in the unit ball. Note that l∞

does not have this property since the unitary elements (i.e., unimodular sequences)
are not dense in the unit ball for the weak∗ topology.
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Combining the above theorem with Corollary 1.15, we obtain that the em-
bedding property is “typical” for such operators.

Theorem 1.24. Let H be a separable infinite-dimensional Hilbert space. Then the
set of all embeddable contractions on H is residual in the set of all contractions
for the weak operator topology. In addition, the set of all embeddable isometries is
residual in the set of all isometries for the strong operator topology.

Remark 1.25. This result is an operator-theoretical counterpart to a recent result
of de la Rue and de Sam Lazaro [59] in ergodic theory stating that a “typical”
measure preserving transformation can be embedded into a measure preserving
flow. We refer to Stepin, Eremenko [235] for further results and references.

In particular, a “typical” contraction or isometry on a separable infinite-
dimensional Hilbert space has roots of all orders, which is an operator-theoretical
analogue of a result of King [149] in ergodic theory. We mainly follow Eisner,
Zwart [74].

To finish this section we make the embedding problem more difficult, but
more relevant to ergodic and measure theory.

Open question 1.26. Let T be a positive operator on a Banach lattice. When is T
embeddable into a positive C0-semigroup?

2 Cogenerators

In this section we study connections between a C0-semigroup (T (t))t≥0 and the
discrete system {V n}∞n=0 obtained from the cogenerator V = −(I + A)R(1, A)
of T (·). For basic properties of the cogenerator see Subsection I.3.1. We only
recall that V is a bounded operator determining the semigroup uniquely. It is
obtained from the resolvent of the generator and hence does not involve any explicit
knowledge of the semigroup.

We already encountered in Subsection I.3.1 some symmetries between
(T (t))t≥0 and V on Hilbert spaces for properties such as contractivity and unitar-
ity. On Banach spaces, however, not so many results in this direction are known.
The aim of this section is to describe the general situation and state the known
results and some open problems.

2.1 (Power) boundedness

We first discuss the connection between boundedness of T (·) and power bounded-
ness of V .

We start with a Hille–Yosida type characterisation for contractive and boun-
ded semigroups on Banach spaces using the behaviour of the resolvent of V near
the point 1.
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Theorem 2.1. For an operator V on a Banach space X, the following assertions
are equivalent.

(i) V is the cogenerator of a contraction C0-semigroup on X.

(ii) V − I is injective and has dense range; (1,∞) ∈ ρ(V ) and

‖(I − V )R(μ, V )‖ ≤ 2
μ+ 1

for all μ > 1. (V.4)

(iii) V −I is injective and has dense range; there exists μ0 > 1 such that (1, μ0) ∈
ρ(V ) and

‖(I − V )R(μ, V )‖ ≤ 2
μ+ 1

for all μ ∈ (1, μ0). (V.5)

Proof. We first note that injectivity and dense range of the operator V − I is
necessary for every cogenerator V . Assume now V − I to be injective and to have
dense range.

Define A := (V + I)(V − I)−1 which is densely defined. By the Hille–Yosida
theorem A generates a contraction semigroup if and only if (λ0,∞) ⊂ ρ(A) for
some λ0 ≥ 0 and ‖R(λ,A)‖ ≤ 1

λ holds for all λ > λ0. Note that λ > λ0 ≥ 0 holds
if and only if 1 < μ ≤ μ0 for μ := λ+1

λ−1 and μ0 := λ0+1
λ0−1 . Moreover, by Proposition

I.3.3, we have for 1 < μ ∈ ρ(V ) that 0 < λ := μ+1
μ−1 ∈ ρ(A) and

λR(λ,A) =
λ

λ− 1
(I − V )R(μ, V ) =

μ+ 1
2

(I − V )R(μ, V ). (V.6)

This proves the equivalence of (i) and (iii). Using the same arguments one shows
(i)⇔(ii). �

Analogously, one can treat boundedness.

Theorem 2.2. For V ∈ L(X) and M ≥ 1, the following assertions are equivalent.

(i) V is the cogenerator of a C0-semigroup (T (t))t≥0 on X satisfying ‖T (t)‖ ≤M
for all t ≥ 0.

(ii) V − I is injective and has dense range; (1,∞) ∈ ρ(V ) and

‖ [(I − V )R(μ, V )]n ‖ ≤ 2nM

(μ+ 1)n
for all μ > 1, n ∈ N. (V.7)

(iii) V −I is injective and has dense range; there exists μ0 > 1 such that (1, μ0) ∈
ρ(V ) and

‖ [(I − V )R(μ, V )]n ‖ ≤ 2nM

(μ+ 1)n
for all μ ∈ (1, μ0), n ∈ N. (V.8)
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In all these characterisations the resolvent R(λ, V ) of the cogenerator had to
be used. In fact, the boundedness of T (·) is not equivalent to the power bounded-
ness of V . In order to prove some results in this direction we first need a technical
lemma on Laguerre polynomials whose proof (in a more general case) can be found
in [74].

Lemma 2.3. Let L1
n(t) denote the first generalised Laguerre polynomial, i.e.,

L1
n(t) =

n∑
m=0

(−1)m

m!

(
n+ 1
n−m

)
tm. (V.9)

Then the inequality

C1

√
n ≤

∫ ∞

0

|L1
n(2t)|e−tdt ≤ C2

√
n (V.10)

holds for some constants C1, C2 and all n ∈ N.

We are now ready to prove the result of Brenner, Thomée [41] giving the
upper bound for the growth of the powers of the cogenerator of a bounded C0-
semigroup. We follow the proof in [74].

Theorem 2.4. Let T (·) be a bounded C0-semigroup on a Banach space with cogen-
erator V . Then ‖V n‖ ≤ C

√
n some C and every n ∈ N.

Furthermore, this estimate cannot be improved, i.e., there exists a Banach
space and a bounded C0-semigroup such that ‖V n‖ ≥ C

√
n for some C > 0 and

every n ∈ N.

Proof. Using Lemma I.3.6 and boundedness of the semigroup we observe that

‖V n‖ ≤ 1 + 2M
∫ ∞

0

∣∣L1
n−1(2t)

∣∣ e−tdt (V.11)

for M := supt≥0 ‖T (t)‖ and all n ∈ N. Lemma 2.3 immediately implies ‖V n‖ ≤
C
√
n some C and every n ∈ N.
We now show that this estimate is sharp. Consider X := C0([0,∞)) and the

left shift semigroup T (·) on X given by (T (t)f) (s) = f(t + s). Note that T (·) is
contractive and the powers of its cogenerator V are given by the formula

(V nf) (s) = f(s) − 2
∫ ∞

0

L1
n−1(2t)e

−tf(t+ s)dt

by Lemma I.3.6. Define now h(s) := sign(L1
n−1(2s)). We obtain formally that

(V nh) (s) = sign(L1
n−1(2s)) − 2

∫ ∞

0

|L1
n−1(2t)|e−tdt,

and hence
| (V nh) (s)| ≥ C

√
n for every s ≥ 0
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by Lemma 2.3. It remains to approximate h by continuous functions. Thus, for
every ε > 0 there exists a function fε ∈ C0([0,∞)) with ‖f‖ = 1 such that the
above estimate holds within an error of at most ε, which finishes the proof. �

Remark 2.5. By the standard renorming procedure (see Lemma III.1.4), one de-
rives from the above an example of a contractive C0-semigroup on a Banach space
such that the powers of its cogenerator grow as

√
n. This shows that the Foiaş–

Sz.-Nagy theorem (see Subsection I.3.1) fails in Banach spaces. For more examples
see Subsection 2.3 below.

On Hilbert spaces the following question is still open.

Open question 2.6. Let T (·) be a C0-semigroup on a Hilbert space with cogenerator
V . Is boundedness of T (·) equivalent to power boundedness of V ?

Guo, Zwart [113] gave a partial answer to this question under additional
assumptions.

Theorem 2.7 (Guo, Zwart). Let T (·) be a C0-semigroup on a Hilbert space with
generator A and cogenerator V . Then the following assertions hold.

(a) If T (·) is bounded and A−1 generates a bounded C0-semigroup as well, then
V is power bounded.

(b) If T (·) is analytic, then its boundedness is equivalent to power boundedness
of V .

We refer to Guo, Zwart [113] for the proofs and further results.
It is not clear whether assertion (a) in the above theorem holds for semigroups

on Banach spaces as well.

2.2 Characterisation via cogenerators of the rescaled semigroups

In this subsection we characterise boundedness of a C0-semigroup using the co-
generators of the rescaled semigroups.

We begin with the following observation. If A generates a contractive or
bounded C0-semigroup, then all operators τA, τ > 0, do so as well. However, as
we will see in Subsection 2.3, it is not always true that the operators

Vτ := (τA + I)(τA − I)−1, τ > 0, (V.12)

remain contractive when V is, so one needs another condition to obtain equiva-
lence.

Proposition 2.8. For a densely defined operator A on a Banach space X, the fol-
lowing assertions are equivalent.

(i) A generates a contraction C0-semigroup on X.
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(ii) (0,∞) ⊂ ρ(A) and the operators Vτ satisfy

‖Vτ − I‖ ≤ 2 for all τ > 0.

(iii) There exists τ0 > 0 such that ( 1
τ0
,∞) ⊂ ρ(A) and the operators Vτ satisfy

‖Vτ − I‖ ≤ 2 for all 0 < τ < τ0.

Proof. By the formula

Vτ = (A+ tI)(A− tI)−1 = I − 2tR(t, A)

for t := 1
τ we immediately obtain that

tR(t, A) =
I − Vτ

2
. (V.13)

Then the proposition follows from the Hille–Yosida theorem. �

Remark 2.9. The following nice property holds for cogenerators of C0-semigroups
on Hilbert spaces: Contractivity of V automatically implies contractivity of every
Vτ , τ > 0. This follows from

‖Vτx‖2 − ‖x‖2 = ‖(A+ tI)(A− tI)−1x‖2 − ‖x‖2

= 〈(A+ tI)y, (A+ tI)y〉 − 〈(A− tI)y, (A− tI)y〉 = 4tRe 〈Ay, y〉

for y := (A−tI)−1x. As we will see in Subsection 2.3, this property fails on Banach
spaces.

A result analogous to Proposition 2.8 holds for generators of bounded C0-
semigroups as well.

Proposition 2.10. For a densely defined operator A on a Banach space, the follow-
ing assertions are equivalent.

(i) A generates a C0-semigroup (T (t))t≥0 satisfying ‖T (t)‖ ≤M for every t ≥ 0.

(ii) (0,∞) ⊂ ρ(A) and the operators Vτ satisfy∥∥∥∥
[
Vτ − I

2

]n∥∥∥∥ ≤M for all τ > 0 and n ∈ N.

(iii) There exists τ0 such that ( 1
τ0
,∞) ⊂ ρ(A) and the operators Vτ satisfy

∥∥∥∥
[
Vτ − I

2

]n∥∥∥∥ ≤M for all 0 < τ < τ0 and n ∈ N.



2. Cogenerators 177

The proof follows from formula (V.13) and the Hille–Yosida theorem for
bounded semigroups.

Propositions 2.8 and 2.10 imply the following sufficient condition being anal-
ogous to the one of Foiaş and Sz.-Nagy in Subsection I.3.1.

Theorem 2.11. For a densely defined operator A on a Banach space X, the fol-
lowing assertions hold.

(a) If there exists τ0 > 0 such that ( 1
τ0
,∞) ⊂ ρ(A) and the operators Vτ are con-

tractive for every τ ∈ (0, τ0), then A generates a contractive C0-semigroup.

(b) If there exists τ0 > 0 such that ( 1
τ0
,∞) ⊂ ρ(A) and the operators Vτ satisfy

‖V n
τ ‖ ≤ M for all τ ∈ (0, τ0) and n ∈ N, then A generates a C0-semigroup

(T (t))t≥0 with ‖T (t)‖ ≤M for all t ≥ 0.

Proof. Assertion (a) follows immediately from Proposition 2.8. To prove (b) as-
sume that ‖V n

τ ‖ ≤M . Then we have∥∥∥∥
[
Vτ − I

2

]n∥∥∥∥ ≤ 1
2n

n∑
j=0

(
n
j

)
‖V j

τ ‖ ≤ M · 2n

2n
= M

and (b) follows from Proposition 2.10. �
Remark 2.12. In Proposition 2.8, Proposition 2.10 and Theorem 2.11 it suffices
to consider {Vτn}∞n=1 for a sequence τn > 0 converging to zero. This again follows
from the fact that in the Hille–Yosida theorem it suffices to check the resolvent
condition only for a sequence {λn}∞n=1 ⊂ (0,∞) converging to infinity.

We finally observe the following. If V is contractive or power bounded, then
so is the operator −V . Note that −V is the cogenerator of the semigroup generated
by A−1 if A−1 generates a C0-semigroup. However, contractivity or boundedness of
(etA)t≥0 does not imply the same property of (etA−1

)t≥0 (see Zwart [265] and also
Subsection 2.3 for elementary examples). We refer to Zwart [265, 266], Gomilko,
Zwart [107], Gomilko, Zwart, Tomilov [108], de Laubenfels [60] for further infor-
mation on this aspect.

Remark 2.13. Assume that (0,∞) ⊂ ρ(A) and A−1 exists as a densely defined
operator. Then we have

Vτ,A−1 = (τA−1 + I)(τA−1 − I)−1 = (τI +A)(τI −A)−1 = −V 1
τ ,A. (V.14)

So we see that contractivity (power boundedness) of Vτ for all τ > 0 or even
for sequences τn,1 → 0 and τn,2 → ∞ implies that A and A−1 both generate a
contractive (bounded) C0-semigroup.

Conversely, Gomilko [105] and Guo, Zwart [113] showed for Hilbert spaces
that if A and A−1 both generate bounded semigroups, then the cogenerator V
is power bounded (see Theorem 2.7) and hence so are all operators Vτ by the
rescaling argument.
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2.3 Examples

In this subsection we discuss examples describing various situations on Banach
spaces and show in particular that the Foiaş–Sz.-Nagy theorem (see Subsection
I.3.1) fails even on 2-dimensional Banach spaces.

In [108] Gomilko, Zwart and Tomilov show that for every p ∈ [1,∞), p �= 2,
there exists a contractive operator V on lp such that (V − I)−1 exists as a densely
defined operator, but V is not the cogenerator of a C0-semigroup. The idea of
their construction is the following. Take the bounded operator A := Sl − I, where
Sl denotes the left shift given by Sl(x1, x2, x3, . . .) = (x2, x3, . . .). The cogenerator
V of the semigroup generated by A is given by V = SlR(2, Sl) and hence is
contractive (use contractivity of Sl and the Neumann series for the resolvent).
Further, one shows that A−1 does not generate a C0-semigroup which is the hard
part. As a consequence one obtains that the contraction −V is not the cogenerator
of a C0-semigroup.

Komatsu [152, pp. 343–344] showed that the operator A := Sr − I for the
right shift Sr given by Sr(x1, x2, x3, . . .) = (0, x1, x2, . . .) on c0 satisfies the same
properties, i.e., A−1 does not generate a C0-semigroup. Since the cogenerator V
corresponding to A is contractive as well, we have a contraction on c0 which is not
the cogenerator of a C0-semigroup.

The following example shows that even for X = C2 the semigroup cogen-
erated by a contraction need not be contractive. In particular, this example and
Example 2.16 show that no implication in the Foiaş–Sz.-Nagy theorem holds on
two-dimensional Banach spaces.

Example 2.14. Take X = C2 endowed with ‖ · ‖p, p �= 2, and A :=
(−1 β

0 −2

)
for

β > 0. The semigroup generated by A is

T (t) =
(
e−t β(e−t − e−2t)
0 e−2t

)
, t ≥ 0.

We first show that (T (t))t≥0 is not contractive for appropriate β. Consider
first p = ∞ and β > 1. We have ‖T (t)‖ = (1 + β)e−t − βe−2t =: f(t). Since
f(0) = 1 and f ′(0) = β − 1 > 0, the semigroup is not contractive.

Let now 2 < p <∞ and define β := (3p − 1)
1
p . Then∥∥∥∥T (t)

(
x
1

)∥∥∥∥
p

p

= (e−tx+ β(e−t − e−2t))p + e−2pt =: fx(t) for x > 0.

We have fx(0) = xp + 1 = ‖(x, 1)‖p
p. Further, f ′

x(0) = pxp−1(β − x) − 2p, so the
semigroup is not contractive if xp−1(β − x) > 2 for some x > 0. This is the case

for x := β
2 . Indeed, xp−1(β − x) =

(
β
2

)p

= 3p−1
2p > 2.

We now show that the cogenerator V is contractive for β ≤ 3 if p = ∞ and
β := (3p − 1)

1
p if p ∈ (2,∞). The cogenerator is given by

V = (I +A)(A − I)−1 =
(

0 β
0 −1

)(
− 1

2 −β
6

0 − 1
3

)
=

(
0 −β

3
0 1

3

)
.



2. Cogenerators 179

So for p = ∞ we have ‖V ‖ = max{ 1
3 ,

β
3 } ≤ 1 for β ≤ 3. For p ∈ (2,∞) we have

‖V ‖p = ‖(−β
3 ,

1
3 )‖p

p = (βp+1)
3p ≤ 1 if and only if β ≤ (3p − 1)

1
p .

We see that for p ∈ (2,∞] there exists a contraction such that the cogenerated
semigroup is not contractive. The analogous assertion for p ∈ [1, 2) follows by
duality.

Remark 2.15. From Theorem 2.11, Remark 2.12 and the above example we see
that there exist contractions V (even on C2 with lp-norm, p �= 2) such that the
operators Vτ are not contractive for every τ in a small interval (0, τ0).

The following example gives a class of contractive semigroups on (C2, ‖ · ‖∞)
with non-contractive cogenerators. In particular, this provides a two-dimensional
counterexample to the converse implication in the Foiaş–Sz.-Nagy theorem.

Example 2.16. Every operator A generating a contractive C0-semigroup such that
A−1 generates a C0-semigroup which is not contractive leads to an example of a
contractive semigroup with non-contractive cogenerator. Indeed, by the previous
remark, there exists τ > 0 such that Vτ is not contractive. Therefore, the operator
τA generates a contractive semigroup with non-contractive cogenerator.

For a concrete example consider X := C2 endowed with ‖ · ‖∞ and A as
in Example 2.14. Then (etA)t≥0 is not contractive for β > 1. We show that the
semigroup generated by A−1 is contractive if and only if β ≤ 2.

Indeed, we have A−1 =
(

−1 −β
2

0 − 1
2

)
and

etA−1
=

(
e−t β(e−t − e−

t
2 )

0 e−
t
2

)
, t ≥ 0.

Therefore ‖etA−1‖∞ = sup{e−t +β(e−
t
2 −e−t), e−

t
2 }. Hence etA−1

is contractive if
and only if g(t) := e−t + β(e−

t
2 − e−t) ≤ 1 for every t > 0. We have g(0) = 1 and

g′(t) = −e−t+β(e−t− 1
2e

− t
2 ) = e−t[β(1− 1

2e
t
2 )−1]. Since the function t→ 1− 1

2e
t
2

is monotonically decreasing, we obtain that g′(t) ≤ 0 for every t ≥ 0 is equivalent
to g′(0) ≤ 0, i.e., β ≤ 2.

So we see that for 1 < β ≤ 2 the semigroup generated by A−1 is contractive
while the semigroup generated by A is not contractive. The rescaling procedure
described above leads to a contractive semigroup (generated by τA for some τ)
with non-contractive cogenerator.

Zwart [265] gives another example of an operator A generating a contractive
C0-semigroup such that the semigroup generated by A−1 is not contractive and
not even bounded. He takes a nilpotent semigroup on X = C0[0, 1] such that the
semigroup generated by A−1 grows like t1/4. By the rescaling procedure we again
obtain a contractive semigroup with non-contractive cogenerator.

Remark 2.17. The above example for 2 < β ≤ 3 yields a contractive cogenerator
V such that the semigroups generated by both operators A and A−1 are not
contractive. So V is a contraction on (C2, ‖ · ‖∞) such that operators Vτ are not
contractive for every τ ∈ (0, τ1) ∪ (τ2,∞), 0 < τ1 < 1 < τ2, by Remark 2.12.
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2.4 Polynomial boundedness

In this section, again following Eisner, Zwart [74], we show how polynomial bound-
edness of a C0-semigroup can be characterised by its cogenerator.

We show first that polynomial boundedness of a C0-semigroup on a Banach
space implies polynomial boundedness of its cogenerator. This generalises results
of Hersh and Kato [126] and Brenner and Thomée [41] on bounded semigroups.
For the proof, which is analogous to the one of Theorem 2.4, see [74].

Theorem 2.18. Let T (·) be a C0-semigroup on a Banach space with cogenerator
V . If ‖T (t)‖ ≤ M(1 + tk) for some M and k ∈ N ∪ {0} and every t ≥ 0, then
‖V n‖ ≤ Cnk+ 1

2 some C and every n ∈ N.
Furthermore, this estimate cannot be improved, i.e., for every k ∈ N ∪ {0}

there exists a Banach space and a C0-semigroup satisfying ‖T (t)‖ = O(tk) such
that ‖V n‖ ≥ Cnk+ 1

2 for some C > 0 and every n ∈ N.

Our next result shows that for analytic semigroups the converse implication
in Theorem 2.18 holds, i.e., polynomial boundedness of the cogenerator implies
polynomial boundedness of the semigroup.

Theorem 2.19. Let T (·) be an analytic C0-semigroup on a Banach space with
cogenerator V . If ‖V n‖ ≤ Cnk for some C, k ≥ 0 and every n ∈ N, then ‖T (t)‖ ≤
M(1 + t2k+1) for some M and every t ≥ 0.

Proof. Assume ‖V n‖ ≤ Cnk for some C, k ≥ 0 and every n ∈ N. Then r(V ) ≤ 1
and therefore λ ∈ ρ(A) for Reλ > 0 by Proposition I.3.3. Our aim is to show that
there exist a0,M > 0 such that

‖R(λ,A)‖ ≤ M

(Reλ)k+1
for all λ with 0 < Reλ < a0, (V.15)

‖R(λ,A)‖ ≤M for all λ with Reλ ≥ a0. (V.16)

By Theorem III.1.20 this implies growth of ‖T (t)‖ at most as t2k+1 for analytic
semigroups.

Take some a0 > max{0, ω0(T )}. Then (V.16) automatically holds and we
only have to show (V.15).

Since T (·) is analytic, R(λ,A) is uniformly bounded on {λ : |Imλ| > b0, 0 <
Reλ < a0} for some b0 ≥ 0. Moreover, R(λ,A) is also uniformly bounded on
{λ : |Imλ| ≤ b0,

1
3 ≤ Reλ < a0} as well. Take now λ with 0 < Reλ < 1

3 and
−b0 < Imλ < b0.

By Proposition I.3.3, where A denotes the generator of T (·) we have

‖R(λ,A)‖ ≤ 1 + ‖V ‖
|λ− 1|

∥∥∥∥R
(
λ+ 1
λ− 1

, V

)∥∥∥∥ . (V.17)

By Theorem II.1.17, growth of ‖V n‖ like nk implies

‖R(μ, V )‖ ≤ C̃

(|μ| − 1)k+1
for all μ with 1 < |μ| ≤ 2 (V.18)
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for some constant C̃. For μ := λ+1
λ−1 and 0 < Reλ < 1

3 we have

|μ| − 1 =
|λ+ 1| − |λ− 1|

|λ− 1| =
4Reλ

|λ− 1|(|λ+ 1| + |λ− 1|) < 1.

Then we use (V.18) to obtain

∥∥∥∥R
(
λ+ 1
λ− 1

, V

)∥∥∥∥ ≤ C̃|λ− 1|k+1(|λ+ 1| + |λ− 1|)k+1

4k+1(Reλ)k+1
≤ C1

(Reλ)k+1

for C1 := C̃(b20 + 5
4 )k+1. So, by (V.17),

‖R(λ,A)‖ ≤ C1(1 + ‖V ‖)
|λ− 1|(Reλ)k+1

≤ C1(1 + ‖V ‖)
2(Reλ)k+1

which proves (V.15). �

2.5 Strong stability

We now discuss the relation between strong stability of a C0-semigroup and its
cogenerator restricting our attention to Hilbert spaces.

The following classical theorem is based on the dilation theory developed by
Foiaş and Sz.-Nagy, see their monograph [238].

Theorem 2.20 (Foiaş, Sz.-Nagy [238, Prop. III.9.1]). Let T (·) be a contraction
semigroup on a Hilbert space H with cogenerator V . Then

lim
t→∞

‖T (t)x‖ = lim
n→∞

‖V nx‖

holds for every x ∈ H. In particular, T (·) is strongly stable if and only if its
cogenerator V is strongly stable.

Guo and Zwart obtained a (partial) generalisation of Theorem 2.20 to boun-
ded C0-semigroups.

Theorem 2.21 (Guo, Zwart, [113]). Let T (·) be a bounded semigroup on a Hilbert
space H with power bounded cogenerator V . If T (·) is strongly stable, then so is
V .

Note that the assumption of power boundedness of V in the above theorem
is satisfied if for example A−1 exists and generates a bounded C0-semigroup as
well, see Theorem 2.7.

No such result seems to be known on Banach spaces.
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2.6 Weak and almost weak stability

To conclude we look at the relation between weak and almost weak stability of a
C0-semigroup and its cogenerator.

We first show that for a large class of semigroups almost weak stability is
preserved by the cogenerator.

Proposition 2.22. Let T (·) be a relatively weakly compact C0-semigroup on a Ba-
nach space such that its cogenerator V has relatively weakly compact orbits. Then
T (·) is almost weakly stable if and only if V is.

In particular, a bounded C0-semigroup on a reflexive Banach space with power
bounded cogenerator is almost weakly stable if and only if its cogenerator is.

Proof. Denote the generator and the cogenerator of T (·) by A and V , respectively.
By Proposition I.3.3 we have

Pσ(A) ∩ iR = ∅ if and only if Pσ(V ) ∩ Γ = ∅.

Theorems II.4.1 and III.5.1 conclude the argument.
The last assertion follows from Example I.1.7 (a). �

Open question 2.23. Let T (·) be a contractive C0-semigroup on a Hilbert space.
Is weak stability of T (·) equivalent to weak stability of its cogenerator?

Remark 2.24. By Theorems II.3.2 and III.4.2, one can decompose every contrac-
tion (semigroup) on a Hilbert space into a unitary and a completely non-unitary
part, where the completely non-unitary part is always weakly stable. Moreover, a
semigroup is contractive or unitary if and only if its cogenerator is (see Subsection
I.3.1).

Therefore the question above restricts to the case of unitary groups and, by
the considerations in Section IV.1, can be reformulated as follows. Assume μ to
be a probability measure on R. Denote by ν the image of μ under the mapping

z 	→ iz + 1
iz − 1

, R → Γ.

Does the following equivalence hold:

μ is Rajchman on R ⇐⇒ ν is Rajchman on Γ?
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Adv. Appl., Birkhäuser, Basel, Vol. 48 (1990), 185–188.

[31] D. Berend, M. Lin, J. Rosenblatt, and A. Tempelman, Modulated and subse-
quential ergodic theorems in Hilbert and Banach spaces, Erg. Theory Dynam.
Systems 22 (2002), 1653–1665.

[32] S. Bergman, Sur les fonctions orthogonales de plusieurs variables complexes
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[60] R. de Laubenfels, Inverses of generators, Proc. Amer. Math. Soc. 104 (1988),
443–448.

[61] R. Derndinger, R. Nagel, G. Palm, 13 Lectures on Ergodic Theory. Func-
tional Analytic View. Manuscript, 1987.

[62] J. Dugundji, Topology, Allyn and Bacon, 1966.

[63] N. Dunford, J. T. Schwartz, Linear Operators. I., Interscience Publishers,
Inc., New York; Interscience Publishers, Ltd., London 1958.

[64] T. Eisner, Polynomially bounded C0-semigroups, Semigroup Forum 70
(2005), 118–126.

[65] T. Eisner, A “typical” contraction is unitary, L’Enseignement Mathéma-
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partout vers zéro, Math. Ann. 101 (1929), 686–700.

[218] T. Ransford, Eigenvalues and power growth, Israel J. Math. 146 (2005), 93–
110.

[219] T. Ransford, M. Roginskaya, Point spectra of partially power-bounded oper-
ators, J. Funct. Anal. 230 (2006), 432–445.

[220] F. Riesz, B. Sz.-Nagy, Functional Analysis, Frederick Ungar Publishing Co.,
1955.

[221] V. A. Rohlin, A “general” measure-preserving transformation is not mixing,
Doklady Akad. Nauk SSSR 60 (1948), 349–351.

[222] S. Rolewicz, On uniform N–equistability, J. Math. Anal. Appl. 115 (1986),
434–441.

[223] M. Rosenblum, J. Rovnyak, Topics in Hardy Classes and Univalent Func-
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