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Zusammenfassung

Die vorliegende Arbeit befasst sich mit einer Vermutung von Sarnak aus dem
Jahre 2010 über die Orthogonalität von durch deterministische dynamische Systeme
induzierte Folgen zur Möbiusschen µ-Funktion. Ihre Hauptresultate sind zum einen
der Ergodensatz mit Möbiusgewichten, welcher eine maßtheoretische (schwächere)
Version von Sarnaks Vermutung darstellt, und zum anderen die bereits gesicherte
Gültigkeit der genannten Vermutung in Spezialfällen, wobei hier exemplarisch unter
anderem der Thue–Morse Shift und Schiefprodukterweiterungen von rationalen
Rotationen auf dem Kreis gewählt worden sind.

Zum Zwecke der Motivation zeigen wir, dass eine gewisse Wachstumsabschätzung
für

∑N
n=1 µ(n) äquivalent ist zum Primzahlsatz und skizzieren ein Resultat, welches

die Äquivalenz einer weiteren solchen Abschätzung zur Riemannschen Vermutung
liefert, um auf diese Weise die Bedeutung der Möbiusfunktion für die Zahlenthe-
orie herauszustellen. Da sie für das Verständnis von Sarnaks Vermutung uner-
lässlich ist, geben wir eine Einführung in die Theorie der Entropie dynamischer Sys-
teme auf Grundlage der Definitionen von Adler–Konheim–McAndrew, Bowen–
Dinaburg und Kolmogorov–Sinai. Ferner berechnen wir die topologische En-
tropie des Thue–Morse Shifts und von Schiefprodukterweiterungen von Rotatio-
nen auf dem Kreis. Wir studieren die ergodische Zerlegung T -invarianter Maße auf
kompakten metrischen Räumen mit stetiger Transformation T , welche wir für den
Beweis des Ergodensatzes mit Möbiusgewichten benötigen.

Sodann beweisen wir den genannten gewichteten Ergodensatz. Wir geben eine
hinreichende Bedingung an für das Erfülltsein von Sarnaks Vermutung in einem
gegebenen dynamischen System, welche im anschließenden Kapitel Anwendung findet.
So wird nachgewiesen, dass Sarnaks Vermutung im Falle des Thue–Morse Shifts
und von Schiefprodukterweiterungen von rationalen Rotationen auf dem Kreis er-
füllt ist. Abschließend wird gezeigt, dass Sarnaks Vermutung sich als Konsequenz
aus einer Vermutung von Chowla ergibt.



Abstract

The thesis in hand deals with a conjecture of Sarnak from 2010 about the orthog-
onality of sequences induced by deterministic dynamical systems to the Möbius
µ-function. Its main results are the ergodic theorem with Möbius weights, which
is a measure theoretic (weaker) version of Sarnak’s conjecture, and the already
assured validity of Sarnak’s conjecture in special cases, where we have exemplarily
chosen the Thue–Morse shift and skew product extensions of rational rotations on
the circle et al.

For the purpose of motivation, we show that a certain growth rate estimation for∑N
n=1 µ(n) is equivalent to the prime number theorem and outline a result about

another such estimation being equivalent to the Riemann hypothesis to underline
the significance of the Möbius function for number theory. Since it is essential for
the understanding of Sarnak’s conjecture we give an introduction to the theory of
entropy of dynamical systems based on the definitions of Adler–Konheim–McAn-
drew, Bowen–Dinaburg and Kolmogorov–Sinai. Furthermore, we calculate
the topological entropy of the Thue–Morse shift and of skew product extensions
of rotations on the circle. We study the ergodic decomposition for T -invariant mea-
sures on compact metric spaces with continuous transformations T , which we will
need for the proof of the ergodic theorem with Möbius weights.

Thereafter, we prove the namely weighted ergodic theorem. We give a sufficient
condition for Sarnak’s conjecture to hold for a given dynamical system, which
we make use of in the following chapter. Thereupon, it is varified that Sarnak’s
conjecture holds for the Thue–Morse shift and for skew product extensions of
rational rotations on the circle. Lastly, it is shown that Sarnak’s conjecture follows
from one of Chowla.
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1. Introduction

Many fundamental results of number theory deal with the phenomenon that is the
prime numbers and for many still open questions to solve getting a better under-
standig of their true nature and distribution among the integers is essential. One
way to approach this is the study of the well-known Möbius function µ, which is
the unique multiplicative arithmetical function taking −1 at each prime number
and 0 at every higher power of a prime. So the values (that is the zero pattern or
the sign) of µ correspond to the prime numbers and the question arises if they act
predictably in any sense. From all we know about the nature of prime numbers, it
seems reasonable to assume that this is not the case. But we can try to quantify
this Möbius function randomness and make it mathematically ascertainable. A first
such attempt was made by Chowla in [10] in 1965 expressed in a (still unproven)
conjecture of him (see Conjecture 8.1) which implies that the sign of µ fluctuates
like random noise (cf. Remark 1 in [58]). But we want to focus more on another
related hypothesis about the Möbius function randomness heuristic.

We call two sequences (an)n∈N, (bn)n∈N ⊂ C1 mutually orthogonal if

1
N

N∑
n=1

anbn −−−−→
N→∞

0.

It is known that not every sequence is orthogonal to the Möbius function - e.g.

1
N

N∑
n=1

(µ(n))2 9 0

as N → ∞ (see e.g. [53]; see also [21] (Proposition 5) for an example of a sequence
(zn)n∈N 6= (µ(n))n∈N not orthogonal to µ) - and according to the Möbius function
randomness the question arises if (Fn)n∈N ⊂ C is orthogonal to (µ(n))n∈N whenever
(Fn)n∈N acts - in some sense - predictably. This consideration culminates in a resent
conjecture of Sarnak:

Conjecture 1.1 (Sarnak, [53]). Let T : X → X be a deterministic continuous
transformation on a compact metric space X. Then for each x ∈ X and every
f ∈ C(X) we have

lim
N→∞

1
N

N∑
n=1

f (Tnx)µ(n) = 0,

where C(X) := {f : X → C | f continuous}.

1Note that we write (xn)n∈N ⊂ M whenever a sequence (xn)n∈N takes values in a set M while we
reserve “⊆” for describing set inclusions (where we write N ( M for N ⊆ M, N 6= M). Note
furthermore, that we identify sequences (xn)n∈N ⊂ C, which are of the index set N and take
values in C, with arithmetical functions x : N 3 n 7→ x(n) ∈ C and use both terms synonymously.
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So we consider sequences (Fn)n∈N given by Fn := f (Tnx) with f and T as in
Conjecture 1.1 and the predictability of (Fn)n∈N encoded in the assumption about
T being deterministic, which we will explain in more detail in Chapter 3.

While in general Sarnak’s conjecture is still open, several special cases are already
known, including

• constant or periodic sequences, see Chapter 7;

• rotations on the circle, which follows from the work of Davenport [14] (see
also Chapter 7);

• nilsystems, which is a result of Green and Tao [28];

• horocycle flows, which was shown by Bourgain, Sarnak and Ziegler [9];

• the classical Thue–Morse shift, for which several proofs are known (the first
has been found by Dartyge and Tenenbaum [13]). In Chapter 7 we will
see this by following the argumentation of El Abdalaoui, Kasjan and Le-
manczyk done in [21];

• a large class of rank one maps, as varified by Bourgain [8] and by El Ab-
dalaoui, Lemanczyk and de la Rue [23];

• the dynamical system generated by the Rudin–Shapiro sequence, which is a
result of Mauduit and Rivat [42] (see also [24]);

• subshifts given by bijective substitutions, as shown recently by Ferenczi,
Kulaga-Przymus, Lemanczyk and Mauduit [24];

Conversely, it is possible to construct a sequence (Fn)n∈N induced by a non-
deterministic transformation (of arbitrarily small topological entropy) such that
1
N

∑N
n=1 Fnµ(n) 9 0 as N → ∞. Choose e.g.

Fn = 1k|n :=
{

1 if k|n
0 otherwise

for some k ∈ N sufficiently large and such that @p ∈ P : p2|k (consult [58] for further
information). Also the examples of sequences not orthogonal to µ given above come
from non-deterministic transformations (see [53] or. [21]).

So Sarnak’s conjecture appears to be a promising attempt to ascertainably de-
scribe the Möbius function randomness, despite it being far from being proven up
until the present day, and the thesis in hand is intended to give a brief introduction
to the study of this field of recent mathematical research. To do so we choose an
approach based on instruments of ergodic theory by considering topological as well
as measure-preserving dynamical systems.

The thesis is organized as follows: First of all, we want to substantiate the signif-
icance of the Möbius function for number theory by proving a fundamental equiva-
lence to the prime number theorem and outlining another to the prominent Riemann
hypothesis. Subsequently, we will give an introduction to the concept of topological
entropy of a dynamical system to fully explain the meaning of the assumption about
T being deterministic. Chapter 4 will be dedicated to a technical tool from ergodic
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theory, namely the ergodic decomposition of an invariant measure for a given dynam-
ical system. This will be applied (et al) in Chapter 5 to prove the ergodic theorem
with Möbius weights stating that Sarnak’s conjecture holds true for ν-a.e. point of
an arbitrary dynamical system with ν an invariant measure on it. In Chapter 6 the
so called KBSZ-criterion will be discussed, which represents a sufficient condition for
the claimed convergence in Conjecture 1.1 in a given system. By bringing that into
usage we will collect some examples for which we show that Sarnak’s conjecture
holds. Finally, we will show that Conjecture 1.1 is a consequence of the conjecture
of Chowla mentioned above.
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2. The Möbius Function

Denote by ω : N → N the arithmetical function which maps n ∈ N to the number
of distinct prime factors of n, i.e., ω(n) := # {p ∈ P | p|n}. We call n square-free if
there is no p ∈ P such that p2|n. That means that, in the unique prime factoriza-
tion

∏m
k=1 p

ak
k of n all the exponents ak are equal to 1. Equivalently, an n ∈ N is

square-free if and only if for all m ∈ N we have m2 - n.
On this basis, define the Möbius function µ : N → {−1, 0, 1} by

µ(n) :=


1 if n = 1
(−1)ω(n) if n is square-free
0 otherwise

.

This function was introduced in 1832 by the German mathematician and theoretical
astronomer August Ferdinand Möbius (17 November 1790 – 26 September 1868),
who learned and lectured at the University of Leipzig (appointed as Extraordinary
Professor to the "chair of astronomy and higher mechanics" in 1816, Full Professor-
ship in astronomy by 1844).1 Actually, this function was first considered by Gauss
more than 30 years before Möbius in his work Disquisitiones Arithmeticae of 1801
(see [27], §81). The notation µ(n) was first used by Mertens in 1874.

So, why is this function of concern for present mathematicial research? At least
the conjectures of Sarnak and Chowla (and thus the studies of several mathe-
maticians working towards a proof of either of these) are essentially related to it.

In this chapter, which is to be understood as a motivation for the thesis in hand,
we want to assess the significance of the Möbius function for number theory. For

M : [1,∞) 3 x 7→
∑
n∈N
n≤x

µ(n) ∈ Z

(M is called the Mertens function) we will show that the asymptotical growth
estimation

lim
x→∞

M(x)
x

= 0 (F)

is equivalent to the prime number theorem, which describes the asymptotic distri-
bution of the prime numbers among the positive integers:

Theorem 2.1 (Prime number theorem). We have

lim
x→∞

# {p ∈ P | p ≤ x}
x/ log x = 1.

1See e.g. http://www-history.mcs.st-andrews.ac.uk/Biographies/Mobius.html for further informa-
tion.
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Several different proofs for Theorem 2.1 are known; the first have been found inde-
pendently by Hadamard and de la Vallée-Poussin in 1896. One by Newman,
that is arguably the simplest known, can be found in [45].

Furthermore, following the work of Titchmarsh done in [59], we will give a brief
sketch of proof that the much stronger (and still open) improvement

lim sup
x→∞

M(x)
x

1
2 +ε

< ∞ (FF)

is equivalent to the Riemann hypothesis:
For s ∈ C with <(s) > 0 let ζ(s) :=

∑∞
n=1

1
ns . Then ζ can be uniquely analytically

continued to a meromorphic2 function on the whole complex plane (except s = 1),
which we also denote by ζ. It can be shown that ζ(s) = 0 for any s ∈ {−2t | t ∈ N}
(this follows from the functional equation for ζ, see Remark 2.22 below). But ζ do
have further zeros, called the non-trival zeros of the Riemann Zeta-function ζ.
Conjecture 2.2 (Riemann). All non-trival zeros of the Riemann Zeta-function lie
on the line

{
1
2 + it

∣∣∣ t ∈ R
}

, i.e., whenever ζ(s) = 0 for <(s) ≥ 0 we have <(s) = 1
2 .

We want to start our studies with a rather easy property of the Möbius function
we will need in several argumentations.
Definition 2.3. Let f be an arithmetical function. Then we call f

• multiplicative, if for each m,n ∈ N with (m,n) = 1 we have f(m · n) =
f(m)f(n).

• totally multiplicative, if for each m,n ∈ N we have f(m · n) = f(m)f(n).
Proposition 2.4. The Möbius function is multiplicative but not totally multiplica-
tive.
Proof. First we show that µ is multiplicative. This is obvious in the case n = 1 or
m = 1. So let m,n ∈ N \ {1} with (m,n) = 1. Then we have

µ(m) = 0 ∨ µ(n) = 0 ⇔ ∃p ∈ P :
(
p2|m ∨ p2|n

)
⇔ ∃p ∈ P : p2|m · n ⇔ µ(m · n) = 0.

On the other hand, for µ(m), µ(n) 6= 0, we have m =
∏k
j=1 pj and n =

∏l
i=1 qi for

some k, l ∈ N, p1, . . . , pk, q1, . . . , ql ∈ P, pj1 6= pj2 and qi1 6= qi2 for each j1, j2 ∈
[1, k] ∩ Z and each i1, i2 ∈ [1, l] ∩ Z. Moreover, since (m · n) = 1, we have pj 6= qi
for any j ∈ [1, k] ∩ Z, i ∈ [1, l] ∩ Z, because otherwise (m · n) > r, for r := pj = qi.
Hence m · n =

(∏k+l
j=1 pj

)
, for pk+i := qi for each i ∈ [1, l] ∩ Z, and thus

µ(m · n) = (−1)k+l = (−1)k (−1)l = µ(m)µ(n).

To see that µ is not totally multiplicative, consider e.g. m = 3 and n = 6. Then
µ(3) = −1 and µ(6) = µ(2 · 3) = 1, but

µ(3 · 6) = µ(32 · 2) = 0 6= −1 = µ(3)µ(6).

By the fundamental theorem of arithmetic, which states that the prime factoriza-
tion of any positive integer is unique up to the order of the factors, each multiplicative
arithmetical function is uniquely determined by its values at prime powers. Thus µ
is the unique multiplicative function that takes the value −1 at each prime and the
value 0 at every higher power of a prime.3

2i.e., holomorphic on all C except a set of countably many isolated points
3Note that, since (m, 1) = 1 for each m ∈ N, we have f(1) = 1 whenever f : N → C is multiplicative.

10



2.1. The Prime Number Theorem is equivalent to (F)
In this section we will consider sums of the form

∑
d∈N
d|n

f(d), for n ∈ N and f

an arithmetical function, for which we shortly write
∑
d|n f(n). We will content

ourselves to real-valued functions, although each result holds for complex-valued
arithmetical functions by dividing it into its real and imaginary part. All results of
this section are taken from [4].

Let π : [1,∞) → N be given by π(x) := # {p ∈ P | p ≤ x} for every x ∈ [1,∞).
For f, g : R → R, g(x) 6= 0 for each x ∈ R, write f(x) ∼ g(x) if limx→∞

f(x)
g(x) = 1.

We want to prove the following result:

Theorem 2.5. The following statements are equivalent:

i) π(x) ∼ x
log x .

ii) limx→∞
M(x)
x = 0.

To do so we need some preparation concerning Dirichlet products, the Möbius
inversion and the Chebyshev functions.

2.1.1. Preliminaries
Definition 2.6 (Dirichlet multiplication). For arithmetical functions f, g : N → R
we call

f ∗ g : N 3 n 7→
∑
d|n

f(d)g
(
n

d

)
∈ R

the Dirichlet product of f and g.

One can show that the Dirichlet multiplication is associative and commutative
(see [4]).

For x ∈ R denote by [x] the largest integer not greater than x, i.e.,

[x] := max {n ∈ Z |n ≤ x} .

Define I : N → {0, 1} by

I(n) :=
[ 1
n

]
=
{

1 if n = 1
0 if n > 1

.

Then I is the neutral element for the Dirichlet multiplication.

Proposition 2.7. For n ∈ N we have I(n) =
∑
d|n µ(d).

Proof. For n = 1 the assertion holds. Let n > 1 and write n =
∏k
j=1 p

aj

j with
p1, . . . , pk ∈ P, a1, . . . , ak ∈ N. In

∑
d|n µ(d) only the terms for d = 1 and for those

divisors of n which are products of distinct primes do contribute. Hence∑
d|n

µ(d) = µ(1) + µ(p1) + . . .+ µ(pk) + µ(p1p2) + . . .+ µ(pk−1pk)

+ . . .+ µ(p1p2 . . . pk)

= 1 +
(
k

1

)
(−1) +

(
k

2

)
(−1)2 + . . .+

(
k

k

)
(−1)k = (1 − 1)k = 0

by the binomial sum.
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From Proposition 2.7 we obtain I(n) =
∑
d|n µ(d) =

∑
d|n 1N(d)µ

(
n
d

)
= 1N ∗ µ.

Theorem 2.8 (Möbius inversion). For arithmetical functions f, g the following
conditions are equivalent:

i) f(n) =
∑
d|n g(d).

ii) g(n) =
∑
d|n f(d)µ

(
n
d

)
.

Proof. From i) follows that f = g ∗ 1N. Hence

f ∗ µ = (g ∗ 1N) ∗ µ = g ∗ (1N ∗ µ) = g ∗ I = g,

which implies ii). The converse implication follows analogously by Dirichlet mul-
tiplication of f ∗ µ = g with 1N.

Definition 2.9. The function Λ : N → [0,∞) given by

Λ(n) :=
{

log p if n = pm for some p ∈ P and m ∈ N
0 otherwise

is called the von Mangoldt function.

Proposition 2.10. For n ∈ N we have
∑
d|n Λ(d) = logn.

Proof. For n = 1 both sides are equal to zero. For n > 1 write n =
∏k
j=1 p

aj

j with
p1, . . . , pk ∈ P, a1, . . . , ak ∈ N. Then

logn = log

 k∏
j=1

p
aj

j

 =
k∑
j=1

aj log pj .

Now the only non-zero terms in the sum
∑
d|n Λ(d) come from those divisors of d

which are of the form pmk for m ∈ [1, ak] ∩ Z, k ∈ [1, r] ∩ Z. Thus

∑
d|n

Λ(d) =
r∑

k=1

ak∑
m=1

Λ(pmk ) =
r∑

k=1
ak log pk = log n.

Proposition 2.11. For n ∈ N we have Λ(n) =
∑
d|n µ(d) log

(
n
d

)
= −

∑
d|n µ(d) log d.

Proof. From Proposition 2.10 we know that
∑
d|n Λ(d) = logn. Möbius inversion of

this equation yields

Λ(n) =
∑
d|n

µ(d) log
(
n

d

)
= (log n)

∑
d|n

µ(d) −
∑
d|n

µ(d) log d

= I(n) logn−
∑
d|n

µ(d) log d = −
∑
d|n

µ(d) log d,

since I(n) logn = 0 for each n ∈ N (because I(n) 6= 0 iff n = 1, which is the root of
the logarithm).
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For F : (0,∞) → R, F (x) = 0 for x ∈ (0, 1), and f : N → R define f ? F :
(0,∞) → R by

(f ? F ) (x) :=
∑
n∈N
n≤x

f(n)F
(
x

n

)
.

Proposition 2.12. For all arithmetical functions f, g and F given as above we have

f ? (g ? F ) = (f ∗ g) ? F.

Proof. For each x ∈ (0,∞) we have

(f ? (g ? F )) (x) =
∑
n∈N
n≤x

f(n)
∑
m∈N
m≤ x

n

g(m)F
(

x

m · n

)
=

∑
m,n∈N
m·n≤x

f(n)g(m)F
(

x

m · n

)

=
∑
k∈N
k≤x

∑
n|k

f(n)g
(
k

n

)F (x
k

)
=
∑
k∈N
k≤x

(f ∗ g) (k)F
(
x

k

)

= ((f ∗ g) ? F ) (x).

Proposition 2.13. For f, g : N → R let H(x) :=
∑
n∈N
n≤x

(f ∗ g) (n), F (x) :=∑
n∈N
n≤x

f(n) and G(x) :=
∑
n∈N
n≤x

g(n). Then

H(x) :=
∑
n∈N
n≤x

f(n)G
(
x

n

)
=
∑
n∈N
n≤x

g(n)F
(
x

n

)
.

Proof. Define U : (0,∞) → {0, 1} by

U(x) :=
{

0 if x ∈ (0, 1)
1 otherwise

.

Then F = f ?U , G = g ?U and H = (f ∗ g)?U and from Proposition 2.12 we obtain

f ? G = f ? (g ? U) = (f ∗ g) ? U = H

as well as
g ? F = g ? (f ? U) = (g ∗ f) ? U = H.

Proposition 2.14. For x ∈ [1,∞), a, b ∈ [1,∞) such that a · b = x and F,G as in
Proposition 2.13 we have

∑
q,d∈N
q·d≤x

f(d)g(q) =
∑
n∈N
n≤a

f(n)G
(
x

n

)
+
∑
n∈N
n≤b

g(n)F
(
x

n

)
− F (a)G(b).

Sketch of proof. The sum
∑
q,d∈N
q·d≤x

f(d)g(q) is extended over the lattice points un-

derneath the graph of a certain hyperbolic function ϕ. Let a > 1 and b := ϕ(a).
Set B := [1, a] × [1, b] as well as A :=

{
(x, y) ∈ R2 ∣∣x ∈ (1, a) , y ∈ (b, ϕ(x)]

}
and

C :=
{
(x, y) ∈ R2 ∣∣x > a, y ∈ [1, ϕ(x)]

}
. Split the sum into to parts, one over the
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lattice points in A ∪ B and the other over those in B ∪ C. The lattice points in B
are covered twice, so we have∑

q,d∈N
q·d≤x

f(d)g(q) =
∑
d∈N
d≤a

∑
q∈N
q≤ x

d

f(d)g(q) +
∑
q∈N
q≤b

∑
d∈N
d≤ x

q

f(d)g(q) −
∑
d∈N
d≤a

∑
q∈N
q≤b

f(d)g(q)

which is the same as the asserted equality.

Lemma 2.15 (Abel’s identity). Let a be an arbitrary arithmetical function. Define
A : R → R by

A(x) :=
∑
n∈N
n≤x

a(n)

(note that A(x) = 0 for each x < 1). For 0 < y < x let f : R → R be continuously
differentiable in [y, x]. Then

∑
n∈N
y<n≤x

a(n)f(n) = A(x)f(x) −A(y)f(y) −
ˆ x

y
A(t)f ′(t) d t.

Proof. Let k := [x] and m := [y]. So A(x) = A(k), A(y) = A(m) and

∑
n∈N
y<n≤x

a(n)f(n) =
k∑

n=m+1
a(n)f(n) =

k∑
n=m+1

(A(n) −A(n− 1)) f(n)

=
k∑

n=m+1
A(n)f(n) −

k−1∑
n=m

A(n)f(n+ 1)

=
k−1∑

n=m+1
A(n) (f(n) − f(n+ 1)) +A(k)f(k) −A(m)f(m+ 1)

= −
k−1∑

n=m+1
A(n)

ˆ n+1

n
f ′(t) d t+A(k)f(k) −A(m)f(m+ 1)

= −
ˆ k

m+1
A(t)f ′(t) d t+A(x)f(x)

−
ˆ x

k
A(t)f ′(t) d t−A(y)f(y) −

ˆ m+1

y
A(t)f ′(t) d t

= A(x)f(x) −A(y)f(y) −
ˆ x

y
A(t)f ′(t) d t.

Thus the assertion follows.

It will be convenient to reformulate the prime number theorem. More specifically,
we will show that Theorem 2.1 is equivalent to∑

n∈N
n≤x

Λ(n) ∼ x (2.1)

as x → ∞, where Λ denotes the van Mangoldt function as defined in Defini-
tion 2.9. The partial sums of Λ define a function introduced by Chebyshev.

14



Definition 2.16 (Chebyshev). For x ∈ (0,∞) define ϑ, ψ : (0,∞) → R by

ϑ(x) :=
∑
p∈P
p≤x

log p and

ψ(x) :=
∑
n∈N
n≤x

Λ(n),

Then we call ϑ the first and ψ the second Chebyshev function.

Thus (2.1) takes the form

lim
x→∞

ψ(x)
x

= 1. (2.2)

To show that this is equivalent to the prime number theorem, we need to study
the two Chebyshev functions a little further. Since Λ(n) = 0 unless n is a prime
power, we can write

ψ(x) =
∑
n∈N
n≤x

Λ(n) =
∑
p∈P

∑
m∈N
pm≤x

Λ(pm) =
∞∑
m=1

∑
p∈P

p≤ m√x

log p.

The sum on m is actually finite. In fact, the sum on p is empty, if m
√
x < 2, that is,

if 1
m log x < log 2, which we rewrite as

m >
log x
log 2 = log2 x.

Hence
ψ(x) =

∑
m∈N

m≤log2 x

∑
p∈P

p≤ m√x

log p =
∑
m∈N

m≤log2 x

ϑ( m
√
x). (2.3)

Proposition 2.17. For each x ∈ (0,∞) we have

0 ≤ ψ(x)
x

− ϑ(x)
x

≤ (log x)2

2
√
x log 2 .

Proposition 2.17 shows that limx→∞
(
ψ(x)
x − ϑ(x)

x

)
= 0, i.e., if one of the functions

ψ(x)
x , ϑ(x)

x converges then so does the other and the two limits coincide.

Proof of Proposition 2.17. From (2.3) we find

0 ≤ ψ(x) − ϑ(x) =
∑
m∈N

m≤log2 x

ϑ( m
√
x) − ϑ(x

1
1 ) =

∑
m∈N

2≤m≤log2 x

ϑ( m
√
x).

But from the definition of ϑ we have

ϑ(x) ≤
∑
p∈P
p≤x

log x ≤ x log x.
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So

0 ≤ ψ(x) − ϑ(x) =
∑
m∈N

2≤m≤log2 x

ϑ( m
√
x) ≤

∑
m∈N

2≤m≤log2 x

(
m
√
x
)

log
(

m
√
x
)

≤ (log2 x)
√
x log

(√
x
)

= log x
log 2 ·

√
x

2 log x

=
√
x (log x)2

2 log 2 .

Hence
0 ≤ ψ(x)

x
− ϑ(x)

x
≤ 1
x

·
√
x (log x)2

2 log 2 = (log x)2

2
√
x log 2 .

2.1.2. Proof of Theorem 2.5
As mentioned before, we want to deal with the prime number theorem in the form
given by equation (2.2). Thus, we have to verify this equivalence first. Recall that
for x ∈ [1,∞) we set π(x) := # {p ∈ P | p ≤ x} =

∑
p∈P
p≤x

1. Furthermore, for two

functions f, g : R → R we write f(x) = O(g(x)) as x → ∞, if there is a constant
C > 0 such that for all sufficiently large x ∈ R (i.e., for all x greater than some
x0 ∈ R) we have |f(x)| ≤ C |g(x)|. Note that we have M(x) =

∑
n∈N
n≤x

µ(n) ≤∑
n∈N
n≤x

1 = [x] = O(x) as x → ∞.

Lemma 2.18. For x ∈ [2,∞) we have

a) ϑ(x) = π(x) log x−
´ x

2
π(t)
t d t.

b) π(x) = ϑ(x)
log x +

´ x
2

ϑ(x)
t(log t)2 d t.

Proof. We want to make use of Abel’s identity (Lemma 2.15). Note that

π(x) =
∑
p∈P
p≤x

1 =
∑
n∈N

1<n≤x

1P(n) and

ϑ(x) =
∑
p∈P
p≤x

log p =
∑
n∈N

1<n≤x

1P(n) log p,

where

1A (x) :=
{

1 for x ∈ A

0 otherwise
,

for arbitrary sets A and Ω with A ⊆ Ω and x ∈ Ω. So from Lemma 2.15 with
a(n) := 1P(n), f(x) := log x and y := 1 we obtain

ϑ(x) =
∑
n∈N

1<n≤x

1P(n) log p = π(x) log x− π(1) log 1︸ ︷︷ ︸
=0

−
ˆ x

1

π(t)
t

d t,

which implies a) since π(t) = 0 for t < 2.
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Now let a(n) := 1P(n) logn and write

π(x) =
∑
n∈N

3
2<n≤x

a(n) 1
logn and

ϑ(x) =
∑
n∈N
n≤x

a(n).

Then Lemma 2.15 with f(x) := (log x)−1 and y := 3
2 yields

π(x) = ϑ(x)
log x −

ϑ
(

3
2

)
log 3

2
+
ˆ x

3
2

ϑ(t)
t (log t)2 d t,

which implies b) since ϑ(t) = 0 for t < 2.

Theorem 2.19. The following relations are equivalent:

i) limx→∞
π(x) log x

x = 1.

ii) limx→∞
ϑ(x)
x = 1.

iii) limx→∞
ψ(x)
x = 1.

Proof. The equivalence of ii) and iii) follows from Proposition 2.17. So it remains
to show that i) and ii) are equivalent.

From Lemma 2.18 a) and b) we obtain respectively

ϑ(x)
x

= π(x) log x
x

− 1
x

ˆ x

2

π(t)
t

d t and

π(x) log x
x

= ϑ(x)
x

+ log x
x

ˆ x

2

ϑ(t)
t (log t)2 d t.

Hence, to show that i) implies ii), it suffices to show that i) implies

lim
x→∞

1
x

ˆ x

2

π(t)
t

d t = 0.

But from i) it follows that π(t)
t = O

(
1

log t

)
as t → ∞. Hence

1
x

ˆ x

2

π(t)
t

d t = O
(1
x

ˆ x

2

1
log t d t

)
as x → ∞. Now
ˆ x

2

1
log t d t =

ˆ √
x

2

1
log t d t+

ˆ x

√
x

1
log t d t ≤

√
x

log 2+x−
√
x

log
√
x

=

2 − 2√
x

log x − 1√
x log 2

x
and thus

1
x

ˆ x

2

1
log t d t ≤

2 − 2√
x

log x − 1√
x log 2 −−−−→

x→∞
0.
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On the other hand, to show that ii) implies i), it suffices to show that ii) implies

lim
x→∞

log x
x

ˆ x

2

ϑ(t)
t (log t)2 d t = 0.

But from ii) it follows that ϑ(t) = O(t) as t → ∞. Hence

log x
x

ˆ x

2

ϑ(t)
t (log t)2 d t = O

(
log x
x

ˆ x

2

1
(log t)2 d t

)
.

Like above we concludeˆ x

2

1
(log t)2 d t ≤

√
x

(log 2)2 + x−
√
x

(log
√
x)2 = x

(log x)2

(
− 4√

x
+ (log x)2

√
x (log 2)2 + 4

)
and thus

log x
x

ˆ x

2

1
(log t)2 d t ≤ 1

log x

(
− 4√

x
+ (log x)2

√
x (log 2)2 + 4

)
−−−−→
x→∞

0.

Denote by d : N → N the arithmetical function that counts the divisors of an
integer n, i.e., d(n) :=

∑
d|n 1. Furthermore, denote C := limn→∞

(∑n
k=1

1
k − logn

)
(one can show that this is a real number, see e.g. [4]). We call C Euler’s constant.

Lemma 2.20 (Dirichlet’s Formula). We have∑
n∈N
n≤x

d(n) − x log x− (2C − 1)x = O
(√
x
)

as x → ∞, where C denotes Euler’s constant.

A proof of Lemma 2.20 can be found in [4] (Theorem 3.3).

Lemma 2.21. Define H : [1,∞) → R by H(x) :=
∑
n∈N
n≤x

µ(n) log n. Then for M
the Mertens function we have

lim
x→∞

(
M(x)
x

− H(x)
x log x

)
= 0.

Analogous to Proposition 2.17, Lemma 2.21 implies that if one of the functions
M(x)
x , H(x)

x log x converges then so does the other and the two limits coincide.

Proof of Lemma 2.21. Form Lemma 2.15 with a(n) := µ(n), f(x) := log x and y := 1
we obtain

H(x) =
∑
n∈N
n≤x

µ(n) logn = M(x) log x−
ˆ x

1

M(t)
t

d t.

Since x > 1 this implies
M(x)
x

− H(x)
x log x = 1

log x

ˆ x

1

M(t)
t

d t.

Hence it remains to show that 1
log x
´ x

1
M(t)
t d t −−−−→

x→∞
0. But this is immediate from

ˆ x

1

M(t)
t

d t = O
(ˆ x

1
d t
)

= O(x)

as x → ∞, which is a consequence of M(x) = O(x) as x → ∞.
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Now we are ready to prove the claimed equivalence.

Proof of Theorem 2.5.
i) implies ii):

From Theorem 2.19 we know that i) is equivalent to ψ(x) ∼ x. We aim to show
that H(x)

x log x −−−−→
x→∞

0, with H as in Lemma 2.21, to obtain ii) using Lemma 2.21. In
Proposition 2.11 we found

Λ(n) = −
∑
d|n

µ(d) log d.

By applying Möbius inversion (Theorem 2.8) to that we obtain

−µ(n) logn =
∑
d|n

µ(d)Λ
(
n

d

)
.

Summing over all n ∈ N with n ≤ x and using Proposition 2.13 with f = µ and
g = Λ we find

−H(x) = −
∑
n∈N
n≤x

µ(n) logn =
∑
n∈N
n≤x

µ(n)ψ
(
x

n

)
. (2.4)

Now fix ε > 0. Since ψ(x) ∼ x, there is a constant A = A(ε) > 0 just depending on
ε such that

∣∣∣ψ(x)
x − 1

∣∣∣ < ε for each x ≥ A. In other words,

|ψ(x) − x| < εx, (2.5)

whenever x ≥ A. Choose x > A and write∑
n∈N
n≤x

µ(n)ψ
(
x

n

)
=
∑
n∈N
n≤y

µ(n)ψ
(
x

n

)
+

∑
n∈N
y<n≤x

µ(n)ψ
(
x

n

)
,

where y :=
[
x
A

]
. In the first sum, because of n ≤ y ≤ x

A , we have x
n ≥ A and thus

obtain from (2.5) ∣∣∣∣ψ (xn
)

− x

n

∣∣∣∣ < ε
x

n
,

whenever n ≤ y. Hence∑
n∈N
n≤y

µ(n)ψ
(
x

n

)
=
∑
n∈N
n≤y

µ(n)
(
x

n
+ ψ

(
x

n

)
− x

n

)

= x
∑
n∈N
n≤y

µ(n)
n

+
∑
n∈N
n≤y

µ(n)
(
ψ

(
x

n

)
− x

n

)

and therefore∣∣∣∣∣∣∣∣
∑
n∈N
n≤y

µ(n)ψ
(
x

n

)∣∣∣∣∣∣∣∣ ≤ x

∣∣∣∣∣∣∣∣
∑
n∈N
n≤y

µ(n)
n

∣∣∣∣∣∣∣∣+
∑
n∈N
n≤y

|µ(n)|︸ ︷︷ ︸
≤1

∣∣∣∣ψ (xn
)

− x

n

∣∣∣∣ < x+ ε
∑
n∈N
n≤y

x

n

< x+ εx (1 + log y) < x+ εx+ εx log x.

(2.6)
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In the second sum, because of y < n ≤ x, we have n ≥ y+1 and since y ≤ x
A < y+1

also x
n ≤ x

y+1 < A. The inequality x
n < A implies ψ

(
x
n

)
< ψ(A). Hence, the sum is

dominated by xψ(A). Together with (2.6) we conclude

|H(x)| =

∣∣∣∣∣∣∣∣
∑
n∈N
n≤x

µ(n)ψ
(
x

n

)∣∣∣∣∣∣∣∣ < x+ εx+ εx log x+ ψ(A) < (2 + ψ(A))x+ εx log x,

if ε < 1. Thus, for ε ∈ (0, 1) we have

|H(x)|
x log x <

2 + ψ(A)
log x + ε.

Now we can find a B > A so that x > B implies 2+ψ(A)
log x < ε. Hence, for x > B,

|H(x)|
x log x < 2ε.

Thus H(x)
x log x −−−−→

x→∞
0, which because of Lemma 2.21 implies ii).

ii) implies i):
First recall that for each x ∈ [1,∞) we have

• [x] =
∑
n∈N
n≤x

1,

• ψ(x) =
∑
n∈N
n≤x

Λ(n),

• 1 =
∑
n∈N
n≤x

[
1
n

]
.

Using Möbius inversion on these we obtain

• 1 =
∑
d|n µ(n)d

(
n
d

)
,

• Λ(n) =
∑
d|n µ(d) log

(
n
d

)
,

•
[

1
n

]
=
∑
d|n µ(d),

where d(n) denotes the number of divisors of n. Define f : N → R by

f(n) := d(n) − logn− 2C,

where C denotes Euler’s constant. Then

[x] − ψ(x) − 2C =
∑
n∈N
n≤x

(
1 − Λ(n) − 2C

[ 1
n

])

=
∑
n∈N
n≤x

∑
d|n

µ(d)
(
d

(
n

d

)
− log

(
n

d

)
− 2C

)

=
∑
q,d∈N
qd≤x

µ(d) (d(q) − log q − 2C)

=
∑
q,d∈N
qd≤x

µ(d)f(q).
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This implies
ψ(x) − x+

∑
q,d∈N
qd≤x

µ(d)f(q) = O (1)

as x → ∞. Hence it remains to show that 1
x

∑
q,d∈N
qd≤x

µ(d)f(q) −−−−→
x→∞

0. To do so we

make use of Proposition 2.14 and write∑
q,d∈N
qd≤x

µ(d)f(q) =
∑
n∈N
n≤b

µ(d)F
(
x

n

)
+
∑
n∈N
n≤a

f(n)M
(
x

n

)
− F (a)M(b), (2.7)

where a, b ∈ (0,∞) such that ab = x and F (x) :=
∑
n∈N
n≤x

f(n).
Now, from Lemma 2.20 we know that∑

n∈N
n≤x

d(n) − x log x− (2C − 1)x = O
(√
x
)
.

Together with∑
n∈N
n≤x

logn = log
∏
n∈N
n≤x

n = log ([x]!) = x log x− x+ O (log x)

this yields

F (x) =
∑
n∈N
n≤x

f(n) =
∑
n∈N
n≤x

d(n) −
∑
n∈N
n≤x

logn− 2C
∑
n∈N
n≤x

1

= x log x+ (2C − 1)x+ O
(√
x
)

− (x log x− x+ O (log x)) − 2Cx+ O(1)
= O

(√
x
)

+ O (log x) + O (1) = O
(√
x
)
.

Hence there exists a constant B > 0 such that

|F (x)| ≤ B
√
x,

whenever x ≥ 1. Applying this to the first sum on the right of (2.7) implies∣∣∣∣∣∣∣∣
∑
n∈N
n≤b

µ(d)F
(
x

n

)∣∣∣∣∣∣∣∣ ≤ B
∑
n∈N
n≤b

√
x

n
≤ A

√
xb = Ax√

a

for some constant A > B. Now fix ε > 0 and choose a > 1 such that A√
a
< ε. Then∣∣∣∣∣∣∣∣

∑
n∈N
n≤b

µ(d)F
(
x

n

)∣∣∣∣∣∣∣∣ < εx, (2.8)

for x ≥ 1. Note that a depends on ε but not on x.
From ii) we deduce, that there exists a constant D = D(ε) > 0 such that for any

K > 0 we have
x > D =⇒ |M(x)|

x
<

ε

K
.
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The second sum on the right of (2.7) satisfies∣∣∣∣∣∣∣∣
∑
n∈N
n≤a

f(n)M
(
x

n

)∣∣∣∣∣∣∣∣ ≤
∑
n∈N
n≤a

|f(n)| εx
Kn

= εx

K

∑
n∈N
n≤a

|f(n)|
n

provided x
n > D for any n ≤ a, thus for each x > aD. By choosing K :=

∑
n∈N
n≤a

|f(n)|
n

we obtain ∣∣∣∣∣∣∣∣
∑
n∈N
n≤a

f(n)M
(
x

n

)∣∣∣∣∣∣∣∣ ≤ εx, (2.9)

whenever x > aD.
Finally, we have

|F (a)M(b)| ≤ A
√
a |M(b)| < A

√
ab < ε

√
a
√
ab = εx, (2.10)

if x > a2, since ab = x. Combining (2.7), (2.8), (2.9) and (2.10) yields∣∣∣∣∣∣∣∣
∑
q,d∈N
qd≤x

µ(d)f(q)

∣∣∣∣∣∣∣∣ ≤ 3εx,

whenever x > max
{
a2, aC

}
. Since a and D depend only on ε, we obtain

lim
x→∞

1
x

∑
q,d∈N
qd≤x

µ(d)f(q) = 0,

which, as explained above, shows that i) holds.

2.2. The Riemann Hypothesis is equivalent to (FF)
We write (FF) in the form

M(x) = O
(
x

1
2 +ε

)
uniformly in ε > 0 as x → ∞.
Remark 2.22. Recall the well-known functional equation for the Riemann Zeta-
function: For each s ∈ C, 0 < <(s) < 1, we have

ζ(1 − s) = 2
(2π)s cos

(
πs

2

)
Γ(s)ζ(s),

where Γ(s) :=
´∞

0 ts−1e−t d t is defined for all s ∈ C \ (Z \ N) (Γ generalizes the
factorial; note that Γ(s+ 1) = sΓ(s)). A proof of this equation can be found e.g. in
[37].

Using this relation Riemann has shown that all non-trival zeros of ζ lie in the
critical stripe {z ∈ C | 0 < <(z) < 1}. Moreover, from the functional equation we
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see that whenever ζ(s) = 0 then also ζ(1 − s) = 0. Hence all zeros in the critical
stripe are symmetric with respect to the critical line

{
z ∈ C

∣∣∣<(z) = 1
2

}
. Thus we

can reword Conjecture 2.2 as the condition

(ζ(s) = 0 ∧ <(s) ∈ (0, 1)) =⇒ <(s) = 1
2 .

Furthermore, because of the mentioned symmetry of the zeros, it would suffice to
show that either

{
z ∈ C

∣∣∣ 0 < <(z) < 1
2

}
or
{
z ∈ C

∣∣∣ 1
2 < <(z) < 1

}
are free of zeros

of ζ.

2.2.1. A series represtentation for ζ−1

Lemma 2.23. Let f : N → C be multiplicative and so that
∑∞
n=1 f(n) converges

absolutely. Then

S(f) :=
∞∑
n=1

f(n) =
∏
p∈P

∞∑
k=0

f(pk).

If f is totally multiplicative, then

S(f) =
∏
p∈P

1
1 − f(p) .

Proof. Since
∑∞
n=1 f(n) converges absolutely so does

∑∞
k=0 f(pk) for each p ∈ P.

Moreover, for p sufficiently large,

0 <
∞∑
k=0

f(pk) ≤
∞∑
k=0

∣∣∣f(pk)
∣∣∣ ≤

∑
n∈N
n≥p

|f(n)| < 1.

Hence, for x ∈ (0,∞),

P (x) :=
∑
p∈P
p≤x

∞∑
k=0

f(pk) =
∑
n′∈N1

f(n′),

where N1 := {n ∈ N |P 3 p|n ⇒ p ≤ x}, and therefore

S(f) − P (x) =
∑

n′′∈N2

f(n′′),

where N2 := N \ N1 = {n ∈ N | ∃p ∈ P : (p|n ∧ p > x)}. Note that for each n′′ ∈ N2
we have n′′ > x. Thus for each ε > 0 there is an x0 = x0(ε) ∈ (0,∞) such that

|S(f) − P (x)| ≤
∑
n∈N
n>x

|f(x)| ≤ ε

for each x ≥ x0. Since
∑
p∈P

∑∞
k=0 f(pk) converges absolutely so does

∏
p∈P

∑∞
k=1 f(pk)

and we conclude ∏
p∈P

∞∑
k=1

f(pk) = lim
x→∞

P (x) = S(f).

Now, if f is totally multiplicative then
∑∞
k=0 f(pk) =

∑∞
k=0 (f(p))k and the asser-

tion follows, since by absolute convergence we obtain |f(p)| < 1 for each p ∈ P.
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Theorem 2.24 (Euler’s Formula). For s ∈ C, <(s) > 1 we have

ζ(s) =
∏
p∈P

1
1 − p−s .

Proof. Set f(n) := 1
ns . Then f is totally multiplicative and

∑∞
n=1 f(n) converges

absolutely for <(s) > 1. Hence Lemma 2.23 implies the assertion.

Corollary 2.25. For s ∈ C, <(s) > 1 we have

∞∑
n=1

µ(n)
ns

= 1
ζ(s) .

Proof. Set f(n) := 1
nsµ(n). Then f is multiplicative (cf. Proposition 2.4) and∑∞

n=1 f(n) converges absolutely for <(s) > 1. Hence Lemma 2.23 implies

∞∑
n=1

f(n) =
∏
p∈P

∞∑
k=0

µ(pk)
pks

.

We have

µ(pk)
pks

=


1 for k = 0
− 1
ps for k = 1

0 for k > 1
.

Thus

∞∑
n=1

µ(n)
ns

=
∏
p∈P

∞∑
k=0

µ(pk)
pks

=
∏
p∈P

(
1 − 1

ps

)
=

∏
p∈P

(
1 − 1

p−s

)−1

.

Hence Theorem 2.24 yields the assertion.

2.2.2. Outlining the Proof
From Corollary 2.25 we see that there cannot be any zeros of ζ in the half-plane
{s ∈ C | <(s) > 1}. If we could continue this series represtentation of ζ−1 onto{
s ∈ C

∣∣∣<(s) > 1
2

}
the Riemann hypothesis would follow (because of the symmetry

of the zeros of ζ in the critical stripe). This is the basic idea of the proof for the
claimed equivalence.

Lemma 2.26 (Littlewood). We have

log ζ(s) = O
(
(log =(s))2−2<(s)+δ

)
uniformly in δ > 0, whenever 1

2 + η ≤ <(s) ≤ 1 for some η > 0.

For a proof of Lemma 2.26 see e.g. Theorem 14.2 in [59].
Lemma 2.26 implies that for each ε > 0 there is a t = t(ε) > 0 such that for all

s ∈ C with =(s) > t we have

−ε log =(s) < log |ζ(s)| < ε log =(s).
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Hence

ζ(s) = O (=(s)ε) (2.11)
1
ζ(s) = O (=(s)ε) (2.12)

uniformly in ε.

Lemma 2.27. Let s ∈ C, <(s) > 1 and f(s) :=
∑∞
n=1

an
ns , where an = O (g(n)) as

n → ∞ with g : N → R non-decreasing, as well as
∑∞
n=1

∣∣∣ an

n<(s)

∣∣∣ = O
(
(<(s) − 1)−α

)
as <(s) → 1 with α > 0. Then, for each c > 0, x ∈ R \ Z and every t ∈ R we have

∑
n∈N
n<x

an
ns

= 1
2πi

ˆ c+it

c−it
f(s+ w)x

w

w
dw + O

(
xc

t (<(s) + c− 1)α
)

+ O
(1
t
g(2x)x1−<(s) log x

)
+ O

(
g(m)x1−<(s)

t |x−m|

)

as x → ∞, where , m :=
{

[x] if x− [x] < 1
2

[x] + 1 otherwise
.

For a proof of Lemma 2.27 see [59], Lemma 3.12.

Theorem 2.28. The condition M(x) = O
(
x

1
2 +ε

)
is equivalent to the Riemann

hypothesis.

Sketch of proof. First, assume that Riemann’s hypothesis holds. Then by applying
Lemma 2.27 with an := µ(n), f(s) := 1

ζ(s) , c = 2, s = 0 and x = m
2 , for some odd

m ∈ Z, one deduces

M(x) =
∑
n∈N
n≤x

µ(n)
n0 = 1

2πi

ˆ 2+it

2−it

1
ζ(w)

xw

w
dw + O

(
x2

t

)

= 1
2πi

ˆ 1
2 +δ−it

2−it

xw

wζ(w) dw + 1
2πi

ˆ 1
2 +δ+it

1
2 +δ−it

xw

wζ(w) dw

+ 1
2πi

ˆ 2+it

1
2 +δ+it

xw

wζ(w) dw + O
(
x2

t

)
(2.12)= O

(ˆ t

−t
(1 + |w|)−1+ε x

1
2 +δ dw

)
+ O

(
tε−1x2

)
+ O

(
x2

t

)
= O

(
tεx

1
2 +δ

)
+ O

(
x2tε−1

)
,

where t ∈ R and δ > 0. Choosing t := x2 we obtain M(x) = O
(
x

1
2 +ε

)
for x = m

2
and so generally.

Now assume that M(x) = O
(
x

1
2 +ε

)
as x → ∞. Then one shows by partial

summation that
∑∞
n=1

µ(n)
ns converges for <(s) > 1

2 . By the symmetry of the zeros
of ζ in the critical stripe, this implies Riemann’s hypothesis.
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3. Entropy of Dynamical Systems

To understand Sarnak’s conjecture we first have to understand the concept of
entropy of a dynamical system. In short, entropy measures the amount of chaos in
a given system. So a system with zero entropy appears to be deterministic in an
a-priori sense and µ being orthogonal to any sequence realised in a deterministic
dynamical system means, that µ does not act deterministically (or predictably) in
any way.

There are various definitions of entropy requiring various presuppositions to the
dynamical system in regard. We will consider the notion of topological entropy
introduced by Adler–Konheim–McAndrew, where X just has to be a compact
topological space, as well as the so called metrical entropy by Bowen–Dinaburg,
that additionally requires a metric d on X. We will see that these two definitions
are equivalent in case of a metric space. Finally, we take a look at the initial notion
of entropy by Kolmogorov–Sinai - coming from the study of stochastic processes
- which needs an invariant probability measure ν on X.

All results of this chapter, for which it is not indicated otherwise, are taken either
from [12], [60], [2], [20] or [47].

3.1. Topological Entropy by Adler–Konheim–McAndrews
Let X be a compact topological space and T : X → X a continuous transformation
on X. Then we call (X,T ) a topological dynamical system (in short: TDS).

Since X is compact each of its open covers has a finite subcover. Let U be an
open cover of X, denote by N(U) the smallest possible (finite) number of sets of U
sufficient to cover X and let H(U) := log2N(U).1 Furthermore, for two covers U
and V denote by

U ∨ V := {U ∩ V |U ∈ U , V ∈ V, U ∩ V 6= ∅}

their common refinement. In the same way define
∨n2
k=n1

Uk for finitely many open
covers Un1 , . . . ,Un2 of X, with n1, n2 ∈ Z, n1 < n2.

To define the topological entropy of X we need some proper preparations.

Proposition 3.1. Let U ,V be open covers of X. Then

a) H(U) ≥ 0 and H(U) = 0 iff X ∈ U .

b) H(U ∨ V) ≤ H(U) +H(V).

c) H(T−1U) ≤ H(U) for T ∈ C(X) (with T−1U =
{
T−1U

∣∣U ∈ U
}
).

1The choice of the base of logarithm is not essential, because its change only results in a constant
scaling factor. One may think of the base 2 in view of storing information digitally.
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Proof. a) This follows directly from the fact that N(U) has to be a positive integer
and log2 x = 0 ⇔ x = 1.

b) Let
{
U1, . . . , UN(U)

}
be a minimal subcover of U and

{
V1, . . . , VN(V)

}
be a

minimal subcover of V. Then {Ui ∩ Vj | i ∈ [1, N(U)] ∩ Z, j ∈ [1, N(V)] ∩ Z} is a (not
necessarily minimal) subcover of U ∨ V. Therefore, N(U ∨ V) ≤ N(U)N(V) and the
assertion follows.

c) Let
{
U1, . . . , UN(U)

}
be a minimal subcover of U . Then

{
T−1U1, . . . , T

−1UN(U)
}

is a cover of X, but possibly not minimal. Therefore, N(T−1U) ≤ N(U).

Lemma 3.2. Let U be an open cover of X. Then H
(∨n−1

k=0 T
−kU

)
≤ n · H(U) for

every n ∈ N, and the limit h(T,U) := limn→∞
1
nH

(∨n−1
k=0 T

−kU
)

exists.

Proof. Set un := H
(∨n−1

k=0 T
−kU

)
, for n ∈ N. Then, by (b) and (c) of Proposi-

tion 3.1, un ≤ n · H(U) and um+n ≤ um + un, for all m,n ∈ N. Fix m. Then, for
each n ∈ N, there are l ∈ Z, p ∈ [0,m) ∩ Z with n = l ·m+ p. Therefore,

un
n

= ulm+p
lm+ p

≤ up
lm

+ ulm
lm

≤ up
lm

+ lum
lm

≤ p

lm
H(U) + um

m
.

For n → ∞ also l → ∞ and so lim supn→∞
un
n ≤ um

m . Because this is true for all
m ∈ N, it follows that

lim sup
n→∞

un
n

≤ inf
m∈N

um
m

≤ lim inf
m→∞

um
m

which implies the convergence of
(un
n

)
n∈N.

Because of Lemma 3.2 the following definition is plausible.

Definition 3.3 (Adler–Konheim–McAndrews). Let (X,T ) be a TDS and let
X be the set of all open covers of X. Then we call

htop(T ) := sup
U∈X

h(T,U) = sup
U∈X

lim
n→∞

1
n
H

(
n−1∨
k=0

T−kU
)

the (topological) entropy of (X,T ).
We call (X,T ) deterministic if htop(T ) = 0.

3.2. Metric Entropy by Bowen–Dinaburg
Now let X be a compact metric space with metric d : X × X → [0,+∞) and
T : X → X a continuous transformation on X.

Definition 3.4. For n ∈ N0 and x, y ∈ X the map

dn : X ×X → [0,+∞) , (x, y) 7→ max
0≤j<n

d(T jx, T jy)

is called the n-th Bowen distance between x and y.

Definition 3.5. For ε > 0 a set M ⊆ X is called (n,ε)-separated if each pair of
distinct x, y ∈ M is more than ε apart in the metric dn, i.e., dn(x, y) > ε.
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Lemma 3.6. For X, T , d and dn as before as well as for n ∈ N and ε > 0 we have

a) Each (n,ε)-separated subset of X is finite.

b) Let ε1 > ε2 > 0 and let n ∈ N0. If M ⊆ X is (n,ε1)-separated then M is also
(n,ε2)-separated.

Proof. a) Let U = {Ux |x ∈ X} be an open cover of X with

Ux = B
(n)
ε
2

(x) :=
{
y ∈ X

∣∣∣∣ dn(x, y) < ε

2

}
for each x ∈ X. Now let M be an arbitrary (n,ε)-separated subset of X. Then a set
Ux ∈ U contains at most one point of M . Since X is compact U must have a finite
subcover, which retains the property, that each of its sets can not contain more than
one point of M . Therefore M has to be finite itself.

b) Since M is (n,ε1)-separated we have

∀x, y ∈ M : dn(x, y) > ε1 > ε2

and so M is also (n,ε2)-separated.

Because of part a) of Lemma 3.6 we can define:

h(T, ε) := lim sup
n→∞

1
n

log2 s(T, n, ε)

for ε > 0 and s(T, n, ε) the maximum cardinality of all (n,ε)-separated subsets of
X (for fixed n and ε). Because of part b) of Lemma 3.6 h(T, ε) is a monotonically
decreasing function in ε. This allows the following definition.

Definition 3.7 (Bowen–Dinaburg). Let (X,T ) be a metric TDS (i.e., X a com-
pact metric space and T : X → X continuous). Then we call

hmet(T ) := lim
ε→0+

h(T, ε) = lim
ε→0+

lim sup
n→∞

1
n

log2 s(T, n, ε)

the (metric) entropy of (X,T ).

To ensure that hmet(T ) is well defined we have to examine whether limε→0+ h(T, ε)
is independent from the chosen metric d.

Proposition 3.8. Let d1 and d2 be two metrics on X, inducing the same topology.
For ε > 0 define hd1(T, ε) and hd2(T, ε) as before, respectively corresponding to d1
and d2. Then

lim
ε→0+

hd1(T, ε) = lim
ε→0+

hd2(T, ε).

Proof. Fix ε > 0 and consider the set Dε := {(x1, x2) ∈ X ×X | d1(x1, x2) ≥ ε},
which is closed and therefore compact in X × X. Since d2 : X × X → [0,+∞) is
continuous there is a (x0

1, x
0
2) ∈ Dε with

inf
(x1,x2)∈Dε

d2(x1, x2) = min
(x1,x2)∈Dε

d2(x1, x2) = d2(x0
1, x

0
2) =: δ > 0
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(since d1(x0
1, x

0
2) ≥ ε > 0 and therefore x0

1 6= x0
2). Hence

d2(x1, x2) < δ =⇒ d1(x1, x2) < ε.

This holds for the Bowen distances in accordance, too, which implies (in compliance
with the monotonically behavior of ε 7→ h(T, ε))

lim
ε→0+

hd2(T, ε) ≥ lim
ε→0+

hd1(T, ε).

Swapping the roles of d1 and d2 yields the assertion.

Remark 3.9. Because of the monotony of the map ε 7→ h(T, ε) the identity

hmet(T ) = lim
k→∞

h(T, εk)

holds for every null sequence (εk)k∈N. In some cases this may simplify the computing
of metric entropy.

To show that the two definitions of entropy are equivalent in case of a compact
metric space, we have to consider an alternative characterization of the metric en-
tropy first.

Definition 3.10. For ε > 0 a set N ⊆ X is called (n,ε)-spanning if for every x ∈ X
there is a y ∈ N such that dn(x, y) ≤ ε.

Lemma 3.11. For ε > 0 and n ∈ N denote by r(T, n, ε) the minimum cardinality of
all (n,ε)-spanning subset of the compact metric space X. Then 0 < r(T, n, ε) < +∞.

Proof. Let N be an (n,ε)-spanning subset of X. Then V = {Vy | y ∈ X} with

Vy := B(n)
ε (y) = {x ∈ X | dn(x, y) < ε}

is an open cover of X. Since X is compact V has a finite subcover. The set of the
centers of the balls of this subcover is still an (n,ε)-spanning subset of X. Hence,
each (n,ε)-spanning subset of X has a finite subset, which is (n,ε)-spanning itself.
Therefore, r(T, n, ε) < +∞.

Theorem 3.12. Let (X,T ) be a metric TDS. Then

hmet(T ) = lim
ε→0+

lim sup
n→∞

1
n

log2 r(T, n, ε).

Proof. We show that for all n ∈ N and all ε > 0 we have

r(T, n, ε) ≤ s(T, n, ε) ≤ r(T, n, ε2).

Let M be an (n,ε)-separated subset of X of maximum cardinality. Then M is also
(n,ε)-spanning. This implies the first inequality. Now let P ⊆ X be (n,ε)-separated
and Q ⊆ X (n, ε2)-spanning. Define ρ : P 3 x 7→ ρ(x) ∈ Q with dn(x, ρ(x)) ≤ ε

2 .
Then ρ is injective, hence #P ≤ #Q.
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Theorem 3.13. Let X be a compact metric space with metric d and T a continuous
transformation on X. Then

htop(T ) = hmet(T ).

Proof. Fix ε > 0 and let U be an open cover of X with

diam(U) := sup
U∈U

diam(U) = sup
U∈U

sup {d(x, y) |x, y ∈ U} < ε.

Since two points of an (n,ε)-separated subset of X cannot be included in the same
U ∈ U , we have s(T, n, ε) ≤ N

(∨n−1
k=0 T

−kU
)
. Hence

hmet(T ) = lim
ε→0+

lim sup
n→∞

1
n

log2 s(T, n, ε) ≤ sup
U∈X

lim
n→∞

1
n

log2

(
N

n−1∨
k=0

T−kU
)

= htop(T ).

Now let V be an open cover of X with Lebesgue number δ (see Theorem A.1 in the
Appendix). For n ∈ N let S be an (n,ε)-spanning subset of X with #S = r(T, n, ε)
(i.e., S is minimal). Because δ is a Lebesgue number of V for each k ∈ [0, n) ∩ Z
and each y ∈ S there is a Vk,y ∈ V with Bδ(T ky) ⊆ Vk,y. For every x ∈ X there is a
y ∈ S with d(T kx, y) ≤ δ and therefore x ∈ T−kBδ(y). Hence

x ∈
n−1⋂
k=0

T−kVk,y.

Therefore,
{⋂n−1

k=0 T
−kVk,y

∣∣∣ y ∈ S
}

is a subcover of
∨n−1
k=0 T

−kV with cardinality not
larger than #S. Hence N(

∨n−1
k=0 T

−kV) ≤ r(T, n, ε), which implies

htop(T ) = sup
U∈X

lim
n→∞

1
n

log2N

(
n−1∨
k=0

T−kU
)

≤ lim
ε→0+

lim sup
n→∞

1
n

log2 r(T, n, ε) = hmet(T ).

Remark 3.14. Because of Theorem 3.13 it is reasonable to set

h(T ) := htop(T ) = hmet(T )

and just speak of the (topological) entropy of a TDS (X,T ) (referring also to the
term given by Definition 3.7).

Now we want to prove some basic properties of topological entropy.

Proposition 3.15. For (X,T ) a TDS we have h(T ) ∈ [0,∞].

Proof. This follows immediately from s(T, n, ε), r(T, n, ε) or N(U) being positive
integers, for all ε > 0 and all open covers U of X.

Proposition 3.16. Let (Y, S) be a factor of (X,T ), i.e., we have a continuous
surjection φ : X → Y with φ ◦ T = S ◦ φ. Then h(S) ≤ h(T ).
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Proof. Let d be a metric on X and d′ a metric on Y . For each ε > 0 we find a δ > 0
with limε→o δ = 0 and d(x1, x2) > δ for d′(φ(x1), φ(x2)) > ε. The same holds for
the corresponding Bowen distances, for every n ∈ N.

Now, for n ∈ N, let Q ⊆ Y be a (n,ε)-separated set with maximum cardinality,
i.e., #Q = s(S, n, ε). Then φ−1(Q) = {x ∈ X |φ(x) ∈ Q} is (n,δ)-separated in X
with #φ−1(Q) ≤ s(T, n, δ). Therefore

h(S) = lim
ε→o

lim sup
n→∞

1
n

log2 s(S, n, ε) ≤ lim
δ→0

lim sup
n→∞

1
n

log2 s(T, n, δ) = h(T ).

Corollary 3.17. Let (X,T ) be a deterministic TDS. Then every factor of (X,T )
is deterministic, too.

Proof. Let (Y, S) be a factor of (X,T ). Then, by the Propositions 3.15 and 3.16 we
have

0 ≤ h(S) ≤ h(T ) = 0.

Proposition 3.18. Let (X,T ) and (Y, S) be isomorphic TDS, i.e., we have a con-
tinuous bijection η : Y → X with η ◦ S = T ◦ η. Then h(T ) = h(S).

Proof. Since η is a continuous bijection, so is η−1. Therefore, (X,T ) is a factor of
(Y, S) and (Y, S) is a factor of (X,T ). So, the assertion follows from Proposition 3.16.

Proposition 3.19. Let ((Xk, Tk))mk=1 be a finite sequence of TDS. Then

h(T1 × . . .× Tm) =
m∑
k=1

h(Tk).

Proof. First consider the case m = 2. For dk a metric on Xk, k ∈ {1, 2}, choose the
metric d((x1, y1), (x2, y2)) := max {d1(x1, x2), d2(y1, y2)} on X1 × X2. For n ∈ N,
ε > 0 and k ∈ {1, 2} let Qk ⊆ Xk be a (n,ε)-separated set of maximum cardinality.
Then Q1 ×Q2 is (n,ε)-separated in X1 ×X2. This implies

h(T1) + h(T2) ≤ h(T1 × T2).

Assume that Q1 ×Q2 is not of maximum cardinality. Then Q1 ×Q2 is contained
in another (n,ε)-separated subset M of X1 × X2 and we can find a (x, y) ∈ M
with (x, y) /∈ Q1 × Q2. Without loss of generality, let y /∈ Q2. Then, for each
(u, v) ∈ Q1 ×Q2, we find a j ∈ [0, n) ∩Z with d1(T j1x, T

j
1u) > ε or d2(T j2 y, T

j
2 v) > ε.

For a fixed u the second inequality can not hold for every v, because otherwise
Q2∪{v} would be (n,ε)-separated in X2, which contradicts the maximum cardinality
of Q2. Therefore the first inequality holds for every u, which implies x ∈ Q1 (because
of the maximum cardinality of Q1). For u = x we obtain a contradiction. Hence,
Q1 ×Q2 is of maximum cardinality and we conclude

h(T1) + h(T2) = h(T1 × T2).

For m > 2 the assertion follows by induction.

To compute the topological entropy of a given dynamical system it is often useful
to search for so called topological generators. The reason for that is provided by
Lemma 3.21 below, which is a variant of Sinai’s theorem about a similar correlation
in terms of the Kolmogorov–Sinai entropy we consider in the next section.
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Definition 3.20. Let (X,T ) be a metric TDS and let G be a finite open cover of
X. Then G is called a topological generator for T , if for every map φ : Z → G the set⋂
n∈Z T

−nφ(n) contains not more than one point of X (i.e. #
(⋂

n∈Z T
−nφ(n)

)
≤ 1).

Lemma 3.21. Let (X,T ) be a TDS with metric d and G a topological generator for
T . Then

h(T ) = h(T,G).

Proof. First, let V be a finite open cover of X with Lebesgue number δ. Then
there has to be an N ∈ N with diam(

∨N
n=−N T

−nG) < δ, because otherwise, for every
j ∈ N, there would be xj , yj ∈ X with d(xj , yj) > δ and a φj : [−j, j]∩Z → G = {Gl}
with xj , yj ∈

⋂j
i=−j T

−iφj(i). We could choose subsequences xjk , yjkwith

x := lim
k→∞

xjk 6= lim
k→∞

yjk =: y

since d(xj , yj) > δ for each j ∈ N. Since G is finite, infinitely many of the sets
φj(0) would have to coincide, and therefore, e.g., xjk , yjk ∈ G0, for infinitely many
k, which implies x, y ∈ G0. In the same way, for every n ∈ [−j, j], infinitely many
φjk(n) would have to coincide and we obtain x, y ∈ T−nGn, for some Gn ∈ G. This
would imply

#

⋂
n∈Z

T−nGn

 ≥ 2

in contradiction to the choise of G as a topological generator for T .
Now choose such an N . Then, since δ is a Lebesgue number of V, it follows from

diam(
∨N
n=−N T

−nG) < δ that

h(T,V) ≤ h

T, N∨
k=−N

T−kG


= lim

n→∞
1
n
H

n−1∨
i=0

T−i

 N∨
k=−N

T−kG


= lim

n→∞
1
n
H

N+n−1∨
k=−N

T−kG


= lim

n→∞
1
n
H

(2N+n−1∨
k=0

T−kG
)

= lim
n→∞

2N + n− 1
n

· 1
2N + n− 1H

(2N+n−1∨
k=0

T−kG
)

= h(T,G).

Therefore h(T,V) ≤ h(T,G) for all open covers V of X. Since G itself is an open
cover of X, we obtain

h(T,G) = sup
U∈X

h(T,U) = h(T ).
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3.3. Measure-Theoretic Entropy by Kolmogorov–Sinai
The first attempt to generalize the notion of entropy, known from probability theory
and (originally) thermodynamics, dates back to the work of Kolmogorov. But it
was not until Sinai’s investigation that it was certain that this term is nontrivial.2
We want to give a brief introduction to Kolmogorov’s concept and demonstrate
the correlation to the other notions of entropy.

In what follows let (X,ΣX , ν) be a probability space, with ν : ΣX → [0, 1] a
complete measure (i.e., ∀A ∈ Nν∀B ⊆ A : B ∈ ΣX , where Nν denotes the set of
all ν-nullsets) and ΣX countably generated, and let T : X → X be a measurable
transformation which preserves the measure ν, i.e., ∀A ∈ ΣX : ν(T−1A) = ν(A) (in
that case we also call ν invariant under T ). Then we call (X,ΣX , ν, T ) a measure-
preserving dynamical system (in short: MDS).

Definition 3.22. Let Q ⊆ ΣX be a finite partition of X, i.e., Q = {Q1, . . . , Qr}
with Qi ∩Qj = ∅, for all i, j ∈ [1, r] ∩ Z, i 6= j, and X =

⋃r
k=1Qk. Then we call

Hν(Q) := −
r∑

k=1
ν(Qk) log2 ν(Qk)

the entropy of the partition Q.
Furthermore, let P,Q ⊆ ΣX be finite partitions of X and denote by Σ(Q) the

smallest σ-algebra which contains Q. Then we call

Hν(P
∣∣Q) ≡ Hν(P

∣∣Σ(Q)) := −
∑
Q∈Q

ν(Q)
∑
P∈P

(
ν(P ∩Q)
ν(Q)

)
log2

(
ν(P ∩Q)
ν(Q)

)

the conditional entropy of the partition P given Q.

Proposition 3.23. Let P,Q ⊆ ΣX be finite partitions of X and denote by

P ∨ Q := {P ∩Q |P ∈ P, Q ∈ Q, ν(P ∩Q) > 0}

the common refinement of P and Q. Then we have

Hν(P ∨ Q) = Hν(P) +Hν(P|Q).

For a proof of that see [52] (Theorem 4.1.).

Proposition 3.24. For all finite partitions P,Q ⊆ ΣX we have

Hν(P ∨ Q) ≤ Hν(P ) +Hν(Q).

Proof. By Proposition 3.23 we have

Hν(P ∨ Q) ≤ Hν(P ) +Hν(Q) ⇐⇒ Hν(P |Q) ≤ Hν(Q).

So we have to show that∑
Q∈Q

ν(Q) log2 ν(Q) ≥
∑
Q∈Q

ν(Q)
∑
P∈P

(
ν(P ∩Q)
ν(Q)

)
log2

(
ν(P ∩Q)
ν(Q)

)
.

2Sinai proved that the entropy of an automorphism of the two-dimensional torus is positive.
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Consider the map ϕ : t 7→ −t log2 t. Then the above inequality takes the form∑
Q∈Q

ϕ(ν(Q)) ≤
∑
Q∈Q

ν(Q)
∑
P∈P

ϕ

(
ν(P ∩Q)
ν(Q)

)
,

which holds since ϕ is stricly concave.

Definition 3.25 (Kolmogorov–Sinai). Let P be the set of all measurable par-
titions of X. Then we call

hν(T ) := sup
Q∈P

lim
N→∞

1
N
Hν

(
N∨
n=0

T−nQ
)
,

with
N∨
n=0

T−nQ :=
{

N⋂
n=0

T−nQin

∣∣∣∣∣Qij ∈ Q, j ∈ [0, N ] ∩ Z with ν

(
N⋂
n=0

T−nQin

)
> 0

}
,

the Kolmogorov–Sinai entropy or measure-theoretic entropy of (X,ΣX , ν, T ).

Remark 3.26. a) Since ν is a probability measure, ν(Q) ≤ 1 for all Q ∈ ΣX . Hence,
log2 ν(Q) ≤ 0. Therefore, the minus causes Hν to be non-negative. Also note the
convention 0 · (±∞) = 0.

b) The convergence of the sequence ( 1
NHν(

∨N
n=0 T

−nQ))N∈N, which is indispens-
able for the above definition, was first shown by Shannon–McMillan (see Propo-
sition 4.4 of [52] for a shorter proof).

c) Let (X,T ) be a TDS. Then we can always find a probability measure ν on
(X,ΣX), for which (X,ΣX , ν, T ) is an MDS (i.e., for every continuous transforma-
tion on a compact metric space there is a Borel probability measure invariant under
this transformation). This is the statement of the Krylov–Bogolyubov theorem
(see Theorem A.6 in the Appendix). Note that the measure in consideration does
not have to be unique (e.g. every probability measure on X is idX -invariant). For
a given system (X,T ) we denote by MT the set of all Borel probability measures
on X invariant under T .

The following statement establishes the interrelation between the notions of en-
tropy.

Theorem 3.27. For every TDS (X,T ) we have

h(T ) = sup
ν∈MT

hν(T ).

For a proof of Theorem 3.27 see e.g. [52] (Theorem 4.7. and Theorem 4.9.).

Note that, according to Theorem 3.27, for all deterministic TDS (X,T ) and all
ν ∈ MT we have

0 ≤ hν(T ) ≤ sup
ξ∈MT

hξ(T ) = h(T ) = 0.

3.4. Examples
In this section we show that for selected dynamical systems, for which we will show
in Chapter 6 that Sarnak’s conjecture holds, the assumption about being deter-
ministic is satisfied.
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3.4.1. The Thue–Morse Shift is Deterministic
In this subsection we mainly follow the work of Forys done in [25].

Consider X = {0, 1}N0 and the (one-sided) shift S : X 3 (x0x1 . . .) 7→ (x1x2 . . .) ∈
X. Then (X,S) is a TDS (X is compact in the product topology by Tychonoff’s
theorem (see Theorem A.2 in the Appendix)). We call {0, 1} an alphabet and each
x ∈ X a word. For x ∈ X denote by Kx := {Snx |n ∈ N0} the closed orbit under
S of x. Then (Kx, S) is again a TDS, since Kx is closed and S-invariant (i.e.,
S(Kx) ⊆ Kx). We call (Kx, S) a subshift of (X,T ). If x is almost periodic (i.e., for
all open subsets U of X with x ∈ U there is an N ∈ N so that for all n ∈ N we have
{m ∈ N |Sm ∈ U} ∩ [n, n+N ] 6= ∅), then the subshift is nontrivial, i.e., Kx 6= X.

For X 3 x = (x0x1 . . .) and k, l ∈ N we call (xkxk+1 . . . xk+l) a finite subword of
length l+ 1 of x. Denote by Bn(x) the set of all subwords of length n of x. Then we
can simplify the notion of topological entropy for such systems in the following way.

Proposition 3.28 ([17]). For each x ∈ X we have

h(S
∣∣
Kx

) = lim
n→∞

1
n

log2 #Bn(x).

Proof. Let P be the partition over the 0 th coordinate. Then P is open in the product
topology and thus a cover of Kx. The same holds for

∨n−1
k=0 S

−kP. Since this cover
consists of disjoint sets, subcovers can only be obtained by removing empty sets.
Hence,

H

(
n−1∨
k=0

S−kP
)

= log2 #
(
n−1∨
k=0

S−kP
)

(by not counting empty sets). On the other hand, #
∨n−1
k=0 S

−kP equals the number
of subwords of length n appearing in an arbitrary y ∈ Kx. Because of the definition
of Kx, these are the subwords of length n appearing in x. Therefore, #

∨n−1
k=0 S

−kP =
#Bn(x) and thus

h(S,P) = lim
n→∞

1
n

log2 #Bn(x).

Now let y, y′ ∈ (
⋂
n∈Z S

−nPn) ∩ Kx, for Pn ∈ P. This means y, y′ ∈ S−nPn for
every n ∈ Z and thus for every n ∈ Z \ N. This implies yn = y′

n for each such n and
therefore, y = y′. Hence, P is a topological generator for S and the assertion follows
by Lemma 3.21.

Definition 3.29. Let t ∈ X be the sequence defined by

t0 = 0
t2n = tn

t2n−1 = 1 − tn

for all n ∈ N. Then we call t the Thue–Morse sequence.

Remark 3.30. a) Equivalently, t can be defined as the (unique) fixed point of the
transformation ρ : 0 7→ 01, 1 7→ 10 with t0 = 0. This implies, that none of the
subwords 000 and 111 can be found in t.

b) Another possible procedure yielding t is given as follows: Set b to be the
complementary word of b, which one receives by switching all 0’s of b into 1’s and
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vice versa. Let (fn)n∈N0 be the sequence of finite words recursively defined by
f0 = 0, fn+1 = fnfn. Then t = limn→∞ fn (where the limit is understood pointwise).

For both representations see e.g. [33].
We intend to show, that h(S

∣∣
Kt

) = 0. For that purpose we need the following
little preparation.

For finite subwords a = (a0 . . . an) and b = (b0 . . . bm) denote by ab the word
(a0 . . . anb0 . . . bm). Furthermore, denote by |w| the length of a finite word w. Finally,
let ε be the empty word. Then the following holds.

Lemma 3.31. Let w be a subword of t with |w| ≥ 7. Then there are l, r ∈ {ε, 0, 1},
k ∈ N and u ∈ {01, 10}k so that

w = lur

and this decomposition is unique.

Proof. The sequence t can be devided into subwords 01, 10. Starting at the 0 th
position, every such subword appears at an even position t2nt2n+1, for an n ∈ N.
Pairs 00 and 11 can only occur between such subwords. Therefore, starting at the
beginning of the sequence, t can also be devided into the subwords 0110, 1001 of
length 4.

Now, if a subword w contains only one of the blocks 00, 11, than w is placed
in the middle of one of the subwords of length 4. Therefore, w can be uniquely
decomposed into blocks 01, 10. Does w contain more than one of the blocks 00, 11,
the decomposition of t into subwords 01, 10 can be used for w as well. If there are
any leftovers, then they are of length at most 1 and have to be at the beginning or
the end of w. This yields the assertion.

The middle subword u in Lemma 3.31 consists entirely of blocks 01, 10, so there
has to be a subword v with |u| = 2|v| and ρ(v) = u. This observation implies the
following lemma.

Lemma 3.32. Let w be a subword of t with |w| ≥ 7. Then we have the unique
decomposition

w = l0 . . . lk−1ρ
k(u)rk−1 . . . r0,

with k ∈ N, li, ri ∈
{
ε, ρi(0), ρi(1)

}
and u ∈ {0, 1}h with 3 ≤ h ≤ 6.

Proof. Lemma 3.31 yields the decomposition w = l0ρ(u0)r0. We can find an n ∈ N
such that w is a subword of fn = ρ(fn−1), where fn is a member of the sequence
given in Remark 3.30 b). Hence, u0 is a subword of fn−1 and therefore a subword
of t. Is |u0| ≥ 7 we can again apply Lemma 3.31 and get

w = l0ρ(u0)r0 = l0ρ(l′1ρ(u1)r′
1)r0 = l0l1ρ

2(u1)r1r0.

This procedure can be repeated recursively as long as |uk| ≥ 7.

Theorem 3.33. The Thuer–Morse shift is deterministic, i.e., h(S
∣∣
Kt

) = 0.

Proof. We show that there is a C > 0 so that for all n ∈ N we have

#Bn(t) ≤ C · n2 log2 3.
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Then, with Proposition 3.28 we are able to conclude

h(S
∣∣
Kt

) = lim
n→∞

1
n

log2 #Bn(t) ≤ lim
n→∞

1
n

log2Cn
2 log2 3 = 0.

To find such a C fix an n ∈ N0. Then Lemma 3.32 yields

#Bn(t) ≤ #
{
w = l0 . . . lk−1ρ

k(u)rk−1 . . . r0
∣∣∣ li, ri ∈

{
ε, ρi(0), ρi(1)

}
, 3 ≤ |u| ≤ 6

}
.

The blocks li and ri can take one out of three possible values, while also u can take
just a finite number of values. Let C

2 denote this number.
Note that for a subword w of length h the exponent k is always smaller than log2 h

and for i ∈ [0, k − 1] ∩ Z we have

0 ≤ |li| ≤ 2i and 0 ≤ |ri| ≤ 2i,

while 3 ≤ |u| ≤ 6 implies
3 · 2k ≤ |ρk(u)| ≤ 6 · 2k.

Hence for a subword w = l0 . . . lk−1ρ
k(u)rk−1 . . . r0 of length h we have

2k+1 < 3 · 2k ≤ n ≤ 2 ·
k−1∑
i=0

2i + 6 · 2k = 2 · (2k − 1) + 6 · 2k = 8 · 2k − 2 < 2k+3.

Logarithmizing these inequalities yields

log2 n− 3 < k < log2 n− 1.

Therefore, since k is a positive integer, it can take at most

# ((log2 n− 3, log2 n− 1) ∩ N) ≤ 2

values. Thus we can estimate

#Bn(t) ≤ 2C2 · 32 log2 n = C · n2 log2 3

and the assertion follows as shown above.

3.4.2. Each Rotation on the Circle is Deterministic
First, consider the following statement.

Proposition 3.34. Let X be a compact metric space and let T ∈ C(X) be an isome-
try, i.e., for all x, y ∈ X we have d(Tx, Ty) = d(x, y). Then (X,T ) is deterministic.

Proof. Since T is an isometry on X, for each n ∈ N and each x, y ∈ X we have

dn(x, y) = max
0≤j<n

d(T jx, T jy) = max
0≤j<n

d(x, y) = d(x, y).

Therefore, the value s(T, n, ε) does not depend on n and hence

h(T ) = lim
ε→0+

lim sup
n→∞

1
n

log2 s(T, n, ε) = lim
ε→0+

0 = 0.
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Now, denote by S1 := {z ∈ C | |z| = 1} the additive unit circle. Recall that (S1, ·)
is isomorphic to (T,+) = (R \ Z,+) and consider the map

Rα : T → T, x 7→ x+ α mod 1,

where α ∈ R.3 We call Rα a rational or an irrational rotation on T (through the
angle α), depending on α respectively being rational or irrational. Since Rα is
continuous, (T, Rα) is a TDS.

Lemma 3.35. For each α ∈ R we have

h(Rα) = 0.

Proof. Consider d : T × T → [0,∞), (x, y) 7→ min {|x− y|, 1 − |x− y|}. Then d is a
metric on T, inducing the circle topology.4 Since

d(Rαx,Rαy) = min {|Rαx−Rαy|, 1 − |Rαx−Rαy|}
= min {|x− y|, 1 − |x− y|}
= d(x, y),

Rα is an isometry on T and the assertion follows from Proposition 3.34.

3.4.3. Each Skew Product Extension of a Rotation is Deterministic
Consider an arbitrary TDS (X,T ) as well as a continuous map φ : X → T. Then
we call (Y, S), where Y = X × T and

S(x, u) := (Tx, u+ φ(x)) (mod 1),

the skew product extension of T by φ.
This notion was introduced by Anzai in [3]. The following identity was shown by

Abramov in [1] (et al).

Theorem 3.36 ([1]). Let (X,T ), φ and (Y, S) be as before. Then

h(S) = h(T ).

Proof. If φ ≡ c ∈ T we have S = T × Rc, with Rc the rotation on T through the
angle c. Hence, by Proposition 3.19 and Lemma 3.35, we obtain

h(S) = h(T ) + h(Rc) = h(T )

and furthermore - also in the non-constant case - h(T ) ≤ h(S).
Now let φ be non-constant. To show the reverse inequality we make use of the

Kolmogorov–Sinai entropy. Therefore, let ν be a T -invariant Borel measure on
X, λ the ordinary Lebesgue measure on T and ρ an S-invariant Borel measure
on Y . Since φ is continuous it is measurable.

We need several partitions on the involved sets. Let D := {D1, D2, . . .} be a
base5 for the topology of X and, for m ∈ N, let Dm denote the partition of X

3We speak of S1 and T synonymously.
4Note that, because of Proposition 3.8, every metric inducing the same topology is suitable.
5i.e., an open cover of X such that for any Di, Dj ∈ D and any x ∈ Di ∩ Dj there is a Dk ∈ D

such that Di ∩ Dj ⊇ Dk 3 x.
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generated by the sets D1, . . . , Dm as well as Fm the partition of Y generated by
the sets D1 × T, . . . , Dm × T and F the partition of Y into intervals x × T, i.e.,
F =

{
x× T

∣∣x ∈ X
}
. Furthermore, denote by Pr =

{
4(r)

1 , . . . ,4(r)
r

}
the partition

of T into r equal parts and let Qr be the partition of Y into the sets X × 4(r)
j , j ∈

[1, r] ∩ Z. Since Dm ≤ Dm+1, for all m ∈ N, and
∨
m∈N Fm = F (modulo nullsets),

it follows that for any n and r we have

lim
m→∞

Hρ

 n∨
j=0

S−jQr

∣∣∣∣Fm

 = Hρ

 n∨
j=0

S−jQr

∣∣∣∣F


(See [50], §1). The partition
∨n
j=0 S

−jQr induces, in each element x × T of F , a
partition into not more than n · r intervals. Hence

Hρ

 n∨
j=0

S−jQr

∣∣∣∣F
 = −

∑
F∈F

ρ(F )
∑

E∈
∨n

j=0 S
−jQr

(
ρ(E ∩ F )
ρ(F )

)
log2

(
ρ(E ∩ F )
ρ(F )

)

≤ log2 (nr) .

Let ε > 0. For each r ∈ N choose nr such that 1
nr

log2(nrr) < ε
2 and denote by m̃r

the smallest of all m ∈ N for which

Hρ

 nr∨
j=0

S−jQr

∣∣∣∣Fm

 < log2 (nrr) + ε

2 .

Now define the sequence (mr)r∈N0 inductively by m0 = 1, mr = max {mr−1, m̃r, r},
for r ∈ N. Then, for any r, k ∈ N, one can show that (see [1])

1
knr

Hρ

knr∨
j=0

S−jQr

∣∣∣∣ knr∨
j=0

S−jFmr

 ≤ ε. (3.1)

Furthermore, Proposition 3.23 yields

Hρ

knr∨
j=0

S−j(Fmr ∨ Qr)

 = Hρ

knr∨
j=0

S−jFmr

 ∨

knr∨
j=0

S−jQr


= Hρ

knr∨
j=0

S−jFmr

+Hρ

knr∨
j=0

S−jQr

∣∣∣∣ knr∨
j=0

S−jFmr

 .
Now divide this equality by knr and pass to the limit k → ∞. Then, as a consequence
of the identity Hρ(

∨n
j=0 S

−jFm) = Hν(
∨n
j=0 T

−jDm) and (3.1), we obtain

lim sup
N→∞

1
N
Hρ

(
N∨
n=0

S−nQmr

)
≤ lim sup

N→∞

1
N
Hν

(
N∨
n=0

T−nDmr

)
+ ε.

Since ε has been chosen arbitrarily, passing to the limit r → ∞ yields

hρ(S) ≤ hν(T )

(See [50], §4), which also holds for the suprema, too, since ρ and ν have been chosen
arbitrarily. Therefore,

h(S) = sup
ρ∈MS

hρ(S) ≤ sup
ν∈MT

hν(T ) = h(T ).
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Corollary 3.37. For φ : T → T continuous and α ∈ R consider the transformation

T2 3 (x, y) 7→ Tφ(x, y) := (x+ α, y + φ(x)) ∈ T2.

Then
h(Tφ) = 0.

Proof. Since Tφ is a skew product extension of the rotation Rα, by Theorem 3.36
and Lemma 3.35 we obtain

h(Tφ) = h(Rα) = 0.
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4. Ergodic Decomposition

This chapter provides a tool we will need mainly for proving the ergodic theorem
with Möbius weights. Almost all of the results presented here are taken from [31].

Let (X,ΣX , ν, T ) be a measure-preserving dynamical system (MDS). We call ν
ergodic if for each A ∈ ΣX the following implication holds

ν(T−1(A) \A) = 0 =⇒ ν(A) ∈ {0, 1} .

Sets for which ν(T−1(A) \ A) = 0 holds are called invariant. For an invariant set
A its complement X \ A is also invariant. Hence, for 0 < ν(A) < 1 the natural
decomposition of (X,ΣX , ν, T ) into the two systems

(A,ΣA, νA, T
∣∣
A

) and (X \A,ΣX\A, νX\A, T
∣∣
X\A)

(with ΣA = A ∩ ΣX and νA : ΣA 3 B 7→ ν(B)
ν(A) ∈ [0, 1], where A ∈ ΣX) arises. In

this sense ergodic systems are “indecomposable” (since one of the two systems above
would have measure zero). For a non-ergodic measure ν and an invariant set A the
measures νA and νX\A do not have to be ergodic either, but are - in some sense -
closer to be ergodic than ν has been, since we eliminated potential invariant sets of
positive measure 6= 1. Note that νA and νX\A are supported on disjoint invariant
sets (i.e., supp(νA) ∩ supp(νX\A) = ∅ for supp(ν) defined as the set of all points
x in X for which every open neighbourhood of x has positive measure1) and are
mutually singular (i.e., ∃B ∈ ΣX : (νA(X \ B) = 0 ∧ νX\A(B) = 0)). So iterating
this procedure yields a representation of ν as a combination of mutually singular
measures supported on increasingly small disjoint invariant sets. So the question
arises, if - by a somehow natured process of passing to a limit - we can hope to
obtain a representation of ν as a combination of measures actually being ergodic.

Denote by MT the set of all probability measures on X invariant under the trans-
formation T . Then one can characterize ergodic measures as the extreme points of
MT . In finite-dimensional spaces each point of a compact convex set M can be repre-
sented as a convex combination of the extreme points of M . One can also formulate
infinite-dimensional versions of this fact (See Choquet theory). So what we are
looking for is a representation of ν as a convex combination of the extreme points
of the - in a certain sense - compact convex set MT (satisfying some other mild
conditions). But here we choose a more measure-theoretic approach by studying
measure integration and disintegration.

4.1. Measure Integration
Let (X,ΣX) an (Y,ΣY ) be measurable spaces. A family {νx}x∈X of probability
measures on (Y,ΣY ) is called measurable, if for every A ∈ ΣY the map X 3 x 7→

1It is not necessary to take the closure of this set, since the support of a measure is already closed
in X as its complement is the union of the open sets of ν-measure 0.
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νx(A) ∈ [0, 1] is measurable with respect to ΣX , or - equivalently - if for each bounded
measurable function f : Y → R the map X 3 x 7→

´
Y f(y) d νx(y) is measurable.

Denote by M(X) the set of all probability measures on X.

Definition 4.1. For ρ ∈ M(X), we define the measure integration ν of {νx}x∈X ,
which is a probability measure on Y , by

ν(A) :=
ˆ
X
νx(A) d ρ(x),

where A ∈ ΣY , and we also write
´
X νx d ρ(x) for ν.

For a bounded measurable function f : Y → R Definition 4.1 yieldsˆ
Y
fdν =

ˆ
X

(ˆ
Y
f d νx

)
d ρ(x).

The same holds, by approximation, for f ∈ L1(Y, ν). Note that, although f is
defined only on a set E ∈ ΣY of full ν-measure, we have νx(E) = 1 for ρ-a.e.x, so
the integral

´
Y f d νx is well defined ρ-a.e.

The following example accounts for the above definition to generalize convex com-
binations.

Example 4.2. Let X be a finite set and ΣX = 2X . Then we haveˆ
X
νx d ρ(x) =

∑
x∈X

ρ(x) · νx

and any convex combination of measures on Y can be represented this way.

4.2. Measure Disintegration
We intend to reverse the above procedure to find a representation of any measure
as such an integral. Of particular interest will be the decomposition of a measure
with respect to a partition.

Example 4.3. Let (X,ΣX , ν) be a probability space and let P = {P1, . . . , Pn} ⊆
ΣX \ Nν be a finite partition of X. For x ∈ X denote by P(x) the unique Pi 3 x
and set

νx := 1
ν(P(x))ν

∣∣
P(x).

Then, for A ∈ ΣX , we haveˆ
X
νx(A) d ν(x) =

ˆ
X

1
ν(P(x))ν

∣∣
P(x)(A) d ν(x)

= 1
ν(P(x))ν(P(x))ν(A) = ν(A).

We want to find a comparable decomposition with respect to an infinite (in most
cases uncountable) partition E of X. But in this case most of the sets E ∈ E will
have measure 0 and the formula 1

ν(E)ν
∣∣
E

will no longer make sense. So we pass to
the conditional probability of an event E 3 x: Define

νx(E) := Eν(1E
∣∣E)(x)
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for any countably generated algebra E and E ∈ E . This yields a countably additive
measure defined for ν-a.e.x. But we want to define νx(E) for all measurable sets,
which will occupy the rest of this section.

In what follows let X be a compact metric space with Borel σ-algebra ΣX and
let E be a countably generated sub-σ-algebra of ΣX . For (Y,ΣY ) from the above
section we also take (X,ΣX).

Proposition 4.4. The map X 3 x 7→ νx ∈ M(X) is E-measurable and we have

Eν(1A
∣∣E)(x) = νx(A) ν-a.e.,

for any A ∈ ΣX and ν the measure integration of {νx}x∈X .

Proof. Denote by A ⊆ ΣX the family of all sets A ⊆ X for which the assertion
holds. We show that A = ΣX .

Denote by A0 ⊆ ΣX the family of all sets A ⊆ X such that 1A has a representation
as a pointwise limit of a uniformly bounded sequence (fn)n∈N of continuous functions.
Then we have

• {X,∅} ∈ A0,

• if limn→∞ fn = 1A then limn→∞(1 − fn) = 1X\A,

• if limn→∞ fn = 1A and limn→∞ gn = 1B then limn→∞ fngn = 1A1B = 1A∩B.

Therefore, A0 is an algebra.
Now, for limn→∞ fn = 1A and ‖fn‖∞ ≤ C ∈ [0,∞) we obtain

lim
n→∞

ˆ
X
fn d νx =

ˆ
X

1A d νx = νx(A)

by dominated convergence. Thus, x 7→ νx(A) is the pointwise limit of the sequence
(x 7→

´
X fn d νx)n∈N, which is a.e. identical with the sequence (Eν(fn

∣∣E))n∈N. There-
fore, x 7→ νx(A) is measurable and a.e. identical to Eν(1A

∣∣E), since E(·
∣∣E) is contin-

uous in L1(X, ν) and (fn)n∈N is uniformly bounded. Hence,

A0 ⊆ A.

For A ⊆ X closed and n ∈ N set fn(x) := exp(−n · d(x,A)), where d(x,A) =
infy∈A d(x, y) and d the metric on X. Then limn→∞ fn = 1A and therefore A ∈ A0.
Hence A0 generates the Borel σ-algebra ΣX .

Now let (Aj)j∈N with Aj ⊆ Aj+1 for all j ∈ N and A :=
⋃
j∈NAj . Then νx(A) =

limj→∞ νx(Aj) and thus x 7→ νx(A) is the pointwise limit of the measurable sequence
(x 7→ νx(Aj))j∈N, which is the same as the sequence (Eν(1Aj

∣∣E))j∈N and therefore,
since limj→∞

∥∥∥1Aj − 1A
∥∥∥
L1

= 0, by continuity of the conditional expectation, we

obtain limj→∞
∥∥∥Eν(1Aj

∣∣E) − Eν(1A
∣∣E)
∥∥∥
L1

= 0. Hence we have

νx(A) = Eν(1A
∣∣E) ν − a.e.

and thus A is a monotone class containing the algebra A0, which for its part generates
ΣX . By the monotone class theorem (see Appendix) we can conclude ΣX ⊆ A and
thus ΣX = A, which yields the assertion.
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Proposition 4.5. For every f ∈ L1(X, ν) we have Eν(f
∣∣E)(x) =

´
X fdνx ν − a.e.

Proof. By Propositon 4.4 the assertion holds for indicator functions. Since both
sides of the equation are linear and continuous under monotone increasing sequences,
approximation by simple functions yields the claim for positive functions and thus,
by taking differences, for all f in L1(X, ν).

For x, y ∈ X write x ∼E y if 1E(x) = 1E(y) for every E ∈ E . Since E has been
chosen to be generated by a countable family {En}n∈N, we have x ∼E y if and only
if 1En(x) = 1En(y) for each n ∈ N. Then ∼E is an equivalence relation and its
equivalence classes are measurable, being intersections of sequences Fn of the form
Fn ∈ {En, X \ En} respectively. We call the equivalence classes of ∼E the atoms of
E (not to be mistaken as the atoms of a measure).

For E as above and x ∈ X we denote by E(x) the atom containing x, i.e., E(x) =
[x]∼E

.

Proposition 4.6. νx is ν − a.s. supported on E(x), i.e., νx(E(x)) = 1 ν − a.e.

Proof. For E ∈ E we have

1E(x) = Eν(1E
∣∣E)(x) =

ˆ
X

1E d νx = νx(E)

and therefore νx(E) = 1E(x) a.e. Due to the choice of E there is a family {En}n∈N
which generates E . Let M ⊆ X be a set of full measure such that the above holds
for all x ∈ M and all En. For x ∈ M and n ∈ N choose Fn ∈ {En, X \ En} so that
E(x) =

⋂
n∈N Fn. The above implies νx(Fn) = 1 for every n ∈ N, and so we obtain

νx(E(x)) = 1 for all x ∈ M , which yields the assertion.

Theorem 4.7. Let X be a compact metric space with Borel σ-algebra ΣX and
let E be a countably generated sub-σ-algebra of ΣX . Then there is an E-measurable
family {νx}x∈X in M(X) such that νx is supported on E(x) and

ν =
ˆ
X
νx d ν(x).

Proof. Let V be a countable dense Q-linear subspace of C(X) with 1X ∈ V . For
f ∈ V let f̃ := Eν(f

∣∣E). Since V is countable, there is a subset X0 ⊆ X of full
ν-measure such that f̃ is defined for each f ∈ V and every x ∈ X0. Furthermore,
f 7→ f̃ is Q-linear and positive on X0 as well as 1̃X = 1X . Hence, for each x ∈ X0
the function

Λ̃x : V → R, f 7→ f̃(x)
is a positive continuous Q-linear functional on the normed space (V, ‖·‖∞) (contin-
uous, since by positivity of the conditional expectation we have

∥∥∥f̃∥∥∥
∞

≤ ‖f‖∞).
Therefore, for each x ∈ X0, Λ̃x extends to a positive R-linear functional Λx :
C(X) → R (note that Λx1X = 1̃X(x) = 1). So, by the representation theorem of
Riesz–Markov–Kakutani (see Theorem A.9 in the Appendix), for each x ∈ X0
there is a νx ∈ M(X) such that

Λxf =
ˆ
X
f(x) d νx(x).

To ensure measurability, for x ∈ X \X0 set νx to be some fixed measure in M(X).
Then, by Propositons 4.5 and 4.6 the assertion follows.
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Remark 4.8. The E-measurability of the family {νx}x∈X implies that for each x′ ∈
E(x) we have νx′ = νx for ν-a.e. x ∈ X. And since νx(E(x)) = 1, we obtain νx′ = νx
for νx-a.e. x′.

The representation ν =
´
X νxdν(x) is called the disintegration of ν over E . The fol-

lowing statement assures that this representation is unique (in the measure-theoretic
sense).

Lemma 4.9. If {ν ′
x}x∈X is another family with the same properties, then for ν-a.e.

x ∈ X we have ν ′
x = νx.

Proof. For f ∈ L1(X, ν) define f ′ : x 7→
´
X fdν

′
x. Then f ′ is a bounded linear

operator on L1(X,ΣX , ν) with im(f) ⊆ L1(X, E , ν), since, by Definition 4.1 and the
choice of {ν ′

x}x∈X ,
ˆ
X

∣∣f ′∣∣ d ν ≤
ˆ
X

(ˆ
X

|f | d ν ′
x

)
d ν(x) =

ˆ
X

|f | d ν = ‖f‖L1 .

Furthermore,ˆ
X
f ′ d ν =

ˆ
X

(ˆ
X
fdν ′

x

)
d ν(x) =

ˆ
X

(ˆ
X
fdνx

)
d ν(x) =

ˆ
X
f d ν.

Due to the fact, that, for E ∈ E , νx is supported on E for ν-a.e. x ∈ E and on X \E
for ν-a.e. x ∈ X \ E, for ν-a.e. x ∈ X we obtain

(1Ef)′(x) =
ˆ
X

1Ef d ν ′
x = 1E(x)

ˆ
X
f d ν ′

x = (1Ef ′)(x).

Therefore, f ′ = Eν(f
∣∣E) = f̃ , which f̃ as in the proof of Theorem 4.7, and the

assertion follows.

4.3. Ergodic Decomposition
Let (X,ΣX , ν, T ) be a metric MDS (with ΣX the Borel σ-algebra on X) and
let T ⊆ ΣX be the family of measurable sets invariant under the transformation
T . Then T is a σ-algebra but in general not countably generated (e.g. consider
T = idX . Then T = ΣX and thus not countably generated).

Therefore it is inevitable to pass over to a fixed countably generated ν-dense
sub-σ-algebra T0 of T in the following way: Choose a dense sequence (fn)n∈N ⊂
L1(X, T , ν) by choosing representatives of the functions that are genuinely T -
measurable, not just modulo a set C ∈ Nν (note that L1(X, T , ν) is a closed sub-
space of L1(X,ΣX , ν), and since L1(X,ΣX , ν) is separable, so is L1(X, T , ν)). Now
for p, q ∈ Q consider the (countable) family A of the sets An,p,q = {p < fn < q} and
let T0 := σ(A). Then T0 ⊆ T and each fn is T0-measurable, hence L1(X, T0, ν) =
L1(X, T , ν). In particular, T is contained in the ν-completion of T0.

The following theorem yields the decomposition we are looking for.

Theorem 4.10 ([44]). Let (X,ΣX , ν, T ) be a MDS on a Borel space and let
T0 ⊆ T ⊆ ΣX be as above. Then there is a disintegration ν =

´
X νxdν(x) of ν over

T0 (and therefore over T ) such that a.e. νx is T -invariant, ergodic and supported on
T0(x), and the disintegration is unique in the measure-theoretic sense, i.e., for any
other family {ν ′

x}x∈X with the same properties we have νx = ν ′
x for ν-a.e. x.
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Proof. Let {νx}x∈X be the (because of Lemma 4.9 unique) family yielding the dis-
integration of ν relative to T0 given by Theorem 4.7. It remains to show that for
ν-a.e. x ∈ X the measure νx is T -invariant and ergodic.

1. For ν-a.e. x ∈ X the measure νx is T -invariant.
For A ∈ ΣX define g1 : X → R by

g1(x) := νx(T−1A) − νx(A).

Then, for each x ∈ X, g1(x) =
´
X (1T−1A − 1A) d νx and hence g1 is T -measurable.

Moreover, by Definition 4.1, for each I ∈ T ,
ˆ
I
g1(x) d ν(x) =

ˆ
I

(ˆ
X

(1T−1A − 1A) d νx
)

d ν(x) =
ˆ
I

(1T−1A(x) − 1A(x)) d ν(x)

= ν
(
I ∩ T−1A

)
− ν (I ∩A) .

Since I is T -invariant and T preserves the measure ν, we obtain

ν
(
I ∩ T−1A

)
= ν

(
T−1I ∩ T−1A

)
= ν

(
T−1 (I ∩A)

)
= ν (I ∩A)

and therefore
´
I g1 d ν = ν

(
I ∩ T−1A

)
− ν (I ∩A) = 0, for every I ∈ T . Since g1 is

T -measurable (and thus I ∩ T -measurable, for each I ∈ T ) we conclude g1 = 0 a.e.,
which implies νx(T−1A) = νx(A) for ν-a.e. x ∈ X, which yields assertion 1.

2. For ν-a.e. x the measure νx is ergodic.
For I ∈ T define g2 : X → R by

g2(x) := νx(I).

Then, for each x ∈ X, g2(x) =
´
X 1I d νx and hence g2 is T -measurable. Further-

more, for each J ∈ T ,
ˆ
J
g2(x) d ν(x) =

ˆ
J

(ˆ
X

1I d νx
)

d ν(x) =
ˆ
J

1Idν(x)

and thus g2 = 1I . Since T is the set of all T -invariant sets I ∈ ΣX , we obtain that,
for ν-a.e. x ∈ X and each T -invariant set I,

νx(I) =
{

1 if x ∈ I

0 otherwise
,

i.e., νx(I) ∈ {0, 1}, which yields assertion 2.
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5. The Ergodic Theorem with Möbius
Weights

In ergodic theory there are always two sides to a result about dynamical systems: a
measure-theoretic version (stated for ν-a.e. point, for some measure ν) and a topo-
logical one (stated for all points). Most of the time the measure-theoretic formula-
tion is easier to prove, but at the cost of loosing validity for ν-nullsets. Nevertheless
proofing the measure-theoretical version of such a claim might be the first step in
understanding the entire context.

In case of Sarnak’s conjecture, which itself can be considered as a statement
about certain sequences being orthogonal to (µ(n))n∈N, its measure-theoretic version
appears to be in form of a weighted ergodic thereom, whose weights are given by
the Möbius function. Surprisingly, the latter version does not demand the given
system to be deterministic.

This chapter is dedicated to the proof of the mentioned weighted ergodic theorem.
For that purpose some preliminaries are required, namely Birkhoff’s pointwise
ergodic theorem, Davenport’s estimation and the spectral theorem for bounded
unitary operators on a separable Hilbert space.

Recall that forX a compact metric space and T : X → X a continuous transforma-
tion we also denote by T the Koopman operator on C(X) given by (Tf)(x) := f(Tx)
for x ∈ X. Note that T is linear, positive, multiplicative, contractive and preserves
conjugation.

5.1. The Pointwise Ergodic Theorem by Birkhoff
The statements of this section are taken from [20]. We start with an important
consequence of the Borel-Cantelli lemma (see Theorem A.10 in the Appendix),
which states that convergence in the Lp-norm (1 ≤ p ≤ ∞) forces pointwise conver-
gence along a subsequence.

Proposition 5.1. Let (X,ΣX , ν) be a probability space and let (fn)n∈N ⊂ Lp(X, ν),
where 1 ≤ p ≤ ∞, be convergent to an f in the Lp-norm. Then there is a sequence
(nk)k∈N ⊂ N such that (fnk

)k∈N converges pointwise ν-a.e. to f .

Proof. Since (fn)n∈N converges to f in the Lp-norm, we can choose (nk)k∈N ⊂ N
such that ‖fnk

− f‖pLp < 1
k2+p for each k ∈ N. Then

ν

({
x ∈ X

∣∣∣∣ |fnk
(x) − f(x)| > 1

k

})
<

1
k2 .

By the Borel-Cantelli lemma we obtain for ν-a.e. x, that |fnk
(x) − f(x)| > 1

k
holds for only finitely many k. So limk→∞ fnk

(x) = f(x) for ν-a.e. x ∈ X.
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To obtain the desired statement of this section we need to consider two significant
results of ergodic theory, namely the mean and the maximal ergodic theorem, which
are of outstanding significance for the study of dynamical systems.

Theorem 5.2 (Mean Ergodic Theorem; von Neumann). Let (X,ΣX , ν, T ) be an
MDS and denote by πT the orthogonal projection onto the closed subspace

Fix T :=
{
g ∈ L2(X, ν)

∣∣∣Tg = g
}

⊆ L2(X, ν).

Then, for any f ∈ L2(X, ν) the sequence ( 1
N

∑N−1
n=0 T

nf)N∈N converges to πT (f) in
the L2-norm.

Proof. Let B :=
{
Tg − g

∣∣ g ∈ L2(X, ν)
}
. For f ∈ Fix T we have

〈f, Tg − g〉 = 〈Tf, Tg〉 − 〈f, g〉 = 0,

so f ∈ B⊥. For f ∈ B⊥ we find

〈Tg, f〉 = 〈g, f〉

for all g ∈ L2(X, ν). Therefore, T ∗f = f , and thus (by the parallelogram identity)

‖Tf − f‖L2 = 〈Tf − f, Tf − f〉
= ‖Tf‖2

L2 − 〈f, Tf〉 − 〈Tf, f〉 + ‖f‖2
L2

= 2 ‖f‖2
L2 − 〈T ∗f, f〉 − 〈f, T ∗f〉

= 0,

which implies f ∈ Fix T . Altogether we obtain B⊥ = Fix T , which implies

L2(X, ν) = Fix T ⊕B.

So each f ∈ L2(X, ν) can be decomposed as

f = πT f + h,

with a unique h ∈ B. Hence, it remains to show that 1
N

∑N−1
n=0 T

nh
L2

−−→ 0 as N → ∞,
for each h ∈ B. For h = Tg − g ∈ B we obtain∥∥∥∥∥ 1

N

N−1∑
n=0

Tn(Tg − g)
∥∥∥∥∥
L2

= 1
N

∥∥∥TNg − g
∥∥∥
L2

→ 0 asN → ∞, (5.1)

since
∑N−1
n=0 T

n(Tg − g) is a telescoping sum. Now, for an arbitrary h ∈ B, choose
(gk)k∈N ⊂ L2(X, ν) with hk := Tgk − gk → h as k → ∞. Then, for each k ∈ N,∥∥∥∥∥ 1

N

N−1∑
n=0

Tnh

∥∥∥∥∥
L2

≤
∥∥∥∥∥ 1
N

N−1∑
n=0

Tn(h− hk)
∥∥∥∥∥
L2

+
∥∥∥∥∥ 1
N

N−1∑
n=0

Tnhk

∥∥∥∥∥
L2

. (5.2)

Because of (5.1), for any fixed ε > 0, we can find l and N sufficiently large such that

‖h− hl‖L2 <
ε

2
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and ∥∥∥∥∥ 1
N

N−1∑
n=0

Tnhl

∥∥∥∥∥
L2

<
ε

2 .

Together with (5.2) these imply∥∥∥∥∥ 1
N

N−1∑
n=0

Tnh

∥∥∥∥∥
L2

≤ ε,

which yields the assertion, since ε has been chosen arbitrarily.

Corollary 5.3. Let (X,ΣX , ν, T ) be an MDS and let f ∈ L1(X, ν). Then there
exists an f̃ ∈ L1(X, ν) such that

1
N

N−1∑
n=0

f ◦ Tn L1
−−−−→
N→∞

f̃ .

Proof. For f ∈ L1(X, ν), and N ∈ N set CN (f) := 1
N

∑N−1
n=0 f ◦Tn. By Theorem 5.2

for any g ∈ L∞(X, ν) ⊆ L2(X, ν) its averages CN (g) converge in L2(X, ν) to some
g̃ ∈ L2(X, ν). Since ‖·‖L1 ≤ ‖·‖L2 , we also have

CN (g) L1
−−−−→
N→∞

g̃. (5.3)

Now let f ∈ L1(X, ν), fix an ε > 0 and choose g ∈ L∞(X, ν) with ‖g − f‖L1 < ε
4

(which is possible for any ε > 0 since L∞(X, ν) is dense in L1(X, ν)). By taking
averages for any N ∈ N we obtain

‖CN (f) − CN (g)‖L1 <
ε

4

and by (5.3) there is an N0 ∈ N such that

‖CN (g) − g̃‖L1 <
ε

4

for all N ≥ N0. Hence, for all N,N ′ ≥ N0,∥∥∥∥∥∥ 1
N

N−1∑
n=0

f ◦ Tn − 1
N ′

N ′−1∑
n=0

f ◦ Tn
∥∥∥∥∥∥
L1

= ‖CN (f) − CN ′(f)‖L1

= ‖CN (f) − CN (g) + CN (g) − g̃

+g̃ − CN ′(g) + CN ′(g) − CN ′(f)‖L1

≤ ‖CN (f) − CN (g)‖L1 + ‖CN (g) − g̃‖L1

+ ‖g̃ − CN ′(g)‖L1 + ‖CN ′(g) − CN ′(f)‖L1

≤ ε

4 + ε

4 + ε

4 + ε

4
= ε.

So ( 1
N

∑N−1
n=0 f ◦Tn)n∈N is a Cauchy sequence in L1(X, ν) and therefore, since each

Lp-space is complete, converges to an f̃ ∈ L1(X, ν).
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Lemma 5.4 (Maximal Inequality). Let (X,ΣX , ν) be a probability space and let U :
L1(X, ν) → L1(X, ν) be a positive linear operator with ‖U‖ ≤ 1. For f ∈ L1(X, ν)
real-valued define recursively

f0 = 0
f1 = f

fn+1 =
n∑
k=0

Ukf

for all n ∈ N, as well as FN := max {fn |n ∈ [0, N ] ∩ Z} for N ∈ N (all functions
defined pointwise). Then, for FX := {x ∈ X | infN∈N FN (x) > 0},

ˆ
FX

f d ν ≥ 0.

Proof. For each N ∈ N we have FN ∈ L1(X, ν) and FN ≥ fn for all n ∈ [0, N ] ∩ Z.
By U being positive and linear, we obtain

UFN + f ≥ Ufn + f = fn+1

for all n ∈ [0, N ] ∩ Z. Hence

UFN + f ≥ max
n∈[1,N ]∩Z

fn.

For x ∈ FX we have

FN (x) = max
n∈[0,N ]∩Z

fn(x) = max
n∈[1,N ]∩Z

fn(x) ≤ UFN (x) + f(x),

since f0 = 0. Therefore, for each x ∈ FX ,

f(x) ≥ FN (x) − UFN (x). (5.4)

Since U is positive we have UFN (x) ≥ FN (x) > 0 for all x ∈ FX . This implies,
together with ‖U‖ ≤ 1, (5.4) and the fact, that FN (x) = 0 for x /∈ FX ,

ˆ
FX

f d ν ≥
ˆ

FX

FN d ν −
ˆ

FX

UFN d ν

=
ˆ
X
FN d ν −

ˆ
FX

UFN d ν

≥
ˆ
X
FN d ν −

ˆ
X
UFN d ν

= ‖FN‖L1 − ‖UFN‖L1

≥ 0

for all N ∈ N.

Theorem 5.5 (Maximal Ergodic Theorem). Let (X,ΣX , ν, T ) be an MDS and let
g ∈ L1(X, ν) be real-valued. For c ∈ R define

Ec :=
{
x ∈ X

∣∣∣∣∣ sup
N∈N

1
N

N−1∑
n=0

g(Tnx) > c

}
.
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Then
cν(Ec) ≤

ˆ
Ec

g d ν ≤ ‖g‖L1 .

Moreover, for A ∈ ΣX such that T−1A = A,

cν(Ec ∩A) ≤
ˆ
Ec∩A

f d ν.

Proof. Let f := g − c and Uf := f ◦ T . Then, in the notation of Lemma 5.4,

Ec =
{
x ∈ X

∣∣∣∣∣ sup
N∈N

1
N

N−1∑
n=0

g(Tnx) > c

}
=

⋃
N∈N0

{x ∈ X |FN (x) > 0} .

From Lemma 5.4 it follows that
´
Ec
f d ν ≥ 0 and therefore

´
Ec
g d ν ≥ cν(Ec).

For the last statement apply the same argument to f := g − c on the measure-
preserving system (A,ΣA,

1
ν(A)ν|A, T |A), with ΣA := Σ ({B ∩A |B ∈ ΣX}).

Now we have everything together we need to prove Birkhoff’s pointwise ergodic
theorem. It describes the relationship between the space average of a function and
its time average along the orbit of a typical point, i.e., except for those contained in
a certain nullset.

Theorem 5.6 (Birkhoff). Let (X,ΣX , ν, T ) be an MDS and f ∈ L1(X, ν) then

1
N

N−1∑
n=0

f ◦ Tn

converges ν-a.e. to a function g ∈ L1(X, ν) with
ˆ
X
g d ν =

ˆ
X
f d ν.

If (X,ΣX , ν, T ) is ergodic, then

g(x) =
ˆ
X
f d ν

for ν-a.e. x ∈ X.

Proof. Let f be real-valued (for a complex-valued function the claim then follows
by deviding it into its real and imaginary part). For each x ∈ X define

f∗(x) := lim sup
N→∞

1
N

N−1∑
n=0

f(Tnx),

f∗(x) := lim inf
N→∞

1
N

N−1∑
n=0

f(Tnx).

Then

1
N

N−1∑
n=0

f(Tn(Tx))+ 1
N
f(x) = 1

N

N∑
n=0

f(Tnx) = N + 1
N

(
1

N + 1

N∑
n=0

f(Tnx)
)
. (5.5)
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By taking the limit along a subsequence for which the left-hand side of (5.5) con-
verges to its limit superior, this implies f∗ ≥ f∗ ◦T . A limit along a subsequence for
which the right-hand side of (5.5) converges to its limit superior shows f∗ ≤ f∗ ◦ T .
Altogether we obtain f∗ = f∗ ◦ T . A similar argument for f∗ (by considering limit
inferiors) yields f∗ = f∗ ◦ T .

Now fix a, b ∈ Q, a > b, and define

Eba := {x ∈ X | f∗(x) < b, f∗(x) > a} .

Then T−1Eba = Eba, since h = h ◦ T for h ∈ {f∗, f
∗}. Moreover, Eba ⊆ Ea with Ea

defined as in Theorem 5.5 (with c = a and g = f). Hence Eba = Eba ∩ Ea and by
Theorem 5.5 we obtain ˆ

Eb
a

f d ν ≥ aν(Eba). (5.6)

Analogously, by replacing f by −f , we obtainˆ
Eb

a

f d ν ≤ bν(Eba). (5.7)

Now⋃
a,b∈Q
a>b

Eba =
⋃

a,b∈Q
a>b

{x ∈ X | f∗(x) < b, f∗(x) > a} = {x ∈ X | f∗(x) < f∗(x)} ,

while (5.6) and (5.7) show that ν(Eba) = 0 for a > b. Therefore,

ν

 ⋃
a,b∈Q
a>b

Eba

 = 0,

so f∗(x) = f∗(x) ν-a.e. Thus, for g := f∗,

gN (x) := 1
N

N−1∑
n=0

f(Tnx) → g(x) ν-a.e. (5.8)

By Corollary 5.3 we also know that

lim
n→∞

∥∥∥gn − f̃
∥∥∥
L1

= 0 (5.9)

for a certain f̃ ∈ L1(X,ΣX , ν). By Proposition 5.1 this implies the existence of a
sequence (nk)k∈N ⊂ N with limk→∞ nk = ∞ for which

gnk
(x) → f̃(x) ν-a.e. (5.10)

So by (5.8) and (5.10) we obtain g = f̃ and hence, by (5.9), that the convergence in
(5.8) does also happen in L1(X, ν). Finally we also get

ˆ
X
f d ν = 1

N

ˆ
X

N−1∑
n=0

f ◦ Tn d ν =
ˆ
X
g d ν.

The last claim follows from the above by taking in consideration, that Fix T =
C · 1X (i.e., Tf = f iff f is constant) whenever (X,ΣX , ν, T ) is ergodic.
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5.2. Davenport’s Estimation
We want to study the behavior correlation of the Möbius function with func-
tions on the unit circle, for what we need is an estimation for the growth of sums∑
n≤x µ(n)e2πinθ for any angle θ and a real value x going to infinity. This is what

this section is dedicated to and the results below were shown by Davenport in [14]
in 1937.

We will bountifully make use of the big O notation by Bachmann–Landau: for
any real-valued functions f and g and any a ∈ R write f(x) = O(g(x)) as x → a
if there are a constant C > 0 just depending on a and a δ > 0 so that for any
x ∈ (a− δ, a+ δ) we have

|f(x)| ≤ C |g(x)| .

Analogously, we write f(x) = O(g(x)) as x → ∞ if there are a constant C > 0 and
an x0 ∈ R such that |f(x)| ≤ C |g(x)| whenever x ≥ x0. Furthermore, we denote by
[x] the largest integer not greater than x ∈ R, by P the set of all prime numbers and
by (p, q) the greatest common divisor of p, q ∈ N.

We aim to prove the following statement.

Theorem 5.7 (Davenport). For each r > 0 and every θ ∈ [0, 1) we have∑
n∈N
n≤x

µ(n)e2πinθ = O(x(log x)−r)

as x → ∞, uniformly in θ.

Note that for each z ∈ T there exists exactly one θ ∈ [0, 1) such that z ' e2πiθ.
Furthermore, since |µ(n)| ≤ 1 for all n ∈ N, replacing x ∈ R by N ∈ N in Theo-
rem 5.7 does not change the growth rate of the sum. So, following the definition of
the big O notation, we can reword the above relation as

max
z∈T

∣∣∣∣∣
N∑
n=1

µ(n)zn
∣∣∣∣∣ ≤ CN

logrN (5.11)

for each r > 0, every N ∈ N and a constant C = C(r) > 0 just depending on r.
To prove Theorem 5.7 we need a little preparation. We start with three technical

lemmas for which we omit the proofs; they can be found in [14].

Lemma 5.8. Let x ∈ (0,∞) and l, q,H ∈ N with q ≤ (log x)H . Then there is a
constant C = C(H) > 0 just depending on H such that∑

n∈N
n≤x

n≡lmod q

µ(n) = O
(
xe−C(H)

√
log x

)

as x → ∞.

Remark 5.9. The condition n ≡ lmod q is equivalent to n ∈ {l + qk | k ∈ N0}. Fur-
thermore, for n ∈ N and a ∈ N with (a, q) = 1,

n∑
m=1

µ(m)e2πima
q =

q∑
r=1

e
2πia r

q

n∑
m=1

m≡r mod q

µ(m),
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so, for n := [x], Lemma 5.8 implies

n∑
m=1

µ(m)e2πima
q = O

(
qxe−C(H)

√
log x

)
= O

(
xe−C(H)

√
log x

)
as x → ∞.

Lemma 5.10. Let N, u0, u1, q, a ∈ N such that 1 < u0 < u1 < N , 1 ≤ q ≤ N and
(a, q) = 1. Let θ, γ : R × N → R be bounded functions and ψ : R × N → R (not
necessarily bounded). Then

∑
u0<x≤u1

θ(x,N)
∑

1≤y≤ N
x

ψ(y,N)<x

γ(y,N)e2πiaxy
q = O

(
N(logN)2

√
1
u0

+ u1
N

+ 1
q

+ q

N

)

as N → ∞.

Lemma 5.11. For h1 > 3 and N1 ∈ N choose q1, b ∈ N such that (logN1)3h1 <
q1 ≤ N1(logN1)−3h1 and (b, q1) = 1. Then∑

p∈P
p≤N1

e
2πib p

q1 = O
(
N1(logN1)2−h1

)

as N1 → ∞.

Now we split the statement of Theorem 5.7 into two parts (Lemma 5.12 and
Lemma 5.14 below) and prove them separately.

Lemma 5.12. Let x ∈ (0,∞), H ∈ N and set τ :=
[
x(log x)−H

]
. For all θ ∈(

a
q − 1

τq ,
a
q + 1

τq

)
, for some a, q ∈ N with q ≤ (log x)H and (a, q) = 1, there is a

constant C(H) > 0 just depending on H such that∑
n∈N
n≤x

µ(n)e2πinθ = O
(
xe−C(H)

√
log x

)

as x → ∞, uniformly in θ.

Proof. For each n ∈ N, 1 ≤ n ≤ x define

S0 := 0

Sn :=
n∑

m=1
µ(m)e2πima

q

and
Sx :=

∑
m∈N
m≤x

µ(m)e2πima
q .

From Lemma 5.8 and Remark 5.9, for n := [x] we know that

Sn = O
(
xe−C(H)

√
log x

)
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as x → ∞, with a constant C(H) > 0 just depending on H. Write θ = a
q + β with

β ∈
(
− 1
τq ,

1
τq

)
. Then, by the choice of τ ,

x
∣∣∣1 − e2πiβ

∣∣∣ = O
(
x

qτ

)
= O(1)

as x → ∞, and thus we obtain∑
n∈N
n≤x

µ(n)e2πin
(

a
q

+β
)

=
∑
n∈N
n≤x

(Sn − Sn−1) e2πinβ

=
∑
n∈N
n≤x

Sne
2πinβ −

∑
n∈N0
n≤x

Sne
2πi(n+1)β

=
∑
n∈N
n≤x

Sne
2πinβ(1 − e2πiβ) + O

(
xe−C(H)

√
log x

)

= O
((
x
∣∣∣1 − e2πiβ

∣∣∣+ 1
)
xe−C(H)

√
log x

)
= O

((
x

qτ
+ 1

)
xe−C(H)

√
log x

)
= O

(
xe−C(H)

√
log x

)
.

Lemma 5.13. For h > 1 and N ∈ N choose q, a ∈ N such that (logN)12h < q ≤
N(logN)−12h and (a, q) = 1. Then

N∑
n=1

µ(n)e2πina
q = O

(
N(logN)2−h

)
as N → ∞.

Sketch of proof. For n ∈ N denote by Ψ(n) the largest prime factor of n and by d(n)
the sum of all prime factors of n. If n is square-free (i.e. for every two prime factors
p1, p2 of n we have p1 6= p2) with

√
N ≤ n ≤ N and Ψ(n) ≤ (logN)2h then n has

not less than logN
4h log(logN) prime factors, which implies

d(n) ≥ 2
log N

4h log(log N) > (logN)h,

for N sufficiently large. Using this together with
∣∣∣∑N

n=1 µ(n)
∣∣∣ ≤

∣∣∣∑N
n=1 d(n)

∣∣∣ one
shows that (see [14])

N∑
n=2

Ψ(n)≤(logN)2h

µ(n)e2πina
q = O

(
N(logN)1−h

)
. (5.12)

On the other hand, since µ(p) = −1, for each p ∈ P, and µ(m · n) = µ(m)µ(n), for
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m,n ∈ N, (m,n) = 1, we have

N∑
n=2

Ψ(n)>(logN)2h

µ(n)e2πina
q =

∑
p∈P

(logN)2h<p≤N

∑
1≤m≤ N

p

Ψ(m)<p

µ(pm)e2πiam p
q

= −
∑
p∈P

(logN)2h<p≤N

∑
1≤m≤ N

p

Ψ(m)<p

µ(m)e2πiam p
q

= −
∑

m≤(logN)2h

µ(m)
∑

(logN)2h<p≤ N
m

e
2πiam p

q

︸ ︷︷ ︸
=:P1

−
∑

(logN)2h<p<N(logN)−2h

∑
(logN)2h<m≤ N

p

Ψ(m)<p

µ(m)e2πiam p
q

︸ ︷︷ ︸
=:P2

= −P1 − P2.

The inner sum in P1 satisfies the conditions of Lemma 5.11 with

q1 := q

(m, q) , b
:= am

(m, q) , N1 := N

m
and h1 := 3h.

Hence, by Lemma 5.11,

P1 = O
(
(logN)2hN(logN)2−3h

)
= O

(
N(logN)2−h

)
(5.13)

as N → ∞. Now, set

θ(x,N) :=
{

1 forx ∈ P
0 otherwise

and γ(y,N) :=
{
µ([y]) for y > (logN)2h

0 otherwise

as well as ψ(y,N) := Ψ([y]). Thus, by using Lemma 5.10, one shows that (see [14])

P2 = O
(
N(logN)2−h

)
(5.14)

as N → ∞. So, by (5.12), (5.13) and (5.14) we obtain

N∑
n=1

µ(n)e2πina
q = O

(
N(logN)1−h

)
+ O

(
N(logN)2−h

)
= O

(
N(logN)2−h

)
as N → ∞.

Lemma 5.14. Let x ∈ (0,∞), H ∈ N, H > 14 and set τ :=
[
x(log x)−H

]
. Then

for each θ ∈ [0, 1) for which there are a, q ∈ N with (a, q) = 1,
∣∣∣θ − a

q

∣∣∣ ≤ 1
qτ and

(log x)H < q ≤ τ , we have∑
n∈N
n≤x

µ(n)e2πinθ = O
(
x(log x)2− 1

14H
)

as x → ∞.
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Proof. Let h := 1
14H, write θ = a

q + β and consider the same partial summation as
that used in the proof of Lemma 5.12. Then it suffices to show that for N ≤ x∣∣∣∣∣

N∑
n=1

µ(n)e2πina
q

∣∣∣∣∣ ≤ Cx(log x)2−h

for x sufficiently large and C = C(H) > 0 a constant just depending on H. For
N ≤ x(log x)−h we have∣∣∣∣∣

N∑
n=1

µ(n)e2πina
q

∣∣∣∣∣ ≤
N∑
n=1

|µ(n)|
∣∣∣e2πina

q

∣∣∣ ≤ N ≤ x (log x)−h ≤ x (log x)2−h ,

since x (log x)2 ≤ x (log x)2h whenever x > 1 (since h > 1 by the choice of H). For
x(log x)−h < N ≤ x the assertion follows from Lemma 5.13.

Now we can put everything together to obtain the desired result.

Proof of Theorem 5.7. Fix x ∈ [0,∞) and choose H ∈ N such that 2 − 1
14H < −r.

Set τ :=
[
x(log x)−H

]
. Then, by the Dirichlet drawer principle, there are a, q ∈ N

such that (a, q) = 1, 1 ≤ q ≤ τ and
∣∣∣θ − a

q

∣∣∣ ≤ 1
qτ . For q ≤ (log x)H the assertion

follows from Lemma 5.12 and for (log x)H < q ≤ τ it follows from Lemma 5.14.

5.3. Spectral Theorem for Bounded Unitary Operators
The results of this section are taken from [30],[46] and [41]. Throughout this section
let H be a separable Hilbert space over C. Denote by L(H) the set of all bounded
linear operators T : H → H.

Definition 5.15. Let T ∈ L(H). Then we call T

• normal, if TT ∗ = T ∗T ,

• unitary, if TT ∗ = T ∗T = idH ,

• self-adjoint, if T ∗ = T ,

where T ∗ denotes the adjoint operator of T .

Obviously, every unitary operator on H is normal and bijective with T−1 = T ∗,
and T ∗ is also unitary. Furthermore, for any x, y ∈ H,

〈Tx, Ty〉H = 〈x, T ∗Ty〉H = 〈x, y〉H

and therefore
‖Tx‖H =

√
〈Tx, Tx〉H =

√
〈x, x〉H = ‖x‖H ,

i.e., T is isometric (thus ‖T‖ = 1). The converse is also true (see e.g. [30]). So the
unitary operators on H are exactly the isometric automorphisms on H.

Denote by σ(T ) := {λ ∈ C |λidH − T is not invertible} the spectrum of an arbi-
trary operator T ∈ L(H) and by r(T ) := sup {|λ| |λ ∈ σ(T )} the spectral radius of
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T . One can show (see [30], Satz 58.6) that r(T ) = limn→∞
n
√

‖Tn‖. Furthermore,
for normal operators and all n ∈ N we have ‖Tn‖ = ‖T‖n. Therefore,

r(T ) = lim
n→∞

n

√
‖Tn‖ = ‖T‖ (5.15)

and, if T is unitary,
r(T ) = ‖T‖ = 1. (5.16)

Proposition 5.16. Let T be a unitary operator on H. Then σ(T ) ⊆ T.

Proof. By (5.16) and since T is bijective, we have σ(T ) ⊆ {z ∈ C | |z| ≤ 1} \ {0}.
Let λ ∈ C with 0 < |λ| < 1. Then

∣∣∣ 1
λ

∣∣∣ > 1 and therefore 1
λ ∈ C \ σ(T ∗) (since T ∗ is

unitary, too, and thus r(T ∗) = 1). Hence 1
λ idH −T ∗ is an invertible operator and so

is −λT . Consequently,
(

1
λ idH − T ∗

)
(−λT ) = λidH − T is also invertible and thus

λ /∈ σ(T ). This yields the assertion.

Remark 5.17. One can also show, that for T self-adjoint we have σ(T ) ⊆ R, see [46]
for a proof. For T normal σ(T ) is an arbitrary (non-empty) compact subset of C.

We will prove the required spectral theorem for all normal operators on separable
Hilbert spaces, because a limitation on unitary operators beforehand would not
make the task any easier. But we will be content with the case of a cyclic space,
which is to say that there is a vector h ∈ H such that the linear span of the T -orbit
of h is dense in H, i.e., we have H = lin {Tnh |n ∈ N}.

Let φ : H1 → H2 be a homomorphism between two Hilbert spaces over C. Then
we call φ a ∗-homomorphism, if φ preserves the involution, i.e., we have φ(x) = φ(x),
for each x ∈ H1. By a C-algebra we mean a vector space over C with a bilin-
ear multiplication on it. A Banach algebra A is an associative C-algebra with a
sub-multiplicative norm ‖·‖A such that (A,+, ‖·‖A) is a Banach space (the sub-
multiplicativity ensures the multiplication operation to be continuous). If we equip
a commutative Banach algebra A with an involution ∗ such that ‖x∗x‖A = ‖x‖2

A
for all x ∈ A, we obtain a C∗-algebra. Finally, for T ∈ L(H) normal, denote by

C∗(T ) :=
⋂

{A ⊆ L(H) | A is aC∗-algebra with {T, idH} ⊆ A}

the smallest C∗-algebra which contains T and idH (note that C∗(T ) also contains
T ∗). One can show (see [41]) that C∗(T ) = {P (T, T ∗) |P a polynomial}. We say
C∗(T ) has a cyclic vector h, if

{Bh |B ∈ C∗(T )} = {P (T, T ∗)h |P a polynomial} = H.

Note that, if h is a cyclic vector for T , then h is also a cyclic vector for C∗(T ) (for
T self-adjoint the inversion holds, too; see e.g. [41]).

Definition 5.18. We call a bounded T ∈ L(H) unitary equivalent to a multiplicator,
if there exist a σ-finite measure space (X,ΣX , ν), a function φ ∈ L∞(X, ν) and a
unitary operator Φ : L2(X, ν) → H such that

Φ∗TΦ = Mφ,

where Mφ : L2(X, ν) → L2(X, ν) is given by Mφf(z) = φ(z)f(z), for each f ∈
L2(X, ν) and every z ∈ X.
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We intend to show that each normal operator on a separable Hilbert space H
with a cyclic vector is unitary equivalent to the multiplicator Midσ(T ) . To do so we
need some proper preparation.

Proposition 5.19. Let A be a commutative unital1 Banach algebra and denote by
Γ the Gelfand transformation on A:

Γ(A)(γ) ≡ Â(γ) := 〈A, γ〉 ,

where A ∈ A and γ ∈ Â with Â the set of all characters of A (i.e., of all sur-
jective (multiplicative) homomorphisms φ : A → C). Then Â possesses a compact
Hausdorff topology such that Γ is a norm-contractive homomorphism from A into
a subalgebra of C(Â), which separates the points of Â. For each A ∈ A we have
Â(Â) = σ(A) and

∥∥∥Â∥∥∥
∞

= r(A).

Proof. One can show (see [46], Proposition 4.2.2) that

σ(A) =
{

〈A, γ〉
∣∣∣ γ ∈ Â

}
(5.17)

for each A ∈ A. Therefore, for each A ∈ A and every γ ∈ Â,

|〈A, γ〉| ≤ r(A) ≤ ‖A‖ .

Thus ‖γ‖ ≤ 1, regarding γ as an element in the dual space A′. Denote by B′ the
closed unit ball in A′. Then Â ⊆ B′ and, considering the w∗-topology on A′, we
have a Hausdorff topology on Â.

Now let J be a directed set and (γj)j∈J a net2 which w∗-converges to a γ ∈ B′.
Then, for A,B ∈ A,

〈AB, γ〉 = lim
j∈J

〈AB, γj〉 = lim
j∈J

〈A, γj〉 〈B, γj〉 = 〈A, γ〉 〈B, γ〉 ,

with the limits in the w∗-sense. Hence, γ ∈ Â, which implies that Â is a w∗-closed
subset of the compact set B′ and thus compact itself.

Since w∗-convergence is pointwise convergence, it follows that each function Â on
Â, with A ∈ A, Â(γ) = 〈A, γ〉, is continuous. Furthermore, by (5.17), Â(Â) = σ(A)
and therefore

∥∥∥Â∥∥∥
∞

= r(A). Finally, since each γ ∈ Â is multiplicative and for
γ1, γ2 ∈ Â, γ1 6= γ2 implies 〈A, γ1〉 6= 〈A, γ2〉 for at least one A ∈ A, we conclude
that Γ : A → C(Â), A 7→ Â, is a homomorphism, which separates the points of
Â.

Proposition 5.20. Each commutative unital C∗-algebra A is isometrically ∗-
isomorphic to C(Â).

Proof. Since A is commutative, each A ∈ A is normal. So by (5.15) and Propo-
sition 5.19 the Gelfand transformation is isometric. If A is self-adjoint, then for
each γ ∈ Â

Â(γ) = 〈A, γ〉 ∈ σ(A) ⊆ R

1i.e., A has a neutral element for the multiplication
2also called a Moore–Smith sequence; see [46] for definition and properties
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(see Lemma 4.3.12 in [46]).
Let T ∈ A. Then, since T is normal, there are self-adjoint A,B ∈ A such that

T = A+ iB; these are

A := 1
2 (T + T ∗) and B := i

2 (T − T ∗) .

Therefore,

Γ(T ∗) = Γ(A− iB) = Γ(A) − iΓ(B) = Γ(A) + iΓ(B) = Γ(A+ iB) = Γ(T ),

i.e., Γ preserves the involution ∗. In particular, Γ(A) :=
{
Â
∣∣∣A ∈ A

}
is a subalge-

bra of real-valued functions in C(Â) and thus Γ(A) = C(Â) by Proposition 5.19
and the Stone–Weierstraß theorem (Theorem A.16 in the Appendix; see also
Theorem 4.3.4 in [46]). This yields the assertion.

Lemma 5.21. Let T be a normal element in a C∗-algebra A with unit I and denote
by C∗(T ) the smallest C∗-subalgebra of A which contains T and I. Then there is an
isometric ∗-isomorphism φ̃ : C(σ(T )) → C∗(T ) which maps 1σ(T ) to I and idσ(T ) to
T .

Proof. As mentioned above, we have C∗(T ) = {P (T, T ∗) |P a polynomial}. This
implies that the C∗-algebra C∗(T ) is unital and commutative. Thus, by Proposi-
tion 5.20, C∗(T ) is isometrically ∗-isomorphic to C(Ĉ∗(T )) (by the Gelfand trans-
formation Γ). Denote by σ(T ) the spectrum of T in A and by σ∗(T ) the spectrum
of T in C∗(T ). Since C∗(T ) ⊆ A, we have

σ(T ) ⊆ σ∗(T ). (5.18)

By Proposition 5.19 the map γ 7→ 〈T, γ〉 is a surjection from Ĉ∗(T ) onto σ∗(T )
and continuous, since Ĉ∗(T ), as a subset of (C∗(T ))?, has the w∗-topology. Note
that for γ1, γ2 ∈ Ĉ∗(T ), with 〈T, γ1〉 = 〈T, γ2〉, also

〈T ∗, γ1〉 = 〈T, γ1〉 = 〈T, γ2〉 = 〈T ∗, γ2〉 ,

and furthermore, 〈I, γ1〉 = 1 = 〈I, γ2〉. Therefore, γ1 and γ2 match on the subset
{P (T, T ∗) |P a polynomial} and thus, because of the continuity, also on

{P (T, T ∗) |P a polynomial} = C∗(T ).

Hence, γ1 = γ2 and therefore γ 7→ 〈T, γ〉 is injective, too.
Let Ψ : C(σ∗(T )) → C(Ĉ∗(T )) be given by Ψ(f)(γ) = f(〈T, γ〉), where f ∈

C(σ∗(T )) and γ ∈ Ĉ∗(T ). Then, by the above, Ψ is an isometric ∗-isomorphism.
Therefore, φ̃ := Γ−1 ◦Ψ is an isometric ∗-isomorphism between C(σ∗(T )) and C∗(T ).
For each γ ∈ Ĉ∗(T ) we have

Γ(T )(γ) = 〈T, γ〉 = idσ∗(T )(〈T, γ〉) = Ψ(idσ∗(T ))(γ),

which implies Γ(T ) = Ψ(idσ∗(T )) and thus T = φ̃(idσ∗(T )). Analogously we obtain
I = φ̃(1σ∗(T )).
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Now, showing that σ∗(T ) = σ(T ) will finish the proof. Because of (5.20) it just
remains to show that σ∗(T ) ⊆ σ(T ). For this purpose choose λ ∈ σ∗(T ) arbitrarily.
Fix ε > 0. Then there is an f ∈ C(σ∗(T )) such that ‖f‖∞ = 1 and f(λ) = 1 but
f(ρ) = 0 for every ρ ∈ σ∗(T ) with |λ− ρ| ≥ ε. Let A := φ̃(f). Then

‖(T − λI)A‖ =
∥∥∥φ̃−1 ((T − λI)A)

∥∥∥
∞

=
∥∥∥(idσ∗(T ) − λ)f

∥∥∥
∞

≤ ε.

Thus, T − λI cannot be invertible in A (because the inverse would have to have
norm greater than ε−1). Hence, λ ∈ σ(T ).

Now we are able to prove the desired spectral theorem.

Theorem 5.22. Let H be a separable Hilbert space over C and T ∈ L(H) a
bounded normal operator such that C∗(T ) has a cyclic vector. Then T is uni-
tary equivalent to the multiplicator Midσ(T ) : L2(σ(T ), ν) → L2(σ(T ), ν) given by
Midσ(T )g(z) = zg(z), for each g ∈ L2(σ(T ), ν) and every z ∈ σ(T ), with ν a unique
positive finite Borel measure on σ(T ).

Proof. Let h be the cyclic vector of C∗(T ). By Lemma 5.21 there is an isometric
∗-isomorphism φ (:= φ̃−1) between C∗(T ) and C(σ(T )) such that φ(T ) = idσ(T ).
By Lemma 5.21 for P = P (x, y) a polynomial and f, g ∈ C(σ(T )) we obtain the
mappings

C∗(T ) ↔ C(σ(T ))
idH ↔ 1σ(T )

T ↔ idσ(T )

T ∗ ↔ idσ(T )

P (T, T ∗) ↔ P (idσ(T ), idσ(T ))
f(T ) ↔ f

f(T )∗ ↔ f

f(T )g(T ) ↔ fg

f(T ) + g(T ) ↔ f + g

where f(T ) := φ−1(f). Define Λ on C(σ(T )) by Λ(f) := 〈f(T )h, h〉. Then Λ is a
bounded positive linear functional on C(σ(T )), because:

• Linearity follows from f(T ) + g(T ) = (f + g)(T ) and (αf)(T ) = αf(T ) for
each α ∈ C (see the last two mappings in the above scheme).

• Since φ isometric, we have

|Λ(f)| = |〈f(T )h, h〉| ≤ ‖f(T )h‖H ‖h‖H ≤ ‖f(T )‖ ‖h‖2
H = ‖f‖∞ ‖h‖2

H .

So Λ is bounded with ‖Λ‖ ≤ ‖h‖2
H .

• Let f ∈ C(σ(T )) be real-valued with f(x) ≥ 0 for each x ∈ σ(T ). Then
g :=

√
f ∈ C(σ(T )) is also real-valued with g(x) ≥ 0 for each x ∈ σ(T ).

Therefore,

Λ(f) = Λ(g2) =
〈
g2(T )h, h

〉
= 〈g(T )h, g(T )h〉 = ‖g(T )h‖2

H ≥ 0,

since g is real-valued.
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Hence, by the Riesz-Markov-Kakutani representation theorem (see Theorem A.9
in the Appendix) there is a unique positive finite Borel measure νh on σ(T ) such
that

Λ(f) = 〈f(T )h, h〉 =
ˆ
σ(T )

f d νh

for each f ∈ C(σ(T )), with νh(σ(T )) = ‖Λ‖.
Now, for f ∈ C(σ(T )), define Φf := f(T )h = φ−1(f)h. By the linearity of φ, Φ

has to be linear, too. Furthermore, for f, g ∈ C(σ(T )),

〈Φf,Φg〉H = 〈f(T )h, g(T )h〉H = 〈g(T )∗f(T )h, h〉H = 〈(gf)(T )h, h〉H

= Λ(gf) =
ˆ
σ(T )

gf d νh = 〈f, g〉L2(σ(T ),νh) .

Hence, Φ is a linear isometry from C(σ(T )) (equipped with the L2-norm) into H.
Since C(σ(T )) is dense in L2(σ(T ), νh), we can, in a unique way, extend Φ to a
linear isometry on L2(σ(T ), νh), which range is a closed subspace of H that includes
{f(T )h | f ∈ C(σ(T ))} = {Bh |B ∈ C∗(T )} as a subset (we denote this extension by
Φ, too). Since h is cyclic for T in H, {Bh |B ∈ C∗(T )} is dense in H. Thus, Φ is a
unitary map from L2(σ(T ), νh) onto H.

It remains to show that Φ∗TΦ is the claimed multiplicator on L2(σ(T ), νh). For
each f ∈ C(σ(T )) let Mf : C(σ(T )) → C(σ(T )) be given by Mf (g)(z) = f(z)g(z).
Then, for f, g ∈ C(σ(T )), we have

ΦMfg = Φ(fg) = (fg)(T )h = f(T )g(T )h = f(T )Φg,

thus ΦMf = f(T )Φ on the dense subset C(σ(T )) of L2(σ(T ), νh) and therefore on
L2(σ(T ), νh). This implies

Φ−1f(T )Φ = Mf

for each f ∈ C(σ(T )), and hence, in particular,

Φ−1TΦ = Midσ(T ) .

The measure νh we obtained in the above proof by bringing the Riesz–Markov–
Kakutani representation theorem into use, is a finite Borel measure on T and is
called the spectral measure of T .
Remark 5.23. From the construction of the isomorphism Φ in the above proof we
can conclude that

Φ(1σ(T )) =φ−1(1σ(T ))h
⇐⇒ 1σ(T ) = Φ−1 φ−1(1σ(T ))︸ ︷︷ ︸

=idH

h

⇐⇒ 1σ(T ) = Φ−1(h).

5.4. The Ergodic Theorem with Möbius Weights
Again we denote by [x] the largest integer not greater than x ∈ R.
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Theorem 5.24 ([22]). Let (X,ΣX , ν, T ) be an invertible MDS and f ∈ L1(X, ν).
Then, for ν-a.e. x ∈ X, we have

lim
N→∞

1
N

N∑
n=1

f(Tnx)µ(n) = 0.

Proof. If ν is non-ergodic, then, by the previous chapter, there is a disintegration
ν =

´
X νxdν(x) of ν such that a.e. νx is T -invariant, ergodic and supported on

disjoint invariant sets, and we can pass over to these νx. Therefore, without loss of
generality, we may assume that ν is ergodic.

First, let f ∈ L2(X, ν). Define H := lin {Tnf |n ∈ Z}. Then H ⊆ L2(X, ν) is a
separable Hilbert space (since L2 is separable itself), with the cyclic vector f , and
T |H : H → H is unitary (as an invertible isometry). Recall that f is also cyclic
for C∗(T ) and, by Proposition 5.16, we have σ(T ) ⊆ T. Therefore, by the spectral
theorem (Theorem 5.22), T is unitary equivalent to the multiplicator

MidT : L2(T, νf ) → L2(T, νf )

with νf as in Theorem 5.22. So, together with Remark 5.23, we obtain

Φ−1(f ◦ Tn)Φ = [T → T, z 7→ zn] ,

thus ∥∥∥∥∥ 1
N

N∑
n=1

f(Tnx)µ(n)
∥∥∥∥∥

2

L2(X,ν)
=
ˆ
X

∣∣∣∣∣ 1
N

N∑
n=1

f(Tnx)µ(n)
∣∣∣∣∣
2

d ν(x)

=
ˆ
T

∣∣∣∣∣ 1
N

N∑
n=1

znµ(n)
∣∣∣∣∣
2

d νf (z)

=
∥∥∥∥∥ 1
N

N∑
n=1

znµ(n)
∥∥∥∥∥

2

L2(T,νf )

and therefore, ∥∥∥∥∥ 1
N

N∑
n=1

f(Tnx)µ(n)
∥∥∥∥∥
L2(X,ν)

=
∥∥∥∥∥ 1
N

N∑
n=1

znµ(n)
∥∥∥∥∥
L2(T,νf )

.

Hence, by Davenport’s estimation (Theorem 5.7) in the form (5.11), for each r > 0
there is a constant C1 = C1(r) > 0 which depends only on r, such that∥∥∥∥∥ 1

N

N∑
n=1

f(Tnx)µ(n)
∥∥∥∥∥
L2

≤ C1
(logN)r . (5.19)

For ρ ∈ (1,∞) and m ∈ N (5.19) takes the form (for N := [ρm])∥∥∥∥∥∥ 1
[ρm]

[ρm]∑
n=1

f(Tnx)µ(n)

∥∥∥∥∥∥
L2

≤ C2
(m log ρ)r ,

with C2 = C2(r) > 0 only depending on r. In particular, by choosing r = 2, this
implies

∑∞
m=1

∥∥∥ 1
[ρm]

∑[ρm]
n=1 f(Tnx)µ(n)

∥∥∥
L2

< ∞. Hence, by the Borel–Cantelli
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lemma (Theorem A.10 in the Appendix, see also Corollary A.11), for ν-a.e. x ∈ X
we obtain

1
[ρm]

[ρm]∑
n=1

f(Tnx)µ(n) −−−−→
m→∞

0. (5.20)

Now, suppose additionally that f ∈ L∞(X, ν). Then, for [ρm] ≤ N <
[
ρm+1]+ 1,∣∣∣∣∣ 1

N

N∑
n=1

f(Tnx)µ(n)
∣∣∣∣∣ =

∣∣∣∣∣∣ 1
N

[ρm]∑
n=1

f(Tnx)µ(n) + 1
N

N∑
n=[ρm]+1

f(Tnx)µ(n)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
[ρm]

[ρm]∑
n=1

f(Tnx)µ(n)

∣∣∣∣∣∣+ ‖f‖∞
[ρm] (N − [ρm])

≤

∣∣∣∣∣∣ 1
[ρm]

[ρm]∑
n=1

f(Tnx)µ(n)

∣∣∣∣∣∣+ ‖f‖∞
[ρm]

([
ρm+1

]
− [ρm]

)
.

Because of ‖f‖∞
[ρm]

([
ρm+1]− [ρm]

)
−−−−→
m→∞

‖f‖∞ (ρ− 1) and (5.20), for ρ → 1 we
obtain

lim
N→∞

1
N

N∑
n=1

f(Tnx)µ(n) = 0 (5.21)

for ν-a.e. x ∈ X and each f ∈ L∞(X, ν).
Now, let f ∈ L1(X, ν). Then, for any ε > 0 there exists a g ∈ L∞(X, ν) such that

‖f − g‖L1 < ε. Applying Birkhoff’s pointwise ergodic theorem (Theorem 5.6) to
|f − g| yields

lim
N→∞

1
N

N∑
n=1

|f − g| (Tnx) =
(ˆ

X
|f − g| d ν

)
· 1X(x) = ‖f − g‖L1 < ε, (5.22)

for ν-a.e. x ∈ X. Therefore, for ν-a.e. x ∈ X, lim supN→∞

∣∣∣ 1
N

∑N
n=1 f(Tnx)µ(n)

∣∣∣
equals

lim sup
N→∞

∣∣∣∣∣ 1
N

N∑
n=1

(f − g) (Tnx)µ(n) + 1
N

N∑
n=1

g(Tnx)µ(n)
∣∣∣∣∣

≤ lim sup
N→∞

1
N

N∑
n=1

|f − g| (Tnx) |µ(n)|︸ ︷︷ ︸
≤1

+ lim sup
N→∞

∣∣∣∣∣ 1
N

N∑
n=1

g(Tnx)µ(n)
∣∣∣∣∣

≤ lim
N→∞

1
N

N∑
n=1

|f − g| (Tnx)︸ ︷︷ ︸
(5.22)
< ε

+ lim
N→∞

∣∣∣∣∣ 1
N

N∑
n=1

g(Tnx)µ(n)
∣∣∣∣∣︸ ︷︷ ︸

(5.21)
= 0

<ε.

So the limit exists and the assertion follows, since ε has been chosen arbitrarily close
to 0.

Whenever we obtain a statement for almost every x ∈ X, the question arises if
there is a simple way to apply it to any x. One could be tempted to merge the

64



results for the various MDS (X,ΣX , ν, T ) for each ν ∈ MT , hoping to cover every
nullset this way. This would imply that Sarnak’s conjecture holds for any dynam-
ical system regardless of its topological entropy, since in Theorem 5.24 we did not
need the given system to be deterministic. But that is not true. Several counterex-
amples show that, in general, we cannot renounce the zero entropy assumption. One
for certain Toeplitz sequences was given by El Abdalaoui, Kułaga-Przymus,
Lemańczyk and de la Rue in [22].

So, despite the unquestionable significance of the above ergodic theorem, the
conjecture we are primarily occupied with remains unproven.
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6. A Sufficient Condition for Sarnak’s
Conjecture

In this chapter we want to prove the orthogonality criterion of Katai–Bourgain–
Sarnak–Ziegler (in short KBSZ-criterion) which applies to any bounded multi-
plicative function and thus, in particular, yields a sufficient condition for Sarnak’s
conjecture to hold.

As before, we denote by P the set of all prime numbers and by #A the cardinality
of a finite set A.

Theorem 6.1 (KBSZ-criterion, quantitative version). Let F : N → C be bounded
by 1 and let ϕ : N → {−1, 0, 1} be a multiplicative number-theoretic function. Let
τ ∈ (0, 1) be a small parameter and assume that for all p1, p2 ∈

[
1, e

1
τ

]
∩P, p1 6= p2,

there is an M0 ∈ N such that for all M ≥ M0 we have

1
M

∣∣∣∣∣
M∑
m=1

F (p1m)F (p2m)
∣∣∣∣∣ ≤ τ. (6.1)

Then there exists an N0 ∈ N such that for all N ≥ N0 we have

1
N

∣∣∣∣∣
N∑
n=1

ϕ(n)F (n)
∣∣∣∣∣ ≤ 2

√
−τ log τ .

Note that it is sufficient to assume F to be bounded by an arbitrary C > 0.
Therefore, Theorem 6.1 implies the following useful criterion.

Theorem 6.2 (KBSZ-criterion, qualitative version). Let (F (n))n∈N be a complex-
valued sequence for which (|F (n)|)n∈N is bounded and which is such that for any pair
of sufficiently large distinct primes p1, p2,

N∑
n=1

F (p1n)F (p2n) = o(N) (6.2)

for N → ∞. Then
N∑
n=1

F (n)µ(n) = o(N)

for N → ∞.

To apply this for varifying Sarnak’s conjecture for a given TDS (X,T ), for each
f ∈ C(X) and every x ∈ X consider the sequence (F (n))n∈N given by F (n) :=
f(Tnx). Then, because of the continuity of the involved functions, (|F (n)|)n∈N is
bounded and the task is to find an n0 ∈ N such that for all distinct primes p1, p2
greater than n0 we have 1

N

∑N
n=1 F (p1n)F (p2n) −−−−→

N→∞
0.

We will look into two different proofs of the criterion, but in both cases we will
content ourselves with just a sketch of the respective proof.
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6.1. About a Proof for the KBSZ-Criterion
The proof we will consider in this section was given by Bourgain, Sarnak and
Ziegler in [9]. It makes use of the Chinese remainder theorem (see Theorem A.12
in the Appendix) and the prime number theorem (see Theorem 2.1). The basic idea
of it is to decompose [1, N ] ∩Z into a fixed number of pieces depending on the small
parameter τ and chosen in a way that they cover most of the inteval and so that the
members of the pieces have unique prime factors in suitable dyadic intervals. Then
we will be able to estimate the key sum by bringing the multiplicativity of ϕ into
usage.

For f, g : N → R write f . g if asymptotically as N → ∞, we have f ≤ g, i.e.,
there is an N0 ∈ N such that sup {f(N) |N ≥ N0} ≤ inf {g(N) |N ≥ N0} .

Sketch of proof of Theorem 6.1. Let α ∈ (0, 1) be such that

(logα)4 + α logα > 0 (6.3)

(to be chosen later depending on the parameter τ) and set

j0 := 1
α

(
log 1

α

)3
= −(logα)3

α
,

j1 := j2
0 = (logα)6

α2 .

Then, since

0 < (logα)4 + α logα α>0⇐⇒ 0 < (logα)6

α2 + (logα)3

α
,

we have j0 < j1. Furthermore, define

D0 := (1 + α)j0 ,
D1 := (1 + α)j1 .

In order to decompose [1, N ] ∩ Z suitably, consider first the set S given by

S := {n ∈ [1, N ] ∩ Z |n has a prime factor in (D0, D1)} .

Then one can show, by using the Chinese remainder theorem, that

# ([1, N ] ∩ Z \ S) .
∏

p∈(D0,D1)∩P

(
1 − 1

p

)
N.

By the prime number theorem and the choice of α we obtain

∏
p∈(D0,D1)∩P

(
1 − 1

p

)
∼ logD0

logD1
= 1
j0

which implies
# ([1, N) ∩ Z \ S) . αN,

that is, up to a fraction of α, S covers [1, N) ∩ Z.
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Now, for each j ∈ [j0, j1] ∩ Z, define Pj := P ∩
[
(1 + α)j , (1 + α)j+1

]
and

Sj :=

n ∈ [1, N) ∩ Z

∣∣∣∣∣∣n has exactly one divisor in Pj and no divisor in
⋃
i<j

Pi

 .
Then for j, j′ ∈ [j0, j1] ∩ Z, j 6= j′ we have Sj ∩ Sj′ = ∅. As above, consider
[1, N) ∩ Z \ Sj and appeal it to the prime number theorem to obtain

#Pj = (1 + α)j+1

(j + 1) log (1 + α) − (1 + α)j

j log (1 + α) + O
(
(1 + α)j e−

√
αj
)
. (6.4)

Hence, for α sufficiently small,

#Pj ≤ (1 + α)j
(1
j

+ 1
αj2 + O

(
e−

√
αj
))

. (6.5)

Now, from the definition of S we have

S \
j1⋃
j=j0

Sj ⊆
j1⋃
j=j0

{
n ∈ [1, N) ∩ Z

∣∣∣ n has at least two distinct
prime factors in Pj

}
.

Hence one can show that

#

S \
j1⋃
j=j0

Sj

 .
∑
j∈N

∑
p1,p2∈Pj

N

p1p2
≤ N

∑
j∈N

j0≤j≤j1

(
#Pj

(1 + α)j

)2

and for α sufficiently small one deduces from (6.5) that

#

S \
j1⋃
j=j0

Sj

 . N
∑
j∈N

j0≤j≤j1

(1
j

+ 1
αj2 + O

(
e−

√
αj
))2

≤ N

( 1
j0

+ 1
j3

0α
2 + O

( 1
α

(
1 +

√
αj0

)
e−

√
αj0

))
≤ αN.

So the disjoint union
⋃j1
j=j0 Sj covers [1, N ] ∩ Z up to a fraction of α. Now we

decompose each Sj into a well factored set and its complement. For j ∈ [j0, j1] ∩ Z
let

Qj :=

m ∈
[
1, N

(1 + α)j+1

)
∩ Z

∣∣∣∣∣∣m has no prime factor in
⋃
i≤j

Pi

 .
Then, for each j ∈ [j0, j1]∩Z, the product sets Pj ·Qj := {pq | p ∈ Pj , q ∈ Qj} satisfy

Pj ·Qj ⊆ Sj .

Moreover, for each j ∈ [j0, j1] ∩ Z,

Sj \ (Pj ·Qj) ⊆ Pj ·
([

N

(1 + α)j+1 ,
N

(1 + α)j

]
∩ Z

)
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and hence using (6.4) one shows that

∑
j∈N

j0≤j≤j1

# (Sj \ (Pj ·Qj)) ≤
∑
j∈N

j0≤j≤j1

(#Pj)
αN

(1 + α)j

≤ N

(
α log j1

j0
+ 1
j0

+ O
((

1 +
√
αj0

)
e−

√
αj0
))

,

(6.6)

From which for α sufficiently small one obtains∑
j∈N

j0≤j≤j1

# (Sj \ (Pj ·Qj)) ≤ 2αN. (6.7)

Now, by (6.7) and the definition of Qj , one deduces

#

[1, N) ∩ Z \
j1⋃
j=j0

(Pj ·Qj)

 . 3αN,

which yields a decomposition of [1, N) ∩ Z into disjoint sets Pj ·Qj , j ∈ [j0, j1] ∩ Z,
with only a small proportion of points omitted.

Now, since the map Pj × Qj → Pj · Qj , (p, q) 7→ pq, is injective and because of
|F | ≤ 1 and |ϕ| ≤ 1 we have∣∣∣∣∣

N∑
n=1

ϕ(n)F (n)
∣∣∣∣∣ . ∑

j∈N
j0≤j≤j1

∣∣∣∣∣∣
∑

p∈Pj ,q∈Qj

ϕ(pq)F (pq)

∣∣∣∣∣∣+ 3αN. (6.8)

By the choice of Qj and Pj we have (p, q) = 1 for each p ∈ Pj and each q ∈ Qj .
Therefore, by the multiplicativity of ϕ, we have ϕ(pq) = ϕ(p)ϕ(q) and hence∣∣∣∣∣

N∑
n=1

ϕ(n)F (n)
∣∣∣∣∣ . ∑

j∈N
j0≤j≤j1

∑
q∈Qj

|ϕ(q)|︸ ︷︷ ︸
≤1

∣∣∣∣∣∣
∑
p∈Pj

ϕ(p)F (pq)

∣∣∣∣∣∣+ 3αN

≤
∑
j∈N

j0≤j≤j1

∑
q∈Qj

∣∣∣∣∣∣
∑
p∈Pj

ϕ(p)F (pq)

∣∣∣∣∣∣+ 3αN.

(6.9)
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By estimating the inner sum using the Cauchy–Schwarz inequality we obtain

∑
q∈Qj

∣∣∣∣∣∣
∑
p∈Pj

ϕ(p)F (pq)

∣∣∣∣∣∣ ≤
√∑
q∈Qj

1

√√√√√∑
q∈Qj

∣∣∣∣∣∣
∑
p∈Pj

ϕ(p)F (pq)

∣∣∣∣∣∣
2

≤
√

#Qj

√√√√√√√√
∑
q∈N

q≤ N

(1+α)j

∣∣∣∣∣∣
∑
p∈Pj

ϕ(p)F (pq)

∣∣∣∣∣∣
2

=
√

#Qj
√√√√√√

∑
q∈N

q≤ N

(1+α)j

∑
p1,p2∈Pj

ϕ(p1)ϕ(p2)F (p1q)F (p2q)

|ϕ|≤1
≤

√
#Qj

√√√√√√√√√
∑

p1,p2∈Pj

∣∣∣∣∣∣∣∣∣∣
∑
q∈N

q≤ N

(1+α)j

F (p1q)F (p2q)

∣∣∣∣∣∣∣∣∣∣
.

(6.10)

Note that here
p1, p2 < (1 + α)j1 < e

1
α2 . (6.11)

The diagonal contribution in (6.10), that is p1 = p2 (=: p) for each j, yields (by
using that |F | ≤ 1 and the definition of Qj)

∑
p∈Pj

∣∣∣∣∣∣∣∣∣∣
∑
q∈N

q≤ N

(1+α)j

F (pq)F (pq)

∣∣∣∣∣∣∣∣∣∣
≤
√

(#Qj) (#Pj)N
(1 + α)j

=
√

#Qj
√

#Pj
√
N

(1 + α)
j
2

and thus, again with the Cauchy–Schwarz inequality,

∑
j∈N

j0≤j≤j1

∑
p∈Pj

∣∣∣∣∣∣∣∣∣∣
∑
q∈N

q≤ N

(1+α)j

F (pq)F (pq)

∣∣∣∣∣∣∣∣∣∣
≤

√∑
j∈N

j0≤j≤j1
(#Pj) (#Qj)

√∑
j∈N

j0≤j≤j1

1
(1+α)j

√
N

≤
√
N

√
N

√√√√√ ∑
j∈N

j0≤j≤j1

1
(1 + α)j

= N

√√√√√ ∑
j∈N

j0≤j≤j1

1
(1 + α)j

≤ αN,
(6.12)
since (#Pj) (#Qj) = # (Pj ·Qj) ≤ #Sj , for each j ∈ [j0, j1] ∩ Z, and∑

j∈N
j0≤j≤j1

#Sj ≤ N.
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For p1 6= p2, we apply the assumption (6.1) for p1, p2 sufficiently large in view of
(6.11), that is

1
N

∣∣∣∣∣∣∣∣∣∣
∑
q∈N

q≤ N

(1+α)j

F (p1q)F (p2q)

∣∣∣∣∣∣∣∣∣∣
≤ τ

(1 + α)j
.

Hence, once again by the Cauchy–Schwarz inequality,

∑
j∈N

j0≤j≤j1

∑
p1,p2∈Pj

p1 6=p2

∣∣∣∣∣∣∣∣∣∣
∑
q∈N

q≤ N

(1+α)j

F (p1q)F (p2q)

∣∣∣∣∣∣∣∣∣∣
≤

∑
j∈N

j0≤j≤j1

√
#Qj

√√√√√ ∑
p1,p2∈Pj

p1 6=p2

τN

(1 + α)j

≤
√
τN

∑
j∈N

j0≤j≤j1

(#Pj)
√

#Qj (1 + α)− j
2

≤
√
τN

√√√√ ∑
j∈N

j0≤j≤j1

(#Pj) (#Qj)
√√√√ ∑

j∈N
j0≤j≤j1

(#Pj) (1 + α)−j

(6.6)
≤

√
τN

√
N

√
log j1

j0
+ 1
j0α

+ 1
α

(
1 +

√
αj0

)
e−

√
j0

≤N
√
τ

√√√√log
(

−(logα)3

α

)
− (logα)−3 + 1

α
+
√

− (logα)3

≤N
√
τ

√
log 1

α
,

(6.13)

for α sufficiently small.
Now, combining (6.9), (6.12) and (6.13) yields∣∣∣∣∣

N∑
n=1

ϕ(n)F (n)
∣∣∣∣∣ . αN +N

√
τ

√
log 1

α
+ 3αN = N

(
4α+

√
τ

√
log 1

α

)
.

By choosing α =
√
τ we obtain

1
N

∣∣∣∣∣
N∑
n=1

ϕ(n)F (n)
∣∣∣∣∣ . √

τ

(
4 +

√
log 1√

τ

)
= 4

√
τ + 1√

2
√

−τ log τ ,

which is not greater than 2
√

−τ log τ for τ ∈
(

0, e
32

4
√

2−9

]
(cf. Remark 6.3 below)

and the assertion follows, since this α suffices the condition (6.3) for such a τ .
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Remark 6.3. We obtained the estimation for τ in the last step of the above proof by
the following calculation (assume that τ ∈ (0, 1)):

4
√
τ + 1√

2
√

−τ log τ ≤ 2
√

−τ log τ

⇐⇒ 4
√
τ ≤

(
2 − 1√

2

)√
−τ log τ

⇐⇒ 16τ ≤
(

2 − 1√
2

)2
(−τ log τ)

⇐⇒ 16(
2 − 1√

2

)2 ≤ − log τ

⇐⇒ − 64(
4 −

√
2
)2 ≥ log τ

⇐⇒ 32
4
√

2 − 9
≥ log τ.

Note that 0.000069 < e
32

4
√

2−9 < 0.00007. This gives a good impression about just
how small the parameter τ has to be. Moreover, condition (6.3) holds for α =

√
τ ,

whenever τ ∈ (0, η) , where η denotes the root of (log x)3 + 8x near x = 0.273163,
which is obviously the case.

Furthermore, recall that we assumed (6.1) to hold for p1, p2 ∈
[
1, e

1
τ

]
∩P, p1 6= p2.

So, by the above proof, for the namely estimation to hold we need to have (6.1)
for at least all distinct primes not greater than exp

(
e

− 32
4

√
2−9

)
, which is larger than

1.2814 · 106234.
(All values have been calculated using Mathematica.)

6.2. About another Proof for the KBSZ-Criterion
We want to give another proof for the desired criterion, which this time varifies the
assertion of Theorem 6.2 directly. The namely proof was given by Tao in [57] and
makes use of the Turan–Kubilius inequality (see Lemma 6.6 below) as well as of
the following classical result.

Lemma 6.4 (Theorem of Euler). The series
∑
p∈P

1
p diverges.

Proof. We have e = supn∈N

(
1 + 1

n

)n
. Hence, for each prime number p we have(

1 + 1
p−1

)p−1
< e and therefore

1 + 1
p− 1 < e

1
p−1 . (6.14)

Thus, we can conclude

log
(

1
1 − 1

p

)
= log

(
p

p− 1

)
= log

(
1 + 1

p− 1

) (6.14)
<

1
p− 1 = p

p (p− 1)

= p− 1
p (p− 1) + 1

p(p− 1) = 1
p

+ 1
p (p− 1) ≤ 2

p
.
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Now let N ∈ N and (pk)k=1,...,k(N) be the sequence of all primes not greater than N .
Then, by the above,

k(N)∑
k=1

1
pk

>
1
2

k(N)∑
k=1

log
(

1
1 − 1

pk

)
= 1

2 log

k(N)∏
k=1

1
1 − 1

pk

 . (6.15)

Because of log x −−−−→
x→∞

∞ it sufficies to show that

lim
N→∞

k(N)∏
k=1

1
1 − 1

pk

= ∞.

Note that we have
∏k(N)
k=1

1
1− 1

pk

=
∏k(N)
k=1

(∑∞
n=0

(
1
pk

)n)
and the geometric series in-

volved converge absolutely for any such k. So we can expand this product and obtain,
by the fundamental theorem of arithmetic, the sum over the reciprocals of all posi-
tive integers of the form

∏k(N)
k=1 pak

k with ak ∈ N0 for each k ∈ [1, k(N)]∩Z (and each
such integer exactly once). Hence, by setting N := {n ∈ N | p ∈ P, p|n ⇒ p ≤ N},
we can write

k(N)∏
k=1

1
1 − 1

pk

=
∑
n∈N

1
n
.

Because of N \ [1, N ] 6= ∅ (e.g. we have
∏k(N)
k=1 pk > N) it follows that

k(N)∏
k=1

1
1 − 1

pk

>
N∑
n=1

1
n
.

Since the harmonic series diverges the assertion follows from (6.15).

Remark 6.5. Lemma 6.4 dates back to 1737 and is one of the first results implying
that there are infinitely many prime numbers.

Let η = η(N) be a slowly growing function with η(N) → ∞ as N → ∞. By
Lemma 6.4 we have ∑

p∈P
p<η(N)

1
p

−−−−→
N→∞

∞.

It will also be convenient to eliminate small primes. Note that we can find an even
slower growing function ω = ω(N), with ω(N) → ∞ as x → ∞, such that

∑
p∈P

ω(N)≤p<η(N)

1
p

−−−−→
N→∞

∞.

Therefore, for P (N) := P ∩ [ω(N), η(N)) and β = β(N) given by

β(N) :=
∑

p∈P (N)

1
p

we have β(N) → ∞ as N → ∞. We will take ω and η to be powers of 2.
In what follows all Bachmann–Landau symbols are meant in the sense N → ∞.
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Lemma 6.6 (Turan–Kubilius inequality). We have

N∑
n=1

∣∣∣∣∣∣∣∣∣
∑

p∈P (N)
p|n

1 − β(N)

∣∣∣∣∣∣∣∣∣
2

� Nβ(N)

as N → ∞.

Proof. We have
N∑
n=1

∑
p∈P (N)
p|n

1 =
∑

p∈P (N)

N∑
n=1
p|n

1.

Moreover,
N∑
n=1
p|n

1 = N

p
+ O (1)

and therefore (for η sufficiently slowly growing)

N∑
n=1

∑
p∈P (N)
p|n

1 = N · β(N) + O (N) .

Analogously, we obtain

N∑
n=1

 ∑
p∈P (N)
p|n

1


2

=
∑

p,q∈P (N)

N∑
n=1

p|n, q|n

1.

Note, that ∑
p,q∈P (N)
p|n,q|n

1 =

N
p + O (1) for p = q
N
pq + O (1) otherwise.

Putting everything together, we obtain

N∑
n=1

 ∑
p∈P (N)
p|n

1


2

= N (β(N))2 + O (N · β(N)) ,

for η sufficiently slowly growing, which yields the assertion.

Sketch of proof of Theorem 6.2. From Lemma 6.6 and the Cauchy–Schwarz in-
equality we have

N∑
n=1

 ∑
p∈P (N)
p|n

1 − β(N)

µ(n)F (n) = O
(
N
√
β(N)

)
,
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which we can rearrange as
N∑
n=1

µ(n)F (n) = 1
β(N)

∑
p∈P (N)

N∑
n=1
p|n

µ(n)F (n) + O
(
N
√
β(N)

)
.

Since β(N) −−−−→
N→∞

∞ we have O
(
N
√
β(N)

)
= o(N) and hence it sufficies to show

that ∑
p∈P (N)

N∑
n=1
p|n

µ(n)F (n) = o (N · β(N)) . (6.16)

For p|n we have n
p =: m ∈ N and µ(n)F (n) = −µ(m)F (pm) for all but O

(
N
p2

)
values

of n (see [57]). These exceptional values contribute at most
∑

p∈P (N)

N

p2 ≤
∑

p∈P (N)

N

p · ω(N) = O
(
N · β(N)
ω(N)

)
= o (N · β(N)) ,

which is acceptable. Taking this into account as well as (6.16), it sufficies to show
that ∑

p∈P (N)

∑
m≤ N

p

µ(m)F (pm) = o (N · β(N)) . (6.17)

Now, by splitting up P (N) into dyadic blocks Pk(N) :=
{
p ∈ P (N)

∣∣∣ 2k < p < 2k+1
}

and noting that β(N) ≥
∑
k

#Pk(N)
2k+1 , (6.17) follows from

∑
p∈Pk(N)

∑
m≤ N

p

µ(m)F (pm) = o
(
N

2k (#Pk(N))
)

(6.18)

uniformly in k whenever ω(N) ≤ 2k < η(N). So, it sufficies to show that (6.18)
holds. To do so fix k. Then one can show that∑

p∈Pk(N)

∑
m≤ N

p

µ(m)F (pm) =
∑
m≤ N

2k

µ(m)
∑

p∈Pk(N)
F (pm) · 1[1,N

p

]
∩Z(p).

So, by the Cauchy–Schwarz inequality, the fact that (µ(m))2 ∈ {0, 1} for each
m ∈ N, and (6.18) it sufficies to show that

∑
m≤ N

2k

∣∣∣∣∣∣
∑

p∈Pk(N)
F (pm) · 1[1,N

p

]
∩Z(p)

∣∣∣∣∣∣
2

= o
(
N

2k (#Pk(N))2
)
,

where one can rewrite the left-hand side as∑
p,q∈Pk(N)

∑
m≤min

{
N
p
,N

q

}F (pm)F (qm)

so that we have to show∑
p,q∈Pk(N)

∑
m≤min

{
N
p
,N

q

}F (pm)F (qm) = o
(
N

2k (#Pk(N))2
)
. (6.19)
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Now, if η grows sufficiently slowly in N , the assumption (6.2) implies that for any
sufficiently large p, q ∈ P, p 6= q, p, q ≤ η(N), we have

∑
m≤min

{
N
p
,N

q

}F (pm)F (qm) = o
(
N

2k
)

uniformly in p and q, for any k such that ω(N) ≤ 2k < η(N), while for p = q we
find ∑

m≤ N
p

F (pm)F (pm) = O
(
N

2k
)
.

By taking into account that #Pk(N) = o
(
(#Pk(N))2

)
(which follows from

Lemma 6.4), this implies (6.19) and the proof is complete.
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7. Some Examples of Systems for which
Sarnak’s Conjecture holds

We want to collect some examples of dynamical systems for which Sarnak’s con-
jecture is known to hold. In this context the easiest systems imaginable are those
providing (f(Tnx))n∈N to be either constant or periodic. In both cases one easily
checks that the underlying dynamical system is deterministic (in the first case con-
sider X = {x} for some x ∈ C and in the second case consider X to be the finite
(and therefore compact) abelian group Z/qZ with T : m 7→ m + 1 mod q, q ∈ N0
the period).

Proposition 7.1. Sarnak’s conjecture holds for constant sequences.

Proof. Since the value of the constant does not contribute in terms of convergence
it suffices to show that

lim
N→∞

1
N

N∑
n=1

µ(n) = 0.

But this is immediate from Theorem 2.5 and the prime number theorem (Theo-
rem 2.1).

Proposition 7.2. Sarnak’s conjecture holds for periodic sequences.

To prove Proposition 7.2, consider the following decomposition (taken from [43])
first:

Let (bn)n∈N be a periodic sequence, i.e., there is a q ∈ N0 such that bn+q = bn
for each n ∈ N (for the purpose of uniqueness, since bn+q′ = bn also holds for each
multiple q′ of q, let q be the least integer with this property). Then we can express
(bn)n∈N as a linear combination

(bn)n∈N =
q∑

a=1
ba (1a,q(n))n∈N ,

where (1a,q(n))n∈N denotes the characteristic function of the arithmetic progression
{a+ lq | l ∈ N0}. For q = 2, we can express 1a,2 as a linear combination 1

21n± 1
2(−1)n

of 1n and (−1)n, the nth powers of the square-roots of 1. Similarly, we express the
characteristic function of an arithmetic progression modulo q as a linear combination
of the sequences ξnk where ξk runs over the q different qth roots of unity:

ξk := exp
(

2πik
q

)
for k ∈ [1, q] ∩ Z. From the formula for the finite geometric series

q−1∑
n=0

ξn = 1 − ξq

1 − ξ
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we see that for ξ the qth root of unity

q−1∑
n=0

ξn = 0,

unless ξ = 1, since for (k, q) = 1, q is the least integer n such that ξnk = 1. Hence

1
q

q∑
k=1

exp
(

2πik(n− a)
q

)
=
{

1 if n ∈ {a+ lq | l ∈ N0}
0 otherwise

and we can express the characteristic function (1a,q(n))n∈N of an arbitrary arithmetic
progression {a+ lq | l ∈ N0} as a linear combination of the sequences (χa,k(n))n∈N

with χa,k(n) := exp(2πik(n−a)
q ).

Proof of Proposition 7.2. Denote by q ∈ N0 the period of (bn)n∈N. From Lemma 5.8
and Remark 5.9 we deduce

N∑
n=1

χa,k(n)µ(n) = O
(
N exp

(
−c
√

logN
))

for each N ∈ N \ {1} and every a, k ∈ [1, q] ∩Z, and c > 0 a constant just depending
on q. Hence there exists a Ca,k,q > 0 such that∣∣∣∣∣

N∑
n=1

χa,k(n)µ(n)
∣∣∣∣∣ ≤ Ca,k,qN exp

(
−c
√

logN
)
.

Together with the above decomposition, for any periodic sequence (bn)n∈N with
period q ∈ N0, we obtain

0 ≤
∣∣∣∣∣ 1
N

N∑
n=1

bnµ(n)
∣∣∣∣∣ =

∣∣∣∣∣ 1
N

N∑
n=1

( q∑
a=1

ba1a,q(n)
)
µ(n)

∣∣∣∣∣
=
∣∣∣∣∣ 1
N

N∑
n=1

( q∑
a=1

ba
q

q∑
k=1

χa,k(n)
)
µ(n)

∣∣∣∣∣
≤ 1
N

q∑
a=1

|ba|
q

q∑
k=1

∣∣∣∣∣
N∑
n=1

χa,k(n)µ(n)
∣∣∣∣∣

≤
q∑

a=1

|ba|
q

q∑
k=1

Ca,k,q exp
(
−c
√

logN
)

≤ q max
a∈[1,q]∩Z

|ba| · max
a,k∈[1,q]∩Z

Ca,k,q · exp
(
−c
√

logN
)

−−−−−→
N−→∞

0.

Before we tend to two more complicated examples we want to record the following
result stating that it suffices to show that Sarnak’s conjecture holds for a linearly
dense subset of C(X). Recall that we call a subset N of a vector space M linearly
dense in M , if the set lin(N) of all finite linear combinations of elements of N is
dense in M .
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Lemma 7.3. Let (X,T ) be a metric TDS with h(T ) = 0 and let M ⊆ C(X) be
linearly dense such that for each x ∈ X and every g ∈ M we have

lim
N→∞

1
N

N∑
n=1

g(Tnx)µ(n) = 0. (7.1)

Then Sarnak’s conjecture holds for (X,T ).

Proof. Fix f ∈ C(X). Since M is linearly dense in C(X) for each ε > 0 there are a
k ∈ N, g1, . . . , gk ∈ M and a1, . . . , ak ∈ C such that

sup
x∈X

∣∣∣∣∣∣f(x) −
k∑
j=1

ajgj(x)

∣∣∣∣∣∣ < ε

2 .

Furthermore, because of (7.1), there is an N0 ∈ N such that for all N ≥ N0, each
j ∈ [1, k] ∩ Z and every x ∈ X we have∣∣∣∣∣ 1

N

N∑
n=1

gj(Tnx)µ(n)
∣∣∣∣∣ < ε

2

(
k · max

j∈[1,k]∩Z
|aj |

)−1

.

Hence for each N ≥ N0 and every x ∈ X we have∣∣∣∣∣ 1
N

N∑
n=1

f(Tnx)µ(n)
∣∣∣∣∣ =

∣∣∣∣∣∣ 1
N

N∑
n=1

f −
k∑
j=1

ajgj +
k∑
j=1

ajgj

 (Tnx)µ(n)

∣∣∣∣∣∣
≤ 1

N

N∑
n=1

∣∣∣∣∣∣f(Tnx) −
k∑
j=1

ajgj(Tnx)

∣∣∣∣∣∣︸ ︷︷ ︸
< ε

2

|µ(n)|︸ ︷︷ ︸
≤1

+
k∑
j=1

aj

∣∣∣∣∣ 1
N

N∑
n=1

gj(Tnx)µ(n)
∣∣∣∣∣︸ ︷︷ ︸

< ε
2

(
k·maxj∈[1,k]∩Z aj

)−1

<
ε

2 +
(
k · max

j∈[1,k]∩Z
|aj |

)
· ε2

(
k · max

j∈[1,k]∩Z
|aj |

)−1

= ε.

7.1. Möbius Function Randomness for the Thue–Morse
Shift

The results of this section can be found in [21]. Denote by t the Thue–Morse
sequence as defined in Subsection 3.4.1. For S the left shift on {0, 1}N0 consider
Kt := {Snt |n ∈ N0} and let Xt be the set of all sequences x ∈ {0, 1}Z such that
any finite subword of x also appears on some y ∈ Kt (and hence on t). Denote also
by t any extension of t to a two-sided member of Xt. Then, for any such extension
t, we have {Snt |n ∈ Z} = Xt (see [21]), where S denotes the (invertible) shift on
{0, 1}Z (therefore any such extension of t is suitable). Furthermore, Xt is closed and
S-invariant.
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Denote by ρ the map on Xt which interchanges 0s and 1s. Then ρ is a homeo-
morphism which ranges over Xt (i.e., ρ preserves Xt) and commutes with the shift
S. For f ∈ C(Xt) define

f1 := 1
2 (f + f ◦ ρ) and f2 := 1

2 (f − f ◦ ρ) .

Then f = f1 + f2 and f1 = f1 ◦ ρ, f2 = − (f2 ◦ ρ) (pointwise). Moreover, both
f1, f2 are continuous. Hence, recalling Theorem 3.33, it suffices to verify the two
statements

Proposition 7.4. For each x ∈ Xt

lim
N→∞

1
N

N∑
n=1

f1(Snx)µ(n) = 0.

Proposition 7.5. For each x ∈ Xt

lim
N→∞

1
N

N∑
n=1

f2(Snx)µ(n) = 0.

A proof for Proposition 7.5 can be found in [21]. It goes along the following lines
demanding further investigations in spectral theory:

1. Denote by νt ∈ M(T) the spectral measure associated to the Thue–Morse
sequence as well as by ν(k)

t the image of νt via the map z 7→ zk. Then, for any
odd p, q ∈ N, p 6= q, one shows that ν(p)

t and ν
(q)
t are mutually singular (write

ν
(p)
t ⊥ ν

(q)
t ), i.e., there is an A ∈ ΣT such that ν(p)

t (A) = ν
(q)
t (X \ A) = 0 (cf.

Corollary 3 in [21]).

2. In [48] it is shown that νt is the sum of the discrete measure ν ′ concentrated
on all roots of unity of degree 2n, n ≥ 0, and the continuous measure ν̃t which
arises as the convolution of ν ′ with νt. Thus Remark 1 in [21] implies that 1.
also holds for ν̃t instead of νt.

3. One proves that the spectral measure νf2 of f2 given by Theorem 5.22 is
absolutely continuous with respect to ν̃t, i.e., Nν̃t

⊆ Nνf2
, and concludes that

1. also holds for νf2 instead of νt. Hence we have ν
(p)
f2

⊥ ν
(q)
f2

for all odd
p, q ∈ N, p 6= q, and therefore, in particular, for all distinct p, q ∈ P \ {2}.

4. In [23] it is shown that ν(p)
f2

being mutually singular to ν
(q)
f2

, for any distinct
odd primes p, q, implies

1
N

N∑
n=1

f2 (Spn(x)) f2 (Sqn(x)) −−−−→
N→∞

0 (7.2)

for any such p, q and all x ∈ Xt. Together with the KBSZ-criterion (Theo-
rem 6.2) this yields the assertion.

To obtain Proposition 7.4 we will show that Sarnak’s conjecture holds for the so
called associated Toeplitz dynamical system (Xz, S), which arises as described
above from the sequence z constructed as follows:

80



1. For each m ∈ N0 set z(2m) = 1 and leave odd positions undefined.

2. For each m ∈ N0 set z(4m+ 1) = 0, that is, we fill every second unfilled place
by 0.

3. Set 1 at every second unfilled place.

At the nth step fill every second unfilled place with either 1 or 0 whether n is odd
or even respectively. Then, for each n ≥ 0, we have

z = Bn?Bn?Bn? . . . , (7.3)

where #Bn = 2n − 1 and “?” stands for an unfilled position (half of these unfilled
positions will be filled at step n+ 1). This way we obtain the sequence z with

z(n) = t(n) + t(n+ 1) mod 2 (7.4)

(see [21]) for each n ∈ N0.
We will obtain the result for (Xz, S) by proving that Sarnak’s conjecture holds

for a linearly dense subset of C(Xz). So the first step will be the construction of
such a set.

Given a sequence w = (w(i))i∈Z and a ∈ Z, l ∈ N0, denote by w [a, a+ l) the
finite subword (w(a), w(a + 1), . . . , w(a + l − 1)). For fixed l ∈ N0, a ∈ Z consider
continuous functions fl : {0, 1}l → C. They extend to continuous maps f : Xz → C
taking only finitely many values by setting

f : Xz 3 w 7→ fl(w [a, a+ l)) ∈ C.

Conversely, for any continuous map f on Xz taking only finitely many values, there
are l ∈ N0, a ∈ Z such that f is obtained this way (see [21]). Denote by F the
set of all such functions f ∈ C(Xz). Furthermore, under this notation, f(Snw) =
fl(w [a+ n, a+ n+ l)), for each n ∈ N.

For l ∈ N, a ∈ Z and u ∈ {0, 1}l set Uu,a := {w ∈ Xz |w [a, a+ l) = u}. Then Uu,a
is open (and closed) in the product topology.

Lemma 7.6. F is dense in C(Xz).

Proof. Fix ε > 0 and let f ∈ C(Xz). Then f is uniformly continuous and hence
there exist l ∈ N and a ∈ Z such that for any u ∈ {0, 1}l

diamf(Uu,a) < ε. (7.5)

Fix such an a. Define the relation ∼ by w ∼ w′ if w [a, a+ l) = w′ [a, a+ l). Then
∼ is an equivalence relation on Xz. Let w̃1, w̃2, . . . ∈ Xz be representatives of the
equivalence classes of ∼ and define f ′ ∈ C(Xz) by f ′(w) := f(w̃j) for w ∈ [w̃j ]∼.
Then f ′ ∈ F and from (7.5) we obtain that, for any w ∈ Xz,∣∣f(w) − f ′(w)

∣∣ < ε.

Proof of Proposition 7.4. Because of (7.4), instead of functions f1 ∈ C(Xt) we con-
sider f ∈ C(Xz) (see also [21]).

First, let f ∈ F . Then there are a ∈ Z, l ∈ N0 such that for w ∈ Xz the value f(w)
depends only on w [a, a+ l). Since f is continuous, |f | is bounded, say |f(w)| ≤ A
for each w ∈ Xz.
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Fix ε > 0. Then there is an m ∈ N such that, for each n ≥ m,

A · l
2n <

ε

3 . (7.6)

From Proposition 7.2 we know that limN→∞
1
N

∑N
n=1 bnµ(n) = 0 for all periodic

sequences (bn)n∈N. Hence, for any periodic (bn)n∈ N of period < 2m and bounded by
C, there is an M1 ∈ N, M1 >

3A
ε , such that, for each N ≥ 2mM1,

1
N

N∑
n=1

bnµ(n) < ε

3 · 2m . (7.7)

Fix an N > 2mM1 and set M :=
[
N
2m

]
. Then, by the construction of Xz, for any

w ∈ Xz there is an i ∈ Z such that w [1, N + 1) = z [i, i+N). Thus, from (7.3) we
obtain

w [1, N + 1) = CBmy1Bmy2 . . . BmyMD, (7.8)

where Bm ∈ {0, 1}2m−1, y0, . . . , yM ∈ {0, 1} and C a suffix of Bmy0 as well as D a
prefix of Bm. Let c, d denote the length of C,D, respectively, and set

E′(w) :=
c∑

k=1
f(Skw)µ(k),

E′′(w) :=
c+M ·2m+d∑

k=c+M ·2m+1
f(Skw)µ(k),

Σi(w) :=
M−1∑
k=0

f(Sc+k·2m+iw)µ(c+ k · 2m + i),

for i ∈ [1, 2m] ∩ Z and w ∈ Xz. Then, from (7.8) we see that

N∑
n=1

f(Snw)µ(n) = E′(w) +
2m∑
i=1

Σi(w) + E′′(w). (7.9)

Since |f(w)| ≤ C, for each w ∈ Xt we have

∣∣E′(w) + E′′(w)
∣∣ ≤

c∑
k=1

A+
c+M ·2m+d∑

k=c+M ·2m+1
A = (c+ d− 1)A ≤ (2 · 2m + 2)A (7.10)

by the choice of C and D.
Moreover, each Σi is an expression of the form

∑N
n=1 bnµ(n), where (bn)n∈N is a

periodic sequence of the form (0, . . . , 0, φ, 0, . . . , 0, φ, 0, . . .) and period 2m, where φ
is a fixed value of f , provided the segment w [c+ i, c+ i+ l) does not meet any of
the entries y1, . . . , yM . This certainly holds for i ≤ 2m − l and it follows by (7.7)
that, for any i ∈ [1, . . . , 2m − l] ∩ Z,

|Σi(w)| ≤ Nε

3 · 2m , (7.11)

while for i ∈ [2m − l + 1, 2m] ∩ Z we have

|Σi(w)| ≤
M−1∑
k=0

A = MA. (7.12)
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Combining (7.6), (7.9), (7.10), (7.11), (7.12) and M1 >
3A
ε yields∣∣∣∣∣ 1

N

N∑
n=1

f(Snw)µ(n)
∣∣∣∣∣ ≤ 1

N

(∣∣E′(w) + E′′(w)
∣∣+ 2m∑

i=1
|Σi(w)|

)

≤ 1
N

(
(2 · 2m + 2)A+ (2m − l) Nε

3 · 2m + (l − 1)MA

)
≤ (2 · 2m + 2)A

N
+ 2mε

3 · 2m − lε

3 · 2m + lMA

N
− MA

N
.

(7.13)

Now ∣∣∣∣ lMA

N
− lε

3 · 2m

∣∣∣∣ = lA

2m

∣∣∣∣2mMN − ε

3A

∣∣∣∣ (7.6)
<

ε

3

∣∣∣∣2mMN − ε

3A

∣∣∣∣
=
∣∣∣∣∣2mMε

3N − ε2

9A

∣∣∣∣∣ M=
[

N
2m

]
≤

∣∣∣∣∣ε3 − ε2

9A

∣∣∣∣∣ < ε

3 .
(7.14)

From N ≥ 2mM1 and M1 >
3A
ε we obtain N > 3·2mA

ε , which implies

(2 · 2m + 2)A
N

<
(2 · 2m + 2)A

3 · 2mA = ε

3 +
(1

3 + 2
3 · 2m

)
ε <

ε

3 + ε. (7.15)

Together with MA
N > 0, inserting (7.14) and (7.15) into (7.13) yields∣∣∣∣∣ 1
N

N∑
n=1

f(Snw)µ(n)
∣∣∣∣∣ < ε

3 + ε+ 2mε
3 · 2m + ε

3 = 2ε.

So 1
N

∑N
n=1 f(Snw)µ(n) −−−−→

N→∞
0 for f ∈ F .

Now let f ∈ C(Xz) be chosen arbitrarily. Then the assertion follows from the
above together with Lemma 7.6 and Lemma 7.3.

Theorem 7.7. Sarnak’s conjecture holds for the Thue–Morse shift.

Proof. In Theorem 3.33 we have seen that the Thue–Morse shift satisfies the zero
entropy assumption.

For each f ∈ C(Xt) we have f = f1 + f2 with f1, f2 ∈ C(Xt) given as above.
Thus, for any x ∈ Xt,

1
N

N∑
n=1

f(Snx)µ(n) = 1
N

N∑
n=1

f1(Snx)µ(n)︸ ︷︷ ︸
Proposition 7.4−−−−−−−−−→

N→∞
0

+ 1
N

N∑
n=1

f2(Snx)µ(n)︸ ︷︷ ︸
Proposition 7.5−−−−−−−−−→

N→∞
0

−−−−→
N→∞

0.

7.2. Möbius Function Randomness for Skew Product
Extensions of Rational Rotations

Proposition 7.8. Sarnak’s conjecture holds for rotations on the circle.

For rotations through a rational angle this follows from Proposition 7.2. Thus
Proposition 7.8 is a natural generalization of the result for periodic sequences.
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Proof of Proposition 7.8. In Lemma 3.35 we have seen that each rotation on the
circle is deterministic.

For α ∈ T consider Rα : T 3 x 7→ αx ∈ T and let a ∈ [0, 1) such that α = e2πia.
Fix x ∈ T. Then there is a θ ∈ [0, 1) so that x = e2πiθ and thereforeRα(x) = e2πi(a+θ)

with a+θ ∈ [0, 1) (modulo 1). Hence, from Davenport’s estimation (Theorem 5.7)
we know that for each r > 0

N∑
n=1

Rnα(x)µ(n) =
N∑
n=1

µ(n)e2πin(a+θ) = O
(

N

(logN)r
)

as N → ∞, i.e., for each r > 0 there is a constant C = C(r) > 0 such that

0 ≤ 1
N

∣∣∣∣∣
N∑
n=1

µ(n)e2πin(a+θ)
∣∣∣∣∣ ≤ C

( 1
(logN)r

)
−−−−→
N→∞

0.

Now consider a skew product extension of a rational rotation as defined in Sub-
section 3.4.3:

T2 3 (x, y) 7→ Rα,φ(x, y) := (Rα(x), y + φ(x)) (mod 1) ∈ T2,

where φ : T → T is continuous and α =: p
q ∈ Q. We want to show that Sarnak’s

conjecture holds for such systems by making use of Lemma 7.3. So we need to find
a linearly dense subset of C(T2) first.

Lemma 7.9. For a, b ∈ Z let χa,b : T2 3 (x, y) 7→ e2πi(ax+by) ∈ C and denote
by K := {χa,b | a, b ∈ Z} the set of all such functions. Then K is linearly dense in
C(T2).

Proof. First, note that for each a, b ∈ Z we have e2πi(ax+by) ∈ C(T2), thus K ⊆
C(T2).

Now, since

χa,b(x, y) = e2πi(ax+by) = cos (2π (ax+ by)) + i sin (2π (ax+ by))

for each (x, y) ∈ T2 and
χ0,0 = 1T2 ,

the linear span of K equals the set of all complex-valued trigonometric polynomials
on T2. Hence lin(K) is a sub-C-algebra of C(T2) such that

• lin(K) separates the points of T, i.e., ∀x, y ∈ T∃P ∈ lin(K) : P (x) 6= P (y),

• lin(K) vanishes nowhere on T, i.e., ∀x ∈ T∃P ∈ lin(K) : P (x) 6= 0,

• lin(K) is invariant under conjugation, i.e., ∀P ∈ lin(K) : P ∈ lin(K).

Thus by the Stone–Weierstraß theorem (see Theorem A.14 in the Appendix)
lin(K) is dense in C(T2) and the assertion follows.

Lemma 7.10 ([38]). Consider R0,φ : T2 3 (x, y) 7→ (x, y + φ(x)) ∈ T2 where
φ : T → T is continuous. Then for each (x1, y1), (x2, y2) ∈ T2 and every χa,b ∈ K
with b 6= 0 we have

lim
N→∞

1
N

N∑
n=1

χ
(
Rrn0,φ(x1, y1)

)
χ
(
Rsn0,φ(x2, y2)

)
= 0 (7.16)

for sufficiently large r, s ∈ P, r 6= s, whenever φ(x1) /∈ Q or φ(x2) /∈ Q.
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Proof. For each m ∈ N and every (x, y) ∈ T2 we have

Rm0,φ(x, y) = (x, y +mφ(x)).

Hence
N∑
n=1

χ
(
Rrn0,φ(x1, y1)

)
χ
(
Rsn0,φ(x2, y2)

)
=

N∑
n=1

χ (x1, y1 + rnφ(x1))χ (x2, y2 + snφ(x2))

=
N∑
n=1

e2πi(ax1+by1+brnφ(x1))e−2πi(ax2+by2+bsnφ(x2))

= e2πi(a(x1−x2)+b(y1−y2))
N∑
n=1

e2πin(rφ(x1)−sφ(x2)).

If exactly one of the numbers φ(x1), φ(x2) is irrational then the result follows from
Weyl’s theorem (see Theorem A.16 in the Appendix) for all r, s ∈ N. If both of
these numbers are irrational then there is at most one pair (r, s) ∈ P×(P \ {r}) such
that rφ(x1) − sφ(x2) ∈ Q. Hence the result follows again from Weyl’s theorem, for
r, s sufficiently large.

Remark 7.11. Note that the above proof of Lemma 7.10 reveals that the convergence
in (7.16) happens uniformly in y1, y2.

Theorem 7.12 ([38]). Sarnak’s conjecture holds for skew product extensions of
rational rotations.

Proof. By Corollary 3.37 the zero topological entropy assumption is satisfied. Con-
sider Rα,φ : T2 → T2 given by Rα,φ(x, y) := (x + α, y + φ(x)) (mod 1), with α ∈ Q
and φ : T → T continuous. Write α = p

q with p ∈ Z, q ∈ N.
Because of Lemma 7.3 and Lemma 7.9 it suffices to consider functions χa,b ∈

K ( C(T2), with χa,b(x, y) := e2πi(ax+by). If b = 0, the assertion follows from
Proposition 7.2. So let b 6= 0.

First, note that

Rqα,φ(x, y) = (x+ p, y + φq(x)) = (x, y + φq(x)), (7.17)

where φq(x) :=
∑q−1
k=0 φ(x + kp

q ). For n ∈ N we find n′ ∈ N such that n = qn′ + j

with j ∈ [0, q) ∩ Z. Then, for each χa,b ∈ K, every r, s ∈ N and all (x, y) ∈ T2 we
have

χa,b
(
Rrnα,φ(x, y)

)
χa,b

(
Rsnα,φ(x, y)

)
=χa,b

(
Rqrn

′

α,φ

(
Rrjα,φ(x, y)

))
χa,b

(
Rqsn

′

α,φ

(
Rsjα,φ(x, y)

))
,

where, because of (7.17), the first coordinates of the points Rrjα,φ(x, y), Rsjα,φ(x, y)
belong to the finite set M :=

{
x+ kp

q

∣∣∣ k ∈ [0, q) ∩ Z
}

(and hence do not depend on
r and s). Thus, to show that

lim
N→ ∞

1
N

N∑
n=1

χa,b
(
Rrnα,φ(x, y)

)
χa,b

(
Rsnα,φ(x, y)

)
= 0
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holds for sufficiently large r, s ∈ P, r 6= s, considering Remark 7.11, we need to varify
that

lim
N→∞

1
N

∑
n′∈N
n′≤ N

q

χa,b
(
Rqrn

′

α,φ (x1, ∗)
)
χa,b

(
Rqsn

′

α,φ (x2, ∗)
)

= 0, (7.18)

whenever x1, x2 ∈ M . If φq(x1) /∈ Q or φq(x2) /∈ Q, (7.18) follows from (7.17)
together with Lemma 7.10 and Remark 7.11 (since b 6= 0). Hence the assertion
follows from the KBSZ-criterion (Theorem 6.2).

Suppose now that φq(x + jrp
q ), φq(x + jsp

q ) ∈ Q. This is only possible in the case
φq(x) ∈ Q, since φq is constant on the Rα-orbit of x. Moreover, since n = qn′ + j
with j ∈ [0, q) ∩ Z, we have

φ(n)(x) :=
n−1∑
k=0

φ

(
x+ kp

q

)
=

qn′+j−1∑
k=qn′

φ

(
x+ kp

q

)
+
qn′−1∑
k=0

φ

(
x+ kp

q

)

=
j−1∑
k=0

φ

(
x+ kp

q

)
+
qn′−1∑
k=0

φ

(
x+ kp

q

)
= φ(j)(x) + φ(qn′)

(
x+ jp

q

)
= φ(j)(x) + n′φq(x).

It follows that

1
N

N∑
n=1

χa,b
(
Rnα,φ(x, y)

)
µ(n)

= 1
N

q−1∑
j=0

∑
n′∈N
n′≤ N

q

χa,b

(
x+ (qn′ + j) p

q
, φ(n)(x) + y

)
µ
(
qn′ + j

)

=
q−1∑
j=0

1
N

∑
n′∈N
n′≤ N

q

χa,b

(
x+ jp

q
, φ(j)(x) + n′φq(x) + y

)
µ
(
qn′ + j

)

=
q−1∑
j=0

1
N

∑
n′∈N
n′≤ N

q

e
2πi
(
a
(
x+ jp

q

)
+b
(
φ(j)(x)+n′φq(x)+y

))
µ
(
qn′ + j

)

=
q−1∑
j=0

e
2πi
(
a
(
x+ jp

q

)
+b
(
φ(j)(x)+y

)) 1
N

∑
n′∈N
n′≤ N

q

e2πibn′φq(x)µ
(
qn′ + j

)
.

By writing φq(x) = c
d with c ∈ Z, d ∈ N, and setting n′ = dn′′ +k with k ∈ [0, d)∩Z,

we obtain
n = qn′ + j = qdn′′ + (qk + j) .

So the above yields the representation

1
N

N∑
n=1

χa,b
(
Rnα,φ(x, y)

)
µ(n) =

q−1∑
j=0

d−1∑
k=0

1
N

∑
n′′∈N
n′′≤ N

dq

aj,k(n′′)µ
(
qdn′′ + qk + j

)
,
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and hence the result again follows from Proposition 7.2.

Here we just considered the skew product extension of a rotation Rα on T through
a rational α. So there is much room for generalization and, by the time this thesis
has been written, no proof is known for the general case. However, in [39] it is
shown that Sarnak’s conjecture holds for any α ∈ R, provided φ(x) = cx + ψ(x)
with c ∈ Z and an analytic ψ : T → T such that

∣∣∣ψ̂(m)
∣∣∣ � e−τ |m| for some τ > 0,

while in [38] the result is obtained without the strong assumption on φ, but at the
cost of reducing validity to those α ∈ R which are generic for some Rα-invariant
measure on T.
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8. Chowla’s Conjecture implies Sarnak’s
Conjecture

In this chapter we want to show that the conjecture of Sarnak is a consequence of
the following (also unproven) classical conjecture given by Chowla in [10] in 1965:

Conjecture 8.1 (Chowla). Let r ∈ N, a0, . . . , ar ∈ N0, with 0 = a0 < a1 < . . . <
ar, and i0, . . . , ir ∈ {1, 2} not all equal to 2. Then

lim
N→∞

1
N

N∑
n=1

r∏
s=0

µis (n+ as) = 0.

The exponents i0, . . . , ir are to be chosen not all even to not completely destroy
the sign cancellation, since for i0 = . . . = ir = 2 the above limit equals 6

π2 (density
of the set of square-free integers; see [35]). Furthermore, note that the case r = 0
follows from Proposition 7.1 while for r ≥ 1 the conjecture is still open.

Actually, the correlation between the both conjectures lies much deeper, since
it still holds for an arbitrary sequence z taking values in {−1, 0, 1} instead of the
Möbius function µ. Therefore, in this chapter, we will take the more abstract
approach and deal with such an arbitrary sequence, following the work of El Ab-
dalaoui, Kułaga-Przymus, Lemańczyk and de la Rue done in [22].

8.1. Definitions
Let (X,T ) be a metric TDS, i.e., X a compact metric space and T : X → X
continuous. As before, we denote by M(X) the set of all probability measures on
(X,ΣX), where ΣX stands for the Borel σ-algebra on X, and by MT (X) = MT ⊆
M(X) the subset of those measures, which are invariant under T (recall that by
the Krylov–Bogolyubov theorem we have MT 6= ∅). M(X) is endowed with
the (metrizable) weak topology where (νn)n∈N converges to ν in M(X) if for each
f ∈ C(X) the series

(´
X f d νn

)
n∈N converges to

´
X f d ν.

For x ∈ X we denote by δx the Dirac measure on (X,ΣX) given by

δx(A) :=
{

1 for x ∈ A

0 otherwise
= 1A(x)

for A ∈ ΣX . Note that, since δx is a probability measure on (X,ΣX), for each x ∈ X,
each limit point ρ of the sequence (δT,N,x)N∈N with δT,N,x := 1

N

∑N
n=1 δTnx is again

a probability measure on (X,ΣX). Moreover, ρ is invariant under T , i.e., we have
ρ ∈ MT (cf. the proof of Theorem A.6 in the Appendix).

Definition 8.2. Let ν ∈ MT , i.e., (X,ΣX , ν, T ) be an MDS. For x ∈ X set

Q − gen(x) :=

ρ ∈ MT

∣∣∣∣∣∣ lim
k→∞

1
Nk

Nk∑
n=1

δTnx = ρ for (Nk)k∈N ⊂ N strictly increasing

 .
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We call x

• quasi-generic for ν, if ν ∈ Q − gen(x).

• generic for ν, if {ν} = Q − gen(x) (i.e., we have 1
N

∑N
n=1 δTnx −−−−→

N→∞
ν).

Definition 8.3. Let (X,T ) be a TDS and x ∈ X. Then we call x completely deter-
ministic if for each ν ∈ Q − gen(x) we have hν(T ) = 0. (i.e., the associated MDS
(X,ΣX , ν, T ) is of zero Kolmogorov–Sinai entropy).

Remark 8.4. By Theorem 3.27 every point of a deterministic system is completely de-
terministic.

To obtain the following results for both, one-sided and two-sided sequences, let
I ∈ {N0,Z} for the rest of this section (minor changes would also provide validity for
I = N). Note that {−1, 0, 1}I endowed with the product topology is a compact metric
space. Furthermore, to cut down on indices, we identify sequences z ∈ {−1, 0, 1}I
with functions z : I → {−1, 0, 1} and write z(n) for zn.

Now we can formulate the central conditions of this chapter.

Definition 8.5. We say that z ∈ {−1, 0, 1}I satisfies

• condition (Ch) if, for each r ∈ N, a1, . . . , ar ∈ N with a1 < . . . < ar, a0 = 0
and all i0, . . . , ir ∈ {1, 2} not all equal to 2, we have

lim
N→∞

1
N

N∑
n=1

r∏
s=0

zis (n+ as) = 0. (Ch)

• condition (S) if, for any TDS (X,T ) with h(T ) = 0, all f ∈ C(X) and every
x ∈ X, we have

lim
N→∞

1
N

N∑
n=1

f (Tnx) z(n) = 0. (S)

• condition (Ŝ) if, for any TDS (X,T ), all f ∈ C(X) and every completely de-
terministic x ∈ X, we have

lim
N→∞

1
N

N∑
n=1

f (Tnx) z(n) = 0. (Ŝ)

The Möbius function µ satisfies the condition (Ch) if and only if Chowla’s
conjecture holds; and analogous for the condition (S) and Sarnak’s conjecture.
Furthermore, by Remark 8.4, the implication (Ŝ) =⇒ (S) is obvious. We will show
that (Ch) implies (Ŝ) and thus obtain the desired implication (Ch) =⇒ (S). To do
so it will come in handy to consider a further system besides (X,T ). So we denote
by S the left shift on AI with A ∈ {{0, 1} , {−1, 0, 1}} as well as the left shift on
any closed shift-invariant subset of AI (called a subshift). Then (AI, S) is a TDS,
since AI endowed with the product topology is a compact metric space and S is
continuous for this topology.

Now, let F : AI → A (or any subset of AI) be the continuous map given by

F (w) := w(0)

89



for each w ∈ AI. Therefore we can write any member of a sequence z ∈ AI in the
form f(Tnx), since for each n ∈ N0 we have z(n) = F (Snz).

Since the cylinder sets

Ct(a0, . . . , ak−1) :=
{
w ∈ AI

∣∣∣wt+j = aj for each j ∈ [0, k − 1] ∩ Z
}
,

where k ∈ N and t ∈ I (that are the sets of all sequences in which the block
(a0, . . . , ak−1) appears on at position t), form a base for the product topology, any
ν ∈ MS(AN0) is determined by the values it takes on blocks. Hence it can be ex-
tended to a measure in MS(AZ) taking the same value on each block as ν. This
measure will be denoted by ν as well. Note that this extension preserves quasi-
genericity, i.e., if w ∈ AN0 is quasi-generic for ν ∈ MS(AN0) along (Nk)k∈N, then
any w̃ ∈ AZ with w̃(j) = w(j), for each j ∈ N0, is quasi-generic for ν ∈ MS(AZ)
along (Nk)k∈N.

Finally, we need a way to obtain measures in MS({−1, 0, 1}I) from given measures
in MS({0, 1}I). To do so, let χ : {−1, 0, 1}I → {0, 1}I be the coordinate square map,
i.e.,

χ : (wn)n∈I 7→ (w2
n)n∈I

for each w = (wn)n∈I ∈ {−1, 0, 1}I. We also let χ act on blocks in the same way.

Definition 8.6. Let ν ∈ MS({0, 1}I) and denote supp(b) := {i | b(i) 6= 0} for any
block b taking values in {−1, 0, 1}. Let ν̂ be the measure on {−1, 0, 1}I defined by

ν̂(b) := 2−#supp(b)ν(χ(b)).

for each such block b. Then we call ν̂ the relatively independent extension of ν.

Remark 8.7. For any ν ∈ MS({0, 1}I) we have ν̂ ∈ MS({−1, 0, 1}I) (see [22]).
In what follows we write z2 for χ(z), i.e., we have z2(n) := (z(n))2 for each n ∈ I.

8.2. Preliminaries
As before, for w ∈ {−1, 0, 1}N0 consider the subshift (Xw, S) of ({−1, 0, 1}Z , S) with

Xw :=
{
u ∈ {−1, 0, 1}Z

∣∣∣ all blocks that appear on u also appear on w
}
.

Fix z ∈ {−1, 0, 1}N0 such that z2 is quasi-generic for some ν ∈ MS(Xz2), i.e., there
is (Nk)k∈N ⊂ N strictly increasing such that

δS,Nk,z2 = 1
Nk

Nk∑
n=1

δSnz2 −−−−→
k→∞

ν. (8.1)

Note that Xz2 ⊆ {0, 1}Z and therefore ν ∈ MS({0, 1}Z). Hence the relatively inde-
pendent extension ν̂ of ν is a measure in MS({−1, 0, 1}Z).

We want to give equivalent characterizations for the condition (Ch), at least along
a certain subsequence (Nk)k∈N ⊂ N. To do so, we need the following lemma, for
which we omit the proof. It can be found in [22] (Lemma 4.5).
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Lemma 8.8. Consider the subshift (Xz2 , S) and F : {−1, 0, 1}Z 3 w 7→ w(0) ∈
{−1, 0, 1}. Let r ∈ N, a0, . . . , ar ∈ N0, with 0 = a0 < a1 < . . . < ar, and i0, . . . , ir ∈
{1, 2} not all equal to 2. Then

ˆ
{−1,0,1}Z

r∏
s=0

(
F is ◦ Sas

)
d ν̂ = 0,

where ν̂ denotes the relatively independent extension of the above measure ν ∈
MS(Xz2), and F i(z) := (F (z))i = (z(0))i for each i ∈ N, z ∈ {−1, 0, 1}Z.

Remark 8.9. Since, for each u ∈ {−1, 0, 1}Z, we have F 2(u) = (u(0))2 = F (u2), it
follows that

ˆ
{−1,0,1}Z

r∏
s=0

(
F 2 ◦ Sas

)
d ν̂ =

ˆ
{0,1}Z

r∏
s=0

(F ◦ Sas) d ν.

Lemma 8.10. Let (Nk)k∈N ⊂ N be such that (8.1) holds. Then the following con-
ditions are equivalent:

i) For ν and ν̂ as before we have

lim
k→∞

δS,Nk,z = ν̂.

ii) For each choice of r ∈ N, a0, . . . , ar ∈ N0, with 0 = a0 < a1 < . . . < ar, and
i0, . . . , ir ∈ {1, 2} not all equal to 2, we have

lim
k→∞

1
Nk

Nk∑
n=1

r∏
s=0

zis(n+ as) = 0.

Proof. By the definition of the map F , for each k ∈ N we have

1
Nk

Nk∑
n=1

r∏
s=0

zis(n+ as) = 1
Nk

Nk∑
n=1

r∏
s=0

(
F is ◦ Sas

)
(Snz). (8.2)

Suppose that i) holds. Then (8.2) implies

1
Nk

Nk∑
n=1

r∏
s=0

zis(n+ as) −−−−→
k→∞

ˆ
{−1,0,1}Z

r∏
s=0

(
F is ◦ Sas

)
d ν̂,

which, by Lemma 8.8, is equal to zero. Thus, ii) follows.
Suppose now that ii) holds. Without loss of generality (cf. [22]) we may assume

that δS,Nk,z −−−−→
k→∞

ρ. Then, by (8.2) we have

1
Nk

Nk∑
n=1

r∏
s=0

zis(n+ as) −−−−→
k→∞

ˆ
{−1,0,1}Z

r∏
s=0

(
F is ◦ Sas

)
d ρ.

Since ii) holds, we obtain
ˆ

{−1,0,1}Z

r∏
s=0

(
F is ◦ Sas

)
d ρ = 0, (8.3)
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whenever not all is are equal to 2. Moreover, since F 2(u) = F (u2) for each u ∈
{−1, 0, 1}Z, we obtain from (8.1) that

ˆ
{−1,0,1}Z

r∏
s=0

(
F 2 ◦ Sas

)
d ρ =

ˆ
{0,1}Z

r∏
s=0

(F ◦ Sas) d ν. (8.4)

Hence, from Remark 8.9, (8.3), (8.4) and Lemma 8.8 we deduce that
ˆ

{−1,0,1}Z
G d ν̂ =

ˆ
{−1,0,1}Z

G d ρ

for any G ∈ A :=
{∏r

s=0
(
F is ◦ Sas

) ∣∣ 0 = a0 < a1 < . . . < ar, r ∈ N, is ∈ N
}
. Since

A ⊆ C({−1, 0, 1}Z) is closed under taking products and separates the points of
{−1, 0, 1}Z, the Stone–Weierstraß theorem (see Theorem A.14 in the Appendix)
implies ρ = ν̂.

Theorem 8.11. For z ∈ {−1, 0, 1}N0 and (Nk)k∈N ⊂ N strictly increasing the
following conditions are equivalent:

i) z satisfies (Ch) along (Nk)k∈N, i.e., for each choice of r ∈ N, a0, . . . , ar ∈ N0,
with 0 = a0 < a1 < . . . < ar, and i0, . . . , ir ∈ {1, 2} not all equal to 2, we have

lim
k→∞

1
Nk

Nk∑
n=1

r∏
s=0

zis(n+ as) = 0.

ii) limk→∞ δS,Nk,z2 = ν if and only if limk→∞ δS,Nk,z = ν̂.

iii) Q − gen(z) =
{
ν̂
∣∣ ν ∈ Q − gen(z2)

}
.

Sketch of proof. The equivalence of ii) and iii) follows directly from the definition of
the set Q − gen(z), while one shows the equivalence of i) and ii) by using Lemma 8.10
and Definition 8.6 (see [22], Remark 4.8).

8.3. (Ch) implies (Ŝ)

Let (X,T ) be a TDS and ν ∈ MS({0, 1}Z), where S denotes the shift on {0, 1}Z.

Lemma 8.12. For w ∈ {−1, 0, 1}Z we have Eν̂ (F |χ(w) = u) = 0 for ν-a.e. u ∈
{0, 1}Z.

Proof. We have

Eν̂ (F | χ(w) = u) = Eν̂
(
F
∣∣∣ {0, 1}Z

)
(u) =

ˆ
χ−1(u)

F d ν̂u, (8.5)

where {ν̂u}u∈{0,1}Z denotes the measure disintegration of ν̂. Then, for u ∈ {0, 1}Z,
ν̂u is the

(
1
2 ,

1
2

)
-product measure of all positions belonging to {i ∈ Z |u(i) 6= 0}. If

u(0) = 0, formula (8.5) holds. If u(0) = 1, then F takes the two values ±1 on
χ−1(u) with the same probability, so the integral on the right hand side of (8.5) is
still zero.
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Theorem 8.13. (Ch) implies (Ŝ).

Proof. Let z ∈ {−1, 0, 1}N0 satisfy the condition (Ch). Then, in particular, z satis-
fies (Ch) along any strictly increasing (Nk)k∈N ⊂ N, i.e., for each choice of r ∈ N,
a0, . . . , ar ∈ N0, with 0 = a0 < a1 < . . . < ar, and i0, . . . , ir ∈ {1, 2} not all equal to
2, we have

lim
k→∞

1
Nk

Nk∑
n=1

r∏
s=0

zis(n+ as) = 0.

For (X,T ) the metric TDS in accordance, fix a completely deterministic x ∈ X and
(Nk)k∈N such that the limit

lim
k→∞

δT×S,Nk,(x,z) ∈ MT×S =: ρ. (8.6)

exists (which is possible by the Banach–Alaoglu theorem; see Theorem A.3 and
Corollary A.4 in the Appendix). Then, since x is completely deterministic, the
projection of ρ onto the first coordinate yields a measure θ ∈ MT such that hθ(T ) =
0. Furthermore, by Theorem 8.11, the projection of ρ onto the second coordinate is
of the form ν̂ for some ν ∈ Q − gen(z2). Hence, using Lemma 8.12 we obtain

Eρ
(
F
∣∣∣ {0, 1}Z

)
= Eν̂

(
F
∣∣∣ {0, 1}Z

)
= 0. (8.7)

From (8.6) it follows that

1
Nk

Nk∑
n=1

f(Tnx)z(n) = 1
Nk

Nk∑
n=1

f(Tnx)F (Snz) −−−−→
k→∞

ˆ
X×{−1,0,1}N0

f ⊗ F d ρ, (8.8)

where (f ⊗ F ) (x, z) := (f(x), F (z)), for each x ∈ X, z ∈ {−1, 0, 1}N0 , and
ˆ
X×{−1,0,1}N0

f ⊗ F d ρ = Eρ
(
f ⊗ F

∣∣∣ {0, 1}Z
)
.

Now, since we have

Eρ
(
f ⊗ F

∣∣∣ {0, 1}Z
)

= Eρ
(
f
∣∣∣ {0, 1}Z

)
Eρ
(
F
∣∣∣ {0, 1}Z

)
(see Lemma 4.16 in [22]), from (8.7) and (8.8) we conclude

lim
k→∞

1
Nk

Nk∑
n=1

f(Tnx)z(n) = Eρ
(
f
∣∣∣ {0, 1}Z

)
Eρ
(
F
∣∣∣ {0, 1}Z

)
= 0.

Remark 8.14. Another proof of Chowla’s conjecture implying Sarnak’s conjecture
was given by Tao in [58]. It yields a more measure-theoretic approach by making
use of a variant of the moment method used in the large deviation estimates such as
Chernoff’s bound or Hoeffding’s inequality (cf. [56]) to achieve an exponentially
high concentration of a certain random variable given by the union bound and the
zero topological entropy of the considered dynamical system.

Lastly, for the sake of completeness, it should be mentioned that the condition
(Ch) is indeed stronger than the condition (S), which is to say that the converse
implication does not hold. A counterexample confirming that can be found in [22]
(Example 5.1).
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A. Appendix

A.1. Lebesgue Numbers of Open Covers
Theorem A.1 (Lebesgue’s number lemma). Let (X, d) be a compact metric space
and U be an open cover of X. Then there exists a δ > 0 such that to each A ⊆ X
with diam(A) := sup {d(x, y) |x, y ∈ A} < δ there is a U ∈ U so that A ⊆ U .

Proof. If X ∈ U , then every δ > 0 is suitable for each A ⊆ X. So let X /∈ U . Since
X is compact, U contains a finite subcover {U1, . . . , Um} of X, with some m ∈ N.
Define a map f : X → R by

f(x) := 1
m

m∑
k=1

d(x,X \ Uk),

where d(x,C) := inf {d(x, y) | y ∈ C} for each C ⊆ X. Then f is continuous on the
compact X and therefore takes its minimum which we denote by δ. Clearly, δ ≥ 0.
Fix an x0 ∈ X and choose i ∈ [1,m] ∩ Z such that x0 ∈ Ui. Since Ui is open, there
is an ε > 0 such that Bε(x0) ⊆ Ui. Therefore, d(x0, X \ Ui) ≥ ε and hence

f(x0) ≥ ε

m
.

Since this is possible for any x ∈ X, f is positive on X and thus δ > 0.
Now let A ⊆ X with diam(A) < δ and choose x1 ∈ A arbitrarily. Then A ⊆

Bδ(x1). Furthermore, choose j ∈ [1,m]∩Z such that d(x1, X\Uk) takes its maximum
for k = j. Then δ ≤ f(x1) ≤ d(x1, X \ Uj) and hence

A ⊆ Bδ(x1) ⊆ X \ (X \ Uj) = Uj ∈ U .

A.2. The Krylov–Bogolyubov Theorem
Theorem A.2 (Tychonoff). Let (Xi)i∈I be a (countable or uncountable) family
of compact spaces. Then

∏
i∈I Xi is compact in the product topology.

A proof of Theorem A.2 can be found e.g. in [34].

Theorem A.3 (Banach–Alaoglu, sequential version). Let V be a separable
normed vector space. Then the closed unit ball B1(V ?) in the dual V ? of V is sequen-
tially compact in the w∗-topology, i.e., each sequence (xn)n∈N ⊂ B1(V ?) contains a
subsequence which w∗-converges in B1(V ?).

The proof of Theorem A.3 makes use of Theorem A.2. One version can be found
e.g. in [55].

Corollary A.4. Let X be a compact metric space. Then every sequence (νn)n∈N of
Borel probability measures on (X,ΣX) has a limit point in the w∗-topology which
is again a Borel probability measure on (X,ΣX).
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Proof. The assertion follows from Theorem A.3, recalling that C(X) is separable
and for each probability measure ν on X we have∣∣∣∣ˆ

X
f d ν

∣∣∣∣ ≤ ‖f‖∞ ν(X) = ‖f‖∞

for each f ∈ C(X), which implies ν ∈ B1(C(X)?).

Lemma A.5. Let X be a compact metric space, T : X → X continuous, and
ν ∈ M(X), where M(X) denotes the set of all probability measures on (X,ΣX).
Then the following statements are equivalent:
i) ν is T -invariant.

ii) For each f ∈ C(X) we have
´
X f d ν =

´
X (f ◦ T ) d ν.

Proof. i)=⇒ii): This follows directly from C(X) ⊆ L∞(X, ν).
ii)=⇒i): It sufficies to show this for open sets A ⊆ X. One can find a sequence

(fn)n∈N ⊂ C(X) such that 0 ≤ fn ↗ 1A for n → ∞. Henceˆ
X
fn d ν −−−−→

n→∞

ˆ
X

1A d ν = ν(A)

as well as ˆ
X

(fn ◦ T ) d ν −−−−→
n→∞

ˆ
X

(1A ◦ T ) d ν = ν(T−1A).

Because of ii) this implies i).

Theorem A.6 (Krylov–Bogolyubov). Let X be a compact metric space and
T : X → X continuous. Then MT (X) := {ν ∈ M(X) | ν is T -invariant} 6= ∅.
Proof. For p ∈ X denote by δp : ΣX → [0, 1] the Dirac measure in p, given by

δp(A) :=
{

1 if p ∈ A

0 otherwise
.

Fix a ∈ X and consider the sequence (νn)n∈N where νn := 1
n

∑n−1
k=0 δTka. Then for

each n ∈ N we have νn ∈ M(X).
For each p ∈ X and every f ∈ L1(X, δp) we have

´
X f d δp = f(p). Hence

ˆ
X

(f(Tx) − f(x)) d νn(x) = 1
n

(
n∑
k=1

f(T ka) −
n−1∑
k=0

f(T ka)
)

= 1
n

(f(Tna) − f(Ta))

and thus ∣∣∣∣ˆ
X

(f ◦ T ) d νn −
ˆ
X
f d νn

∣∣∣∣ ≤ 2
n

‖f‖∞ −−−−→
n→∞

0. (A.1)

Now let ν be a limit point of (νn)n∈N in the w∗-topology (whose existence is
assured by Corollary A.4). Then we have ν ∈ M(X), since

ν(X) =
ˆ
X

1X d ν = lim
k→∞

ˆ
X

1Xdνnk
= 1,

for (νnk
)k∈N an appropriate subsequence of (νn)n∈N. By (A.1) we findˆ

X
(f ◦ T ) d ν −

ˆ
X
f d ν = 0

and conclude ν ∈ MT (X) using Lemma A.5.
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A.3. The Monotone Class Theorem
Definition A.7. Let X be a set and M ⊆ P(X), where P(X) denotes the power
set of X. Then we call M a monotone class in X, if

• X ∈ M.

• For each sequence (An)n∈N we have

–
⋃
n∈NAn ∈ M,

–
⋂
n∈NAn ∈ M.

Theorem A.8 (Monotone class theorem). Let X be a set. For C ⊆ P(X) denote
by Σ(C) the σ-algebra generated by A and by M (C) the smallest monotone class in
X containing C. Then, for each algebra A on X we have

Σ(A) = M (A).

A proof of Theorem A.8 can be found e.g. in [18].

A.4. The Representation Theorem of
Riesz–Markov–Kakutani

Consider a finite regular Borel measure ν on a compact Hausdorff spaceX. Then
C(X) ⊆ L1(X, ν) and the mapping f 7→

´
X f d ν yields a positive linear functional

on C(X). Theorem A.9 states that any positive linear functional on C(X) can be
obtained that way and that this representation is unique.

Riesz discovered a full classification of the dual space for the vector space C ([a, b]),
consisting of the continuous functions on [a, b], a, b ∈ R, a < b, and equipped with
the L∞-norm (which is a Banach space), by proving that each bounded linear
functional on that space can be described as

´ b
a f d ν using a suitable finite Borel

measure ν. Later, Markov extended this theorem to the compactly supported
functions on whole R. Finally, Kakutani generalized the statement to cover the
vector space of all continuous functions on any compact Hausdorff space.1

Theorem A.9 (Riesz–Markov–Kakutani). Let X be a compact Hausdorff
space and Λ be a positive linear functional on C(X). Then there is a unique finite
regular Borel measure ν on (X,ΣX) such that

Λ(f) =
ˆ
X
f d ν

for each f ∈ C(X).

For a proof of Theorem A.9 see e.g. [29].

1See [49].
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A.5. The Borel–Cantelli Lemma
Theorem A.10 (Borel–Cantelli). Let (Xn)n∈N be a sequence of random vari-
ables in a probability space (Ω,A, P ).

a) If
∑
n∈N P (Xn) < ∞, then P (lim supn→∞Xn) = 0.

b) If (Xn)n∈N are pairwise stochastically independent and
∑
n∈N P (Xn) = ∞,

then P (lim supn→∞Xn) = 1.

Proof. a) Let ε > 0. Since the series
∑
n∈N P (Xn) converges, there is an n0 ∈ N

such that ∞∑
n=n0

P (Xn) ≤ ε.

Therefore, since lim supn→∞Xn =
⋂∞
n=1

⋃∞
k=nXk ⊆

⋃∞
k=n0 Xk, from the isotony and

the σ-subadditivity of the measure P we obtain

0 ≤ P

(
lim sup
n→∞

Xn

)
≤ P

 ∞⋃
k=n0

Xk

 ≤
∞∑

n=n0

P (Xn) ≤ ε.

b) Let X := lim supn→∞Xn. Then

Ω \X = Ω \
( ∞⋂
n=1

∞⋃
k=n

Xk

)
=

∞⋃
n=1

∞⋂
k=n

(Ω \Xk) .

For n, l ∈ N, n < l, set Yn,l :=
⋂l
k=n (Ω \Xk) . Then Yn,l ⊇ Yn,l+1 and therefore⋂∞

l=1 Yn,l =
⋂∞
k=n (Ω \Xk). Thus

P

( ∞⋂
k=n

(Ω \Xk)
)

= P

(∞⋂
l=1

Yn,l

)
= lim

l→∞
P (Yn,l) .

On the other hand, by noting that

log
(

l∏
k=n

(1 − P (Xk))
)

=
l∑

k=n
log (1 − P (Xk)) ≤ −

l∑
k=n

P (Xk),

and since (Xn)n∈N is pairwise stochastically independent, we obtain

P (Yn,l) = P

(
l⋂

k=n
(Ω \Xk)

)
=

l∏
k=n

(1 − P (Xk)) ≤ exp
(

−
l∑

k=n
P (Xk)

)
−−−→
l→∞

0.

We conclude

1 ≥ P

(
lim sup
n→∞

Xn

)
= 1 − P (Ω \X) ≥ 1 −

∞∑
n=1

P

( ∞⋂
k=n

(Ω \Xk)
)

= 1 − 0 = 1.

Corollary A.11. Let (Xn)n∈N be a sequence of random variables in a probability
space (Ω,A, P ) and X be a random variable in (Ω,A, P ). If

∑∞
n=1 P (|Xn −X| > ε) <

∞ for each ε > 0, then Xn −−−−→
n→∞

X a.s.

It is shown e.g. in [6] how Corollary A.11 follows from Theorem A.10.
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A.6. The Chinese Remainder Theorem
Theorem A.12. Let p, q ∈ N be coprime, i.e., (p, q) = 1. Then the system of
equations

x ≡ a mod p

x ≡ b mod q

has a unique solution for x modulo pq.

Remark A.13. The reverse direction is trivial: given x ∈ Zpq, we can reduce x
modulo p and x modulo q to obtain two equations of the above form.

Proof of Theorem A.12. 2 Choose p1, q1 such that

p1 ≡ p− 1 mod q

and
q1 ≡ q − 1 mod p.

These must exist since p and q are coprime. We claim that if x is an integer such
that

x ≡ aqq1 + bpp1 mod pq

then x satisfies both equations. Indeed, modulo p we have

x = aqq1 ≡ a mod p,

since qq1 ≡ 1 mod p. Similarly, x ≡ b mod q. Thus x is a solution for the above
equations.

It remains to show no other solutions modulo pq exist . If z ≡ a mod p then z−x
is a multiple of p. If also z ≡ b mod q, then z − x is a multiple of q as well. Since
(p, q) = 1, this implies that z − x is a multiple of pq. Hence

z ≡ x mod pq.

A.7. The Stone–Weierstraß Theorem
Theorem A.14 (Stone–Weierstraß). Let X be a compact Hausdorff space
and let A be the C-algebra of continuous functions f : X → C. Let P be a
sub-C-algebra of A such that

• P separates the points of X, i.e., ∀x, y ∈ X ∃f ∈ P : f(x) 6= f(y),

• P vanishes nowhere on X, i.e., ∀x ∈ X ∃f ∈ P : f(x) 6= 0,

• P is invariant under conjugation, i.e., ∀f ∈ P : f ∈ P.

Then P is dense in A given the topology of uniform convergence.

For a proof of Theorem A.14 see e.g. [51].

2cf. [40].
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A.8. Weyl’s Theorem
Lemma A.15 (Bergelson–van der Corput). Let H be a Hilbert space and
(un)n∈N be a bounded sequence in H such that

lim
M→∞

1
M

M∑
h=1

lim sup
N→∞

∣∣∣∣∣ 1
N

N∑
n=1

〈un+h, un〉H

∣∣∣∣∣ = 0.

Then

lim
N→∞

1
N

N∑
n=1

un = 0.

A proof Lemma A.15 can be found in [7].

Theorem A.16 (Weyl). Let P be a non-constant polynomial with coefficients in
Z. Then for each k ∈ Z \ {0} and every α ∈ R \ Q we have

lim
N→∞

1
N

N∑
n=1

e2πiαP (n)k = 0.

Proof. First, let degP = 1, where degP denotes the degree of P . Then there are
a, b ∈ Z, a 6= 0, so that P (n) = an+ b. Hence

1
N

N∑
n=1

e2πiαP (n)k = 1
N
e2πiαbk

N∑
n=1

e2πiαank −−−−→
N→∞

0.

Now assume that for degP ≤ d ∈ N the assertion is already shown and let degP =
d+ 1. Define a sequence (un)n∈N ⊂ C by un := e2πiαP (n)k. Then

〈un+h, un〉 = e2πiαQh(n)k,

where Qh(n) := P (n + h) − P (n) is a polynomial with degQh = d. Hence, by the
induction hypothesis we have

1
N

N∑
n=1

〈un+h, un〉 = 1
N

N∑
n=1

e2πiαQh(n)k −−−−→
N→∞

0.

This implies

lim sup
N→∞

∣∣∣∣∣ 1
N

N∑
n=1

〈un+h, un〉
∣∣∣∣∣ = 0

for all h ∈ N, and therefore

lim
M→∞

1
M

M∑
h=1

lim sup
N→∞

∣∣∣∣∣ 1
N

N∑
n=1

〈un+h, un〉H

∣∣∣∣∣ = 0.

Hence, by Lemma A.15 and the choice of (un)n∈N the assertion follows.
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