
On the Struture of Weil Restritions ofAbelian VarietiesClaus Diem Niko NaumannJune 10, 2003AbstratWe give a desription of endomorphism rings of Weil restritionsof abelian varieties with respet to �nite Galois extensions of �elds.The results are applied to study the isogeny deompositions of Weilrestritions.2000 Mathematis Subjet Classi�ation Primary: 14K15, Seondary: 11G10.IntrodutionFor the use of Weil restritions of abelian varieties in various �elds of math-ematis but also beause of genuine interest in Weil restritions themselves,it is important to determine the endomorphism rings and the isogeny de-ompositions. This is what this artile provides { at least in two importantspeial ases.After giving a brief expos�e of general fats about Weil restritions ofabelian varieties in the �rst setion, we study Weil restritions with respetto extensions of �nite �elds in the seond setion. Here we determine theendomorphism algebra of a Weil restrition (see Theorem 1) and then showthat under rather general assumptions, the Weil restrition is simple overthe base-�eld (see Theorem 2).In the third setion, we deal with the following situation: Kjk is an ar-bitrary �nite Galois extension of �elds, A an abelian variety over k, W theWeil restrition of AK with respet to Kjk. We desribe the endomorphismring of W as a skew group ring over End(AK) (see Theorem 3) and applythis result to study the isogeny deomposition of W over k. In the last sub-setion the results are applied to give an expliit desription of the isogenydeomposition of W in the ase of a yli �eld extension; see Theorem 4.1



2 Claus Diem, Niko NaumannNotationGeneralBy a ring we mean a ring with unity, and by a ring-homomorphism a ho-momorphism of rings with unity. If R is a ring and � a �nite set, then byM�(R) we mean the matrix ring over R on the set �. For any abelian groupG, GÆ denotes G
Q. If D is a skew �eld, we denote its enter by Z(D). Ifk is a �eld, k denotes an algebrai losure. If k is some �eld and X and Zare k-shemes, we denote the k-morphisms from Z to X by X(Z).Let k be a �eld. By a homomorphism between abelian k-varieties wemean a morphism of k-shemes whih preserves the group struture (otherauthors might all this a k-homomorphism or a k-morphism of abelian va-rieties). Analogous de�nitions apply to isogenies and endomorphisms. Thegroup of homomorphisms between two abelian k-varieties A and B is de-noted by Hom(A;B) and the ring of endomorphisms of an abelian k-varietyA by End(A). Following this terminology, we use the notion of a simpleabelian k-variety where other authors might speak of a k-simple abeliank-variety. If two abelian k-varieties A and B are isogenous, we write A � B.If we are given an extension of �elds Kjk, we denote k-shemes by X; Yet. and K-shemes by X 0; Y 0 et. (or by XK ; YK et. if they are indued bybase-hange Kjk).We denote the dual abelian variety of an abelian k-variety A by bA. For aninvertible sheaf L on A, �L : A �! bA denotes the orresponding homomor-phism; .f. [7, x6℄. Following [6℄, a polarization ' of A is a homomorphismA �! bA suh that ' 
k idk = �L : Ak �! bAk for some ample invertiblesheaf on Ak.Galois twistsLet Kjk be a Galois extension of �elds with Galois group G. Then theelements of G indue automorphisms of the Spe(k)-sheme Spe(K) { weobtain in this way an anti-isomorphism G �! AutSpe(k)(Spe(K)).We identify the opposite group Gopp with AutSpe(k)(Spe(K)). We willalways work with Gopp instead of G.Let X 0 be a K-sheme.For � 2 Gopp, let ��1(X 0) be the pull-bak of X 0 via � : Spe(K) �!Spe(K), i.e. if pK : X 0 �! Spe(K) is the struture morphism, ��1(X 0) isX 0 onsidered as K-sheme via ��1 Æ pK . We denote the anonial isomor-phism of k-shemes from ��1(X 0) toX 0 also by �. If Y 0 is another K-shemeand � : X 0 �! Y 0 is a morphism of K-shemes, we obtain by base-hange amorphism of K-shemes ��1(�) = ��1�� : ��1(X 0) �! ��1(Y 0).If X 0 is an abelian K-variety, by pull-bak ��1(X 0) also has the struture



On the Struture of Weil Restritions of Abelian Varieties 3of an abelian K-variety.Frobenius morphismsLet q be a power of a prime number, k the �nite �eld with q elements, letA be an abelian k-variety. The Frobenius endomorphism �k of A is de�nedby the identity on the underlying topologial spae and by f 7! f q on thestruture-sheaf OA. As the name indiates, �k is an endomorphism of theabelian k-variety A.Now let Kjk be an algebrai extension of �elds. We identify the Galoisgroup Gal(Kjk) with its dual. The Frobenius automorphism of Kjk (or ofSpe(K) �! Spe(k)) is denoted by �Kjk. If K = k, we write �k instead of�kjk.Let A0 be an abelian K-variety. As stated above, we have a anonialisomorphism of k-shemes �Kjk : ��1Kjk(A0) �! A0. The relative Frobeniushomomorphism (with respet to k) �k : A0 �! ��1Kjk(A0) is a homomorphismof abelian K-varieties whih is de�ned as follows: Let Fk be the morphism ofthe k-sheme A0 to itself whih is the identity on the underlying topologialspae and it is given by f 7! f q on the struture-sheaf OA0 . Then �k :=��1Kjk Æ Fk : A0 �! ��1Kjk(A0).1 De�nitions and �rst results1.1 De�nition of the Weil restritionLet Kjk be a �nite Galois extension. Let A0 an abelian K-variety. It iswell-known that the funtor Z 7! A0(Z 
k K)from the ategory of k-shemes to the ategory of abelian groups is repre-sentable by an abelian k-variety; for a onstrution via Galois theory seeSubsetion 1.2, for a onstrution via \restrition of salars" see [1, 7.6℄.(The representatility of the funtor by an abelian variety holds more gener-ally for a �nite separable extension of �elds, but we restrit ourselves to theGalois-ase is this artile.) A representing objet will be denoted ResKk (A0)and will be alled the Weil restrition of A0 with respet to Kjk. The uni-versal element u 2 A0(ResKk (A0)
k K) maps the zero of ResKk (A0) 
k K tothe zero of A0 and thus is a homomorphism of abelian K-varieties.Now, ResKk (A0) with u is also a representing objet for the funtorB 7! Hom(BK; A0) from the ategory of abelian k-varieties to the ate-gory of abelian groups as well as for the funtor B 7! HomÆ(BK; A0) from



4 Claus Diem, Niko Naumannthe ategory of abelian k-varieties up to isogeny to the ategory of Q-vetorspaes.1.2 Constrution of the Weil restritionLet us reall the onstrution of ResKk (A0) via Galois theory.Let W 0 be the following produt of Galois-onjugates of A0:W 0 := Y�2Gopp ��1(A0) (1)Let p� : W 0 �! ��1(A0) be the projetions, let Autk(W 0) be the group ofautomorphisms of the k-sheme W 0.We de�ne a Galois operation on W 0 by Gopp �! Autk(W 0); � 7! e�where e� = (� p��)�2Gopp . Sine W 0 is projetive, the quotient W := W 0=Gunder this operation exists and is projetive. We have W 0 ' WK .Fix some k-sheme Z. We have a Galois operation on W 0(Z 
k K).If � 2 Gopp and P = (P�)�2Gopp 2 W 0(Z 
k K), then �((P�)�2Gopp) =(�(P��))�2Gopp . It follows that P 7! (��1(P ))�2Gopp is a bijetion betweenthe Z 
k K-valued points of A0 and the Galois-invariant Z 
k K-valuedpoints of W 0. On the other hand, by Galois theory, the Galois-invariantZ 
kK-valued points of W 0 are in bijetion with the Z-valued points of W .Both bijetions are natural in Z.It follows that W = W 0=G with universal element u := pid representsthe funtor Z 7! A0(Z
kK) from the ategory of k-shemes to the ategoryof sets. Via the group laws on these sets, one de�nes a group law on W , andwith this group law, W is an abelian variety. By onstrution, the neutralelement and the addition law of W oinide after base-hange with theneutral element and the addition law of the produt of Galois-onjugates in(1). Moreover, the universal element u = pid is a homomorphism of abelianK-varieties.From the Galois-operation of W 0, we obtain��1(p�) = p�� ; espeially ��1(u) = p� : (2)1.3 The funtor \restrition of salars"The assignment A0 7! ResKk (A0) de�nes a ovariant additive funtor ResKkfrom the ategory of abelian K-varieties (up to isogeny) to the ategory ofabelian k-varieties (up to isogeny). This funtor is alled \restrition of the�eld of de�nition" or \restrition of salars" or \norm funtor"; f. [5℄.For any abelian K-variety A0, ResKk gives a ring-homomorphism fromEnd(A0) to End(ResKk (A0)) and from EndÆ(A0) to EndÆ(ResKk (A0)).



On the Struture of Weil Restritions of Abelian Varieties 5Let A0; B0 be abelian K-varieties. ThenHom(ResKk (A0)K;ResKk (B0)K) ' M�;�2Gopp Hom(��1(A0); ��1(B0)); (3)see equations (1) and (5).Let � : A0 �! B0 be a homomorphism. Then under (3), ResKk (�)
k idKis given by the diagonal \matrix"(��1(�)Æ�;�)�;�2Gopp 2 M�;�2Gopp Hom(��1(A0); ��1(B0));where Æ�;� is the \Kroneker delta". If � : A0 �! B0 is an isogeny, thenResKk (�) : ResKk (A0) �! ResKk (B0) is an isogeny of degree (deg(�))[K:k℄.1.4 The Weil restrition of the dual abelian varietyThe Weil restrition of the dual abelian variety is funtorially isomorphi tothe dual abelian variety of the Weil restrition. This an be seen as follows.Let W := ResKk (A0).Let Z be some k-sheme, L some invertible sheaf on A0 �K ZK , alge-braially equivalent to zero. Now onsider the invertible sheafLWK :=O� p����(L) =O� e��u�(L)onWK . The isomorphism lass in Pi(WK�KZK)=Pi(ZK) of this invertiblesheaf orresponds to an element in WK(ZK) whih is invariant under theGalois-operation and thus de�nes an element in W (Z).We obtain in this way a homomorphismA0(ZK) �! \ResKk (A0)(Z) whihis funtorial in Z. We thus have a homomorphism Res(A0) �! \ResKk (A0).After base-hange Kjk, this homomorphism beomes the anonial iso-morphism Y�2Gopp ��1(A0) �! \Y�2Gopp ��1(A0);thus it is an isomorphism. This isomorphism Res(A0) �! \ResKk (A0) is fun-torial in A0 as an for example easily be seen after base-hange Kjk. Wethus have:Proposition 1 For abelian K-varieties A0, ResKk (A0) is funtorially iso-morphi to \ResKk (A0).



6 Claus Diem, Niko Naumann1.5 Weil restritions of polarized abelian varietiesLet Kjk be a �nite Galois �eld extension, A0 an abelian K-variety, A0 thedual abelian variety.Let ' : A0 �!A0 be a polarization of A0, de�ned by an ample invertiblesheaf L on A0K , i.e. '
K idK = �L : A0K �!A0K . As stated in Subsetion1.3, this indues an isogenyResKk (') : ResKk (A0) �! ResKk (A0) ' \ResKk (A0):We show now that this homomorphism is again a polarization.Let � 2 Gopp. We regard ��1(A0) as the dual abelian variety of ��1(A0).Let �0 be a Spe(K)-automorphism with � Æ �0 = � for the natural map� : Spe(K)! Spe(K). Then��1(')
K idK = �0�1(�L) = ��0�(L):Here, the �rst equation is obvious by the de�nition of �0 and the seondequation is a general fat for all polarizations on abelian varieties. It an beheked rather easily on K-valued points.After base-hange, we getResKk (')
k idK = (��1(') Æ p�)�2Gopp : Y�2Gopp ��1(A0) �! Y�2Gopp ��1(A0):This is a produt polarization de�ned by the ample invertible sheafLWk :=O� (p� 
K idK)��0�(L) (4)on Wk.If one starts with an ample invertible sheaf L on A0, then analogouslyto (4), one de�nes an ample invertible sheaf LWK on WK . The lass of thissheaf in the Piard group is invariant under the operation of Gal(Kjk) andthus de�nes an ample invertible sheaf on W (beause the Piard funtorof an abelian variety is representable) { alternatively, one an also de�neexpliitely a desent-datum on LWK .Proposition 2 Let Kjk be a �nite Galois �eld extension, A0 an abelianK-variety. If ' is a polarization on A0 (de�ned by a sheaf on A0), thenResKk (') is a polarization on ResKk (A0) (de�ned by a sheaf on ResKk (A0)).Furthermore deg(ResKk (')) = (deg('))[K:k℄.Thus \restrition of salars" is a funtor from the ategory of polarizedabelian K-varieties (with polarizations de�ned by sheaves on A0) to the at-egory of polarized abelian k-varieties (with polarizations de�ned by sheaveson ResKk (A0)) whih preserves prinipal polarizations.



On the Struture of Weil Restritions of Abelian Varieties 71.6 Appendix to Setion 1: Produts and the Rosati involu-tionLet k be a �eld, let Bi for i = 1; : : : ; m and Aj for j = 1; : : : ; n be abeliank-varieties. Let A := Qj=1;:::;nAj ; B := Qi=1;:::;mBi. Let �Aj : Aj �! A bethe inlusions and let pAj : A �! Aj be the projetions. (Similar de�nitionsfor B as well as the orresponding dual abelian varieties bA and bB.) ThenHom(A;B) �! Li;j Hom(Aj ; Bi) 7! (pBi  �Aj )i=1;:::;m; j=1;:::;n (5)is an isomorphism. (The same is true for the orresponding groupsHomÆ(: : : ; : : :) of both sides.)Thus every homomorphism from A to B is uniquely determined by its\matrix", and onversely, every \matrix" determines a homomorphism. Fur-thermore, the omposition of homomorphisms orresponds to the usual mul-tipliation of matries.In partiular, under (5), End(A) is isomorphi to the \matrix ring"Li;j Hom(Aj ; Ai).For later use we want to study how the Rosati involution with respetto a produt polarization operates on the \matries". It is onvenient togeneralize the onept of a \Rosati involution" �rst.Let X and Y be abelian k-varieties with �xed polarizations 'X : X �!bX; 'Y : Y �! bY . Then for every  2 HomÆ(X; Y ), we denote '�1X b 'Y 2HomÆ(Y;X) by  0 and all it the Rosati involution of  with respet to 'Xand 'Y .Now for i = 1; : : : ; m; j = 1; : : : ; n, let 'Bi : Bi �! Bi and 'Aj :Ai �! Aj be polarizations. Let 'A and 'B be the orresponding produtpolarizations.Lemma 3 Let  2 HomÆ(A;B) be given by the \matrix" ( i;j)i=1;:::;m; j=1;:::;n; i;j 2 HomÆ(Aj ; Bi). Then with respet to 'A and 'B, the Rosati involutionof  is given by the \matrix" ( 0j;i)i=1;:::;n; j=1;:::;m with  0j;i 2 HomÆ(Bj ; Ai).Proof Straightforward alulation. 22 Results for �nite �eldsLet Kjk be a �nite extension of �nite �elds of degree n. Let A0 be an abelianvariety over K, W the Weil restrition of A0 with respet to Kjk.



8 Claus Diem, Niko Naumann2.1 The endomorphism algebraWe now study the endomorphism algebra and the isogeny deomposition ofW over k.Let �k : A0 �! ��1Kjk(A0) be the relative Frobenius homomorphismwith respet to k and let �k : W �! W be the Frobenius endomorphism;f. \Notation".Let �K be the Frobenius endomorphism of A0. Then the image of �Kunder the ring-homomorphism ResKk equals the endomorphism �nk of W .(In fat, after base-hange Kjk, ResKk (�K) as well as �nk beome equal tothe Frobenius endomorphism ofWK .) Thus the ring-homomorphism ResKk :End(A0) �! End(W ) restrits to an inlusion Z[�K℄ �! End(W ), givenby �K 7! �nk . This ring-homomorphism extends to a ring-homomorphismZ[�K℄[X ℄=(Xn� �k) �! End(W ), given by X �! �k.The Frobenius endomorphism �k of W ommutes with all endomor-phisms ofW . Thus by the universal property of the tensor produt, the ring-homomorphisms End(A0) �! End(W ); � 7! ResKk (�) and Z[�K℄[X ℄=(Xn��K) �! End(W ); X 7! �k indue a ring-homomorphismEnd(A0)
Z[�K℄Z[�K℄[X ℄=(Xn� �K) �! End(W ); � 7! ResKk (�); X 7! �k:Theorem 1 Let Kjk be an extension of degree n of �nite �elds. Let A0be an abelian K-variety, W the Weil restrition of A0 with respet to Kjk.ThenEndÆ(A0)
Q[�K℄Q[�K℄[X ℄=(Xn��K) �! EndÆ(W ); � 7! ResKk (�); X 7! �kis an isomorphism.Proof By the de�ning property of the Weil restrition, as abelian groups,HomÆ(W;W ) ' HomÆ(n�1Yi=0 ��iKjk(A0); A0) via a 7! pid Æ (a
k idK): (6)We show that the homomorphism of abelian groupsHomÆ(A0; A0)
Q[�K℄ Q[�K℄[X ℄=(Xn� �K) �! HomÆ(W;W ) 'HomÆ(Qn�1i=0 ��iKjk(A0); A0) 'Ln�1i=0 HomÆ(��iKjk(A0); A0) (7)is an isomorphism. Sine we already know the homomorphism in the theo-rem to be a ring-homomorphism, this will onlude the proof.Let �k 2 Gal(kjk) be the Frobenius automorphism. By base-hange, thisindues an automorphism �k of the k-sheme Wk.The endomorphism �k : W �! W is uniquely determined by the fatthat it operates on k-valued points P ofWk as the inverse of the \arithmetiFrobenius operation": (�k 
k idk) Æ P = ��1k (P ).



On the Struture of Weil Restritions of Abelian Varieties 9Let P = (Pi)n�1i=0 be a k-valued point of Wk ' Qn�1i=0 ��iKjk(A0)K . Then��1k (P ) = (��1k (Pi�1))n�1i=0 (where P�1 := Pn�1); see Subsetion 1.2. Thus(�k 
k idk) Æ P = ��1k (P ) = (��1k (Pi�1))n�1i=0 = ((�k 
k idk) Æ Pi�1)n�1i=0 .It follows that under the isomorphism WK ' Qn�1i=0 ��iKjk(A0), the endo-morphism �k 
k idK of WK is given by the \matrix"0BBBB� 0 � � � � � � �k�k 0 � � � 00 . . . . . . ...0 . . . �k 0 1CCCCA :For � 2 EndÆ(A0), ResKk (�)
k idK is given by the diagonal \matrix"0BBBB� � ��1Kjk(�) .. . ��(n�1)Kjk (�) 1CCCCA ;see Subsetion 1.3. Let x denote the image of X in Q[�K℄[X ℄=(Xn � �K).Let �1x+�2x2+� � �+�nxn 2 HomÆ(A0; A0)
Q[�K℄Q[�K℄[X ℄=(Xn��K) where�i 2 EndÆ(A0). Suh an element is mapped under the homomorphism of thetheorem to an endomorphism of W whih is represented by the \matrix"0BBBBBB� �n �nk �n�1 �n�1k � � � �2 �2k �1 �k��1Kjk(�1)�k ��1Kjk(�n)�nk ��1Kjk(�3)�3k ��1Kjk(�2)�2k... . . . ...�2�nKjk (�n�2)�n�2k �2�nKjk (�n�3)�n�3k �2�nKjk (�n)�nk �2�nKjk (�n�1)�n�1k�1�nKjk (�n�1)�n�1k �1�nKjk (�n�2)�n�2k � � � �1�nKjk (�1)�k �1�nKjk (�n)�nk 1CCCCCCA :The elements of HomÆ(A0; A0)
Q[�K℄Q[�K℄[X ℄=(Xn��K) have a uniquerepresentation as �1x + �2x2 + � � �+ �nxn with �i 2 EndÆ(A0). Under (7),this element orresponds to the �rst row in the above matrix, i.e. to the rowvetor ( �n�nk �n�1�n�1 � � � �1�k ):Now, every element ofLn�1i=0 HomÆ(��iKjk(A0); A0) has this form with unique�i. Thus (7) is an isomorphism. 2Remark 4 Sine the Frobenius endomorphism has degree a power of p =har(k), we obtain in fat an isomorphism(End(A0)
Z[�K℄Z[�K℄[X ℄=(Xn� �K))
Z[1=p℄�! End(W )
Z[1=p℄:



10 Claus Diem, Niko NaumannCorollary 5 EndÆ(W ) is ommutative if and only if EndÆ(A0) is ommuta-tive.The isomorphism of Theorem 1 implies that the orresponding enters areisomorphi. Realling from [10℄ that Z(EndÆ(A0)) = Q[�K℄, we thus get:Corollary 6 We have an isomorphism Q[�K℄[X ℄=(Xn��K) ' Z(EndÆ(W )).2.2 Simpliity of the Weil restritionWe are interested in the question whether the Weil restrition W is simple.In order that W be simple, it is obviously neessary that A0 is simple.Furthermore, it is neessary thatA0 is not isogenous to any abelian K-varietywhih an be de�ned over any proper intermediate �eld � of Kjk (i.e. any�eld � with k � � ( K). (This holds for arbitrary �nite separable �eldextensions Kjk.)For assume that this is the ase. Sine the salar restrition of an isogenyis an isogeny, we an assume that A0 itself an be de�ned over suh a �;A0 = A� for some � as above and an abelian �-variety A. By the de�ningfuntorial property of W = ResKk (A0), we have a anonial homomorphismRes�k(A) �! W whih is easily seen to be an immersion. Sine the dimen-sion of the immersed abelian variety is stritly smaller, W is not simple.We thus make the following assumption:A0 is a simple abelian K-variety whih is not isogenous to any abelianK-variety whih an be de�ned over some proper intermediate �eld � of Kjk.Lemma 7 Under our assumption on A0, there does not exist a divisor q ofn (q 6= 1) suh that �K 2 Q[�K℄q.Proof Assume that suh a q exists and let � 2 Q[�K℄ be suh that �q = �K .(In partiular Q[�K℄ = Q[�℄.)Let � be the sub�eld of Kjk of index q, let V be the Weil restritionof A0 with respet to Kj�. Denoting by � harateristi polynomials ofFrobenius-ations on Tate-modules we have �V (T ) = �A0(T q), and � is aroot of �V . This follows from the well-known fat that the operation ofthe absolute Galois group of � on V (K) is indued by the operation of theabsolute Galois group of K on A0(K); see [5, x1,a)℄.It is easy to see that V ontains a simple abelian �-variety A suh thatthe harateristi polynomial of the Frobenius of A has � as a root.The struture of the endomorphism algebra EndÆ(A) an be alulatedfrom Q[�℄ as abstrat �eld with generator �; see Subsetion 2.3. Inserting� and �K into formula (8), one sees that the entral-simple Q[�K℄-algebras



On the Struture of Weil Restritions of Abelian Varieties 11EndÆ(A) and EndÆ(A0) have the same loal invariants, thus they are isomor-phi. Sine by formula (9), the dimension of abelian varieties an be alu-lated from their endomorphism algebras, it follows that dim(A) = dim(A0).The immersion A �! V = ResK� (A0) indues by the de�ning funtorialproperty of the Weil restrition a non-trivial homomorphism AK �! A0.Sine the dimensions agree and A0 is simple, this is an isogeny. A ontra-dition. 2We now make use of the following well-known fat from �eld theory; see[4, VI, x9, espeially Theorem 9.1℄:Lemma 8 Let F be a �eld, � 2 F; � 6= 0 and n 2 N. Assume that � =2 F qfor all prime divisors q of n. Then either Xn � � is irreduible over F or4jn and � 2 �4F 4.Together with Corollary 6, this implies:Proposition 9 Under our assumption on A0,� either ResKk (A0) has exatly one isotypi omponent, i.e. all simpleabelian subvarieties are isogenous� or 4jn and �K 2 �4Q[�K℄4.Proof By the previous two lemmata, under our assumption on A0, eitherXn � �K is irreduible over Q[�K℄ or 4jn and �K 2 �4Q[�K℄4. Corollary 6implies: Xn��K is irreduible over Q[�K℄ if and only if Z(EndÆ(ResKk (A0)))is a �eld. This in turn is equivalent to the fat that ResKk (A0) has exatlyone isotypi omponent. 2Remark 10 By Honda's Theorem (see Proposition 12), it is obviously pos-sible that additionally to our general assumption on A0 the seond onditionis satis�ed. It is interesting to note that there even exist ordinary ellip-ti urves E 0 over �elds of the form Fp4 (p prime) whih are non-isogenousto any ellipti Fp4 -urve whih an be de�ned over Fp2 and whih satisfy�K 2 �4Q[�K℄4. Then ResFp4Fp (E 0) has more than one isotypi omponent.Sine on the other hand it annot ontain an ellipti urve by our �rst as-sumption on E 0, ResFp4Fp (E 0) has exatly two isotypi omponents both ofwhih are simple.For example, let p be a prime suh that ��2p � = 1, let K := Fp4 ; k := Fp .By assumption, p splits in the �eld Q[p�2℄; see [8, Satz 8.5.℄. Sine this�eld has lass number 1, there is a prime element � 2 OQ[p�2℄ suh that(�)(�) = (p). (Where � denotes onjugation.) Sine the norm of an elementis always positive, this implies �� = p. If i 2 N, then �i 6= �i, thus �i =2 Q.



12 Claus Diem, Niko NaumannLet � := ��4. Then �i =2 Q for all i 2 N. In partiular, Q[�℄ = Q[p�2℄.Let E 0 be a simple abelian K-variety whih orresponds to (Q[�℄; �) byHonda's Theorem (see Proposition 12). By formula (8), all loal invariantsof EndÆ(E 0) are ongruent to 0, thus EndÆ(E 0) ' Q[�℄, and E0 is an elliptiK-urve. Sine �i =2 Q for all i 2 N, E 0 is ordinary.The algebrai integer � = ��4 = �4( �p�2)4 lies in �4Q[�℄4. It remainsto hek thatE0 is not isogenous to any ellipti K-urve whih an be de�nedover Fp2 .Assume this was the ase. Then there is a � 2 EndÆ(E 0) = Q[�℄ =Q[p�2℄ with �2 = � = ��4. This implies i = p�1 = ��2 2 Q[p�2℄, aontradition.Our aim is now to give onditions under whih the Weil restrition of A0 iseven simple.Theorem 2 Let Kjk be an extension of �nite �elds of degree n and A0 asimple abelian K-variety. Assume that A0 is not isogenous to any abelian K-variety whih an be de�ned over a proper intermediate �eld of Kjk. Assumein addition that one of the following holds:� End(A0) is ommutative and further, if 4jn, then �K =2 �4Q[�K℄4.� The extension degree n is prime.Then ResKk (A0) is simple.Proof Assume as in the theorem that A0 is not isogenous to any abelianvariety whih an be de�ned over a proper intermediate �eld of Kjk.We �rst treat the ase that End(A0) is ommutative and further, if 4jn,then �K =2 �4Q[�K℄4. Under these onditions, EndÆ(ResKk (A0)) is also om-mutative (see Corollary 5), and by the above Proposition, ResKk (A0) hasexatly one isotypi omponent. This implies that ResKk (A0) is simple.We now ome to the ase that the extension degree n is a prime. LetB � ResKk (A0) be a simple abelian subvariety. Applying base-hange, weget BK � Qn�1i=0 ��iKjk(A0). This implies dim(A0) j dim(B). Additionally,the dimensions annot be equal sine otherwise by the de�ning funtorialproperty of the Weil restrition, we would have an isogeny BK �! A0 whihis impossible by assumption. On the other hand, sine by Proposition 9ResKk (A0) has exatly one isotypi omponent, dim(B) j dim(ResKk (A0)) =n dim(A0). Sine n is a prime, this implies dim(B) = dim(ResKk (A0)) thusB = ResKk (A0). 2Remark 11 Let K := Fp4 ; k := Fp where p is a prime with p � 1 (mod 4).We will now give an ellipti K-urve E 0 with non-ommutative endomor-phism ring suh that ResKk (E 0) is non-simple even thoughE 0 is not isogenous



On the Struture of Weil Restritions of Abelian Varieties 13to any abelian Fp4 -variety whih an be de�ned over Fp2 and the ondition�K =2 �4Q[�K℄4 is satis�ed.Let E0 be a simple abelian K-variety whih orresponds to the integer�p2 by Honda's Theorem; see Proposition 12. By formula (8), the loalinvariants of EndÆ(E 0) at p and 1 are ongruent to 12 , thus E 0 is a super-singular ellipti urve suh that all endomorphisms of E 0Fp an be de�nedover Fp4 .Assume there is an ellipti � := Fp2 -urve E suh that EK � E 0. Let�� be its Frobenius endomorphism. Then we have Q[��℄ ' Q[i℄ (i := p�1),and under this isomorphism, �� orresponds to ip. Now by assumption,p splits in Q[i℄, and from formula (8), it follows that the loal invariantsof EndÆ(E) over p are ongruent to 12 , thus by (9), E is 2-dimensional, aontradition.Let W be the Weil restrition of E 0 with respet to Kjk. Then by Corol-lary 6, the enter of EndÆ(W ) is isomorphi to Q[X ℄=(X4+ p2) = Q[ 4p�p2℄,and under this isomorphism �k orresponds to 4p�p2. In this �eld, p isrami�ed of degree 2 and splits into 2 prime ideals (beause it already splitsin the sub�eld Q[i℄). Again by formula (8), the endomorphism algebras ofthe simple omponents of W are �elds, thus isomorphi to Q[ 4p�p2℄. Itfollows with (9) that the simple omponents of W are 2-dimensional, thusW is not simple.2.3 Appendix to Setion 2: Some results by Honda and TateFor the onveniene of the reader, we reall Honda's Theorem on the lassi-�ation of simple abelian varieties over �nite �elds and Tate's results how toompute the struture of the endomorphism ring of an abelian variety overa �nite �eld; .f. [3, 10, 11℄.Fix a �nite �eld k = Fq , where q = pa with p a prime and a 2 N. Then,if A is a simple abelian k-variety and �k is its Frobenius endomorphism, forevery inlusion ' of Q[�k℄ into Q, we have j'(�k)j = q 12 .Now Honda's Theorem states:Proposition 12 (Honda) The assignment A 7! (Q[�k℄; �k) indues a bi-jetion between the set of isogeny lasses of simple abelian k-varieties andthe set of isomorphism lasses of �elds Q[�℄ with �xed generator � suh that� is an algebrai integer and under all inlusions into Q, � has absolutevalue q 12 .By Honda's Theorem, for every simple abelian k-variety A, the strutureof the endomorphism algebra EndÆ(A) only depends onQ[�k℄ as abstrat �eldwith generator �k. Sine End0(A) is entral-simple over Q[�k℄, to determine



14 Claus Diem, Niko Naumannits struture, we only have to give its loal invariants at all �nite and realvaluations.The formula for this is as follows: Let v be a normalized valuation ofQ[�k℄. Then, if v is �nite, the loal invariant of EndÆ(A) at v is given byinvv � v(�k)a fv (mod 1); (8)where fv denotes the absolute residue degree of Q[�k℄ at v. In partiular, ifv is a �nite valuation whih does not lie over the valuation of p, the loalinvariant is ongruent to 0.If v is real, then the loal invariant is ongruent to 12 .Letm be the least ommon denominator of the loal invariants. Then theorder of EndÆ(A) in the Brauer group of Q[�k℄ is m, m2 = [EndÆ(A) : Q[�k℄℄,and the dimension of A in given bydim(A) = 12 m [Q[�k℄ : Q℄: (9)3 Results for abelian varieties whih an be de-�ned over the base-�eldThroughout this setion, let Kjk be a �nite Galois extension of degree nwith Galois group G, and let A be an abelian k-variety of dimension d. LetW be the Weil restrition of AK with respet to Kjk.We want to determine the struture of the endomorphism ring of W ,and the isogeny deomposition of W over k.3.1 Arithmeti beomes geometri operationFor any k-sheme Z, G operates on AK(ZK) by �(P ) = �P��1. Theseoperations de�ne an automorphism of the funtor Z 7! AK(ZK) from theategory of k-shemes to the ategory of abelian groups. We obtain au-tomorphisms of the representing objet W = ResKk (AK) whih we denoteby a� for � 2 Gopp. We thus have a group-homomorphism a : Gopp �!Aut(W ); � �! a� , where Aut(W ) denotes the group of automorphisms ofthe abelian k-variety W .We want to alulate how a� 
k idK operates on WK ' AGoppK .We have �(u) = �(pid) = p��1 : WK �! AK by (2). The homomor-phism a� of the abelian k-variety W is the W -valued point of W whih or-responds to �(u). So by Subsetion 1.2, a� 
k idK = (��1(�(u)))�2Gopp =(��1(p��1))�2Gopp = (p��1�)�2Gopp . (The last equation follows from (2).)We have established:



On the Struture of Weil Restritions of Abelian Varieties 15Lemma 13 a� 
k idK : AGoppK �! AGoppK operates on Z-valued points (anyZ) by (P�)�2Gopp 7! (P��1�)�2Gopp.3.2 The endomorphism ring as skew group ringLemma 14 Let � 2 Gopp; � 2 End(AK). Then a�ÆResKk (�) = ResKk (�(�))Æa� 2 End(W ).Proof Easy alulation on Z-valued points. 2To formulate the result about the struture of the endomorphism ring ofW , we need a generalization of the onept of a group ring �rst.De�nition Let � be a ring, G a group, t : G �! Aut(�) a group-homo-morphism. The appliation of t(�) to some � 2 � will by denoted by�(�). Following [9℄, we de�ne the skew group ring �t[G℄ to be the followingring:1 The underlying abelian group is �G with the usual \omponentwise"addition. As usual, for � 2 G, let � also denote (Æ�;� )�2G 2 �G.The multi-pliation is de�ned by P�2G �� � �P�2G �� � =P�;�2G �� �(��) ��.The ring � is naturally immersed in �t[G℄. For �xed �; G and t : G �!Aut(�), the ring �t[G℄ has the following universal property:Lemma 15 Let B be a ring, f : � �! B be a ring-homomorphism, andlet g : G �! B� be a group-homomorphism. Assume that for � 2 �; � 2G, g(�) f(�) = f(�(�)) g(�). Then there is a unique ring-homomorphism�t[G℄ �! B with � 7! f(�) and � 7! g(�).Now let G be the Galois group as above, t : Gopp �! Aut(End(AK))the natural operation given by � 7! (� 7! �(�) = ����1). From Lemmata14 and 15 it follows that P�2Gopp �� � 7! P�2Gopp ResKk (��) a� de�nes aring-homomorphism End(AK)t[Gopp℄ �! End(W ): (10)Theorem 3 Let Kjk be a �nite Galois extension with Galois group G, Aan abelian k-variety, W the Weil restrition of AK with respet to Kjk,t : Gopp �! Aut(End(AK)) the natural operation. ThenEnd(AK)t[Gopp℄ �! End(W ); X�2Gopp �� � 7! X�2Gopp ResKk (��) a�is an isomorphism.1This ring is a speial ase of a rossed produt (with respet to some operation); f.[9℄. In [2℄, the same ring is alled twisted group ring. However, in [9℄, this word is reservedfor the speial ase of a rossed produt with respet to a trivial group operation.



16 Claus Diem, Niko NaumannProof Analogously to the proof of Theorem 1, we make use of the isomor-phism Hom(W;W ) ' Hom(A GoppK ; AK) ' L�2Gopp Hom(AK; AK) of theright-hand side.By (2), the image of some � 2 Gopp in Hom(A GoppK ; AK) is p��1 , orre-sponding to the row vetor whih is zero exept at the \�-th" entry whereit is 1.Thus the image ofP�2Gopp ��� (where �� 2 End(AK)) isP�2Gopp ���1 p�,orresponding to the row vetor (���1)�2Gopp .It is thus immediate that we have an isomorphism. 2Corollary 16 The isomorphism in the theorem indues an isomorphismEndÆ(AK)t[Gopp℄ �! EndÆ(W ).By the Complete Reduibility Theorem (see [6, Proposition 12.1℄) weknow that the ring EndÆ(W ) is semi-simple. Thus the skew group ringEndÆ(AK)t[Gopp℄ is semi-simple.It an be proven more generally that every rossed produt over a semi-simple ring with a �nite group in whih the group order is invertible issemi-simple; see [9, Theorem 4.1.℄.We now want to study the ring-homomorphismEnd(AK)t[Gopp℄ ��! End(W ) ,!End(WK) ' End(A GoppK ) ' MGopp(End(AK)): (11)We denote the matrix orresponding to a� by A� and the matrix orrespond-ing to ResKk (�) by J(�) (for a� as above and � 2 End(AK)).We have already shown in Subsetion 1.3 that J(�) is the diagonal matrix(��1(�)Æ�;�)�;�2Gopp .Let us determine to whih matrix A� 2 MGopp(End(AK)) the endomor-phism a� orresponds. First of all, p� : WK ' A GoppK �! AK orrespondsto the row vetor (Æ�;�)�2Gopp . As a� = (p��1�)�2Gopp (see Lemma 13), weget A� = (Æ��1�;�)�;�2Gopp = (Æ�;��)�;�2Gopp : (12)Before ontinuing let us reall the de�nition of the left regular (matrix)representation.The left regular (matrix) representationLet � be a ring. If � �! � is a homomorphism of rings, we an regard� as �-right module, and if we do so, we write Endr�(�) for the ring ofendomorphisms.



On the Struture of Weil Restritions of Abelian Varieties 17Now let � �! � be a homomorphism of rings and assume additionallythat � is free as �-right module on a �nite set of generators �, i.e. � ' ��as �-right modules. Multipliation by elements of � from the left indues aring-homomorphism l : � �! Endr�(�) ' Endr�(��); (13)the left regular representation.For a �xed basis �, the right-hand side of (13) is anonially isomorphito the matrix ring M�(�). The isomorphism is given as follows:Endr�(��) �!M�(�); a 7! (��;�)�;�2� with ��;� 2 �and a(�) =P�2� � ��;� : (14)By omposition of (13) with (14), we get the left regular matrix representa-tion (with respet to the basis �).L : � �!M�(�):We now apply these onepts in the ontext of the skew group ring.Let G be a �nite group, t : G �! Aut(�) be a homomorphism, �t[G℄ theorresponding skew group ring.We alulate expliitly the left regular representation l : �t[G℄ �!Endr�(�t[G℄) and the left regular matrix representation L : �t[G℄ �! MG(�)with respet to the basis G.Let � 2 G. Then l(�) : � 7! �� =P�2G �Æ�;�� and thusL(�) = (Æ�;��)�;�2G:Let � 2 �. Then l(�) : � 7! � � = � ��1(�) and thusL(�) = (��1(�) Æ�;�)�;�2G:We are now going to relate these de�nitions and alulations with our sit-uation. So let � := End(AK), G the Galois group and t : Gopp �! End(AK)the natural operation. Let L be the left regular matrix representation of �with respet to the basis Gopp. Then L(�) = A� and L(�) = J(�). Thus:Proposition 17 Homomorphism (11) is the left regular matrix representa-tion of the skew group ring End(AK)t[Gopp℄ with respet to the basis Gopp.



18 Claus Diem, Niko Naumann3.3 The Rosati involutionLet ' : AK �! bAK be a polarization. Then ResKk (') : W �! W is also apolarization; see Subsetion 1.5.We want to alulate how the Rosati involution of W with respet toResKk (') is given under the isomorphism of Corollary 16.Let us denote the Rosati involution by (: : :)0.First of all, the (de�ning) equation �0 = '�1b�' where � 2 EndÆ(AK)implies ResKk (�0) = ResKk (')�1 ÆResKk (b�) ÆResKk (') = ResKk (�)0:(This holds more generally for any abelian K-variety A0 instead of AK .)We use the inlusion of EndÆ(W ) into the matrix ring MGopp(EndÆ(A))and the fat that ResKk (')
k idK is a produt polarization to alulate theRosati involution of a� with the help of Lemma 3.Sine a� orresponds to the matrix A� = (Æ�;��)�;�2Gopp (see (12)), a0�orresponds to the matrix (Æ�;��)�;�2Gopp = (Æ��1�;�)�;�2Gopp =(Æ�;��1�)�;�2Gopp = A��1 . Thus a0� = a��1 :Sine the Rosati involution is an anti-ring-endomorphism, this implies:Proposition 18 Let Kjk be a �nite Galois �eld extension with Galois groupG, A an abelian k-variety, W the Weil restrition of AK with respet toKjk. Let ' : A �! bA be a polarization. Let � 7! �0 be the Rosati involutionassoiated to '. Then under the isomorphism of Corollary 16, the Rosatiinvolution assoiated to the polarization ResKk (') : W �! W is given byP�2Gopp �� � 7!P�2Gopp ��1�0� =P�2Gopp ��1(�0�) ��1.3.4 Dimensions of omponentsAs in the above proposition, let A be an abelian k-variety, Kjk a galois �eldextension of degree n with galois group G,W the Weil restrition of AK withrespet to Kjk, and let t : Gopp �! End(AK) be the natural operation.Assume D � EndÆ(AK) is a skew �eld, invariant under the operation t.Let Lsi=1 �i = Dt[Gopp℄ be a deomposition of the Dt[Gopp℄-right mod-ule Dt[Gopp℄. This de�nes a deomposition 1 = Pi ei where the ei areorthogonal idempotents, ei 2 �i, suh that �i = eiDt[Gopp℄. Conversely,if we are given a deomposition 1 = Pi ei with orthogonal idempotentsei, then the �i := eiDt[Gopp℄ de�ne a diret sum deomposition of theDt[Gopp℄-right module Dt[Gopp℄.



On the Struture of Weil Restritions of Abelian Varieties 19Via the inlusion Dt[Gopp℄ ,! EndÆ(AK)t[Gopp℄ ' EndÆ(W ), we an re-gard the ei to be elements of EndÆ(W ). For eah i, let i 2 N suh thatiei 2 End(W ).Now put Wi := (iei)(W ). The Wi are abelian subvarieties of W andLsi=1Wi � W . (Conversely, suh an isogeny deomposition where the Wiare abelian subvarieties of W determines a deomposition of EndÆ(W ) asright-EndÆ(W ) module.)Proposition 19 Let D � EndÆ(AK) be a skew �eld, invariant under theoperation t on EndÆ(AK). Let Lsi=1 �i = Dt[Gopp℄ be a deomposition ofthe Dt[Gopp℄-right module Dt[Gopp℄. This orresponds to a deompositionidAK = Pi ei. Let Wi := (iei)(W ) be as above. Then WiK � AniK (non-anonial isomorphism) whereni = dimD(�i):Proof Choose a bijetion between Gopp and the set f1; : : : ; ng. ThenA GoppK 'AnK .Let l and L be the left regular (matrix) representations of EndÆ(AK)t[Gopp℄,lD and LD the left regular (matrix) representations ofDt[Gopp℄ (both regularmatrix representations with respet to the basis Gopp). Let �M : MGopp(D) �!MGopp(End(AK)) be the anonial inlusion. Then L = �M LD.By onstrution lD(ei) is the identity on �i and zero on all �j for j 6= i.Let ni be the dimension of the D-module �i. For eah i, hoose a basis(b(j)i )j=1;:::;ni of the D-module �i. Then all n elements b(j)i de�ne a basis ofthe D-module Dt[Gopp℄. With respet to this basis, the matrix assoiatedto lD(ei) is zero outside a blok of size ni where it is the identity matrix.We now have two matrix representations of lD(ei) with respet to dif-ferent bases, and via a base hange matrix, we an transform one into theother: There exists an invertible matrix B 2 Gln(D) suh that BLD(ei)B�1is zero outside a blok of size ni where it is the identity matrix.Let b 2 EndÆ(AGoppK ) ' EndÆ(AnK) orrespond to �M(B). By Proposition17 and our notational onventions, the endomorphism assoiated to thematrix L(ei) = �MLD(ei) is ei 
k idK . By the above onsiderations, b(ei 
kidK)b�1 is an endomorphism whose image is isomorphi to AniK . It followsthat the image of i ei 
k idK is also isomorphi to AniK . 2Remark 20 Let AK be simple, D = EndÆ(AK). Assume that all ei inthe above proposition are entral. Then all �i as above are rings andwe have an isomorphism Qsi=1�i ' Dt[Gopp℄ ' EndÆ(W ) of rings. Fur-thermore, the (iei)(W ) are generated by isotypi omponents of W and�i ' EndÆ((iei)(W )). So in partiular, the number ni in the above propo-sition satis�es ni = dimD(EndÆ(Wi)).



20 Claus Diem, Niko Naumann3.5 The yli aseWe now apply the above results to the ase that G is yli of order n.We identify G with Gopp and �x some generator � 2 G. Let a = a� 2End(W ) be the automorphism orresponding to �.Denote the residue lass of X in Q[X ℄=(Xn� 1) by x. Then we have aninlusion Q[X ℄=(Xn� 1) �! EndÆ(AK)t[G℄; x 7! �:The polynomial Xn � 1 2Z[X ℄ splits over ZasXn � 1 =Ydjn �d;where �d is the d-th ylotomi polynomial.Let �0d := (Xn � 1)=�d. By the Eulidian algorithm, there exist 	d 2Q[X ℄ withPdjn	d�0d = 1. Let Ed := 	d �0d. Then the Ed(x) 2 Q[X ℄=(Xn�1) are pair-wise orthogonal idempotents. The orresponding deompositionis Q[X ℄=(Xn� 1) 'Ydjn Q[X ℄=�d =Ydjn Q(�d):(This is nothing but the Chinese Remainder Theorem in this partiularase.)Let Wd := dEd(a)(W ) for suitable d 2 N. We then have an isogenydeomposition W �Ydjn Wd;and by Proposition 19, the Wd are abelian varieties with WdK � A'(d)K .We also haveWd = �0d(a)(W ). { We only have to show that d�0d(a)(W ) �Wd. This follows from �0d(x) = (Pf jn	f (x)�0f(x))�0d(x) = 	d(x)�0d2(x) =Ed(x)�0d(x).It is lear that Wd is also the redued identity omponent of the kernelof d(id� Ed(a)) = dPf jn;f 6=d	f (a)�0f(a) =(dPf jn; f 6=d	f (a)Qgjn; g 6=d;f �g(a)) �d(a):It is also the redued identity omponent of the kernel of �d(a). { We onlyhave to show thatWd is ontained in this kernel. But sine Wd = �0d(a)(W )and �0d(x)�d(x) = 0, this is obvious.We now want to study whether the Wd are simple or split further. Wemake the following assumptions.



On the Struture of Weil Restritions of Abelian Varieties 21AK is a simple abelian K-variety whose endomorphisms an be de�nedover k and whose endomorphism ring is ommutative.Note that if k is �nite, all endomorphisms of AK an automatially bede�ned over k if we assume End(AK) to be ommutative.Also if A is an ordinary ellipti urve over an arbitrary �eld k and n isodd, then all endomorphisms of AK an be de�ned over k. This is beauseunder this ondition, End(AK) is either Zor a quadrati order, thus theonly possible non-trivial automorphism of End(AK) has order 2, and on-sequently the image of the representation Gal(Kjk) �! Aut(End(AK)) istrivial.Under the assumptions, we have the isomorphismsEndÆ(A)[X ℄=(Xn� 1) ' EndÆ(AK)[G℄ ' EndÆ(W )x 7! � 7! a :Let �d split into the produt of the non-trivial moni irreduible polynomials�(1)d ;�(2)d ; : : : ;�(rd)d over EndÆ(A). Let �0d(i) := (Xn � 1)=�(i)d . Sine Xn � 1is separable in harateristi zero, the �(i)d are pair-wise oprime for varyingd and i, and there exist 	(i)d with PdjnPrd1=i	(i)d �0d(i) = 1. Let E(i)d :=	(i)d �0d(i).Let W (i)d := (i)d E(i)d (a)(W ) for suitable (i)d 2 N. Then again by Proposi-tion 19, W (i)d is an abelian k-variety with (W (i)d )K � Adeg(�(i)d )K . The abeliank-variety W (i)d is simple and its endomorphism algebra is isomorphi to the�eld EndÆ(A)[X ℄=�(i)d . The W (i)d are pair-wise non-isogenous (sine EndÆ(W )is ommutative), thus they are the isotypi omponents of W .As above, one sees thatW (i)d = �0(i)d (a)(W ) and thatW (i)d is the reduedidentity omponent of the kernel of �(i)d (a).The omponentWd is simple if and only if �d is irreduible over EndÆ(A),i.e. if and only if EndÆ(A)
QQ(�d) is a �eld. If we �x an inlusion of EndÆ(A)into Q, this is the ase if and only if EndÆ(A) \Q(�d) = Q.In partiular, none of the Wd splits further if EndÆ(A) = Q as is the aseif A is an ellipti urve without omplex multipliation (over k).We proved:Theorem 4 Let Kjk be a yli �eld extension of degree n. Let A be anabelian k-variety.Let W be the Weil restrition of AK with respet to Kjk. For all djn,W ontains anonially an abelian subvariety Wd with WdK � A'(d)K (non-anonially), and W is isogenous to the produt of the Wd. Here, W1 = Aitself.
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