
ON THE STATIC METRIC EXTENSION PROBLEM

STEFAN CZIMEK

Abstract. The subject of this Master thesis under the guidance of

M. Eichmair is the following theorem of J. Corvino and R. Schoen [5]:

Minimal mass extensions are static. We revisit their proof giving full

details. On the way, we fill in two gaps in their argument and strengthen

their result.
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1. Preliminaries

In this section, we introduce the basic notions before stating and proving

the main theorem in Section 2. In this thesis, all manifolds and submanifolds

are taken to be smooth and orientable.

Definition 1.1. A complete Riemannian 3-manifold (M, g) is called asymp-

totically flat if there exists a compact set K ⊂ M and a diffeomorphism
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x = (x1, x2, x3) : R3 \ B̄1(0)→M \K such that

gij − δij = O(|x|−p) for all i, j ∈ {1, 2, 3}

R(g) = O(|x|−q)

as |x| → ∞ in the chart R3 \ B̄1(0) with corresponding estimates for all

higher order derivatives. Here, p > 1
2 and q > 3, cf. [5, p. 161]. For R > 1,

we define the open set BR ⊂ M to be the union of K and the image of

BR(0) \ B̄1(0) under this diffeomorphism.

Remark 1.2. The definition of asymptotic flatness can be extended to

multiple ends in a straightforward manner, cf. [5, p. 161]. For simplicity we

assumed the appropriate decay of all higher derivatives of the metric and

the scalar curvature.

Definition 1.3. Let (M, g) be an asymptotically flat Riemannian 3-manifold.

The ADM-mass of (M, g), mADM(M, g), is defined as (cf. [5, p. 161] and

[6]):

mADM(M, g) =
1

16π
lim
r→∞

∫
|x|=r

3∑
i,j=1

(
∂gij
∂xi
− ∂gii
∂xj

)
νj .

Here, ν denotes the Euclidean unit normal.1

Definition 1.4. A surface in a Riemannian 3-manifold is said to be minimal

if its mean curvature vanishes.

Definition 1.5. An orientable minimal surface Σ in a Riemannian 3-manifold

(M, g) is called stable if it satisfies the stability inequality∫
Σ
|∇f |2 ≥

∫
Σ

(
Ric(ν, ν) + |h|2

)
f2

for all f ∈ C∞c (Σ) whose support is disjoint from ∂Σ. Here ν and h denote

a unit normal vector field of Σ and the second fundamental form of Σ,

respectively.

Recall that Σ ⊂M is minimal if it is a critical point of the area functional,

i.e. if
d

dt

∣∣∣∣
t=0

area (Σt) = 0

1This definition of the mass seems to depend on the choice of the chart x : R3 \ B̄1(0)→
M \K. This is in fact not the case, as shown in [1] and [4].
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for every smooth family of surfaces {Σt}|t|<ε with Σ0 = Σ. It is stable if it

is a stable critical point, i.e. for every such variation

d2

dt2

∣∣∣∣
t=0

area (Σt) ≥ 0.

Definition 1.6. Let (M, g) be a connected asymptotically flat Riemannian

3-manifold with non-negative scalar curvature and minimal closed boundary

∂M (possibly empty) such that there are no minimal closed surfaces in M

other than ∂M . Let Ω be a smooth bounded open subset of (M, g) such

that M \Ω is connected and let h be the restriction of g to Ω. We say that

(M, g) is an admissible extension of the Riemannian manifold (Ω, h). The

Bartnik quasi-local mass of (Ω, h), mB(Ω, h), is defined as

mB(Ω, h) = inf{mADM(M, g) : (M, g) is an admissible extension of (Ω, h)}.

An admissible extension realizing this infimum is called minimal mass ex-

tension.

Our definition of admissible extensions allows Ω to contain closed mini-

mal surfaces. For simplicity of exposition we assume that ∂M ⊂ Ω̄. The

existence of a minimal mass extension to a given (Ω, h) is an open problem,

cf. Bartnik’s conjecture in [3].

Definition 1.7. A closed surface is called outer-minimizing if every closed

surface which encloses it has greater or equal area.

Definition 1.8. A minimal surface is called outermost if it is not separated

from infinity by any other closed minimal surface.

Remark 1.9. An outermost minimal surface is in particular an outer-

minimizing closed stable minimal surface, cf. [7] and Chapter 4 of [8].

Theorem 1.10. Let (M, g) be an asymptotically flat Riemannian 3-manifold

with minimal boundary ∂M . Then there is a closed outermost minimal sur-

face in M enclosing ∂M .

Proof. We refer to [7] and Chapter 4 of [8]. �

Staticity as introduced in the definition below is an obstruction to defor-

mations of the scalar curvature in arbitrary directions. The following two

lemmas are Lemma 2.1 and Lemma 2.2 in [5].

Lemma 1.11. For k ≥ 0, the scalar curvature map R : Mk+2,α(M) →
Ck,α(M) is a smooth map of Banach manifolds, where Mk+2,α(M) denotes
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the open set of Riemannian Ck+2,α(M)-metrics. Furthermore, the lineariza-

tion Lg of the scalar curvature operator is given by

Lgh = −4g (trg(h)) + div (div(h))− g(h,Ric(g)).

Lemma 1.12. The formal adjoint L∗g of Lg is given by

L∗gf = − (4gf) g + Hess(f)− fRic(g).

In other words, ∫
M
g(h, L∗gf) =

∫
M

(Lgh)f

for all f ∈ C∞c (M) and smooth (0, 2)-tensors h on M .

Definition 1.13. Given a Riemannian 3-manifold (M, g) and an open sub-

set U ⊂ M , we say that the metric g is static on U if the kernel of L∗g
is non-trivial on U , i.e. there exists a non-trivial f ∈ C∞(U) such that

L∗gf = 0 on U .

2. Static extensions

We prove the following theorem from [5, p. 164].

Theorem 2.1. Let (M, g) be a minimal mass extension of (Ω, h). Then g

is static on M \ Ω̄.

The proof given in [5] lacks the verification of two sub-statements. We fill

these gaps with the proofs of Proposition 2.6 and Claim 2.21 given below.

Furthermore, our construction stays in the class of smooth metrics. We note

a direct corollary:

Corollary. Let (M, g) be a minimal mass extension of (Ω, h). Then the

scalar curvature of g vanishes on M \ Ω.

Proof. We combine Theorem 2.1 with Proposition A.4 from the appendix.

�

2.1. Overview of the proof. The basic strategy was outlined in [5, p.

164]. Here we give many more details and also strengthen the result some.

We will prove the theorem by contradiction. Assume that the minimal

mass extension (M, g) of a smooth bounded open set Ω is non-static onM\Ω̄.
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We reduce to the case where the scalar curvature R(g) does not vanish

identically on M \ Ω̄. Indeed, in the case of R(g) ≡ 0 on M \ Ω̄, we locally

push up the scalar curvature in a compact subset of M \Ω̄. This deformation

can be chosen such that the new metric is close to g and also non-static on

M \ Ω̄, cf. Section 2.2. Note that this new Riemannian manifold has the

same ADM-mass as (M, g) because we only changed the metric in a compact

set.

In the case when R(g) > 0 at a point in M \ Ω̄, we construct a function

u ∈ C∞(M \ Ω) close to 1 with the following properties (cf. Section 2.3)

(1) 0 < u < 1 in M \ Ω̄;

(2) u = 1 on ∂(M \ Ω) and u→ 1 as |x| → ∞;

(3) u4g is asymptotically flat;

(4) R(u4g) ≥ 0.

Furthermore, u is harmonic outside a compact set and has the following

expansion as |x| → ∞:

u = 1 +
A

|x|
+O(|x|−2),

∂u

∂xi
= −Ax

i

|x|3
+O(|x|−3)

We show that the constant A ∈ R is negative, cf. Proposition 2.6. This is

asserted but left unverified in [5]. The next lemma follows as in [14, p. 49]

by explicit calculation.

Lemma 2.2. Let (M, g) be an asymptotically flat Riemannian 3-manifold

and let u be a smooth function on M such that there is an expansion

u = 1 +
A

|x|
+O(|x|−2),

∂u

∂xi
= −Ax

i

|x|3
+O(|x|−3)

as |x| → ∞. Then

mADM(M,u4g) = mADM(M, g) + 2A.

Therefore, if we extend u as 1 on Ω, we have a Riemannian manifold

(M,u4g) with ADM-mass mADM(M,u4g) < mADM(M, g). However, this

metric is in fact not smooth across ∂(M \ Ω). Moreover, there may be

closed minimal surfaces other than ∂M .2

2In general, closed minimal surfaces can appear due to conformal deformations. Consider

for example the spatial Schwarzschild manifold

(
R3 \ {0},

(
1 + m

2|x|

)4

δij

)
. The surface

{r = m/2} is an outer-minimizing closed stable minimal surface.
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We now construct an admissible smooth metric on M that is equal to u4g

outside a compact set. Let χ : M → [0, 1] ⊂ R be a smooth function such

that χ is equal to 1 near ∂(M \Ω) and vanishes outside a large compact set.

Define a new smooth metric ḡ on M by

ḡ = (χ+ (1− χ)u)4g.

We can arrange for u so that ḡ is as close to g as we like. The scalar

curvature of ḡ may be negative in some places but not much. Using that g

is non-static, it follows that ḡ is non-static, cf. details in Section 2.5. We

locally deform ḡ to a smooth metric ĝ with everywhere non-negative scalar

curvature, cf. Section 2.5. It has the same ADM-mass as (M,u4g). In fact,

we can arrange for u so that ĝ is close to g, cf. the argument in Section 2.7.

The following theorem is proven in Section 2.6.

Theorem 2.3. Let (M, g) be asymptotically flat and be such that there are

no closed minimal surfaces in M other than the components of ∂M . Let U

be an open neighborhood of ∂M in M . There exists ε > 0 such that if ḡ is a

Riemannian metric on M with g = ḡ on U such that |g − ḡ|C2(M) < ε and

|(g − ḡ)ab|+ |x||∂k(g − ḡ)ab|+ |x|2|∂2
k`(g − ḡ)ab| < ε

in the chart R3 \ B̄1(0), then there are no closed minimal surfaces in (M, ḡ)

other than the components of ∂M .

Because of the above and the expansion of u as |x| → ∞, the metric ĝ

satisfies the assertions of this theorem with respect to g. Recall that (M, g)

contains no closed minimal surfaces other than the components of ∂M . By

the above theorem ĝ has no other closed minimal surfaces than the compo-

nents of ∂M .

In conclusion, (M, ĝ) is an admissible manifold with mADM(M, ĝ) <

mADM(M, g), cf. Section 2.7. This is a contradiction to the minimality

of (M, g).

2.2. Reduction to the case of non-trivial scalar curvature. Let (M, g)

be a non-static admissible extension of a smooth bounded open subset Ω as

defined above. Assume further that R(g) ≡ 0 on M \ Ω̄.
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We apply Proposition A.2 from the appendix to (M \ Ω̄, g) to obtain a

smooth bounded open set U ⊂ M \ Ω̄ such that g is non-static on U . We

use Theorem A.1 from the appendix to push up the scalar curvature inside

U . We denote the new metric on M by g̃. The ADM-mass is not changed

by this local deformation.

The condition that g is non-static on U is an open condition, cf. Theorem

2.12. We can arrange g̃ to be close to g on U by choosing R(g̃) to be

sufficiently small in U , cf. the statement of Theorem A.1 in the appendix.

It follows that g̃ is non-static on U . In fact, g̃ is non-static on M \ Ω̄. To

see this, assume there exists a non-trivial function f in the kernel of L∗g̃ on

M \ Ω̄. Restrict this function to U . By the above, the kernel of L∗g̃ is trivial

on U , so f must vanish on U . However, we can apply a unique continuation

argument to f to conclude that f ≡ 0 on M \ Ω̄, cf. the proof of Proposition

2.3 in [5]. This is a contradiction which shows that g̃ is non-static on M \ Ω̄.

2.3. Construction of the conformal deformation. Let (M, g) be an

admissible extension of a smooth bounded open subset Ω as defined earlier.

Denote the scalar curvature of g by R(g) and assume it is non-negative and

not identically 0. Let ε > 0 small and χ ∈ C∞(M) be a smooth function on

M \Ω such that ε ≤ χ ≤ 1 on M \Ω and such that χ ≡ 1 outside a compact

set. Consider the following boundary value problem:

4gu−
1

8
R(g)u = −1

8
R(g)(1− χ) in M \ Ω̄

u = 1 on ∂(M \ Ω)(?)

u→ 1 as |x| → ∞.

Remark 2.4. Given ε′ > 0 and an integer k ≥ 0, one can find χ = χε′ such

that

|R(g)χε′ |Ck(M\Ω) < ε′.

Proposition 2.5. The above system has a unique solution u.

Proof. We refer to [5] and references therein. �

Note that u is non-constant. Indeed, if u was constant it would be equal

to 1 by the boundary conditions. However, u ≡ 1 does not satisfy the

differential equation as the support of R(g) is non-empty and χ > 0. We
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note that on the one hand,

4gu−
1

8
R(g)u ≤ 0 on M \ Ω̄.

The strong maximum principle, cf. [13, p. 35], implies that u cannot achieve

a non-positive minimum in M \ Ω̄. This shows that u > 0.

On the other hand, the function v = u− 1 satisfies

4gv −
1

8
R(g)v =

1

8
R(g)χ ≥ 0 on M \ Ω̄.

Here the strong maximum principle implies that v cannot achieve a non-

negative maximum in M \ Ω̄. This shows that u− 1 = v < 0.

We conclude that 0 < u < 1 in M \ Ω̄.

As derived in [14, p. 64-71], the function u has the following expansion

as |x| → ∞

u = 1 +
A

|x|
+ ω(x)

where A ∈ R is a constant and the function ω and its derivatives have the

following expansion as |x| → ∞

ω(x) = O(|x|−2),
∂ω

∂xi
(x) = O(|x|−3),

∂2ω

∂xi∂xj
(x) = O(|x|−4).

By the above conclusion, A ≤ 0.

Proposition 2.6. The constant A in the above expansion of u is negative.

Proof. The following choice of Eδ and integral calculations already appear

in [14]. For any δ > 0 define the set

Eδ = {x ∈M \ Ω : u(x) < 1− δ}.

The set Eδ is bounded for all δ > 0. By Sard’s theorem there exists δ > 0

arbitrarily small such that ∂Eδ is smooth, which we will choose tacitly from

now on. Let R > 0 large such that BR/2 contains Eδ and let W be the

outermost connected component of BR \ Ēδ, i.e. the connected component

that satisfies SR ⊂ ∂W . Both W and R clearly depend on δ.

Claim 2.7. There exists a small δ0 > 0 such that for all δ ≤ δ0

∂W ∩ ∂(M \ Ω) = ∅.

8
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Proof of Claim. Let R′ > 0 such that Ω̄ ⊂ BR′ . As u < 1 in M \ Ω̄,

u0
·

= max
SR′

u < 1. Pick δ0 <
1−u0

2 . This implies that SR′ is contained in the

open set Eδ for all δ ≤ δ0. In particular, for δ ≤ δ0 it follows that W is

disjoint from BR′ . Therefore W clearly does not share any boundary with

Ω, i.e. ∂W ∩ ∂Ω = ∅. �

Thus, for δ > 0 small enough, ∂W is the disjoint union of SR and a subset

of ∂Eδ. We integrate the differential equation over the set W and apply the

divergence theorem to obtain∫
W
−1

8
R(g)(1− χ) +

1

8
R(g)u =

∫
W
4gu =

∫
SR

∇νu+

∫
∂W∩∂Eδ

∇νu.

Here, ν denotes the unit normal vector to the respective boundary pointing

out of W . We use the known expansion of u and its derivatives as |x| → ∞
and the asymptotic flatness of g to calculate

lim
R→∞

∫
SR

∇νu = lim
R→∞

∫
SR

(
xi

|x|
∂i +

∑
i

O
(
|x|−1

)
∂i

)(
1 +

A

|x|
+O

(
|x|−2

))
= lim

R→∞

∫
SR

(
− A

|x|2
+O

(
|x|−3

))
= −4πA.

We let R→∞ and rewrite the above3 as

4πA =

∫
∂W∩∂Eδ

∇νu−
∫
W

1

8
R(g)u+

∫
W

(
1

8
R(g)(1− χ)

)
.

The third term on the right-hand side vanishes for δ > 0 sufficiently small

by the fact that 1 − χ has compact support in M \ Ω.4. The second term

is non-positive as R(g) ≥ 0 and u > 0. The first term is negative by the

strong maximum principle. Indeed, consider the function w = u − (1 − δ)
and notice that it satisfies

4gw −
1

8
R(g)w =

1

8
R(g)(χ− δ) in Eδ

w = 0 on ∂Eδ.

3By the asymptotic flatness of g and our choice of χ, the functions 1
8
R(g) and

− 1
8
R(g)(1− χ) are integrable and the limit is well-defined, cf. [14].

4Note that the sets (Eδ)δ>0 constitute an exhaustion of M \Ω. So for δ > 0 small enough,
the support of 1− χ is contained in Eδ and therefore does not intersect W .
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Note that Eδ contains the support of R(g) for small δ. The function χ − δ
is positive on the set Eδ for δ sufficiently small by our choice of χ. This,

together with the boundary conditions, implies that w is non-constant. Con-

sequently for small δ the maximum principle implies that w cannot achieve

a non-negative maximum in the interior of Eδ. Specifically, the maximum

is attained strictly on the boundary. We apply Hopf’s Lemma (cf. [13, p.

34]) and conclude the negativity of the first term. �

2.4. Bounding the conformal factor. Let ε > 0 and let χ ∈ C∞(M \Ω)

be a function such that ε ≤ χ ≤ 1 as before. Let v ∈ C∞(M \ Ω) denote a

solution to the boundary value problem

4gv −
1

8
R(g)v =

1

8
R(g)χ in M \ Ω̄,

v = 0 on ∂(M \ Ω),

v → 0 as |x| → ∞.

The following is a straightforward consequence of Lemma 3.1 in [14]:

Lemma 2.8. There is a constant C > 0 depending on M \Ω and the exact

asymptotic decay of g so that for any function ξ with compact support on

M \ Ω, we have the inequality(∫
M\Ω

ξ6

)1/3

≤ C
∫
M\Ω
|∇ξ|2.

Remark 2.9. It is not required that ξ = 0 on ∂(M \ Ω).

Again let δ > 0 small such that Eδ = {x ∈ M \ Ω : v(x) < −δ} is a

smooth subset. The function v + δ satisfies

4g(v + δ)− 1

8
R(g)(v + δ) =

1

8
R(g)(χ− δ) in Eδ

v + δ = 0 on ∂Eδ.

By partial integration we estimate∫
Eδ

|∇v|2 = −
∫
Eδ

(v + δ)4g(v + δ) +

∫
∂Eδ

(v + δ)∇νv

= −
∫
Eδ

(v + δ)

[
1

8
R(g)(χ− δ) +

1

8
R(g)(v + δ)

]

10
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≤
∫
Eδ

(
−(v + δ)

1

8
R(g)(χ− δ)

)

≤

(∫
Eδ

(
1

8
R(g)(χ− δ)

)6/5
)5/6(∫

Eδ

(v + δ)6

)1/6

.

We apply the previous lemma to the function

f(x) =

v + δ x ∈ Eδ
0 else.

It follows that (∫
Eδ

(v + δ)6

)1/3

≤ C
∫
Eδ

|∇v|2.

Plugging this into the current calculation, we obtain(∫
Eδ

|∇v|2
)1/2

≤ C

(∫
Eδ

(
1

8
R(g)(χ− δ)

)6/5
)5/6

.

All of the integrals∫
M\Ω

v6

∫
M\Ω
|∇v|2

∫
M\Ω

(R(g)χ)6/5

are finite, since g is asymptotically flat and v decays appropriately5. There-

fore we can take the limit δ → 0 (by Sard’s theorem there exists a sequence

within the set of regular values of v) in the above estimates and get

(∫
M\Ω
|∇v|2

)1/2

≤ C

(∫
M\Ω

(
1

8
R(g)χ

)6/5
)5/6

,

(∫
M\Ω

v6

)1/6

≤ C̃

(∫
M\Ω

(
1

8
R(g)χ

)6/5
)5/6

.

The right hand side of both estimates can be controlled by |R(g)χ|C0(M\Ω).

Apply the interior and boundary elliptic estimates to v, cf. Theorem 2

in [15, p. 314] and the proof of Theorem 5 in [15, p. 323].6 Consequently

5This is clear as v = u− 1 where u denotes the function in Section 2.4.
6Note that we use the boundary estimates only on balls centered on the boundary ∂(M \Ω)
on which v vanishes. Inside M \Ω, we only apply interior estimates so that no boundary
term appears in our estimate. Given a compact set V ⊂ M \ Ω, we cover it by open
balls contained in M \ Ω̄ and open balls centered on ∂(M \ Ω). On each ball, we apply

11
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we see by employing the Theorem 6 (Sobolev embedding) from [15, p. 270]

with k = 2, n = 3 and p = 2 that for any compact V ⊂M \ Ω

|v|C0,1/2(V ) ≤ C
′|R(g)χ|C0(M\Ω),

where C ′ depends on M \ Ω and V .

Furthermore, applying the higher regularity interior and boundary Schauder

estimates as stated in [13, p. 141-142], it follows as above that for any com-

pact V ⊂M \ Ω

|v|Ck+2,α(V ) ≤ C ′′|R(g)χ|Ck,α(M\Ω)

where C ′′ depends on V and α ∈ [0, 1).

Remark 2.10. By appropriately choosing χ = χε, we obtain a u = uε ∈
C∞(M \ Ω) such that uε → 1 smoothly as ε→ 0.

2.5. Gluing and the subsequent scalar curvature deformation. Let

(M, g) be a non-static minimal mass extension of a given smooth bounded

open subset Ω as defined earlier. Assume R(g) non-negative and not iden-

tically 0 on M \ Ω. Let u ∈ C∞(M \ Ω) be the non-trivial solution to the

boundary value problem (?) in Section 2.3.

Let χ : M → [0, 1] ⊂ R be a smooth function such that χ is equal to 1

near ∂(M \Ω) and vanishes outside a large smooth bounded open subset of

M \ Ω̄. Define a new smooth metric ḡ on M by

ḡ = (χ+ (1− χ)u)4g.

Let V = supp(R(g)−R(ḡ)) ⊂M \ Ω̄.

Claim 2.11. There exists a smooth bounded open set U ⊂M \ Ω̄ such that

V ⊂ U and g is non-static on U .

Proof of Claim. This follows directly from the proof of Proposition A.2 in

the appendix. In this proof an exhaustion {Ωk} of M \Ω̄ by smooth bounded

open sets is used. It is shown that there exists a finite integer k0 such that

the kernel of L∗g is trivial on Ωk for all k ≥ k0. As the Ωk constitute an

the estimate to obtain an estimate over V . Note that because g is asymptotically flat,
the constant in the estimate on the interior ball Br(x) converges to the Euclidean value
as |x| → ∞. This Euclidean value only depends on r. Consequently we can uniformly
estimate this constant on M \ Ω.

12
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exhaustion, there exists k large enough such that Ωk contains the bounded

set supp(R(g)−R(ḡ)) and such that g is non-static on Ωk.

We want to deform the scalar curvature of ḡ inside U to be equal to R(g).

To do so, it is necessary to show that the range of surjectivity of the scalar

curvature map at ḡ includes R(g), i.e. that we can deform the scalar cur-

vature of ḡ enough to in fact reach R(g). This is a priori not clear, cf. the

discussion in the beginning of Section 5 in [5].

The following theorem is analogous to Theorem 3 in [5], cf. Remark 2.6

in [16] for a discussion regarding the uniformity statement. For any positive

measurable function ρ, let L2
ρ be the set of functions f such that |f |ρ1/2 ∈ L2;

define H2
ρ analogously.

Theorem 2.12. Let g be a non-static Riemannian metric on a smooth

bounded open set U . Then there is a constant C = C(n, g, U, ρ), uniform for

metrics C∞-near g, so that for f ∈ H2
loc(U),

‖f‖H2
ρ(U) ≤ C‖L∗g(f)‖L2

ρ(U).

Consequently, there exists a uniform lower bound on the surjectivity ra-

dius of the scalar curvature map at g̃ for all g̃ smoothly close to g, cf. [5].

By Remark 2.10 and the definition of ḡ, we can arrange that ḡ is sufficiently

close to g such that

(1) g and ḡ share the same uniform constant from the previous theorem

(2) R(g) is within the lower bound of the surjectivity radius of the scalar

curvature map at ḡ implied by this constant.

In other words, we can arrange ḡ such that the ε > 0 in Theorem A.1

from the appendix is sufficiently large so that we can deform ḡ inside U to

a metric ĝ with scalar-curvature equal to R(g) in U . Note that ĝ = g near

∂(M \ Ω) and ĝ = u4g outside a bounded subset of M \ Ω̄.

2.6. The absence of closed minimal surfaces is an open condition.

Theorem 2.13. Let (M, g) be asymptotically flat and such that there are

no closed minimal surfaces in M other than the components of ∂M . Let U

be an open neighborhood of ∂M in M . There exists ε > 0 such that if ḡ is a

Riemannian metric on M with g = ḡ on U such that |g − ḡ|C2(M) < ε and

|(g − ḡ)ab|+ |x||∂k(g − ḡ)ab|+ |x|2|∂2
k`(g − ḡ)ab| < ε

13
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in the chart R3 \ B̄1(0), then there are no closed minimal surfaces in (M, ḡ)

other than the components of ∂M .

To prove this theorem, assume by contradiction that there exists a se-

quence εi ↘ 0 and a sequence of Riemannian metrics gi such that for all

i ≥ 1

(1) gi = g on U and |gi − g|C2(M) < εi

(2) |(g − gi)ab| + |x||∂k(g − gi)ab| + |x|2|∂2
k`(g − gi)ab| < εi in the chart

R3 \ B̄1(0)

(3) There exists a closed surface Σi which is both minimal with respect

to gi and disjoint from ∂M .

We will show that this implies that there exists a closed minimal surface

Σ other than ∂M in (M, g). By the proof of Theorem 2.2, we can assume

without loss of generality that each Σi is an outer-minimizing closed stable

minimal surface.7

Claim 2.14. Given an asymptotically flat Riemannian 3-manifold (M, g),

there exists a large constant R0 > 0, depending on the exact asymptotic

decay of g, such that every closed minimal surface Σ ⊂ M is contained in

the coordinate ball of radius R0.

Proof of Claim. The asymptotic flatness of g implies that there exists a

large R0 > 0 such that for all R ≥ R0 the coordinate sphere SR of radius

R is mean convex with respect to g. This can be seen by direct calculation

employing the following lemma, using that SR is for large R > 0 a level set

of f(x) = |x| (in the chart).

Lemma 2.15. Assume that the the hypersurface Σ is given as the regular

level set of a function G in a chart of M . Then its mean curvature can be

expressed in this chart as

HΣ,g =

(
gab − GaGb

|∇gG|2

)
(∇2

gG)ab

|∇gG|

Here the indices a, b run over 1, 2, 3. If G(x1, x2, x3) = u(x1, x2)−x3, where

u is a smooth function, then the mean curvature in this chart is a quasi-

linear elliptic differential operator in u of the form

H(u) = aij(x, u, ∂u)∂i∂ju+ b(x, ∂u).

7In fact, for all i ≥ 1, the existence of Σi implies that the outermost minimal surface for
gi is not given by ∂M . Note that these surfaces do not converge to ∂M in C0 as i → ∞
because gi = g in a fixed open neighbourhood of ∂M for every i.

14
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Proof. The second statement follows by explicit calculation using the ex-

pression for level sets. �

Assume there exists a closed minimal surface Σ which is not contained in

the ball of radius R0. By compactness, we can find a radius R1 > R0 such

that the sphere of radius R1 exactly touches the surface Σ. Let p ∈ Σ be

one of the touching points.

There exists a coordinate system with origin at p such that SR and Σ can

locally be written as C2-graphs over the x1-x2-plane and ∂
∂x3

points towards

the interior of BR at p. Denote the functions u and v. By construction, the

following holds locally around p:

u ≤ v

u(p) = v(p)

H(u) > H(v) = 0.

Here H(u) denotes the mean curvature of the graph of u with respect to g.

u
v

ν

p

Image: A simplified sketch of the functions u, v and the outward-pointing unit normal ν.

Lemma 2.5 enables us to apply a comparison principle, cf. Theorem 10.1

in [13, p. 263]. It follows that H(u) > H(v) and u ≤ v near p imply that

u < v near p. This is a contradiction to u(p) = v(p), which proves the

claim. �

We now return to the assumptions of the proof of Theorem 2.13. The

above claim allows us to prove the following:

Claim 2.16. There exist an R0 > 0 and an i0 such that Σi is contained in

a ball of radius R0 for all i ≥ i0.

Proof of Claim. As in the proof of the previous claim, we let R0 > 0 large

such that HSR,g > 0 on SR for all R ≥ R0. Because of the bound on gi − g
and its derivatives as |x| → ∞, there exists i0 such that HSR,gi > 0 for all

15
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R ≥ R0 and i ≥ i0. By a barrier argument similar to the above, we conclude

that Σi ⊂ BR0 for all i ≥ i0. �

Claim 2.17. We can uniformly bound the area of the Σi’s with respect to

the g-measure.

Proof of Claim. As all surfaces Σi are outer-minimizing, it follows that the

enclosing sphere SR0 with radius R0 from the previous claim has greater

area, i.e. µgi(SR0) > µgi(Σi). Because gi → g as i → ∞, it follows that

µgi(SR0)→ µg(SR0) as i→∞, so that we can uniformly bound µgi(Σi) and

consequently µg(Σi) as well. �

The following lemma is Lemma 2.4 in [9].

Lemma 2.18. Consider a metric on B1(0) of the form gij = δij + bij where

|x|−1|bij |+ |x|−2|∂kbij | ≤ C ′

for all |x| ≤ 1. Let Σ ⊂ B1(0) be an oriented surface and let hΣ,g, hΣ,δ

and HΣ,g, HΣ,δ denote the (1,1)-second fundamental forms and the mean

curvature scalars of Σ computed with respect to g and δ. Then

|hΣ,g − hΣ,δ|δ ≤ C|x|2
(
|x|−1|hΣ,g|g + 1

)
|HΣ,g −HΣ,δ| ≤ C|x|2

(
|x|−1|hΣ,g|g + 1

)
for all |x| ≤ r0, where r0 and C depend only on C ′.

We recall a local uniform graph representation theorem, cf. Theorem

E.2.4 in [10], which will imply the local convergence of the surfaces Σi to a

hypersurface Σ (possibly after passing to a subsequence).

Theorem 2.19. Let {Mj} denote a sequence of n-dimensional immersed

submanifolds in Rn+1. Consider a sequence of points xj ∈ Mj with xj →
x∗ ∈ Rn+1. Suppose that we are given a radius ρ > 0 within which no Mj

has a boundary, i.e. (
M j \Mj

)
∩Bρ(x∗) = ∅ for all j

and the following uniform curvature estimate applies:

sup
x∈Mj∩Bρ(x∗)

|h|2 ≤ C0

ρ2
for all j.

Then there exists a constant σ(ρ, C0) and an affine space Tn ⊂ Rn+1 con-

taining x∗ such that, after possibly passing to a subsequence, the submani-

folds representing the connected component around xj of Mj within a given

16
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cylinder8,

Cxj
(
Mj ∩ Cσ, 2ρ

3
,Tn(x∗)

)
converge in C1,α, α ∈ [0, 1), as graphs to an n-dimensional C1,1-submanifold

M∗ containing x∗ and tangent to Tn at that point. If we additionally have

higher order curvature estimates,

sup
x∈Mj∩Bρ(x∗)

|∇mh|2 ≤ Cm

ρ2(m+1)
for all m ≥ 0 and all j

then the convergence is in C∞ to a smooth submanifold.

Remark 2.20. The idea of the proof is the following: First, given a point x

in a surface M , one shows that a bound on the second fundamental form of

M around x implies that there exists an r0 > 0 such that M can locally be

written as a graph over a ball of radius r0 centered at x in the tangent plane

to M at x. Second, for j sufficiently large, one can write the surfaces Mj

locally around xj as graphs over one hyperplane. By the uniform curvature

bound there exists an r1 > 0 such that locally around each xj the surfaces

Mj can be written as graphs over a ball of radius r1 in this one hyperplane.

It follows that for j large, the domain of each graph representation contains

the ball of radius r1/8 > 0 centered at x∗. One applies Arzelà-Ascoli on this

ball to obtain the hypersurface M (after possibly going to a subsequence).

We apply the above results to show that there exists a converging subse-

quence of {Σi}.

Let pi ∈ Σi be a sequence of points such that pi → p for a point p ∈ M
as i → ∞. We choose normal coordinates in a neighbourhood O of p such

that

(1) p is the origin of the coordinate system,

(2) gab(x) = δab + O(|x|2) for x small (in the Euclidean norm on the

coordinate chart).

Given a stable minimal hypersurface in a Riemannian n-manifold (M, g),

for 3 ≤ n ≤ 5, minimal surface theory allows us to estimate its second fun-

damental form pointwise by its area, cf. [11]. By Claim 2.17 and the fact

that gi → g for i→∞, we have a uniform g-bound for hΣi calculated with

8Let CR,h,Tn(x0) denote the cylinder of radius R, height 2h, whose axis is normal to Tn

centered at x0. For any set W containing xj , let Cxj (W ) denote the connected component
of W which contains xj .
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respect to gi. As a consequence of Lemma 2.7 and the convergence of the

gi, we can uniformly bound the Euclidean norm of the second fundamental

form of each surface Σi calculated with respect to the Euclidean norm.

We employ Theorem 2.8 to conclude the existence of a C1,1-hypersurface

Σp and a subsequence Σi → Σp in C1,α for i → ∞ within a non-empty

cylinder centered at p whose radius we can bound below.9

The local convergence of a subsequence of the minimal surfaces Σi → Σp

in C1,1 as i → ∞ together with the convergence gi → g as i → ∞ implies

that HΣp,g = 0 holds weakly on Σp. Regularity theory for minimal surfaces,

cf. [12], shows that Σp is in fact smooth and consequently Σp is minimal in

the classical sense.

Recall the above: There exist a, b > 0 such that for any i and any point

pi ∈ Σi there exists a cylinder Ca,b(pi) of radius a and height b centered at

pi such that Cpi(Σi ∩ Ca,b(pi)) can be written as graph over a ball of radius

a. This implies a lower area bound of the area of Σi covered by this graph.

Above we showed that the area of each Σi is uniformly bounded. Conse-

quently there exists an integer N ′ ≥ 1 and an atlas for each Σi consisting of

at most N ′ charts, and each of these charts is graphical.

By a diagonal sequence argument we conclude the existence of a C1,1-

surface Σ and a subsequence Σik → Σ in C1,α as k →∞, for α ∈ [0, 1). The

surface Σ is minimal by the above, which yields a contradiction.

2.7. The construction yields an admissible manifold.

Claim 2.21. (M, ĝ) is an admissible extension.

Proof of Claim. First, the metric ĝ is asymptotically flat by the asymptotic

flatness of g and the expansion of the function u and its derivatives as

|x| → ∞ given in Section 2.3. Second, R(ĝ) ≥ 0 by the construction of

ĝ. Note that ∂M is minimal in ĝ because ĝ is equal to g near ∂M . Third,

following Remark 2.10, we can arrange for u such that ḡ is arbitrarily close to

9The lower bound depends on the injectivity radius of the exponential map at p and the
exact growth of |g − δ|δ around p (as in the assumptions of Lemma 1.5). The radius and
the growth can be bounded uniformly over BR0 from below and above, respectively. In
particular, we can bound the radius from below independent of the point p.
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g. This implies that R(ḡ) can be constructed arbitrarily close to R(g). Using

the dependence in the statement of Theorem A.1, we can therefore arrange

for ĝ arbitrarily close to g on M . Recall that in the case of vanishing scalar

curvature, the initial scalar curvature deformation can be made arbitrarily

small. This, together with the asymptotic expansion of u and its derivatives

given in Section 2.3, implies that ĝ satisfies the assertions of Theorem 2.3.

Note that (M, g) contains by definition no closed minimal surfaces other

than ∂M . We conclude that (M, ĝ) must also contain no closed minimal

surfaces other than ∂M , and is subsequently an admissible manifold. �

Appendix A. Results about non-static metrics

The following local scalar curvature deformation theorem is a special case

of Theorem 1.2 in [16]:

Theorem A.1. Let k ≥ 4. Let
(
Ω, g

)
be a compact Ck,α Riemannian

manifold of dimension n ≥ 2 with boundary, and let Ω be the manifold

interior of Ω. Assume that g is non-static on Ω. Let Ω0 ⊂ Ω be a non-

empty open set that is compactly contained in Ω. There exist ε, C > 0 such

that for any σ ∈ Ck−4
(
Ω
)

with support in Ω0 and with ‖σ‖Ck−4,α < ε, there

is a Ck−2,α-metric γ on Ω so that supp(γ − g) is compactly contained in Ω,

such that ‖γ − g‖Ck−2,α ≤ C‖σ‖Ck−4,α, and such that R(γ) = R(g) + σ. If g

and σ are smooth, we can arrange for γ to be smooth as well.

We prove the following proposition by following the steps from Proposition

2.3, Corollary 2.4 and Proposition 3.2 in [5] or, similarly, Proposition 2.1 and

the subsequent remark in [16].

Proposition A.2. Given a non-static Riemannian metric g on a 3-manifold

M without boundary, there exists a non-empty smooth bounded open set

U ⊂M such that g is non-static on U .

Proof. We prove the proposition by contradiction. At first, we show that

the kernel of L∗g is finite-dimensional on any set Ω. Let c(t) be a geodesic

starting from some x0 ∈ Ω and f ∈ C∞(Ω) be a non-trivial element of the

kernel of L∗g on Ω. Define h(t) = f(c(t)). This function satisfies

h′′(t) = Hessc(t)(f)(c′(t), c′(t))

=

[(
Ric(g)− R(g)

n− 1
g

)
(c′(t), c′(t))

]
h(t).
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This is a linear second-order ODE for h(t). The initial value space of pairs

(f(x0),∇f(x0)) for this ODE is finite-dimensional, which implies that the

dimension of ker(L∗g,Ω) must be finite-dimensional. Indeed, trivial initial

data implies that f vanishes in a neighborhood around x0. As f satisfies

an elliptic equation, a unique continuation argument shows that f vanishes

identically on Ω, cf. the proof of Proposition 2.3 in [5].

Let {Ωk} be a sequence of bounded smooth open sets constituting an ex-

haustion of M . By inclusion,

ker(L∗g,Ωk+1) ⊂ ker(L∗g,Ωk)

This, together with the fact that the kernel over Ω1 is finite-dimensional,

implies that the sequence of kernels must stabilize, i.e. become constant.

Either it stabilizes at {0}, which establishes the proposition, or it stabilizes

at a non-trivial set W . In the latter case, let f ∈W be non-trivial. Then, by

definition, f would be a non-trivial element of ker(L∗g,Ωk) for all k ≥ k0 for

a finite k0 ≥ 1. This implies that f ∈ ker(L∗g,M), as {Ωk} is an exhaustion

of M . This is a contradiction to the assertion of the proposition. �

Remark A.3. Note that an element f ∈ H2
loc in the kernel of L∗g lies in fact

in C∞ by elliptic regularity, cf. Proposition 2.5 in [5].

The proposition below follows directly from Proposition 2.3 in [5].

Proposition A.4. If the kernel of L∗ḡ is non-trivial on M \ Ω, then the

scalar curvature is constant in M \ Ω.
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