
Linearized Gravity

Camilla Adams

4.6.2024

1 Introduction

In this chapter we will derive an approximation of Einstein’s equations in a
scenario with weak gravity. Additionally we will assume the existence of a
global inertial coordinate system. Let us now specify what we mean by weak
gravity: We will assume that the spacetime metric gµν is nearly flat and thus
can be expressed as

gµν = ηµν + γµν

where ηµν denotes the Minkowski metric and γµν the deviation from the Minkowski
metric with components γµν ≪ 1 in a global inertial coordinate system. γ will
also be called perturbation.
Linearised gravity describes the approximation of Einstein’s equations that we
obtain when we plug in gµν = ηµν + γµν and only consider the terms that are
linear in γ.
Even though we made quite strong assumptions, the approximation of general
relativity by using linearized gravity is found to hold quite well in nature, except
for phenomena involving high gravity like gravitational collapse and black holes
or when dealing with the large scale structure of the universe.

2 Notational conventions

To make life easier, we will use the Einstein summation convention. Furthermore
we will use ∂ to denote the derivative operator associated with η and we will
also use η to raise and lower indices rather than g, to avoid having γ hidden in
a raised or lowered index. The only exception will be, that gµν shall denote the
inverse of gµν rather than ηµαηνβgαβ .

Lemma 1. In the linear approximation we have

gµν := (g−1)µν = ηµν − γµν .
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Proof.

gab(η
bc − γbc) = (ηab + γab)(η

bc − γbc)

= ηabη
bc︸ ︷︷ ︸

δca

−ηabγ
bc + ηbcγab − γabγ

bc

= δca − ηabη
bi︸ ︷︷ ︸

δia

ηcjγij + ηbcγab − γabγ
bc

= δca −ηcjγaj + ηcbγab︸ ︷︷ ︸
0

−γabγ
bc

= δca

in the linear approximation.
⇒ The inverse of gµν is indeed given by ηµν − γµν .

3 The linearized Einstein equation

Now we want to derive the linearized Einstein equation.
As a first step, we will determine the Christoffel symbols with respect to gab =
ηab + γab in the linear approximation:

Γc
ab =

1

2
gcd(∂agbd + ∂bgad − ∂dgab)

=
1

2
(ηcd − γcd)(∂a(ηbd + γbd) + ∂b(ηad + γad)− ∂d(ηab + γab))

=
1

2
(ηcd − γcd)(∂aηbd︸ ︷︷ ︸

0

+∂aγbd + ∂bηad︸ ︷︷ ︸
0

+∂bγad − ∂dηab︸ ︷︷ ︸
0

−∂dγab)

=
1

2
(ηcd(∂aγbd + ∂bγad − ∂dγab)− γcd(∂aγbd + ∂bγad − ∂dγab)︸ ︷︷ ︸

terms quadratic in γ

)

=
1

2
ηcd(∂aγbd + ∂bγad − ∂dγab)

Next we will determine the Ricci tensor to linear order:

Rab = ∂cΓ
c
ab − ∂aΓ

c
cb + Γd

abΓ
c
dc − Γd

cbΓ
c
da︸ ︷︷ ︸

terms quadratic in γ

= ∂c

(
1

2
ηcd(∂aγbd + ∂bγad − ∂dγab)

)
− ∂a

(
1

2
ηcd(∂cγbd + ∂bγcd − ∂dγcb)

)
=

1

2
ηcd(∂c∂aγbd + ∂c∂bγad − ∂c∂dγab)−

1

2
ηcd(∂a∂cγbd + ∂a∂bγcd − ∂a∂dγcb)

=
1

2
(∂d∂bγad − ∂d∂dγab − ∂a∂bγ

c
c + ∂a∂

cγcb)

=
1

2
(∂c∂bγac + ∂c∂aγbc − ∂c∂cγab − ∂a∂bγ

c
c)
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As a last step before we can write down the linearized Einstein equation, we
need to determine the scalar curvature:

R = gijRij

= (ηij − γij)
1

2
(∂c∂jγic + ∂c∂iγjc − ∂c∂cγij − ∂i∂jγ

c
c)

=
1

2
ηij(∂c∂jγic + ∂c∂iγjc − ∂c∂cγij − ∂i∂jγ

c
c)

− 1

2
γij(∂c∂jγic + ∂c∂iγjc − ∂c∂cγij − ∂i∂jγ

c
c)︸ ︷︷ ︸

terms quadratic in γ

=
1

2
(∂c∂iγic + ∂c∂jγjc − ∂c∂cγ

i
i − ∂j∂jγ

c
c)

= ∂c∂iγci − ∂c∂cγ
i
i

Now we can plug everything into the Einstein equation Gab = 8πTab:

Gab = Rab −
1

2
ηabR

=
1

2
(∂c∂bγac + ∂c∂aγbc − ∂c∂cγab − ∂a∂bγ

c
c)−

1

2
ηab(∂

c∂dγcd − ∂c∂cγ
i
i)

=
1

2
(∂c∂bγac + ∂c∂aγbc − ∂c∂cγab − ∂a∂bγ

c
c − ηab∂

c∂dγcd + ηab∂
c∂cγ

i
i)

=
1

2
(∂c∂bγac + ∂c∂aγbc − ∂c∂cγab −

1

2
∂a∂bγ

i
i −

1

2
∂b∂aγ

i
i − ηab∂

c∂dγcd

+
1

2
ηab∂

c∂cγ
i
i +

1

2
ηab∂

c∂cγ
i
i)

=
1

2
(∂c∂bγac + ∂c∂aγbc − ∂c∂cγab −

1

2
ηac∂

c∂bγ
i
i −

1

2
ηbc∂

c∂aγ
i
i − ηab∂

c∂dγcd

+
1

2
ηab∂

c∂cγ
i
i +

1

2
ηabηcd∂

c∂dγi
i)

=
1

2
(∂c∂bγac −

1

2
ηac∂

c∂bγ
i
i + ∂c∂aγbc −

1

2
ηbc∂

c∂aγ
i
i − ∂c∂cγab +

1

2
ηab∂

c∂cγ
i
i

− ηab∂
c∂dγcd +

1

2
ηabηcd∂

c∂dγi
i)

=
1

2
(∂c∂b(γac −

1

2
ηacγ

i
i) + ∂c∂a(γbc −

1

2
ηbcγ

i
i)− ∂c∂c(γab −

1

2
ηabγ

i
i)

− ηab∂
c∂d(γcd −

1

2
ηcdγ

i
i))

=
1

2
(∂c∂bγac + ∂c∂aγbc − ∂c∂cγab − ηab∂

c∂dγcd)

with γab := γab − 1
2ηabγ

i
i . Hence we get

Gab =
1

2
(∂c∂bγac + ∂c∂aγbc − ∂c∂cγab − ηab∂

c∂dγcd) = 8πTab

as the linearized Einstein equation.
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4 Gauge Freedom

In this section we will use the gauge freedom in general relativity to further sim-
plify the Einstein equation. For that purpose we will introduce one-parameter
groups of diffeomorphisms and based on this the Lie derivative.

Definition 1. A one-parameter group of diffeomorphisms is a C∞-map ϕ : R×
M → M such that for fixed t ∈ R, ϕt := ϕ(t, ·) : M → M is a diffeomorphism
and for all t, s ∈ R it holds that ϕt ◦ ϕs = ϕt+s.

Let ϕt a one-parameter group of diffeomorphisms. Then for fixed p ∈ M ,
ϕt(p) : R → M defines a curve in M , that passes through p at t = 0. Now we
define X|p as the tangent to this curve at t = 0. Then X : M → TM given by
p 7→ X|p defines a vector field (TM denotes the tangent bundle).
On the other hand, if a vector field X is given, we can get a corresponding
one-parameter group ϕt by setting ϕt as the flow of X.
Using this, we get a direct correspondance between one-parameter groups of
diffeomorphisms and vector fields.

Now we can define the Lie derivative. The Lie derivative is given by the
change of a tensor field, along the flow generated by a vector field:

Definition 2. Let M a manifold, X a vector field on M and T a smooth tensor
field on M with components T a1...ak

b1...bl . Then the Lie derivative of T with
respect to X is defined as

LXT := lim
t→0

(
ϕ∗
−tT

a1...ak
b1...bl − T a1...ak

b1...bl

t

)
,

where ϕt is the flow generated by X and ϕ∗
−t denotes the pullback of T via ϕ−t.

Since the Lie derivative as defined above is not easily used in calculations,
we will now state one of its useful properties:

Lemma 2. Let gab be a metric tensor field and ξ a vector field. Then we have

Lξgab = ∇aξb +∇bξa

with ∇ the Levi-Civita connection corresponding to gab.

Proof. see Wald, General Relativity, Appendix C

Now we introduced everything we need for the gauge transformation. The
goal will be to find a gauge in which ∂bγab = 0 holds.

Einstein’s equations are invariant under diffeomorphisms, meaning if ϕ :
M → M is a diffeomorphism and gµν a solution to Einstein’s equations, then
ϕ∗gµν , with ϕ∗ the pullback, is also a solution to Einstein’s equations.
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We define gab(ϵ) := ηab + ϵγab for small ϵ. Note that (M, gab(ϵ)) and
(M,ϕ∗

ϵgab(ϵ)) represent the same spacetime, for ϕϵ an arbitrary one-parameter
group of diffeomorphisms. Then we have

γab =
d

dϵ
gab(ϵ).

If we define

γ̃ab :=
d

dϵ
ϕ∗
ϵgab(ϵ)

we easily see that γab and γ̃ab describe the same perturbation. In the linear
approximation we have

γ̃ab − γab =
d

dϵ
(ϕ∗

ϵgab(ϵ)− gab(ϵ)) = Lξηab

where ξ is the vector field that generates ϕ−ϵ. Hence, if gµν = ηµν + γµν is a
solution to Einstein’s equation, then g̃µν = ηµν + γ̃µν with γ̃µν = γµν + Lξηµν
is also a solution. Using Lemma 2, we follow

γ̃µν = γµν +∇µξν +∇νξµ = γµν + ∂µξν + ∂νξµ.

Now we want to find a transformation, such that ∂bγ̃ab = 0. We compute

∂bγ̃ab = ∂b(γab + ∂aξb + ∂bξa)

= ∂b(γab + ∂aξb + ∂bξa −
1

2
ηab(γ

c
c + ∂cξc + ∂cξ

c))

= ∂b(γab + ∂aξb + ∂bξa −
1

2
ηab(∂

cξc + ∂cξ
c))

= ∂bγab + ∂b(∂aξb + ∂bξa −
1

2
ηab(η

cd∂dξc + ηcd∂cξd))

= ∂bγab + ∂b(∂aξb + ∂bξa − ηabη
cd∂dξc)

= ∂bγab + ∂b(∂aξb + ∂bξa − ηab∂
cξc)

= ∂bγab + ∂b∂aξb + ∂b∂bξa − ηab∂
b∂cξc

= ∂bγab + ∂a∂
bξb + ∂b∂bξa − ∂a∂

cξc

= ∂bγab + ∂b∂bξa.

Hence we have ∂bγ̃ab = 0 ⇔ ∂b∂bξa = −∂bγab. Therefor by solving

∂b∂bξa = −∂bγab

for ξ we find a gauge that satisfies

∂bγ̃ab = 0.

In this gauge, the linearized Einstein equation simplifies to

16πTab = ∂c∂bγac︸ ︷︷ ︸
0

+ ∂c∂aγbc︸ ︷︷ ︸
0

−∂c∂cγab − ηab∂
c ∂dγcd︸ ︷︷ ︸

0

= −∂c∂cγab.
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