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In Special Relativity we investigate isolated systems and ignore the in-
fluence of matter at far distances. The Minkowski spacetime represents
the geometry of a static and highly symmetric universe. Last week, Oskar
introduced the Minkowski spacetime and some of its basic properties.

Recap. � g(X,Y ) = ηµνx
µyν , where ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


� In other words: g = −dt2 + (dx1)2 + (dx2)2 + (dx3)2

� A vector X ∈ R3+1 is called


spacelike if g(X,X) > 0

timelike if g(X,X) < 0

null if g(X,X) = 0

1 Double Null Foliation

Today, we want to describe the global and asymptotic structure of Minkowski
spacetime. To do so, one could start by considering the following foliation
of Minkowski

R3+1 =
⋃
τ∈R

Hτ ,

where Hτ = {t = τ} is a spacelike hypersurface.

Remark. 1. A hypersurface H is called spacelike, if the Normal Nx at
each point x ∈ H is timelike. In this case, g |TxH is positive-definite
(i.e. H is a Riemannian manifold).
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2. A hypersurface H is called timelike, if the Normal Nx at each point
x ∈ H is spacelike. In this case, g |TxH has signature (−,+,+).

3. A hypersurface H is called null, if the Normal Nx at each point x ∈ H
is null. In this case, g |TxH is degenerate.

Example (timelike hypersurfaces). 1. The hypersurfaces Tτ := {x1 =
τ} are timelike for each τ since their normal is the spacelike vector
field ∂x1 . Then (Tτ , g |TxTτ ) is isometric to the Minkowski space R2+1.

2. The hypersurface

H3
+ = {X : g(X,X) = 1 and X future-directed}

is a timelike hypersurface.

Example (null hypersurfaces). 1. Let n = (n0, n1, n2, n3) be a null vec-
tor. The planes given by the equation

Pn = {(t, x1, x2, x3) : n0t = n1x
1 + n2x

2 + n3x
3}

are null hypersurfaces, since their normal is the null vector n.

2. The (future null) cone

C =
{
(t, x1, x2, x3) : t =

√
(x1)2 + (x2)2 + (x3)2

}
is a null hypersurface. Its tangent plane at the endpoint of n is the
plane Pn, hence its normal is the null vector n.
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Figure 1: Summary hypersurfaces

Note however, this foliation does not capture the properties of null
geodesics whose importance is manifest from the fact that signals (i.e. light)
travel along such curves.

Q: What is a null geodesic? A null geodesic is a geodesic starting in a null
vector. i.e. a vector X ∈ R3+1 s.t. g(X,X) = 0. Note that in the Minkowski
case, the curvatures (Riemann, Ricci, scalar) are all zero and therefore the
geodesics are just lines with respect to the coordinate system (t, x1, x2, x3).
In particular photons travel along null geodesics (light speed).
(Remark: Since g is not positive definite (signature (−,+,+,+)) X be-
ing a null vector does not necessarily mean that X = 0. For example
X = (1, 1, 0, 0) has g(X,X) = 0 but is not equal to zero.)

Indeed, an observer located far away from an isolated system under in-
vestigation must understand the asymptotic behavior of null geodesics in
order to be able to measure radiation and other information sent from this
system. For this reason, we will consider a foliation of Minkowski spacetime
which captures the geometry of null geodesics emanating from points of a
timelike geodesic. This is the so-called double null foliation.
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Consider the timelike geodesic α(t) = (t, 0, 0, 0). Recall the future null cone
Cτ with vertex at α(τ)

Cτ =
{
(t, x1, x2, x3) : t− τ =

√
(x1)2 + (x2)2 + (x3)2

}
and past null cone Cτ

Cτ =
{
(t, x1, x2, x3) : t− τ = −

√
(x1)2 + (x2)2 + (x3)2

}
.

In order to simplify the above expressions and capture the symmetry of
the null cones, we introduce spherical coordinates (r, θ, ϕ) for the Euclidean
hypersurface Hτ , s.t. r = 0 corresponds to the curve α. Then, in (t, r, θ, ϕ)
coordinates, the Minkowski metric takes the form

g = −dt2 + dr2 + r2 · gS2(θ,ϕ),

Where gS2(θ,ϕ) = dθ2+(sin θ)2dϕ2 is the standard metric on the unit sphere.
Then we have

Cτ = {(t, r, θ, ϕ) : t− r = τ}

Cτ = {(t, r, θ, ϕ) : t+ r = τ}

Now it is very convenient to convert to null coordinates (u, v, θ, ϕ) defined
s.t.

u = t− r

v = t+ r

Note also that v ≥ u and u = v iff r = 0. The metric with respect to null
coordinates takes the form

g = −dudv +
1

4
(u− v)2 · gS2(θ,ϕ)

and then we end up with

Cτ = {(u, v, θ, ϕ) : u = τ} ,

Cτ = {(u, v, θ, ϕ) : v = τ} .

and the double null foliation is given by

R3+1 =
⋃
τ∈R

Cτ ∪ Cτ .
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2 The Penrose Diagram

The aim is to describe the asymptotic structure of Minkowski space. In Par-
ticular, we want to draw a ”bounded” diagram whose boundary represents
infinity and somehow respects the causal structure of Minkowski.
Clearly, v → ∞ along the null cones Cτ and u → ∞ along Cτ . In Order
to bring the endpoint of null geodesics in finite distance, we consider the
following change of coordinates:

tan p = v,

tan q = u,
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with p, q ∈ (−π
2 ,

π
2 ) and p ≥ q. Then in (p, q, θ, ϕ) coordinates the metric

takes the form

g =
1

cos2 p · cos2 q

(
−dpdq +

1

4
sin2(p− q) · gS2(θ,ϕ)

)
At first glance, this metric does not seem very pretty, because a consequence
of the boundedness of the range of p, q is that the left factor blows up as
p, q → ±π

2 . In order to overcome this degeneracy, we consider the metric g̃
which now takes the form

g̃ =

(
−dpdq +

1

4
sin2(p− q) · gS2(θ,ϕ)

)
.

Clearly the metric g̃ is conformal to g (since ∃φ smooth : g̃ = φg). Note
that ∇p = −∂q,∇q = −∂p, where ∇ considered with respect to g̃, and
therefore, the hypersurfaces

C̃τ = {(p, q, θ, ϕ) : q = τ, τ ∈ R} ,

C̃τ = {(p, q, θ, ϕ) : p = τ, τ ∈ R}

are null (with respect to g̃).
Hence, if we suppress one angular direction, we can globally depict the
manifold (M̃, g̃) covered by the coordinates (p, q, θ, ϕ) as follows:
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The Manifold (M̃, g̃), which is conformal to Minkowski R3+1.

We define:

� Future null infinity I+ to be the endpoints of all future-directed null
geodesics along, which r → +∞.

� Future timelike infinity i+ to be the endpoints of all future-directed
timelike geodesics.

� Spacelike Infinity i0 to be the endpoint of all space geodesics. This
is in fact a point, and not a sphere, which can be thought of as the
point at infinity of the one-point compactification of, say, the spacelike
hypersurface t = 0.
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Note that if a curve α(τ) = (t(τ), r(τ), θ(τ), ϕ(τ)) is such that as τ →
+∞

� t → ∞ and r < ∞, then α approaches i+.

� t ∼ r → ∞, then α approaches I+.

� |t| < ∞ and r → −∞, then α approaches i0.

� t ∼ −r → −∞, then α approaches I−

� t → −∞ and r < ∞, then α approaches i−.

We can proceed further by suppressing all angular directions. Formally
speaking, we consider the quotient M̃/SO(3). Then the metric g̃ reduces
to ĝ = −dpdq, which coincides with the Minkowski spacetime R1+1. Hence,
if we consider a planar section of the cone, then the resulting bounded 2-
dimensional domain is embedded in the Minkowski spacetime R1+1:
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This diagram is called the Penrose diagram of Minkowski Spacetime
R3+1. All cones collapsed to lines. Using the above diagram one can read
off the causal structure of spacetime as follows:
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More generally, one defines the Penrose diagram of a spherically sym-
metric spacetime to be the image of a bounded conformal transformation of
the quotient spacetime in Minkowski spacetime R1+1. The Importance of
such diagramms is that they allow one to read off the causal structure and
recognize the asymptotic structure of a spacetime.

For example, we see that in Minkowski, the past of future null Infinity
I+ is the whole spacetime. However we can construct spacetimes for which
this is not the case. In other words there are spacetimes which contain
points which cannot communicate with I+. The conformal diagram of such
spacetime would be as follows:

The shaded region cannot send signals to I+ and for this reason is called
black hole.

Take Home Message. 1. We learned about spacelike, timelike and null
hypersurfaces

2. We can foliate Minkowski spacetime by null cones, the so called double
null foliation

3. We can transform Minkowski spacetime conformally into a bounded
Penrose diagram, where we still can read off the causal structure

4. We got a first glance at the concept of a black hole
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