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Summary

This is the script of Seminar talk in ’Introduction to Curvature in General Relativity’
I gave with Dr. Stefan Czimek. The talk addresses derivative operators, the concept
of parallel transport, and finally Riemann tensor. The talk is referred to the Book
’General Relativity’ (Wald 1984)

1 Introduction

There are two important notions of curvature in General Relativity. Intrinsic and Ex-
trinsic. For extrinsic notion, we need embedding in a higher dimension (For example:
A 2 Dimensional surface embedded in R

n). Here we consider intrinsic notion, which
needs no higher dimensional embedding. These kinds of curvatures are defined by
means of parallel transport of a vector through a curve and it’s failure to do so in
a closed loop on a curved surface. For defining parallel transport we need the no-
tion of a derivative operator and for defining curvature we need a tensor that governs
the failure of a vector to undergo parallel transform along a closed loop on a curved
surface.

2 Derivative Operator

To define Parallel transport, we first need a derivative operator. We can obviously
choose a normal partial differential operator ∂a. But since we are going to deal with
different tangent spaces referring to different points on a curve, we need a more gen-
eral operator known as Derivative Operator
A Derivative Operator ∇a takes a smooth Tensor field (k,l) to a smooth Tensor field
(k,l+1). The action of a derivative operator on a tensor field is denoted by

∇aT
a1···ak

b1···bl

It satisfies 5 conditions:

1. Linearity: For all A,B ∈ T(k, l) and α, β ∈ R
n

∇c(αA
a1···ak

b1···bl + βBa1···ak
b1···bl) = α∇cA

a1···ak
b1···bl + β∇cB

a1···ak
b1···bl
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2 Curvature

2. Leibniz rule: For all A ∈ T(k, l) and B ∈ T(k′, l′)

∇e[A
a1···ak

b1···blB
a1···a

′

k
b1···b

′

l
] = [∇eA

a1···ak
b1···bl ]B

a1···a
′

k
b1···b

′

l
+Aa1···ak

b1···bl [∇eB
a1···a

′

k
b1···b

′

l
]

3. Commutativity with contraction

∇d(A
a1···c···ak

b1···c···bl) = ∇dA
a1···c···ak

b1···c···bl

4. Consistency with tangent vectors as derivatives on scalar fields. For all f∈ F and
ta ∈ Vp

t(f) = ta∇af

5. Torsion free: For all f∈ F

∇a∇bf = ∇b∇af

Remark: We can write commutator of two vectors in terms of ∇a

Using fourth property for all vector v,w ∈ V

[v, w]b = va∇aw
b
− wa

∇av
b

Example: Let Ψ be a coordinate system and {dxµ} and {∂/∂xµ} be a coordinate basis.
Let ∂a, the partial derivative operator be the derivative operator namely Ordinary
derivative.
Partial Derivatives won’t follow commutativity with contraction, which fails it to make
the Covariant derivative.
∂a is not naturally associated with a manifold because ∂a changes with the choice of
coordinates.

3 Uniquenessof∇a anddisagreementonactionon tensorfields

By condition 4 any two derivative operators ∇a and ∇̃a must agree on their action
on scalar fields. To find their possible disagreements on tensors let us consider the
tensor of the next highest rank, namely the dual vector field
Let us consider the difference ∇a(fωb) - ∇̃a(fωb). By Leibniz rule it becomes

f(∇̃aωb −∇aωb)

We take this difference for two different dual vectors ωb, ω
′

b acting on the same point.
We can prove using advanced calculus that

∇̃aω
′

b −∇aω
′

b = ∇̃aωb −∇aωb

So ∇a - ∇̃a maps dual vector fields to (0,2) tensor fields. That implies it results in a
(1,2) tensor field denoted as Cc

ab

∇aωb = ∇̃aωb − Cc
abωc
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Using property 4 we can say that for every vector field ta and dual vector field ωa

(∇̃a −∇a)(ωbt
b) = 0

By Leibniz rule and previous equations of tensor field arise from difference of two
derivative operators

(∇̃a −∇a)(ωbt
b) = (Cc

abωc)t
c + ωb(∇̃a −∇a)t

b

By contracting and index substitution we can obtain for all ωb that

∇at
b = ∇̃at

b
− Cb

act
c

This can be generalised to a higher rank tensor

∇aT
b1···bk

c1···cl =∇̃aT
b1···bk

c1···cl +
∑

i

Cbi
adT

b1···d···bk
c1···cl

−

∑

j

Cd
acj

T b1···b1
c1···d···cl .

When ∇̃a is ordinary derivative ∂a, Cc
ab is denoted as Γ

c
ab and it is known as Christoffel

Symbol. Thus we can write

∇at
b = ∂at

b + Γb
act

c

4 Parallel Transport

Figure 1: A visual representation of Parallel Transport

Given a curve C with tangent ta we can define the notion of parallel transport for
a vector va given at each point if we move along the curve, if the following equation
satisfies

ta∇av
b = 0

For an arbitrary tensor

ta∇aT
b1···bk

c1···cl = 0

Ina coordinate system,

ta∂av
b + taΓb

acv
c = 0
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In terms of components and parameter t

dvν

dt
+
∑

µ,λ

tµΓν
µλv

λ = 0

This is a differential equation with solution as the vector that got transported
Two tangent spaces can be easily mapped if we know the curve and the ∇a and by
means of parallel transport. the mathematical structure arsing from that is called con-
nections
Many distinct derivative operators can be chosen and no derivative operaor is spe-
cial. However if we choose a metric gab a natural choice of derivative operator can be
made. This is because metric can arise a condition which we can associate naturally
to parallel transport.
Given two vectors va and wb which individually obey parallel transport condition, we
can see that their inner product is always parallel transported irrespective of the curve.
That is

ta∇a(gbcv
bwc) = 0

By Leibniz rule we can see that

∇agbc = 0

This is called Metric Compatibility condition
This equation uniquely determines ∇a which is shown by following theorem
Theorem: Let Gab be a metric. Then there exists a unique Torsion free operator ∇a

satisfying ∇agbc = 0
A sketch of proof proceed like this: We first take a covariant derivative ∇̃a and we
solve for Cc

ab. We then determine the choice of C
c
ab is unique.

Using the representation of action of tensor field on covariant derivative ∇a we write

0 = ∇agbc = ∇̃agbc − Cd
abgdc − Cd

acgbd

Solving this and using index substitution we can arrive

Cc
ab =

1

2
gcd

(

∇̃agbd + ∇̃bgad − ∇̃dgab

)

The choice of Cc
ab solves the metric compatibility condition and it is unique.

In terms of an ordinary derivative operator, the Christoffel symbol is

Γc
ab =

1

2
gcd (∂agbd + ∂bgad − ∂dgab)

The coordinate basis components of Christoffel symbol are

Γρ
µν =

1

2

∑

σ

gρσ
(

∂gνσ

∂xµ
+

∂gµσ

∂xν
−

∂gµν

∂xσ

)
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5 Riemann Tensor and Curvature

We can use path dependence of parallel transport to define intrinsic notion of curva-
ture.
Let∇a be a derivative operator and we calculate the action of two derivative operators
applied on fωa, where ωa is dual vector field and f is a smooth function.

∇a∇b(fωc) = ∇a(ωc∇bf + f∇bωc)

= (∇a∇bf)ωc +∇bf∇aωc +∇af∇bωc + f∇a∇bωc

If we do the same thing, but order of operator action reversed and we subtract the
resulting equations we get

(∇a∇b −∇b∇a)(fωc) = f(∇a∇b −∇b∇a)ωc

Using the exact same reasoning we used to derive Christoffel symbol we can say
∇a∇b −∇b∇a maps dual vector fields to (0,3) tensor fields. That implies it results in
a (1,3) tensor field denoted as Rd

abc. This tensor is called Riemann curvature Tensor.
For all dual vectors ωc

∇a∇bωc −∇b∇aωc = Rd
abcωd

To show Riemann tensor governs the failure of vector to parallely transport we con-
sider the following diagram

Figure 2: Parallel Transport of a vector over a closed loop on a curved surface

Here we are analysing the change in the scalar vaωa as we traverse the loop. On
the first leg of loop, for small ∆t the change is

δ1 = ∆t
∂

∂t
(vaωa)

∣

∣

∣

∣

(∆t/2,0)

by evaluating the derivative at the midpoint, this expression is accurate to second
order in the displacement ∆t. We may rewrite δ1 as

δ1 = ∆tvaT b
∇bωa

∣

∣

(∆t/2,0)
,
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where T b is the tangent to the curves of constant s and T b obeys parallel transport
equation. Let us combine the variations δ1 and δ3

δ1 + δ3 = ∆t
{

vaT b
∇bωa

∣

∣

(∆t/2,0)
− vaT b

∇bωa

∣

∣

(∆t/2,∆s)

}

,

δ2 and δ4 combine similarly. The term in brackets vanishes as ∆s → 0, and that
implies that to first order in ∆t and ∆s, the total change in vaωa (and thus the total
change in va) vanishes. That is parallel transport is path independent to the first order.
Now we evaluate the second order change in vaωa by evaluating the terms in brackets
up to first order

δ1 + δ3 = −∆t∆svaSc
∇c

(

T b
∇bωa

)

,

Where Sc is tangent to the curves of constant t.
Adding similar contributions from δ2 and δ4, we find the total change in vaωa is

δ (vaωa) = ∆t∆svaT cSbRcba
dωd;

This equation can hold for all ωc if and only if the total change in va (accurate to
second order in ∆t)

δva = ∆t∆svdT cSbRcbd
a

This equation shows that Riemann tensor measures the path dependence of paral-
lel transport or Riemann tensor governs the failure of a vector to parallel transport
around a closed loop on a curved surface.
We can use an analogous procedure to derive the expression of tensor acted upon by
a covariant derivative, to derive the expression of action of commutator of derivative
operators on an arbitrary tensor field in terms of Riemann Tensor. Let ta be a vector
field and ωc its dual

0 = (∇a∇b −∇b∇a)(t
cωc)

This gives us

ωc(∇a∇b −∇b∇a)t
c + tcωdRabc

d

From this we can obtain

(∇a∇b −∇b∇a)t
c = −Rabd

ctd

By induction we can obtain, the expression of the action on an arbitrary tensor field

(∇a∇b −∇b∇a)T
c1···ck

d1···dl = −

k
∑

i=1

Rabe
ciT c1···e···ck

d1···dl +
l

∑

j=1

Rabdj
eT c1···ck

d1···e···dl
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Riemann Tensor have following properties

1. Rd
abc = -R

d
bac

2. Rd
[abc] = 0

3. For a derivative operator∇a naturally associated with the metric gbc and the metric
compatibility condition, we have

Rabcd = −Rabdc

4.The Bianchi identity
∇[aR

e
bc]d = 0
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